• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    總氣壓與Ar/O2流量比對直流對向靶磁控濺射TiO2薄膜光催化性能的影響

    2012-03-06 04:43:42
    物理化學(xué)學(xué)報(bào) 2012年9期
    關(guān)鍵詞:磁控濺射天津大學(xué)國家海洋局

    陳 芃 譚 欣 于 濤

    (1天津大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津300072;2國家海洋局天津海水淡化與綜合利用研究所,天津300192; 3天津大學(xué)化學(xué)工程學(xué)院,天津300072)

    1 Introduction

    In 1972,Fujishima and Honda1discovered the phenomenon of photocatalytic splitting of water on a TiO2electrode under ultraviolet(UV)irradiation.Due to its non-toxicity,high activity,and chemical stability,many researchers have focused on the environmental applications of TiO2photocatalyst,including the production of self-clean materials,2decomposition of water,3,4dye-sensitized solar cells,5,6mineralization of toxic organic compounds7-9and so on.

    However,the filtration of TiO2powders has limited its practical or industrial applications.Thus,TiO2thin films have attracted a great deal of attention due to their excellent properties such as easy recycling and stable coating on various kinds of substrates.10Bahnemann and co-workers11,12have reported TiO2thin films on different substrates such as polycarbonate substrates and soda-lime glass for degradation of organic compounds.Kiwi and co-workers13focused on the stable parylene/ TiO2films for the photoinduced discoloration of methyl orange and the acceptable kinetics during the dye discoloration.However,most of the researches focused on the photocatalytic TiO2thin films prepared by wet process such as a sol-gel method, only a limited number of reports were concerned on the synthesis of TiO2films by physical deposition.Here we proposed a new device named direct current facing-target magnetron sputtering(DCFTMS)system for thin film deposition.Compared to the traditional film preparation methods including sol-gel method14and chemical vapor deposition,15TiO2thin films prepared by magnetron sputtering showed a higher uniformity and improved the combination between the films and the substrate.16Besides,parameters such as sputtering pressure,17power,18target-substrate distance,19and substrate temperature20can be controlled precisely during the sputtering process.Therefore,TiO2thin films with well-controlled stoichiometry,high purity,and strong adhesion can be fabricated by regulating sputtering parameters and post-annealing treatments.

    As a physical depositon method,magnetron sputtering has been developed very fast in recent years.In conventional magnetron sputtering system there is only one target paralleled to the substrate,which easily cause high energetic ion bombardment on the film surface during the sputtering process.21In DCFTMS system the substrate is vertical to a pair of facing targets with the aim of prevention of high energetic ions bombardment in the new system.This new technology has shown many advantages including high sputtering efficiency and stable substrate temperature.So far,there is seldom study focusing on the crystal structures and photocatalytic activities of TiO2thin films prepared by DCFTMS.In the previous work22we have investigated the influence of annealing temperature on the properties of TiO2thin films deposited by DC facing-target magnetron sputtering method.In this paper we focus on effects of different sputtering pressures and Ar/O2flow ratios on the photocatalytic activities of the prepared TiO2thin films.A pair of Ti plates were used as the sputtering targets in the TiO2thin film fabrication.Argon gas was selected as the sputtering gas for its inert properties.The characterizations of TiO2thin films including X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),and UV-visible(UV-Vis)spectrophotometer were also investigated.

    2 Experimental

    2.1 Preparation of TiO2thin films

    TiO2thin films were prepared by DCFTMS with the vacuum pressure at approximately 6.0×10-4Pa.Schematic diagram of the reactive DCFTMS system is shown in Fig.1.The facing targets were a pair of Ti discs(purity of 99.99%)with 100 mm in diameters.Fluorine-doped SnO2(FTO)glasses(NSG,Japan) served as the substrate with an area of 20 cm×20 cm.Argon gas(purity of 99.999%)and oxygen gas(purity of 99.999%) were selected as the working gas and reactive gas,respectively. The sputtering deposition began when the plasma color changed to blue.In order to clean the target surface completely,the pair of Ti discs was pre-sputtered for 5 min.All of the TiO2thin films were sputter-deposited at room temperature using a power of 350 W.The total working pressure was controlled at 1.0,1.5,2.0 Pa by an ion gauge.The depositions were carried out with the Ar/O2flow ratios of 3:1,2:1,and 1:1. The substrate-target distance was kept at 70 mm for the deposition of all samples.After deposition,the prepared films were sintered at 550°C in the furnace with a speed of 4°C·min-1and then kept at 550°C for 2 h.

    2.2 Characterization

    The thicknesses of TiO2thin films were measured by a surface roughness tester(Vecco Dektak 6M,America).The crystal structure and phase composition of samples were characterized by XRD(Rigaku Rint-2500,Japan)with a 2θ method using Cu Kαradiation.The scanning rate was 2(°)·min-1.The surface morphology of the films was observed by FESEM(Hitachi S-4800,Japan).For a detailed study of the film surface,AFM (Digital MMAFM-2,America)was used with contact mode. The images with an area of 4 μm×4 μm were obtained.

    Fig.1 Schematic diagram of the reactive DCFTMS system

    2.3 Photocatalytic activity measurement

    The photocatalytic activities of the prepared TiO2thin films were evaluated by measuring the decomposition of gaseous iso-propanol(IPA)under UV light irradiation.In order to remove the impurity from film surfaces,samples were cleaned using nitrogen before measurement.The prepared TiO2thin films were placed at the center of the rector and then the IPA gas was injected with an initial concentration of 100×10-6.At the beginning of the reaction,the reactor was kept in the dark for 1 h to obtain the absorption balance of IPA.Then the reactor was irradiated using an UV light for 2 h at room temperature.The reaction products were calculated using a gas chromatograph(GC-2014,Shimadzu)equipped with a methanizer and a flame-ionized detector.

    2.4 Photoinduced superhydrophilicity measurement

    The photoinduced hydrophilicity of samples was evaluated by a sessile drop method.The TiO2thin films were kept in a dry box under darkness for 24 h and then determined at every 15 min interval for 2 h under the UV irradiation.All water droplets were blown with nitrogen gas before the film was irradiated.The water contact angles were measured at five different positions using a goniometer,with the average value selected to be the contact angle.

    3 Results and discussion

    3.1 Structure and morphology

    The average thickness of all the prepared films was about 200 nm,measured using a surface roughness tester.Conditions of the fabrication of the TiO2thin films were investigated by optimizing the sputtering pressures and Ar/O2flow ratios.The XRD patterns of a series of TiO2samples deposited on FTO glasses are shown in Fig.2.It should be noted that the diffraction patterns of FTO substrates were much sharper than the TiO2patterns due to the thickness of the TiO2films.On the other hand,the XRD images clearly showed typical diffraction patterns of around 25°and 27°,which indicate anatase(101) phase and rutile(110)phase,respectively.

    All films deposited at Ar/O2flow ratio of 1:1 showed the best crystal structure under the same total pressure.As an important parameter,a threshold of Ar/O2flow ratio existed during the sputtering process.The number density of Ti atom on the substrate is directly related to the oxygen flow rate and its partial pressure in the reaction chamber.23

    Due to lack of oxygen atoms,it was not good for the formation of TiO2at low O2flow ratio.However,the sputtering process might stop if keeping increasing the O2flow ratio.In the DCFTMS system Ti targets would be oxidized by superfluous O atoms which were unconducive to the formation of TiO2.Besides,the excessive O2flow ratio caused the decreasing of the utilization of initial Ti targets.Therefore there was a threshold of the Ar/O2ratio existing in DCFTMS process.In our experiment,the threshold ofAr/O2flow ratio was 1:1.

    Fig.2 XRD patterns of the TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios of 3:1,2:1,1:1The sputtering pressures(ptot)were(a)1.0 Pa,(b)1.5 Pa,and (c)2.0 Pa,respectively.

    On the other hand,the phase of deposited films changed from the mixture of anatase and rutile to pure anatase as the sputtering pressure increased.This might be related to the impinging particles with high energy under the high total pressure condition.In order to obtain crystalline TiO2thin films,the energy of the deposited particles should be higher than the crystalline nucleation energy of anatase or rutile.As the sputtering pressure increased from 1.0 to 2.0 Pa,the energy of impinging particles increased,conducing to the formation of anatase phase.The XRD patterns are consistent with the above analysis.As shown in Fig.2,the TiO2thin films deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed the highest crystallinity with anatase phase only.

    Fig.3 FESEM images of TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios under different total pressures

    In addition,the surface morphology of the TiO2thin films is an important factor in photocatalytic reaction.The FESEM images of TiO2thin films deposited on FTO substrates with different Ar/O2flow ratios under different total pressures are shown in Fig.3.The surfaces of the prepared films were composed of polygonal particles with about 100 nm in diameter.Moreover, the particles are not closely contacted,with some‘little crack’between the particles.This phenomenon could be explained by the affection of FTO layers during the deposition.It can be seen from FESEM images that the films deposited with higher Ar/O2flow ratios show higher surface roughness.Therefore, the reactants can be easily adsorbed on the film surface and the products can be quickly transferred out of the film.

    Fig.4 shows AFM images of TiO2thin films deposited with Ar/O2flow ratio of 1:1 under different total pressures.The prepared films became rougher and higher uniformity as the sputtering pressure increases during the deposition process.The effect of increasing pressure on the surface morphology of TiO2films may attribute to the high surface mobility caused by the increasing kinetic energy of sputtered atoms.

    3.2 Photocatalytic activity

    The photocatalytic performance of TiO2thin films was evaluated by the decomposition of IPA under UV irradiation.It could be seen from the FESEM images that the film was compact and no pore existed on the film surface.So the decrease in IPA was independent of the absorption during the photocatalytic reaction.Furthermore,the IPA concentration remained the same during 2 h in the absence of TiO2thin film,indicating the absence of IPAself-degradation under UV irradiation.

    Under UV irradiation,the electron and hole,which have high activity and ability for oxidizing many organic compounds,were generated and then transformed to the surface of TiO2films.24-26IPA was oxidized to acetone(CH3COCH3)and further to carbon dioxide(CO2).

    Fig.4 AFM images of TiO2thin films deposited on FTO substrates withAr/O2flow ratio of 1:1 under different total pressuresptot/Pa:(a)1.0,(b)1.5,(c)2.0

    Fig.5 and Fig.6 record the concentrations of acetone and CO2as a function of UV irradiation time respectively in presence of different samples.Acetone was the main product while both acetone and CO2were evolved from the photocatalytic degradation of IPA in our experiment.It was determined that under the same sputtering pressure conditions,the TiO2thin film deposited with Ar/O2flow ratio of 1:1 showed that the amounts of the generated acetone and CO2were the largest. XRD patterns of the film samples showed that the decreasing Ar/O2flow ratios resulted in the formation of anatase phase.It has been reported that the photocatalytic activities of TiO2thin film composed by the mixed phase of rutile and anatase increase with the increasing content of anatase.27,28Simultaneously,if the Ar/O2flow ratios were kept constant,then TiO2thin film deposited at 2.0 Pa would show that the amounts of the generated acetone and CO2were the largest.As evident from Fig.6,TiO2film deposited at 2.0 Pa with the Ar/O2flow ratio of 1:1 showed the highest photocatalytic activity.The concentration of acetone reached the maximum value of 93.2×10-6after 120 min irradiation.

    For all the prepared samples,the concentration of the generated CO2changed in a low range during the whole reaction process.However,among all the prepared TiO2thin films,the sample deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 still showed the highest CO2yield of around 11.1×10-6after 120 min irradiation.

    Fig.5 CO2concentration during the photocatalytic degradation of IPAin the presence of TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios of 3:1,2:1,1:1 under different pressuresptot/Pa:(a)1.0,(b)1.5,(c)2.0

    The superior photocatalytic activity of TiO2film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 can be attributed to the high degree of crystallization and typical crystal structure.The higher sputtering pressures are good for the formation of anatase phase but inhibit the growth of rutile phase.Besides,both of XRD and FESEM images show that the crystalline perfection of TiO2thin film increases with the increasing sputtering pressure.Compared to other samples,TiO2thin films deposited at 2.0 Pa exhibitd a higher crystallinity and photocatalytic activity.Therefore,it can be referred that crystalline perfection played an important role in the photocatalytic process of TiO2thin films.

    3.3 Chemical stability

    This paper investigates the chemical stability of the prepared TiO2thin films with the highest photocatalytic activity,which is on the basis of the possible application for TiO2films.The repetitive experiment,namely the decomposition of IPA in the presence of TiO2thin film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 was done for 5 cycles in our study.In order to remove the impurities from the film surface,the TiO2thin films were heated at 150°C in muffle furnace for 2 h before the photocatalytic reaction.According to the above experiments,acetone was the main product in the decomposition of IPA.Therefore,the concentration of the generated acetone was used to measure the chemical stability of TiO2thin film.Fig.7 shows the change of acetone concentration during the degradation of IPA.The photocatalytic activity evidently decreased both in the second and third cycles,after which the value remained stable.The decreased photocatalytic activity of TiO2thin film may be due to the adsorbed species of reactant.However,the concentration of acetone could reach up to 83.2×10-6after 2 h irradiation in the fifth cycle,which was still higher than that of the other samples with different sputtering pressures and Ar/O2flow ratios.This phenomenon proved that the TiO2thin film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 kept high stability during the degradation of IPA.

    Fig.6 Acetone concentration during the photocatalytic degradation of IPAin the presence of the TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios of 3:1,2:1,1:1 under different pressuresptot/Pa:(a)1.0,(b)1.5,(c)2.0

    Fig.7 Evaluation of stability of TiO2thin film deposited at 2.0 Pa withAr/O2flow ratio of 1:1 from the repetitive photocatalytic degradation of IPA

    3.4 Photoinduced superhydrophilicity

    Photoinduced superhydrophilicity of the sample was determined by changes in contact angles for water under UV irradiation.The mechanism of photoinduced superhydrophilicity can be explained as follows:as UV-induced surface structure changed,the amount of OH groups on the TiO2film surface increased.29

    Fig.8 UV irradiation time dependence on water contact angle of TiO2thin film deposited at 2.0 Pa withAr/O2flow ratio of 1:1Inset images illustrating water contact angles of samples:(a)at the beginning, (b)after 15 min,(c)after 90 min of UV irradiation

    Fig.8 shows the relationship between irradiation time and contact angles for water on the sample.The initial water contact angle was 71°,which meant that the prepared film was initially hydrophobic.After 15 min of UV illumination,the water contact angle decreased from 71°to 28°.It could be seen that the water contact angle decreased with increasing irradiation time under UV light.The water contact angle finally decreased to 3°,indicating that the sample became superhydrophicity.According to the mechanism of photoinduced superhydrophilicity,the amount of water molecules adsorbed on the surface hydroxyls increased with UV irradiation,resulting in the high hydrophilicity of the prepared TiO2thin film.

    4 Conclusions

    In our study,TiO2thin films were successfully deposited on FTO substrates by DC facing-target magnetron sputtering.The deposition parameters,including the sputtering pressures and Ar/O2flow ratios were optimized.Our work can be summarized as follows.

    (1)The decreasing Ar/O2flow ratios are beneficial for the formation of the mixed phase of anatase and rutile.The higher sputtering pressures result in the increase of crystalline perfection of TiO2thin film and inhibit the growth of rutile.The TiO2thin films deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed the highest degree of crystallinity and only the crystal structure of anatase phase.

    (2)A threshold of Ar/O2flow ratios,which proved to be 1:1 in our experiment,existed for the TiO2thin film formation. Sputtering pressure of 2.0 Pa was considered to be the most suitable ptot.The TiO2thin film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed significantly higher photocatalytic activity than other samples and confirmed with high chemical stability.The concentration of the generated acetone and CO2could reach up to 93.2×10-6and 11.1×10-6after 120 min UV irradiation,respectively.

    (3)The TiO2thin films deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed photoinduced superhydrophilicity after 90 min UV irradiation.

    In summary,the DC facing-target magnetron sputtering is one of the useful and promising methods for the preparation of photocatalysts with the uniformed structure,high density coatings of large surface areas with a strong adhesion.The control for parameters in deposition process is important for fabricating TiO2thin films with high effective photocatalytic properties.

    Acknowledgements:The authors thank Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology for the help on the TiO2thin film preparation.And the authors are grateful to Photocatalytic Materials Center at National Institute for Materials Science(Japan)for fruitful scientific discussions.

    (1) Fujishima,A.;Honda,K.Nature 1972,238,37.doi:10.1038/ 238037a0

    (2)Tung,W.S.;Daoud,W.A.J.Mater.Chem.2011,21,7858.doi: 10.1039/c0jm03856c

    (3)Mohapatra,S.K.;Misra,M.;Mahajan,V.K.;Raja,K.S. J.Phys.Chem.C 2007,111,8677.doi:10.1021/jp071906v

    (4)Tong,H.;Ouyang,S.X.;Bi,Y.P.;Umezawa,N.;Oshikiri,M.; Ye,J.H.Adv.Mater.2012,24,229.doi:10.1002/ adma.201102752

    (5) Chandiran,A.K.;Sauvage,F.;Etgar,L.;Gr?tzel,M.J.Phys. Chem.C 2011,115,9232.doi:10.1021/jp1121068

    (6)Park,K.H.;Dhayal,M.Electrochem.Commun.2009,11,75. doi:10.1016/j.elecom.2008.10.020

    (7) Liu,Z.Y.;Zhang,X.T.;Nishimoto,S.;Murakami,T.; Fujishima,A.Environ.Sci.Technol.2008,42,8547.doi: 10.1021/es8016842

    (8) Jing,Y.;Li,L.S.;Zhang,Q.Y.;Lu,P.;Liu,P.H.;Lu,X.H. J.Hazard.Mater.2011,189,40.doi:10.1016/j. jhazmat.2011.01.132

    (9) Chong,M.N.;Jin,B.;Chow,C.W.K.;Saint,C.Water Res. 2010,44,2997.doi:10.1016/j.watres.2010.02.039

    (10) Yu,Z.Y.;Mielczarski,E.;Mielczarski,J.;Laub,D.;Buffat,P.; Klehm,U.;Albers,P.;Lee,K.;Kulik,A.;Kiwi-Minsker,L.; Renken,A.;Kiwi,J.Water Res.2007,41,862 doi:10.1016/j. watres.2006.11.020

    (11) Fateh,R.;Ismail,A.A.;Dillert,R.;Bahnemann,D.W.J.Phys. Chem.C 2011,115,10405.doi:10.1021/jp200892z

    (12)Ismail,A.A.;Bahnemann,D.W.ChemSusChem 2010,3(9), 1057.doi:10.1002/cssc.201000158

    (13)Yu,Z.Y.;Keppner,H.;Laub,D.;Mielczarski,E.;Mielczarski, J.;Kiwi-Minsker,L.;Renken,A.;Kiwi,J.Appl.Catal. B-Environ.2008,79,63.doi:10.1016/j.apcatb.2007.10.006

    (14) Choi,J.;Park,H.;Hoffmann,M.R.J.Mater.Res.2010,25, 149.doi:10.1557/JMR.2010.0024

    (15) Kuo,C.S.;Tseng,Y.H.;Huang,C.H.;Li,Y.Y.J.Mol.Catal. A:Chem.2007,270,93.doi:10.1016/j.molcata.2007.01.031

    (16)Xiao,L.X.;Duan,L.Q.;Chai,J.Y.;Wang,Y.;Chen,Z.J.;Qu, B.;Gong,Q.H.Acta Phys.-Chim.Sin.2011,27,749.[肖立新,段來強(qiáng),柴俊一,王 蕓,陳志堅(jiān),曲 波,龔旗煌.物理化學(xué)學(xué)報(bào),2011,27,749.]doi:10.3866/PKU.WHXB20110310

    (17)Chen,D.Y.;Tsao,C.C.;Hsu,C.Y.Curr.Appl.Phys.2012,12, 179.doi:10.1016/j.cap.2011.05.027

    (18)Anpo,M.Bull.Chem.Soc.Jpn.2004,77,1427.doi:10.1246/ bcsj.77.1427

    (19)Matsuoka,M.;Kitano,M.;Takeuchi,M.;Tsujimaru,K.;Anpo, M.;Thomas,J.M.Catal.Today 2007,122,51.doi:10.1016/j. cattod.2007.01.042

    (20)Shen,J.;Wo,S.T.;Cui,X.L.;Cai,Z.W.;Yang,X.L.;Zhang, Z.J.Acta Phys.-Chim.Sin.2004,20,1191. [沈 杰,沃松濤,崔曉莉,蔡臻煒,楊錫良,章壯健.物理化學(xué)學(xué)報(bào),2004,20, 1191.]doi:10.3866/PKU.WHXB20041005

    (21) Bai,H.L.;Jiang,E.Y.;Wu,P.;Lou,Z.D.Chin.Sci.Bull.1999, 17,1057.

    (22) Chen,P.;Tan,X.;Yu,T.Journal of Tianjin University 2012,in press.[陳 芃,譚 欣,于 濤.天津大學(xué)學(xué)報(bào),2012,印刷中.]

    (23) Zhang,W.J.;Li,Y.;Zhu,S.L.;Wang,F.H.Surf.Coat.Tech. 2004,182,192.doi:10.1016/j.surfcoat.2003.08.050

    (24) Ikeda,K.;Sakai,H.;Baba,R.;Hashimoto,K.;Fujishima,A. J.Phys.Chem.B 1997,101,2617.doi:10.1021/jp9627281

    (25) Ohko,K.;Hashimoto,K.;Fujishima,A.J.Phys.Chem.A 1997, 101,8057.doi:10.1021/jp972002k

    (26) Pihosh,Y.;Turkevych,I.;Ye,J.H.;Goto,M.;Kasahara,A.; Kondo,M.;Tosa,M.J.Electrochem.Soc.2009,156,K160.

    (27)Li,G.H.;Chen,L.;Graham,M.E.;Gray,K.A.J.Mol.Catal. A:Chem.2007,275,30.doi:10.1016/j.molcata.2007.05.017

    (28)Cao,Y.Q.;Long,H.J.;Chen,Y.M.;Cao,Y.A.Acta Phys.-Chim.Sin.2009,25,1088.[曹永強(qiáng),龍繪錦,陳詠梅,曹亞安.物理化學(xué)學(xué)報(bào),2009,25,1088.]doi:10.3866/PKU. WHXB20090619

    (29) Kako,T.;Ye,J.H.Langmuir 2007,23,1924.doi:10.1021/ la062903x

    猜你喜歡
    磁控濺射天津大學(xué)國家海洋局
    《天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》簡介
    C/C復(fù)合材料表面磁控濺射ZrN薄膜
    復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
    學(xué)生寫話
    微波介質(zhì)陶瓷諧振器磁控濺射金屬化
    國家海洋局確定2014年十大海洋科技重點(diǎn)工作
    水道港口(2014年1期)2014-04-27 14:14:35
    射頻磁控濺射制備MoS2薄膜及其儲(chǔ)鋰性能研究
    天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)2014年總目次
    天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)2013年總目次
    我國主要省份風(fēng)暴潮災(zāi)情損失對比分析
    亚洲精品,欧美精品| 午夜爱爱视频在线播放| av在线蜜桃| 日韩,欧美,国产一区二区三区 | 国产91av在线免费观看| 天堂√8在线中文| 国产爱豆传媒在线观看| 超碰97精品在线观看| 日韩三级伦理在线观看| 黄色一级大片看看| 国产美女午夜福利| 亚洲av.av天堂| 国产精品一区二区在线观看99 | 亚洲最大成人av| 一个人看视频在线观看www免费| 欧美丝袜亚洲另类| 大香蕉97超碰在线| 激情 狠狠 欧美| 免费电影在线观看免费观看| www日本黄色视频网| 欧美成人免费av一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | av播播在线观看一区| 欧美最新免费一区二区三区| 女的被弄到高潮叫床怎么办| 嫩草影院新地址| 久久99蜜桃精品久久| 亚洲无线观看免费| 男人狂女人下面高潮的视频| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 好男人在线观看高清免费视频| 麻豆国产97在线/欧美| 黄片无遮挡物在线观看| 人人妻人人澡人人爽人人夜夜 | 国产精品三级大全| 国内少妇人妻偷人精品xxx网站| 欧美高清性xxxxhd video| 亚洲国产精品成人综合色| 床上黄色一级片| 3wmmmm亚洲av在线观看| 日日啪夜夜撸| 精品一区二区三区人妻视频| 日韩国内少妇激情av| 国产黄色视频一区二区在线观看 | 观看免费一级毛片| 亚洲五月天丁香| 国内揄拍国产精品人妻在线| 精品熟女少妇av免费看| 国产精品野战在线观看| 亚洲欧美一区二区三区国产| 深爱激情五月婷婷| 成人国产麻豆网| 麻豆久久精品国产亚洲av| 国产探花极品一区二区| 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲网站| 丰满少妇做爰视频| 天天躁日日操中文字幕| 亚洲欧美日韩卡通动漫| 精品一区二区免费观看| 久久精品91蜜桃| 日韩成人伦理影院| 精品久久久久久成人av| 18禁裸乳无遮挡免费网站照片| 久久久久久伊人网av| 91午夜精品亚洲一区二区三区| 国产精品不卡视频一区二区| 一级爰片在线观看| 亚洲国产精品久久男人天堂| 插阴视频在线观看视频| 深爱激情五月婷婷| 青青草视频在线视频观看| 亚洲国产欧美在线一区| 搡女人真爽免费视频火全软件| 看非洲黑人一级黄片| 欧美高清成人免费视频www| 国产精品美女特级片免费视频播放器| 精品人妻熟女av久视频| 久久午夜福利片| 欧美日韩精品成人综合77777| 麻豆一二三区av精品| 国产一级毛片在线| 亚洲精品一区蜜桃| 中文字幕人妻熟人妻熟丝袜美| 又黄又爽又刺激的免费视频.| 欧美潮喷喷水| 麻豆成人av视频| 精品酒店卫生间| 免费黄网站久久成人精品| 观看美女的网站| 村上凉子中文字幕在线| 日本熟妇午夜| 真实男女啪啪啪动态图| 桃色一区二区三区在线观看| 免费观看性生交大片5| 日韩制服骚丝袜av| 国产极品精品免费视频能看的| 中国美白少妇内射xxxbb| 国产av一区在线观看免费| 亚洲精品影视一区二区三区av| 亚洲精品国产成人久久av| 国产亚洲最大av| 欧美一区二区国产精品久久精品| 麻豆国产97在线/欧美| 成年女人永久免费观看视频| 久久99热这里只有精品18| 中文字幕av成人在线电影| 小说图片视频综合网站| 国产精品乱码一区二三区的特点| 国产日韩欧美在线精品| 国产v大片淫在线免费观看| 在线免费观看不下载黄p国产| 久久久国产成人免费| 一级毛片我不卡| 黄色日韩在线| av在线老鸭窝| 亚洲在线观看片| 观看免费一级毛片| 成人一区二区视频在线观看| 国产在线一区二区三区精 | 日日摸夜夜添夜夜爱| 亚洲av一区综合| 男女边吃奶边做爰视频| 国产一区二区在线av高清观看| 最新中文字幕久久久久| 久久亚洲精品不卡| 国内揄拍国产精品人妻在线| 97人妻精品一区二区三区麻豆| 国产一级毛片七仙女欲春2| 国产极品精品免费视频能看的| 亚洲中文字幕一区二区三区有码在线看| 91久久精品电影网| 免费观看在线日韩| 成年女人看的毛片在线观看| av福利片在线观看| 白带黄色成豆腐渣| 亚洲中文字幕一区二区三区有码在线看| 最近中文字幕2019免费版| 人体艺术视频欧美日本| 日本熟妇午夜| 小说图片视频综合网站| 熟妇人妻久久中文字幕3abv| 亚洲丝袜综合中文字幕| 国产精品永久免费网站| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久v下载方式| 毛片女人毛片| 乱人视频在线观看| 草草在线视频免费看| 日韩人妻高清精品专区| 午夜视频国产福利| 夜夜爽夜夜爽视频| 91精品国产九色| 99热6这里只有精品| 久久久国产成人免费| 禁无遮挡网站| 性色avwww在线观看| 国产一区亚洲一区在线观看| 成人毛片60女人毛片免费| 亚洲自拍偷在线| 男人舔女人下体高潮全视频| 丰满人妻一区二区三区视频av| 亚洲av免费在线观看| 久久综合国产亚洲精品| 深爱激情五月婷婷| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人高潮视频无遮挡免费网站| 午夜视频国产福利| av线在线观看网站| 亚洲国产成人一精品久久久| 亚洲国产精品成人久久小说| 少妇人妻精品综合一区二区| 国内精品宾馆在线| 2021少妇久久久久久久久久久| 99热全是精品| 久久精品久久久久久久性| 超碰97精品在线观看| 婷婷色av中文字幕| 精品久久久久久久久久久久久| 直男gayav资源| 老女人水多毛片| 亚洲丝袜综合中文字幕| 熟妇人妻久久中文字幕3abv| 联通29元200g的流量卡| 啦啦啦韩国在线观看视频| 欧美色视频一区免费| 中文字幕熟女人妻在线| 免费av毛片视频| 在线免费观看的www视频| 五月玫瑰六月丁香| 国产一区二区亚洲精品在线观看| 国产一区二区在线av高清观看| 亚洲一级一片aⅴ在线观看| 丰满人妻一区二区三区视频av| 免费不卡的大黄色大毛片视频在线观看 | 国产综合懂色| 久久人妻av系列| 欧美激情国产日韩精品一区| .国产精品久久| 久久精品人妻少妇| 久久国产乱子免费精品| 天堂√8在线中文| 亚洲av熟女| 精品人妻熟女av久视频| 三级毛片av免费| 国产精品熟女久久久久浪| 久久精品熟女亚洲av麻豆精品 | 99热全是精品| eeuss影院久久| 91午夜精品亚洲一区二区三区| 嫩草影院新地址| 亚洲精品日韩av片在线观看| 夜夜爽夜夜爽视频| 少妇裸体淫交视频免费看高清| 国产精品福利在线免费观看| 欧美+日韩+精品| 亚洲国产精品国产精品| 成人无遮挡网站| 久热久热在线精品观看| 久久久久国产网址| 国产精品av视频在线免费观看| 国产成人精品婷婷| 禁无遮挡网站| 亚洲国产日韩欧美精品在线观看| 国产极品天堂在线| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 赤兔流量卡办理| 少妇丰满av| 免费观看性生交大片5| 国产69精品久久久久777片| kizo精华| 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看| 欧美不卡视频在线免费观看| 韩国高清视频一区二区三区| 亚州av有码| 91久久精品国产一区二区三区| 深爱激情五月婷婷| 美女被艹到高潮喷水动态| 在线免费十八禁| 九九久久精品国产亚洲av麻豆| 亚洲综合色惰| 午夜福利高清视频| 亚洲人成网站高清观看| 亚洲人成网站高清观看| 丰满少妇做爰视频| 综合色av麻豆| 99久久精品热视频| 欧美又色又爽又黄视频| 岛国毛片在线播放| 97超碰精品成人国产| 久久精品熟女亚洲av麻豆精品 | av在线老鸭窝| 嫩草影院精品99| 国产精品av视频在线免费观看| 人人妻人人澡欧美一区二区| 国产毛片a区久久久久| 天堂影院成人在线观看| 亚洲va在线va天堂va国产| 午夜福利网站1000一区二区三区| 日韩国内少妇激情av| 免费看光身美女| 十八禁国产超污无遮挡网站| 国产乱来视频区| 能在线免费看毛片的网站| 国产成人精品婷婷| 变态另类丝袜制服| 天天躁夜夜躁狠狠久久av| 午夜免费男女啪啪视频观看| 精品久久久噜噜| 中文在线观看免费www的网站| 亚洲av电影在线观看一区二区三区 | 精品少妇黑人巨大在线播放 | 午夜免费激情av| 成人特级av手机在线观看| 亚洲精品久久久久久婷婷小说 | 人妻夜夜爽99麻豆av| 在线天堂最新版资源| 色综合色国产| 人妻制服诱惑在线中文字幕| 晚上一个人看的免费电影| 国产亚洲一区二区精品| 国产女主播在线喷水免费视频网站 | 亚洲av男天堂| 成年免费大片在线观看| 黄色配什么色好看| 亚洲av成人精品一二三区| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 菩萨蛮人人尽说江南好唐韦庄 | 免费观看的影片在线观看| 99热这里只有是精品50| 久久久成人免费电影| 三级国产精品片| 国内精品美女久久久久久| 六月丁香七月| 国语自产精品视频在线第100页| 听说在线观看完整版免费高清| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 中文在线观看免费www的网站| 色噜噜av男人的天堂激情| 免费在线观看成人毛片| 中文字幕av成人在线电影| 男插女下体视频免费在线播放| 国产成人freesex在线| 欧美一区二区国产精品久久精品| 啦啦啦观看免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品乱码久久久久久按摩| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 18禁在线无遮挡免费观看视频| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 天堂av国产一区二区熟女人妻| 丰满人妻一区二区三区视频av| 中文字幕亚洲精品专区| 亚洲精品日韩av片在线观看| 久热久热在线精品观看| 少妇人妻一区二区三区视频| 久久精品久久久久久久性| 国产爱豆传媒在线观看| 国产黄色视频一区二区在线观看 | 久久久久性生活片| 亚洲精品日韩在线中文字幕| 久久国内精品自在自线图片| 黄色配什么色好看| 色播亚洲综合网| 精品久久久噜噜| 国产精品福利在线免费观看| 亚洲av成人av| 在线观看美女被高潮喷水网站| 精品人妻视频免费看| 国产一区二区三区av在线| 国产三级中文精品| 午夜福利在线在线| 黄片wwwwww| 一边亲一边摸免费视频| 一个人免费在线观看电影| 亚洲av免费高清在线观看| 18禁动态无遮挡网站| 97超碰精品成人国产| 哪个播放器可以免费观看大片| 有码 亚洲区| 超碰97精品在线观看| 成人欧美大片| 高清午夜精品一区二区三区| 久久国产乱子免费精品| 国产亚洲最大av| 联通29元200g的流量卡| 草草在线视频免费看| 欧美成人精品欧美一级黄| 亚洲第一区二区三区不卡| 亚洲欧洲日产国产| 免费一级毛片在线播放高清视频| 亚洲精品日韩av片在线观看| 中文字幕制服av| 永久网站在线| 久久久久网色| av福利片在线观看| 一级毛片我不卡| 99热精品在线国产| a级毛片免费高清观看在线播放| 婷婷色av中文字幕| 日韩欧美精品v在线| 最近手机中文字幕大全| 在线a可以看的网站| 成人特级av手机在线观看| 男人狂女人下面高潮的视频| 免费观看a级毛片全部| 久久久国产成人免费| 日本黄大片高清| 校园人妻丝袜中文字幕| 夜夜爽夜夜爽视频| 99久久精品热视频| 毛片女人毛片| 大话2 男鬼变身卡| 亚洲国产精品成人综合色| 久久久久国产网址| 中文字幕熟女人妻在线| 欧美另类亚洲清纯唯美| 国模一区二区三区四区视频| av福利片在线观看| 一边亲一边摸免费视频| 国产亚洲av片在线观看秒播厂 | 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 成人亚洲欧美一区二区av| 亚洲五月天丁香| 看黄色毛片网站| 亚洲伊人久久精品综合 | 国产伦在线观看视频一区| 在线免费观看的www视频| 如何舔出高潮| 国产亚洲精品av在线| 日韩欧美 国产精品| 亚洲国产欧洲综合997久久,| 好男人视频免费观看在线| 久久韩国三级中文字幕| 搡老妇女老女人老熟妇| 噜噜噜噜噜久久久久久91| 少妇猛男粗大的猛烈进出视频 | 狂野欧美白嫩少妇大欣赏| 禁无遮挡网站| 亚洲一区高清亚洲精品| 夜夜爽夜夜爽视频| 岛国毛片在线播放| 成人三级黄色视频| 国产黄片视频在线免费观看| 亚洲综合精品二区| 精品久久久久久久久久久久久| 少妇的逼水好多| 久久久亚洲精品成人影院| 91久久精品国产一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲性久久影院| 国产午夜精品久久久久久一区二区三区| 国语对白做爰xxxⅹ性视频网站| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 亚洲国产精品合色在线| 一级毛片电影观看 | 免费av不卡在线播放| 最近视频中文字幕2019在线8| 搞女人的毛片| 一级二级三级毛片免费看| 老女人水多毛片| 少妇的逼好多水| 99久久成人亚洲精品观看| 中文欧美无线码| 国产91av在线免费观看| 日本色播在线视频| 最近手机中文字幕大全| 成人毛片a级毛片在线播放| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 欧美激情国产日韩精品一区| 国产久久久一区二区三区| 特级一级黄色大片| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 久久久久久久亚洲中文字幕| 日韩精品有码人妻一区| 日本黄色片子视频| 亚洲精品aⅴ在线观看| 热99re8久久精品国产| 我的老师免费观看完整版| 欧美激情在线99| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av| 男人狂女人下面高潮的视频| 欧美日韩综合久久久久久| 精品一区二区三区视频在线| 亚洲欧美精品自产自拍| 亚洲最大成人av| 伊人久久精品亚洲午夜| 国产高清国产精品国产三级 | 在线a可以看的网站| 99九九线精品视频在线观看视频| 亚洲av中文字字幕乱码综合| 美女国产视频在线观看| 午夜福利成人在线免费观看| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 国语自产精品视频在线第100页| 视频中文字幕在线观看| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 真实男女啪啪啪动态图| 久久99热这里只有精品18| 亚洲欧美日韩高清专用| 黄色配什么色好看| 禁无遮挡网站| 精品国产露脸久久av麻豆 | 国产男人的电影天堂91| 欧美高清性xxxxhd video| 只有这里有精品99| 精品久久久久久成人av| 日韩欧美精品v在线| a级毛色黄片| 婷婷六月久久综合丁香| 亚洲图色成人| 国产不卡一卡二| 丝袜喷水一区| 亚洲av.av天堂| 亚洲国产精品国产精品| 中文欧美无线码| 建设人人有责人人尽责人人享有的 | 日本黄色片子视频| 亚洲精品久久久久久婷婷小说 | 乱系列少妇在线播放| 国产极品天堂在线| 亚洲人与动物交配视频| 最近中文字幕2019免费版| 有码 亚洲区| 国产v大片淫在线免费观看| av福利片在线观看| 亚洲国产欧洲综合997久久,| 麻豆乱淫一区二区| 日韩成人伦理影院| 男女国产视频网站| 欧美成人精品欧美一级黄| 亚洲真实伦在线观看| 中国美白少妇内射xxxbb| 国产一区二区在线观看日韩| 18禁裸乳无遮挡免费网站照片| 日本一本二区三区精品| 边亲边吃奶的免费视频| 国产黄色小视频在线观看| 最近最新中文字幕大全电影3| 久久热精品热| 一个人观看的视频www高清免费观看| 啦啦啦观看免费观看视频高清| 国产av在哪里看| 国产精品熟女久久久久浪| 久久精品国产自在天天线| 婷婷色av中文字幕| 亚洲国产欧美在线一区| 青春草视频在线免费观看| 国产精品福利在线免费观看| 国产 一区 欧美 日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费黄网站久久成人精品| 婷婷色综合大香蕉| 精品久久久噜噜| 中文精品一卡2卡3卡4更新| 亚洲国产成人一精品久久久| 又粗又爽又猛毛片免费看| av女优亚洲男人天堂| 美女大奶头视频| 又黄又爽又刺激的免费视频.| www.色视频.com| 亚洲国产精品久久男人天堂| 麻豆国产97在线/欧美| 国产在线男女| 亚洲18禁久久av| 久久鲁丝午夜福利片| 最近中文字幕高清免费大全6| 亚洲av日韩在线播放| 男女视频在线观看网站免费| 18+在线观看网站| 天堂√8在线中文| 亚洲性久久影院| 国产精品一区二区三区四区久久| 内地一区二区视频在线| 亚洲av.av天堂| 91狼人影院| 亚洲av电影在线观看一区二区三区 | 永久免费av网站大全| 一级毛片我不卡| 村上凉子中文字幕在线| 国产亚洲一区二区精品| 亚洲欧美日韩无卡精品| 国产成人a区在线观看| 日韩欧美三级三区| 在线播放国产精品三级| 欧美性感艳星| 欧美激情国产日韩精品一区| 乱人视频在线观看| 国产大屁股一区二区在线视频| 亚洲av免费高清在线观看| av福利片在线观看| 欧美成人一区二区免费高清观看| 欧美又色又爽又黄视频| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说 | 美女高潮的动态| 亚洲精品,欧美精品| 欧美xxxx性猛交bbbb| 亚洲怡红院男人天堂| 精品人妻一区二区三区麻豆| 美女国产视频在线观看| 搞女人的毛片| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 欧美丝袜亚洲另类| 亚洲精品久久久久久婷婷小说 | 国产精品一二三区在线看| 日日啪夜夜撸| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡欧美一区二区| 特大巨黑吊av在线直播| 国产午夜精品久久久久久一区二区三区| 天堂网av新在线| 亚洲av成人av| 国产激情偷乱视频一区二区| 18禁裸乳无遮挡免费网站照片| 老司机影院毛片| 欧美成人一区二区免费高清观看| 国产午夜福利久久久久久| 69人妻影院| 精品国内亚洲2022精品成人| 久久婷婷人人爽人人干人人爱| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 一级毛片电影观看 | 国产伦在线观看视频一区| 一二三四中文在线观看免费高清| 三级男女做爰猛烈吃奶摸视频| 搡老妇女老女人老熟妇| 国产精品1区2区在线观看.| 七月丁香在线播放| 男人狂女人下面高潮的视频| 成人亚洲欧美一区二区av| 欧美一区二区亚洲| 亚洲人成网站在线观看播放| 五月玫瑰六月丁香| 久久精品国产亚洲av天美|