• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    晶種導向干凝膠法制備成型ZSM-5分子篩

    2012-12-12 02:42:28岳明波王一萌
    物理化學學報 2012年9期
    關(guān)鍵詞:干凝膠晶種學報

    岳明波 楊 娜 王一萌,*

    1 Introduction

    Zeolites and related microporous materials have been extensively studied for industrial applications such as adsorbents, catalysts,and separation media.Recently,more work focused on the improvement of the bulky molecule diffusion in zeolites.1,2Hierarchical porous zeolites with mesoporosity and/or macroporosity or nanoscale zeolites with high external surface areas are alternatives to break these diffusion limitations in the intrinsically molecular-sized micropores of zeolites.3-9In addition,zeolites synthesized via conventional techniques are usually obtained as powders.To make them suitable for practical applications,zeolites are usually shaped into large shapes or granules with the help of inorganic binders to avoid excessive pressure drops in fixed bed reactors and/or dusting problems.The addition of binders may result in partial blocking of the zeolite pore system and also leads to dilution of the active species. Therefore,it could be interesting to develop a mechanically stable and self-supporting shaped zeolite with both uniform shape and hierarchical structure.

    In general,there were two strategies to fabricate shaped zeolites.One involves nanocrystal zeolites being assembled as shaped zeolites and another involves the transformation of shaped amorphous aluminosilicate into zeolites by in situ crystallization.In the former strategy,extra templates,such as nonionic surfactants,10carbon,11-14and polymers,15-17can be introduced to assemble the nanoscale zeolite into monoliths or to shape the zeolite nanocrystals in confined syntheses,which increases the cost of the preparation process and limits its industrial application.In the latter approach,amorphous aluminosilicate precursors were extruded or molded to certain shape and were then converted to zeolites through an appropriate crystallization process.The precursor shape was retained and the amorphous microstructure was transferred into the crystalline zeolite through this in situ crystallization process.By this strategy, various zeolites with hierarchical pore structures were obtained by adjusting the composition of the precursor.18-21For example, hollow zeolite capsules with three-dimensionally ordered macropores were prepared through transformation of zeolite-seeded silica spheres.22Closely packed nanocrystalline ZSM-5 and beta zeolites were also prepared from amorphous silica grains.23,24In addition,macroporoussilica-alumina compositeswith MFI-type crystals were prepared by seed-induced in situ and layer-by-layer synthetic methods.25However,attempts to control the zeolite crystal size in such shaped zeolites are seldom reported.

    Apart from hierarchically porous zeolites,nanocrystalline zeolites with higher surface area were also expected to solve the diffusion limitations involved in catalytic reactions.26However, the difficulties of separation and recovery of nanosized zeolites cause problems in industrial application.Therefore,it is highly desirable to synthesize nanocrystalline zeolite aggregates with a monolithic shape in one step,which would avoid the recovery steps.This binderless nano-crystalline shaped zeolite would exhibit a high catalytic activity in the bulk molecular reaction and curtail the difficulties in the processing to the shaped catalyst.

    A hydrothermal synthesis process was usually used to convert the shaped aluminosilicate precursor to crystalline zeolites.However,limited by the diffusion,the growth rate of zeolite on the surface was always higher than that in the inner region of the cylindrical extrudates in the hydrothermal treatment process.23This means that the zeolites always aggregate on the surface of extrudates and the zeolite size distribution is not uniform.In the dry gel conversion(DGC)method,the transformation to the zeolite was accomplished in the presence of water vapor below the saturation condition.Compared with hydrothermal synthesis method,the impact of diffusion on zeolite growth rate was minimized in the DGC method because of higher diffusion rate of gas than liquid.In the DGC process,no solid contacted directly with water.Usually,capillary condensation of water vapor enabled the surface of the amorphous silica gel to be covered with a thin layer of water during the steaming treatment.Hence,the zeolitization of the silicate gel was performed just in the microareas of the precursor gel,with the digestion of the aluminosilicate gel and crystallization of the zeolite being located in this micoarea.A seed surface crystallization approach can be used for rapid synthesis of ZSM-5 zeolites with controllable crystal size and morphology.27The crystallization of ZSM-5 zeolites occurred on the surface of zeolite seeds with rapid crystallization rate.So,in this work,we plan to combine the seed surface crystallization and DGC method for the preparation of zeolites and to fabricate binderless nanocrystalline shaped zeolites.

    2 Experimental

    2.1 Shaped zeolite preparation

    The chemicals used in this work were sourced commercially and used without further purification.Tetrapropylammonium hydroxide(TPAOH,25%solution)was purchased from Shanghai Cainorise Chemicals Co.,Ltd.Silica sol(mass fraction of SiO2:30%),silica gel(mass fraction of SiO2:90%),and boehmite(mass fraction of Al2O3:70%)were purchased from the Qingdao Haiyang Chemicals Co.,Ltd.Tetraethylorthosilicate (TEOS,AR grade)was purchased from the Sinopharm Chemical Reagent Co.,Ltd.The seed gel was prepared by mixing TPAOH,distilled water,and TEOS following the molar composition:0.35TPAOH:1TEOS:20H2O.After additional stirring at room temperature for 10 h,the mixture was hydrothermally treated at 100°C for 24 h to obtain the seed gel.

    The fabrication of shaped ZSM-5 zeolite was generally divided into two processes:the preparation of the amorphous aluminosilicate extrudates(the shaped zeolite precursor,denoted as SZP)and the followed crystallization process by the DGC method.The SZP extrudates with the molar composition of 0.025TPAOH:1SiO2:0.011Al2O3were typically prepared as follows:silica gel and boehmite were well mixed,and then silica sol,seed gel and/or TPAOH solution were added.The total molar ratio of TPAOH to SiO2was fixed at 0.025.When the seed gel was added,the mixtures were kneaded carefully to form a gel and extruded into cylindrical shaped extrudates with diameter of 2 mm.After drying at room temperature for 48 h,the extrudates(1.2 g)were put in a polytetrafluoroethylene(PTFE)-lined stainless steel autoclave,containing 10 mL pre-added water at the bottom to produce saturated steam/water(caution:no solid contacted directly with water).After heating at 175°C for different times,the auto clave was cooled to room temperature and the solid was separated,air-dried and finally calcined in air at 550°C for 5 h to ensure the complete removal of the template and other organic material.The obtained shaped zeolite was denoted SZ-x-y,where x represents the percentage of TPAOH added from seed gel to total added TPAOH and y represents the heating time.

    2.2 Characterization

    The X-ray diffraction(XRD)measurements were carried out on a Rigaku-Ultima diffractometer with Cu Kαradiation in the 2θ range from 5°to 35°.The relative crystallinity was estimated by comparing the five peaks areas(22°-28°)of these samples with those obtained for a commercial ZSM-5 sample,purchased from the Catalyst Plant of Nankai University.Infrared tests were performed on a Nicolet Fourier transform infrared (FTIR)spectrometer(NEXUS 670)using the conventional KBr wafer technique.Nitrogen adsorption-desorption isotherms were measured at-196°C on a Quantachrome Autosorb-3B volumetric adsorption analyzer.Before the measurements,the sample was out gassed for 4 h in the degas port of the adsorption apparatus at 300°C.The BET specific surface area was calculated using adsorption data acquired at a relative pressure (p/p0)range of 0.05-0.22.The total pore volume was determined from the amount adsorbed at a relative pressure of about 0.99.The micropore volume and external surface were obtained by t-plot analysis using a relative pressure range of 0.05-0.33.The pore size distribution(PSD)curves were calculated from the analysis of adsorption branch of the isotherm using the Barrett-Joyner-Halenda(BJH)algorithm.Thermogravimetric(TG)and derivative thermogravimetric(DTG)analyses were performed using a Perkin-Elmer TGA analyzer with a heating rate of 10°C·min-1up to 800°C under an air flow to discover the various decomposition steps occurring in the as-dried precursor as a function of temperature.Scanning electron microscope(SEM)was performed by an S-4800 field emission scanning electron microscope(FE-SEM,Hitachi,Japan)with an acceleration voltage of 3 kV.Transmission electron microscopy(TEM)was performed by an S-4800 field emission microscope(FE-SEM,Hitachi,Japan)with an acceleration voltage of 30 kV.The ammonia temperature programmed desorption(NH3-TPD)experiments were carried out in a flow apparatus with helium as carrier gas(30 mL·min-1). These samples were transformed into H-type zeolite before NH3-TPD experiments through NH+4exchange and calcination at 550°C.

    3 Results and discussion

    Powder XRD was used to monitor the phase structure changes taking place in the DGC process.There are four series of samples with different amounts of seed gel addition:SZ-0, SZ-10,SZ-20,SZ-100,where 0,10,20,100 represent the percentages of TPAOH added from seed gel to total added TPAOH. Fig.1 shows the XRD patterns of these samples with different crystallization times.As seen from Fig.1,the wide dispersive peak of amorphous aluminosilicate at 15°-30°disappeared and the diffraction peaks of ZSM-5 zeolite appeared for these four series samples after 24 h crystallization.However,the relative crystallinity and the crystallization ratio of these four series samples are different.After a heating time of 2 h,the SZ-0-2h sample exhibits the broad peak of amorphous aluminosilicate without diffraction peaks of ZSM-5 zeolite(Fig.1A);SZ-10-2h and SZ-20-2h samples display the diffraction peaks of both amorphous aluminosilicate and ZSM-5 zeolites(Fig.1(B, C))and in the case of the SZ-100-2h sample,the diffraction peaks of amorphous aluminosilicate disappear and only the diffraction peaks of ZSM-5 zeolite are seen.Fig.2 gives the crystallization curves of these four samples loaded with different seeding gels.The crystallization process proceeded more rapidly with higher levels of seed gel addition in the precursor.For example,SZ-100 series sample achieve 100%relative crystallinity within 3 h.With the same amounts of TPAOH in the precursor,SZ-0-3h only displays 50%relative crystallinity after 3 h crystallization.Even after 24 h heating,the relative crystallinity of the obtained SZ-0-24h sample just achieved 80%.The reason can be ascribed to the addition of seed gel which pro-motes the growth of zeolite.The crystallization of ZSM-5 zeolites can occur on the surface of seeds with a rapid crystallization rate.27

    Fig.1 XRD patterns of a series of samples heated for different times

    TG and DTG analyses of the as-prepared SZ-100 and SZ-0 series samples are shown in Fig.3 and Fig.4,respectively. These TG curves can be divided into three zones based on the DTG curves of these samples.The mass loss in zone I(25-100°C)corresponds to the removal of physisorbed water. Zone II(100-300°C)is associated with the thermal decomposition of the structure-directing agent(TPAOH)in the amorphous aluminosilicate gels.Zone III(300-800°C)involves the decomposition of TPA+ions within the micropore of zeolite formed.As shown in Fig.3 and Fig.4,the mass loss in zone II decreased with a prolonging of the crystallization time.In contrast,the mass loss in zone III increased with increasing crystallization time.After 24 h crystallization,the mass loss of SZ-100-24h sample in zone II almost decreased to zero.Correspondingly,the relative crystallinity of this sample was over 100%.However,after the same 24 h crystallization period,the mass loss of SZ-0-24h sample in zone II was about 23%and the relative crystallinity of this sample was 80%.So,the TPAOH was occluded gradually into the micropores of the formed zeolite in the crystallization process.When the amorphous aluminosilicate gels were completely transformed into zeolite crystals,most TPAOH entered the micropores of the zeolite in this crystallization process.

    Fig.2 Crystallization curves of a series of samples

    Fig.3 TG(A)and DTG(B)curves of the SZ-100 series of samples(a)SZ-100-0h,(b)SZ-100-30min,(c)SZ-100-50min,(d)SZ-100-70min, (e)SZ-100-90min,(f)SZ-100-2h,(g)SZ-100-24h

    Fig.4 TG(A)and DTG(B)curves of the SZ-0 series of samples(a)SZ-0-0h,(b)SZ-0-50min,(c)SZ-0-2h,(d)SZ-0-150min, (e)SZ-0-5h,(f)SZ-0-24h

    Fig.5 FTIR spectra of the SZ-100 series of samples(a)SZ-100-0h,(b)SZ-100-50min,(c)SZ-100-2h,(d)SZ-100-150min, (e)SZ-100-24h

    Fig.5 shows the FTIR spectra of the calcined SZ-100 series of samples prepared with different crystallization times.Compared with the precursor(Fig.5a),the new band at 550 cm-1, characteristic of MFI zeolites with five-membered rings,appeared in four samples.The intensity ratio of the 550 and 450 cm-1bands had been used to assess the formation of MFI zeolite and has been termed the FTIR crystallinity.28,29As shown in Fig.5,the FTIR crystallinity of these samples increased rapidly after 2 h crystallization,which was in accordance with the results of XRD analysis.

    The nitrogen sorption isotherms and pore size distributions of these samples are shown in Fig.6.Before steam heating,a type IV isotherm is observed for shaped precursor(SZ-100-0h) with pore distribution around 10 nm(Fig.6B(a)).After steam heating treatment for 24 h,the mesoporosity of the obtained samples(SZ-100-24h)is still retained.However,the pore volume declines from 0.68 to 0.38 cm3·g-1and the pore size decreases from 10 to 2 nm.The reason can be ascribed to micropore creation and mesopore shrinkage in the crystallization process.The SZ-100-24h sample displays a slight uptake of nitrogen and a small hysteresis loop at higher relative pressure range of p/p0=0.50-0.90,indicating the existence of some mesopores.Furthermore,this H4 type horizontal hysteresis loop could be related to the presence of large mesopores embedded in a matrix with pore mouths of a much smaller size,which means that there are secondary pores in contact with the exterior by the zeolite channels.30As shown from the PSD curves, the secondary pores are about 2 nm for this SZ-100-24h sample(Fig.6B(b)),which suggests the presence of mesopores and micropores in such a hierarchical structure.The BET specific surface area and micropore volume of the sample(SZ-100-24h, 363 m2·g-1and 0.10 cm3·g-1)are much larger than the precursor(SZ-100-0h,320 m2·g-1and 0.01 cm3·g-1),further proving the formation of the microporous ZSM-5 zeolite.Especially, SZ-100-24h sample possessed a high mesopore volume(0.28 cm3·g-1).

    Fig.6 Nitrogen adsorption-desorption isotherms(A)and pore size distributions(B)of the SZ-100 series of samples(a)SZ-100-0h,(b)SZ-100-24h

    Fig.7 Photograph(A),SEM(B),and TEM(C)images of the SZ-100-24h sample

    As shown in the SEM image(Fig.7B),the SZ-100-24h sample is composed of zeolite nanocrystals which overlap but do not aggregate to microspheres.Fig.7C gives the TEM image of the SZ-100-24h sample after grinding to powder,which also proves that the zeolite crystals are around 200 nm in this sample.The reason is ascribed to the addition of the seed gel.The crystallization of zeolite was carried out on the surface of seed and the amorphous aluminosilicate gel converted into nanosized zeolite in situ.In addition,the initial cylindrical shape of the aluminosilicate extrudates was well maintained during the crystallization process(Fig.7A),and the final products possessed excellent mechanical strength.This photograph demonstrated that the amorphous aluminosilicate precursor could be converted into ZSM-5 zeolite and the morphology retained during the DGC process.

    NH3-TPD curves of the SZ-100-24h and commercial HZSM-5(with same SiO2/Al2O3molar ratio of 90 as SZ-100-24h)samples are shown in Fig.8.These two samples gave similar TPD curves with two desorption peaks at 170 and 360 °C,indicating weak and strong acid sites,respectively.The acid strength of the SZ-100-24h sample was similar to that of the commercial H-ZSM-5 zeolite.These results mean that the SZ-100-24h sample displays a similar acidity to that of the commercial H-ZSM-5 catalyst,which would be used as an industrial zeolite catalyst.

    Fig.8 NH3-TPD curves of two samples(a)SZ-100-24h,(b)commercial H-ZSM-5

    4 Conclusions

    Column shaped ZSM-5,composed of nanocrystalline zeolites,with mesoporous structure has been successfully synthesized by the DGC method.The formation of nanocrystalline zeolite is contributed by the addition of seed gel and involved surface crystallization on the seed.Moreover,the seed gel not only acts as a seed but also serves as a binder to shape the zeolite. The obtained shaped ZSM-5 possesses a significant textual porosity and exhibits an acidity comparable with that found in a commercial powder ZSM-5.

    (1) Holma,M.S.;Taarninga,E.;Egeblada,K.;Christensen,C.H. Catal.Today 2011,168,3.doi:10.1016/j.cattod.2011.01.007

    (2) Jones,C.W.;Tsuji,K.;Davis,M.E.Nature 1998,393,52.doi: 10.1038/29959

    (3)Zhai,S.R.;Wei,L.;Yang,D.J.;Wu,D.;Sun,Y.H.Prog.Chem. 2006,18,1330.[翟尚儒,魏 莉,楊東江,吳 東,孫予罕.化學進展,2006,18,1330.]

    (4)Tao,Y.;Kanoh,H.;Abrams,L.;Kaneko,K.Chem.Rev.2006, 106,896.doi:10.1021/cr040204o

    (5) Perez-Ramirez,J.;Christensen,C.H.;Egeblad,K.;Groen,J.C. Chem.Soc.Rev.2008,37,2530.doi:10.1039/b809030k

    (6) Egeblad,K.;Christensen,C.H.;Kustova,M.Chem.Mater. 2008,20,946.doi:10.1021/cm702224p

    (7) Ma,Y.H.;Zhao,H.L.;Tang,S.J.;Hu,J.;Liu,H.L.Acta Phys.-Chim.Sin.2011,27,689.[馬燕輝,趙會玲,唐圣杰,胡 軍,劉洪來.物理化學學報,2011,27,689.]doi:10.3866/ PKU.WHXB20110335

    (8) Choi,M.;Cho,H.S.;Srivastava,R.;Venkatesan,C.;Choi,D. H.;Ryoo,R.Nat.Mater.2006,5,718.doi:10.1038/nmat1705

    (9)Zhang,Z.T.;Han,Y.;Zhu,L.;Wang,R.W.;Yu,Y.;Qiu,S.L.; Zhao,D.Y.;Xiao,F.S.Angew.Chem.Int.Edit.2001,40,1258. doi:10.1002/1521-3773(20010401)40:7<1258::AIDANIE1258>3.0.CO;2-C

    (10)Hu,G.;Ma,D.;Liu,L.;Cheng,M.J.;Bao,X.H.Angew.Chem. Int.Edit.2004,43,3452.doi:10.1002/anie.200453777

    (11) Li,W.C.;Lu,A.H.;Palkovits,R.;Schmidt,W.;Spliethoff,B.; Schuth,F.J.Am.Chem.Soc.2005,127,12595.doi:10.1021/ ja052693v

    (12)Yoo,W.C.;Kumar,S.;Penn,R.L.;Tsapatsis,M.;Stein,A. J.Am.Chem.Soc.2009,131,12377.doi:10.1021/ja904466v

    (13)Tong,Y.;Zhao,T.;Li,F.;Wang,Y.Chem.Mater.2006,18, 4218.doi:10.1021/cm060035j

    (14) Zhao,T.;Xu,X.;Tong,Y.;Lei,Q.;Li,F.;Zhang,L.Catal.Lett. 2010,136,266.doi:10.1007/s10562-009-0131-8

    (15)Dong,A.G.;Wang,Y.J.;Tang,Y.;Zhang,Y.H.;Ren,N.;Gao, Z.Adv.Mater.2002,14,1506.doi:10.1002/1521-4095 (20021016)14:20<1506::AID-ADMA1506>3.0.CO;2-Z

    (16)Lee,Y.J.;Kim,Y.W.;Jun,K.W.;Viswanadham,N.;Bae,J.W.; Park,H.S.Catal.Lett.2009,129,408.doi:10.1007/ s10562-008-9811-z

    (17) Saini,V.K.;Pinto,M.L.;Pires,J.Colloids Surf.A 2011,373, 158.doi:10.1016/j.colsurfa.2010.10.047

    (18) Huang,Y.;Dong,D.;Yao,J.;He,L.;Ho,J.;Kong,C.;Hill,A. J.;Wang,H.Chem.Mater.2010,22,5271.doi:10.1021/ cm101408n

    (19) Wang,D.J.;Liu,Z.N.;Xie,Z.K.J.Inorg.Mater.2008,23(3), 592. [王德舉,劉仲能,謝在庫.無機材料學報,2008,23(3), 592.]doi:10.3724/SP.J.1077.2008.00592

    (20) Tokudome,Y.;Nakanishi,K.;Kosaka,S.;Kariya,A.;Kaji,H.; Hanada,T.Microporous Mesoporous Mat.2010,132,538.doi: 10.1016/j.micromeso.2010.04.005

    (21) M?ller,K.;Yilmaz,B.;Jacubinas,R.M.;Müller,U.;Bein,T. J.Am.Chem.Soc.2011,133,5284.doi:10.1021/ja108698s

    (22) Shi,J.;Ren,N.;Zhang,Y.H.;Tang,Y.Microporous Mesoporous Mat.2010,132,181.doi:10.1016/j.micromeso. 2010.02.018

    (23) Wang,D.J.;Liu,Z.N.;Wang,H.;Xie,Z.K.;Tang,Y. Microporous Mesoporous Mat.2010,132,428.doi:10.1016/ j.micromeso.2010.03.023

    (24) Lei,Q.;Zhao,T.;Li,F.;Wang,Y.F.;Hou,L.J.Porous Mater. 2008,15,643.doi:10.1007/s10934-007-9144-0

    (25) Xu,X.;Zhao,T.;Qi,J.;Guo,Y.;Miao,C.;Li,F.;Liang,M. Mater.Lett.2010,64,1660.doi:10.1016/j.matlet.2010.04.057

    (26) Schmidt,I.;Madsen,C.;Jacobsen,C.J.H.Inorg.Chem.2000, 39,2279.doi:10.1021/ic991280q

    (27) Ren,N.;Yang,Z.J.;Liu,X.C.;Shi,J.;Zhang,Y.H.;Tang,Y. Microporous Mesoporous Mat.2010,131,103.doi:10.1016/ j.micromeso.2009.12.009

    (28) Jacobs,P.A.;Beyer,H.K.;Valyon,J.Zeolites 1981,1,161.doi: 10.1016/S0144-2449(81)80006-1

    (29) Jansen,J.C.;Vander-Gaag,F.J.;Van-Bekkum,H.Zeolites 1984,4,369.doi:10.1016/0144-2449(84)90013-7

    (30) Kruk,M.;Jaroniec,M.Chem.Mater.2001,13,3169.doi: 10.1021/cm0101069

    猜你喜歡
    干凝膠晶種學報
    鈦白粉生產(chǎn)中晶種制備工藝文獻綜述及機理分析
    四川化工(2021年6期)2022-01-12 13:41:06
    致敬學報40年
    微波輔助加熱法制備晶種用于高濃度硫酸氧鈦溶液水解制鈦白研究
    殼聚糖/迷迭香多孔干凝膠抗菌止血作用的研究
    氫氧化鋁干凝膠改性無堿速凝劑的制備與性能研究
    多糖干凝膠制備及優(yōu)化
    科技資訊(2015年21期)2015-11-14 19:46:21
    Ni x Co1–x(OH)2干凝膠電性能及其循環(huán)穩(wěn)定性
    蒸汽相轉(zhuǎn)化和晶種二次生長法制備不對稱NaA分子篩膜層
    學報簡介
    學報簡介
    xxx96com| 两个人视频免费观看高清| 久久久精品欧美日韩精品| 一个人免费在线观看电影 | 亚洲国产欧美一区二区综合| 两性夫妻黄色片| 国产成人aa在线观看| 免费看日本二区| 中文在线观看免费www的网站 | 久久久精品欧美日韩精品| 亚洲国产欧美一区二区综合| 女警被强在线播放| 亚洲第一欧美日韩一区二区三区| 欧美极品一区二区三区四区| 人妻丰满熟妇av一区二区三区| 亚洲av中文字字幕乱码综合| 午夜激情av网站| 黄色 视频免费看| 亚洲国产精品sss在线观看| 国产精品,欧美在线| 天天添夜夜摸| 日韩高清综合在线| 国产亚洲欧美98| 国产成人啪精品午夜网站| 久久 成人 亚洲| 成人国产综合亚洲| 国产高清视频在线播放一区| av在线播放免费不卡| 男女床上黄色一级片免费看| 性色av乱码一区二区三区2| 亚洲成av人片免费观看| 国产97色在线日韩免费| 日本一本二区三区精品| 国产亚洲精品av在线| 精品不卡国产一区二区三区| 97碰自拍视频| 亚洲成人国产一区在线观看| av在线天堂中文字幕| 俺也久久电影网| 夜夜夜夜夜久久久久| 亚洲天堂国产精品一区在线| 午夜日韩欧美国产| 欧美不卡视频在线免费观看 | 国产熟女午夜一区二区三区| √禁漫天堂资源中文www| 男男h啪啪无遮挡| 在线观看66精品国产| 嫩草影视91久久| 18禁国产床啪视频网站| 舔av片在线| 一级片免费观看大全| 久99久视频精品免费| 人妻久久中文字幕网| 91老司机精品| 久久久久国产精品人妻aⅴ院| 动漫黄色视频在线观看| 国产在线观看jvid| 一二三四社区在线视频社区8| а√天堂www在线а√下载| 亚洲成av人片免费观看| 精品午夜福利视频在线观看一区| 成人一区二区视频在线观看| 免费无遮挡裸体视频| 琪琪午夜伦伦电影理论片6080| 久久精品国产亚洲av高清一级| 欧美乱妇无乱码| 亚洲第一欧美日韩一区二区三区| 丁香六月欧美| 欧美精品亚洲一区二区| www.自偷自拍.com| 宅男免费午夜| 亚洲av电影在线进入| 亚洲精华国产精华精| 午夜精品久久久久久毛片777| 麻豆国产97在线/欧美 | 99国产综合亚洲精品| 久久精品成人免费网站| 久久性视频一级片| 日韩有码中文字幕| www.www免费av| 一二三四社区在线视频社区8| 日本 av在线| 五月玫瑰六月丁香| 琪琪午夜伦伦电影理论片6080| 天天添夜夜摸| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩东京热| 中文字幕高清在线视频| 又黄又爽又免费观看的视频| 亚洲 欧美 日韩 在线 免费| 国产av在哪里看| 免费电影在线观看免费观看| 久久久久久久午夜电影| 亚洲aⅴ乱码一区二区在线播放 | 中文亚洲av片在线观看爽| 欧美+亚洲+日韩+国产| 国产高清激情床上av| 亚洲精品国产精品久久久不卡| 欧美在线一区亚洲| 欧美日韩福利视频一区二区| 免费在线观看日本一区| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 欧美中文综合在线视频| 欧美成人午夜精品| 波多野结衣高清作品| 亚洲色图 男人天堂 中文字幕| 一级毛片女人18水好多| 人人妻人人澡欧美一区二区| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 亚洲自偷自拍图片 自拍| 国产一区二区在线观看日韩 | 他把我摸到了高潮在线观看| a在线观看视频网站| 久久国产精品人妻蜜桃| 99久久久亚洲精品蜜臀av| 国产av不卡久久| 国产麻豆成人av免费视频| 9191精品国产免费久久| av欧美777| 免费看十八禁软件| 国产精品电影一区二区三区| 男人舔奶头视频| 我要搜黄色片| 亚洲男人的天堂狠狠| 欧美精品亚洲一区二区| 黄片小视频在线播放| 亚洲成av人片免费观看| 久久久久免费精品人妻一区二区| 日韩成人在线观看一区二区三区| 岛国在线免费视频观看| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 天天添夜夜摸| 高清在线国产一区| 国产爱豆传媒在线观看 | 国语自产精品视频在线第100页| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 国产亚洲精品av在线| 一级a爱片免费观看的视频| 最近最新免费中文字幕在线| av片东京热男人的天堂| 欧美另类亚洲清纯唯美| ponron亚洲| 欧美日本亚洲视频在线播放| 波多野结衣高清作品| 18禁美女被吸乳视频| 亚洲人成伊人成综合网2020| 精品国产乱子伦一区二区三区| 欧美精品啪啪一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 哪里可以看免费的av片| 一级片免费观看大全| 午夜福利视频1000在线观看| xxxwww97欧美| 日韩大尺度精品在线看网址| 特级一级黄色大片| 国产高清视频在线播放一区| 两个人免费观看高清视频| 国产精品精品国产色婷婷| 麻豆国产av国片精品| 久久久久精品国产欧美久久久| 国产亚洲精品av在线| 身体一侧抽搐| 国产精品av视频在线免费观看| 日韩欧美免费精品| 午夜精品在线福利| 一级毛片女人18水好多| 亚洲国产看品久久| 精品无人区乱码1区二区| 欧美性长视频在线观看| 日韩欧美三级三区| 中出人妻视频一区二区| 日韩欧美在线乱码| 中文字幕av在线有码专区| 日日夜夜操网爽| 欧美3d第一页| 又爽又黄无遮挡网站| 最近最新中文字幕大全电影3| 欧美 亚洲 国产 日韩一| 国内少妇人妻偷人精品xxx网站 | 国产亚洲av高清不卡| 又黄又粗又硬又大视频| 午夜两性在线视频| 久久久久久免费高清国产稀缺| 9191精品国产免费久久| 激情在线观看视频在线高清| 人人妻人人看人人澡| 欧美日韩瑟瑟在线播放| 久久精品人妻少妇| 国产精品av视频在线免费观看| 久久亚洲精品不卡| 国产真人三级小视频在线观看| 长腿黑丝高跟| 国产伦人伦偷精品视频| 亚洲人与动物交配视频| 久久久精品国产亚洲av高清涩受| 一本精品99久久精品77| 国产伦在线观看视频一区| 悠悠久久av| 免费av毛片视频| 久久久久久久久久黄片| 成在线人永久免费视频| 两个人视频免费观看高清| 麻豆成人午夜福利视频| 欧美另类亚洲清纯唯美| 国产探花在线观看一区二区| 久久久久国产精品人妻aⅴ院| 少妇粗大呻吟视频| www日本黄色视频网| 丁香欧美五月| 国产免费av片在线观看野外av| 国产精品爽爽va在线观看网站| 啪啪无遮挡十八禁网站| 久久九九热精品免费| 久久久精品国产亚洲av高清涩受| av片东京热男人的天堂| 看免费av毛片| 亚洲一区中文字幕在线| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 久久久久九九精品影院| 国内久久婷婷六月综合欲色啪| 欧美激情久久久久久爽电影| 天天躁狠狠躁夜夜躁狠狠躁| 欧美性猛交╳xxx乱大交人| 女警被强在线播放| 99精品在免费线老司机午夜| 欧美日韩黄片免| 国产精品久久久人人做人人爽| 人成视频在线观看免费观看| 国产激情欧美一区二区| 国产一区在线观看成人免费| 午夜免费激情av| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| 99久久精品国产亚洲精品| 亚洲色图av天堂| 男女床上黄色一级片免费看| 99久久综合精品五月天人人| 在线观看www视频免费| 免费观看人在逋| 精品久久久久久久久久免费视频| 美女大奶头视频| 禁无遮挡网站| 欧美不卡视频在线免费观看 | 日韩大尺度精品在线看网址| 中文字幕人成人乱码亚洲影| 午夜精品久久久久久毛片777| 亚洲一区中文字幕在线| 亚洲中文av在线| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 最近最新免费中文字幕在线| 黑人操中国人逼视频| 国产精品免费一区二区三区在线| 国产区一区二久久| 一区二区三区高清视频在线| 免费搜索国产男女视频| 国产午夜精品论理片| 日本精品一区二区三区蜜桃| 国产v大片淫在线免费观看| 黄色 视频免费看| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 免费高清视频大片| 国产片内射在线| 久久久国产欧美日韩av| 在线观看免费午夜福利视频| 日本成人三级电影网站| av视频在线观看入口| 麻豆一二三区av精品| 国产免费av片在线观看野外av| 国产视频内射| 又粗又爽又猛毛片免费看| 亚洲精品久久国产高清桃花| 亚洲自偷自拍图片 自拍| 久久久水蜜桃国产精品网| 亚洲男人的天堂狠狠| 人人妻,人人澡人人爽秒播| 久久久久国内视频| 国产精品国产高清国产av| 久久久国产精品麻豆| 制服人妻中文乱码| 草草在线视频免费看| e午夜精品久久久久久久| 国产99白浆流出| 亚洲黑人精品在线| 99国产精品一区二区三区| 国产精品九九99| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合一区二区三区| 亚洲性夜色夜夜综合| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 久久久国产成人精品二区| 久久久久久九九精品二区国产 | 悠悠久久av| 中亚洲国语对白在线视频| 亚洲专区字幕在线| 极品教师在线免费播放| 在线国产一区二区在线| 久久精品影院6| 国产片内射在线| 97人妻精品一区二区三区麻豆| 在线观看日韩欧美| 麻豆久久精品国产亚洲av| 一级片免费观看大全| 一本大道久久a久久精品| 琪琪午夜伦伦电影理论片6080| 成人18禁高潮啪啪吃奶动态图| 非洲黑人性xxxx精品又粗又长| 中文亚洲av片在线观看爽| 国产精品久久久久久人妻精品电影| 亚洲午夜理论影院| 欧美一区二区国产精品久久精品 | 国产精品久久久av美女十八| 国产麻豆成人av免费视频| 在线观看www视频免费| 国产精品 国内视频| 成人永久免费在线观看视频| 女生性感内裤真人,穿戴方法视频| 国产又黄又爽又无遮挡在线| 在线视频色国产色| 国产69精品久久久久777片 | 亚洲,欧美精品.| 人妻久久中文字幕网| av中文乱码字幕在线| 真人一进一出gif抽搐免费| 在线a可以看的网站| 最近最新中文字幕大全免费视频| 国产亚洲精品综合一区在线观看 | 又黄又粗又硬又大视频| 我要搜黄色片| 欧美最黄视频在线播放免费| 午夜免费观看网址| 亚洲天堂国产精品一区在线| 久久精品国产亚洲av香蕉五月| 精品久久蜜臀av无| 精品人妻1区二区| 国产精品美女特级片免费视频播放器 | 最新美女视频免费是黄的| avwww免费| 精品久久蜜臀av无| 五月伊人婷婷丁香| 老司机福利观看| 日韩欧美精品v在线| 无人区码免费观看不卡| 97碰自拍视频| 很黄的视频免费| 亚洲专区中文字幕在线| 欧美日韩一级在线毛片| 999久久久国产精品视频| 好男人在线观看高清免费视频| 国产视频一区二区在线看| 一个人观看的视频www高清免费观看 | 中文字幕av在线有码专区| 亚洲熟妇熟女久久| 国产精品野战在线观看| 欧美一区二区国产精品久久精品 | 免费av毛片视频| 欧美另类亚洲清纯唯美| 久久99热这里只有精品18| 亚洲avbb在线观看| 一区福利在线观看| 欧美中文综合在线视频| 国产免费av片在线观看野外av| 美女扒开内裤让男人捅视频| 精华霜和精华液先用哪个| 国产97色在线日韩免费| 成人三级黄色视频| 国产精品久久电影中文字幕| 午夜a级毛片| 法律面前人人平等表现在哪些方面| 午夜a级毛片| 亚洲精品国产一区二区精华液| 亚洲成人中文字幕在线播放| 色av中文字幕| avwww免费| 国产成人啪精品午夜网站| 亚洲美女视频黄频| 日韩欧美国产在线观看| 亚洲,欧美精品.| 精品久久久久久久久久免费视频| 免费高清视频大片| 人人妻人人看人人澡| 视频区欧美日本亚洲| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 亚洲av片天天在线观看| 制服丝袜大香蕉在线| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 又大又爽又粗| 亚洲精品在线美女| 女警被强在线播放| 色在线成人网| 欧美中文综合在线视频| 黄片小视频在线播放| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 黄色毛片三级朝国网站| 亚洲人成77777在线视频| 韩国av一区二区三区四区| 91av网站免费观看| 午夜激情av网站| 亚洲精品久久国产高清桃花| 国产99白浆流出| 午夜精品久久久久久毛片777| 亚洲全国av大片| 欧美日韩一级在线毛片| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 亚洲全国av大片| 毛片女人毛片| 熟妇人妻久久中文字幕3abv| 88av欧美| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品av在线| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区不卡视频| 亚洲熟妇熟女久久| 最新美女视频免费是黄的| 日本 av在线| 欧美色欧美亚洲另类二区| 精品少妇一区二区三区视频日本电影| 国产高清视频在线播放一区| 日本黄色视频三级网站网址| 免费观看人在逋| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 一级片免费观看大全| 人人妻人人看人人澡| 麻豆久久精品国产亚洲av| 十八禁网站免费在线| 日韩精品免费视频一区二区三区| 黄色片一级片一级黄色片| 麻豆一二三区av精品| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| 日韩大码丰满熟妇| 欧美大码av| 免费看a级黄色片| 天天添夜夜摸| 成人精品一区二区免费| 天堂√8在线中文| 亚洲国产日韩欧美精品在线观看 | 国产精品亚洲美女久久久| 久久久国产欧美日韩av| bbb黄色大片| 国产成年人精品一区二区| 在线永久观看黄色视频| 欧美乱妇无乱码| 欧美日韩瑟瑟在线播放| 久久精品aⅴ一区二区三区四区| 久久精品国产99精品国产亚洲性色| 亚洲专区中文字幕在线| 亚洲av熟女| 亚洲av成人一区二区三| 97人妻精品一区二区三区麻豆| 一级作爱视频免费观看| 国产精品乱码一区二三区的特点| 久久香蕉国产精品| 午夜成年电影在线免费观看| 亚洲精品在线观看二区| 亚洲精华国产精华精| 中文字幕久久专区| 日本免费一区二区三区高清不卡| 日韩大码丰满熟妇| 91在线观看av| 九九热线精品视视频播放| www.精华液| 国产真人三级小视频在线观看| 一二三四社区在线视频社区8| 国产单亲对白刺激| 免费看a级黄色片| 成年人黄色毛片网站| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 亚洲av片天天在线观看| 久久中文看片网| 国产精品野战在线观看| 麻豆国产97在线/欧美 | 每晚都被弄得嗷嗷叫到高潮| 亚洲一区高清亚洲精品| 亚洲av五月六月丁香网| 一本一本综合久久| 国产av在哪里看| 97超级碰碰碰精品色视频在线观看| 久久这里只有精品中国| 可以在线观看毛片的网站| 久久久久久国产a免费观看| 岛国在线观看网站| 91国产中文字幕| 亚洲国产高清在线一区二区三| 国产亚洲av嫩草精品影院| av免费在线观看网站| 深夜精品福利| 怎么达到女性高潮| 免费观看人在逋| 成人特级黄色片久久久久久久| 黄色片一级片一级黄色片| 午夜福利在线在线| 天堂影院成人在线观看| 成在线人永久免费视频| 亚洲一区二区三区不卡视频| 日本一二三区视频观看| 亚洲成人精品中文字幕电影| 18禁黄网站禁片午夜丰满| av欧美777| 久久 成人 亚洲| 亚洲黑人精品在线| 精品电影一区二区在线| 法律面前人人平等表现在哪些方面| 亚洲精品久久成人aⅴ小说| 一级毛片女人18水好多| 国产高清有码在线观看视频 | 国产av一区二区精品久久| 精品午夜福利视频在线观看一区| 99在线人妻在线中文字幕| 免费在线观看视频国产中文字幕亚洲| 精品免费久久久久久久清纯| 麻豆久久精品国产亚洲av| 国产成人欧美在线观看| 国产一区二区在线观看日韩 | 欧美性猛交╳xxx乱大交人| 亚洲午夜理论影院| 久久久久九九精品影院| 亚洲成人精品中文字幕电影| 精品午夜福利视频在线观看一区| 九色成人免费人妻av| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| 久久精品人妻少妇| 亚洲欧洲精品一区二区精品久久久| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区免费| 老鸭窝网址在线观看| 午夜激情av网站| 精品无人区乱码1区二区| 午夜免费观看网址| xxx96com| av视频在线观看入口| ponron亚洲| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 亚洲av电影不卡..在线观看| 18禁黄网站禁片免费观看直播| 欧美另类亚洲清纯唯美| videosex国产| 中文亚洲av片在线观看爽| 久久久国产成人精品二区| 99re在线观看精品视频| 99国产精品99久久久久| 欧美zozozo另类| 成人国产一区最新在线观看| 日本a在线网址| 国内少妇人妻偷人精品xxx网站 | 国产又黄又爽又无遮挡在线| 叶爱在线成人免费视频播放| 91九色精品人成在线观看| 18禁裸乳无遮挡免费网站照片| 女人高潮潮喷娇喘18禁视频| 首页视频小说图片口味搜索| 久久久水蜜桃国产精品网| 国产精品一区二区精品视频观看| 日韩高清综合在线| 国产成人系列免费观看| 淫妇啪啪啪对白视频| 日韩av在线大香蕉| 熟女电影av网| 国产单亲对白刺激| 国产三级黄色录像| 91在线观看av| 1024手机看黄色片| 国产精品香港三级国产av潘金莲| 成年女人毛片免费观看观看9| 19禁男女啪啪无遮挡网站| 久久国产精品影院| 久久香蕉激情| 日本黄色视频三级网站网址| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| 又大又爽又粗| 欧美绝顶高潮抽搐喷水| 亚洲黑人精品在线| av免费在线观看网站| 国产高清有码在线观看视频 | 动漫黄色视频在线观看| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 日本一二三区视频观看| 18禁观看日本| 国产真实乱freesex| 国产三级在线视频| 法律面前人人平等表现在哪些方面| 男人舔女人下体高潮全视频| 黑人欧美特级aaaaaa片| 亚洲精品粉嫩美女一区| 看免费av毛片| 99国产综合亚洲精品| 成人一区二区视频在线观看| 少妇裸体淫交视频免费看高清 | 久久精品国产综合久久久|