• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無有機模板劑水熱合成Co同晶取代的絲光沸石分子篩

    2012-12-12 02:42:10吳雅靜
    物理化學(xué)學(xué)報 2012年9期
    關(guān)鍵詞:程志化工學(xué)院物理化學(xué)

    王 琦 吳雅靜 王 軍,* 林 曉

    (1南京工業(yè)大學(xué)化學(xué)化工學(xué)院,材料化學(xué)工程國家重點實驗室,南京210009;2南京工業(yè)大學(xué)理學(xué)院,南京210009)

    1 Introduction

    Zeolite materials have been widely used as catalysts,ion-exchangers,and adsorbents due to their uniform micropores,high surface areas,adjustable acidities,and stable structures.Incorporation of transition metals like Fe,Ti,Ni,Co,or V into zeolites may cause new applications.1-5Particularly,Co-containing zeolites have attracted attention because they are efficient catalysts for reduction of NOx,6,7Fischer-Tropsch reaction,8,9and selective oxidation of alkanes.10,11However,in most of previous efforts,Co atoms were introduced into zeolites by impregnation and ion-exchange.In order to obtain single and highly dispersed Co sites without blocking the intrinsic micropores of zeolites,isomorphous substitution of Co ions into zeolite framework via a direct hydrothermal synthesis becomes an interesting topic.Nowadays,some framework-substituted Co-aluminophosphate(CoAPO)molecular sieves have been synthesized,12-14nevertheless,only a few Co-substituted aluminosilicate zeolites have been reported,such as MFI(mobil fifth), BEA(beta),ANA(analcime),and PHI(phillipsite)zeolites.15-17

    Mordenite(MOR)has been widely applied in petroleum industry for isomerization,dewaxing,and alkylation,18,19but Co-mordenite has been scarcely reported.Kato et al.20successfully synthesized a Co-mordenite by a dynamic hydrothermal treatment with a cobalt-ethylenediamine-N-monoacetic acid complex as the cobalt source.On the other hand,synthesizing heteroatomic zeolites always employs organic templates as the structural directing agencies.21-26For catalytic utilizations,the organic templates have to be removed by a high-temperature calcination so as to obtain the prerequisite open micropores. Consequently,the high-temperature treatment results in environmental pollution,large energy consumption,and high cost.27,28In earlier studies,Fe-and Zn-containing mordenites were obtained by a conventional static hydrothermal synthesis using sodium silicate as the silica source in the presence of organic templates.29,30Moreover,an organotemplate-free synthesis could cause the produce of Fe-mordenite,still needing the dynamic hydrothermal condition.31Although Kato et al.20did not use an organic template in the synthesis of Co-mordenite,as mentioned above,the research on the organotemplate-free synthesis is insufficient due to the demand of dynamic operation and the use of the organic-containing cobalt source.

    Herein,we report a direct static hydrothermal route for the incorporation of Co ions into the framework of mordenite with sodium silicate,aluminum sulfate,and cobalt nitrate as raw materials,and sodium hydroxide as the pH-adjusting agency,in the absence of any organic compounds,seeds,and pretreatments.The obtained products are complementarily characterized.

    2 Experimental

    2.1 Synthesis

    The hydrothermal synthesis of framework-substituted Co-mordenite in the absence of organic templates and seeds was carried out with the following procedures.Under vigorous stirring,10.51 g of sodium silicate(w(SiO2)=56%,w(Na2O)= 20%,AR,Wako,Japan)was added and dissolved into the aqueous solution containing 0.44 g of sodium hydroxide (w(NaOH)=96.0%,AR,Wuxi Yasheng Chem.Ind.Com.Ltd.) and 40 g of deionized water to obtain solution A.Solution B was made by adding 1.65 g of aluminum sulfate(w(Al2(SO4)3· 18H2O)=99%,AR,Shantou Xilong Chem.Ind.Com.Ltd.)into 10 g of deionized water,and solution C was gotten by adding 0.29 g of cobaltous nitrate(w(Co(NO3)2·6H2O)=99%,AR, Shantou Xilong Chem.Ind.Com.Ltd.)into 10 g of deionized water.Then,solutions B and C were added successively into solution A under stirring to give the gel mixture with a molar composition n(Na2O):n(SiO2):n(Al2O3):n(Co(NO3)2):n(H2O)=0.4: 1:0.025:0.01:40,which was stirred further at ambient temperature for 2 h.Finally,the slurry was transferred to a Teflon-lined stainless steel autoclave and left to crystallize statically at 170°C for 3 d.The resultant solid from the synthesis was separated by centrifugation,followed by washing with deionized water and air-drying at 70°C for 12 h.

    In the synthesis gels,the contents of Al2(SO4)3and Co(NO3)2were changed(n(SiO2)/n(Al2O3)=20-100,n(Co)/n(SiO2)=0-0.05)to investigate the applicability of the present new synthesis route,with otherwise conditions unaltered.The pure mordenite sample,used as the reference material in this study with a supposed 100%crystallinity,was prepared according to the above procedures from a Co-free gel mixture with molar composition n(Na2O):n(SiO2):n(Al2O3):n(H2O)=0.4:1:0.025:40.The relative crystallinities of Co-mordenite samples were calculated by comparing the summed intensity of the X-ray diffraction (XRD)peaks featured for MOR at 2θ values of 6.5°,8.7°,9.7°, 13.5°,15.3°,19.6°,22.3°,25.7°,26.4°,and 27.6°with that of the reference material.For comparison,colloidal silica(HS-40, Aldrich)was also used as the silica source in the organotemplate-free synthesis.

    2.2 Characterization

    Powder X-ray diffraction(XRD)patterns were collected on the powder diffractometer(Bruker D8 Advance,Germany)using Ni-filtered Cu Kαradiation source(λ=0.1542 nm)at 40 kV and 40 mA with a scanning speed of 0.02(°)·s-1.The unit cell parameters of the synthesized zeolites were calculated by XRD curves.32Co,Al,and Si contents were determined by an inductively coupled plasma(ICP)spectrometer(PerkinElmer Jarrell-Ash 1100,America).BET surface areas were evaluated with nitrogen sorption isotherms using an automatism isothermal adsorption instrument(Micromeritics ASAP2010,America)at 77 K.Scanning electron microscopy(SEM)images were characterized on an instrument(ThermoNicolet Quanta 200 FEI,America).The UV-Vis spectra were obtained using a spectrophotometer(PerkinElmerPE Lambda 950,America) equipped with a diffuse reflectance attachment.Thermogravimetric(TG)analysis was carried out on an instrument (NETZSCH STA 409PC,Germany)using a Pt pan,with the heating temperature from 35 to 800°C at a heating rate of 10°C· min-1.

    3 Results and discussion

    3.1 Influence of n(Co)/n(SiO2)ratios

    Fig.1 shows the XRD patterns for the Co-mordenite samples synthesized with various n(Co)/n(SiO2)ratios in starting gels, with otherwise similar conditions.The Co-free sample exhibited a set of diffraction peaks well assignable to the MOR structure,19without detecting other crystalline phases.Moreover,all the Co-containing samples gave the same peaks as those of the pure mordenite,while peak intensities decreased with the increase of n(Co)/n(SiO2)ratios.

    Fig.1 XRD patterns for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gelsconditions:n(SiO2)/n(Al2O3)=40,n(H2O)/n(SiO2)=40,T=170°C,t=3 d; n(Co)/n(SiO2):(a)0,(b)0.01,(c)0.02,(d)0.03,(e)0.04,(f)0.05

    Table 1 lists unit cell parameters,crystallinities,and BET surface areas for the samples synthesized with various n(Co)/ n(SiO2)ratios in starting gels.The Co loadings in final solid products were lower than the concentrations in starting gels,indicating that not all the cobalt species could be incorporated into the solid products.Meanwhile,the Co loadings in the solids increased gradually with the rise of n(Co)/n(SiO2)ratios in starting gels up to 0.04(entries 1-5).More importantly,the unit cell volumes increased monotonically with the increase of n(Co)/n(SiO2)up to 0.04,which is indicative of the insertion of Co ions into the TO4(T denotes tetrahedrally bonded cation) framework sites of MOR structure.This consists with the much larger radii of Co ions(0.0745 nm)than that of Si4+(0.040 nm).The increase of Co contents causes a gradual decrease in crystallinities,which is probably caused by the distortion of TO4tetrahedron due to the insertion of Co ions.At a very high n(Co)/n(SiO2)ratio of 0.05,the unit cell volume decreased obviously(entry 6),still corresponding to the drop of the n(Co)/n(SiO2)ratio in solid product.It is thus drawn that the molar ratio 0.04 for n(Co)/n(SiO2)in the starting gel is an upper limit to produce Co-mordenite.

    The typical sample of entry 4 was ion exchanged with aqueous solution of NH4Cl(2 mol·L-1)at 90°C for 3 h and then calcined at 550°C for 3 h.This procedure was repeated three times,and the resultant sample was analyzed by ICP.The treated sample gave n(SiO2)/n(Al2O3)=24.1 and n(Co)/n(SiO2)= 0.021,very close to those for the untreated one,strongly indicating that the Co ions in MOR framework are rather stable.

    Ratios of n(SiO2)/n(Al2O3)are also listed in Table 1.Much lower n(SiO2)/n(Al2O3)ratios of around 20 were observed for the final solid products compared with the constant value of 40 in starting gels,i.e.,the increase of Co loadings did not significantly influence the amount of Al ions incorporated in MOR framework.This result may be relative to the condition of n(Na2O)/n(SiO2)=0.4,a high alkalinity used for the hydrothermal synthesis.

    BET surface areas and micropore volumes in Table 1 show that the pure mordenite had a high surface area of 434 m2·g-1, and the Co-mordenites also possessed considerably high surface areas of around 350 m2·g-1.This strongly demonstrates the existing of open micropores for these organotemplate-free synthesized samples.The micropore volumes for Co-mordenite samples were only slightly lower than that of the pure mordenite,which may arise from the lower crystallinities of Co-mordenites due to the isomorphous substitution of the large Co ions in the MOR framework.

    The thermal properties for the pure mordenite and the selected Co-mordenite sample(n(Co)/n(SiO2)=0.03)were tested by the TG analysis,as shown in Fig.2.The gradual mass loss up to 350°C for the two samples due to water desorption is verydistinguished from the drastic decease at 420-520°C due to the decomposition of the involved organic templates for the template-synthesized mordenite.33This confirms that the samples prepared herein do not bear any organic species,needless to be subjected to a high-temperature calcination.

    Table 1 Textural properties for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gels

    Fig.2 TG curves for the organotemplate-free synthesized pure mordenite and the Co-mordenite with a n(Co)/n(SiO2) ratio of 0.03 in the starting gel

    Fig.3 UV-Vis spectra for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gelsconditions:n(SiO2)/n(Al2O3)=40,n(H2O)/n(SiO2)=40,T=170°C,t=3 d; n(Co)/n(SiO2):(a)0,(b)0.01,(c)0.02,(d)0.03,(e)0.04,(f)0.05

    UV-Vis spectra provide convincing evidences for the isomorphous substitution of metal ions for Si4+in zeolite crystal lattice.34Fig.3 shows the UV-Vis spectra for the Co-mordenite samples synthesized with various n(Co)/n(SiO2)ratios in starting gels.All the Co-mordenites presented well-resolved triplet bands in the wavelength range of 500-650 nm,attributable to4A2→4T1(4P),4A2→4T1(4F),and4A2→4T2transitions of high-spin Co2+in tetrahedral coordination sites.17,35-41In contrast,the triplet band could not be found for the pure mordenite.Furthermore,except for the sample with a very high n(Co)/n(SiO2)ratio of 0.05,the relative intensities of the triplet bands increased with Co contents in initial gels,which again suggests that the more Co2+introduced into initial gels,the more Co2+incorporated in MOR frameworks.12,15The absence of the band at ca 300 nm featured for cobalt oxides excludes the possible existence of extra-framework Co species.42-44

    Fig.4 SEM images for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gelsconditions:n(SiO2)/n(Al2O3)=40,n(H2O)/n(SiO2)=40,T=170°C,t=3 d;n(Co)/n(SiO2):(a)0,(b)0.01,(c)0.02,(d)0.03,(e)0.04,(f)0.05

    The SEM images for the samples with various n(Co)/n(SiO2) ratios are illustrated in Fig.4.Ellipsoidal crystal particles were observed for Co-mordenites,similar to the pure mordenite and the previously reported result.19Also,the particle sizes for Co-mordenites generally increased with the Co contents in synthesis gels.Obviously,amorphous phases occurred for Co-mordenites at high Co content,which is responsible for the lowered crystallinities,as already shown in Fig.1 and Table 1.The color of the obtained Co-mordenite was violescent,suggesting that the Co ions do not exist in the pore of the MOR structure.20

    3.2 Influence of crystallization time

    The crystallization process for Co-mordenite was investigated by changing the crystallization time from 0 to 7 d on the sample with n(Co)/n(SiO2)=0.03 in the starting gel.The crystallization curve is plotted in Fig.5.The relative crystallinities increased quickly at the early stage of the hydrothermal treatment without observing an induction period.The increasing rate became slow at the time beyond 3 d.A long hydrothermal period of 7 d was needed to obtain a quite high crystallinity of 81%.In comparison,a short time of 3 d could result in a considerably high crystallinity 78%with a n(Co)/n(SiO2)ratio of 0.02(entry 3,Table 1).These results indicate that the obtained well crystallized Co-mordenite with a higher Co content requires longer crystallization time.

    3.3 Influence of n(SiO2)/n(Al2O3)ratios

    Fig.5 Crystallization curve for Co-mordenite synthesized at n(Co)/n(SiO2)=0.03,n(SiO2)/n(Al2O3)=40, n(H2O)/n(SiO2)=40,and T=170°C

    n(SiO2)/n(Al2O3)ratios in starting gels are known to affect significantly the syntheses of heteroatomic zeolites.25The aforesaid syntheses focused on a certain n(SiO2)/n(Al2O3)of 40;furthermore,Table 2 presents the results for the Co-mordenites at n(SiO2)/n(Al2O3)ratios of 20 and 50.It can be seen that whatever the n(SiO2)/n(Al2O3)ratios,the Co contents in solid products raised with the increase of n(Co)/n(SiO2)ratios in starting gels except for the high n(Co)/n(SiO2)ratio of 0.05.The unit cell volumes also increased with the Co loadings in the final products with simultaneously decreased crystallinities.These observations,together with the tendency of n(SiO2)/n(Al2O3)ratios for final products,are consistent with those in Table 1 at n(SiO2)/n(Al2O3)=40.It therefore seems that the present organotemplate-free method is applicable to a broad range of n(SiO2)/ n(Al2O3)ratios in starting gels;nevertheless,n(SiO2)/n(Al2O3) ratios for final products have not been significantly enhanced by a higher n(SiO2)/n(Al2O3)ratio in the starting gel.

    Comparing the samples at n(Co)/n(SiO2)=0.03 with different n(SiO2)/n(Al2O3)ratios of 20,40,and 50(entries 3 and 6 in Table 2,and entry 4 in Table 1),it is found that both the crystallinities and Co loadings in final products are enhanced with the raise of n(SiO2)/n(Al2O3)ratios in starting gels.Thus,a high n(SiO2)/n(Al2O3)ratio in gel mixture seems favorable to the insertion of Co ions into MOR framework.However,synthesizing an extremely high silica mordenite is still known as a challenging topic.Therefore,when a separate experiment for the very high n(SiO2)/n(Al2O3)ratio of 100 in the starting gel was conducted,it is not surprising that only a very low crystallinity of 38%for the resultant solid product was obtained.

    3.4 Preliminaryunderstandingoftheorganotemplatefree synthesis

    The present organotemplate-free synthesis uses sodium silicate as the Si source and NaOH as the alkalinity-adjusting agency.It is known that Na+may play a role as an inorganic template instead of organic ones that leads to nucleation for the growth of zeolite crystals.45-47It is thus proposed that in the present approach,the Na+ion in starting gels acts as a central body in its positive tetrahedral model,around which the dispersed silicate ions and Co ions would have condensed to form the Si-O-Co linkages,the primary building blocks of nuclei for mordenite crystals.

    To understand this proposal,several control tests were further carried out.If silica sol,rather than sodium silicate,was used as the silica source under the same synthesis conditions asthose in entry 2(Table 1),only an amorphous solid product was obtained.It is therefore supposed that in the gel stage,the highly condensed silica species could not react with Co ions to form the nuclei precursor of Si-O-Co linkage,which would fail to cause the creation of zeolite phases,even in the presence of Na+ions.However,when the 0.1%(w)mordenite crystalline seed was added into the above silica sol-based system,the pure phase of Co-mordenite was obtained(entry 7,Table 1),wherein the so-called“initial-bred nuclei”from the seed-amorphous interfacial layers in a seeded hydrothermal synthesis could be assumed.48Interestingly,when KOH was used as the alkalinityadjusting agency for the seeded silica sol-based system to form a sodium-free system,Co-mordenite could not be produced any more.These comparisons demonstrate the template role of Na+ions for the creation of MOR structure.As a result,without aid of a mordenite crystalline seed,sodium silicate is a necessary silica source for synthesizing Co-mordenite by the present organotemplate-free approach.

    Table 2 Textural properties for Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gels

    4 Conclusions

    We develop a facile organotemplate-free hydrothermal approach for synthesizing framework-substituted Co-mordenites. The synthesis simply uses sodium silicate,aluminum sulfate, and cobalt nitrate as Si,Al,and Co sources,with NaOH as the only additive to adjusting the alkalinity of starting gels. Co-mordenites are obtained with broad ranges of Al and Co contents in synthesis gels.Na+ions are proposed to serve as the inorganic structure-directing template and sodium silicate is the necessary silica source for this organotemplate-free method.The as-synthesized products have open micropores needless to use a high-temperature calcination,which is more environmentally benign and less energy consumption.

    (1) Wichterlova,B.;Dedecek,J.;Sobalik,Z.;Vondrova,A.;Klier, K.J.Catal.1997,169,194.doi:10.1006/jcat.1997.1687

    (2)Li,Y.;Armor,J.N.J.Chem.Soc.Chem.Commun.1997,2013.

    (3) Chen,H.H.;Shen,S.C.;Chen,X.;Kawi,S.Appl.Catal.B: Environ.2004,50,37.doi:10.1016/j.apcatb.2003.10.005

    (4) Schwidder,M.;Heikens,S.;De Toni,A.;Geisler,S.;Berndt, M.;Brueckner,A.;Gruenert,W.J.Catal.2008,259,96.doi: 10.1016/j.jcat.2008.07.014

    (5) Ratnasamy,P.;Kumar,R.;Catal.Lett.1993,22,227.doi: 10.1007/BF00810369

    (6)Wang,X.;Chen,H.Y.;Sachtler,W.M.H.J.Catal.2001,19, 281.

    (7)Hadjiivanov,K.;Mihaylov,M.Chem.Commun.2004,2200.

    (8) Fierro,G.;Eberhardt,M.A.;Houalla,M.;Hercules,D.M.; Hall,W.K.J.Phys.Chem.1996,100,8468.doi:10.1021/ jp960121e

    (9) ?apek,L.;D?de?ek,J.;Wichterlová,B.J.Catal.2004,227, 352.doi:10.1016/j.jcat.2004.08.001

    (10)Zhai,Z.B.;Miao,Y.C.;Sun,Q.L.;Tao,H.W.;Wang,W.; Wang,J.Q.Catal.Lett.2009,131,538.doi:10.1007/ s10562-009-9961-7

    (11)Zhao,R.H.;Dong,M.;Qin,Z.F.;Ding,J.F.;Guo,X.C.; Wang,J.G.Acta Phys.-Chim.Sin.2008,24,2304.[趙瑞花,董 梅,秦張峰,丁建飛,郭星翠,王建國.物理化學(xué)學(xué)報, 2008,24,2304.]doi:10.3866/PKU.WHXB20081226

    (12)Gao,Q.;Weckhuysen,B.M.;Schoonheydt,R.A.Microporous Mesoporous Mat.1999,27,75.doi:10.1016/S1387-1811(98) 00274-1

    (13)Fan,W.;Li,R.;Dou,T.;Tatsumi,T.;Weckhuysen,B.M. Microporous Mesoporous Mat.2005,84,116.doi:10.1016/ j.micromeso.2005.04.025

    (14) Duan,F.;Li,J.;Chen,P.;Yu,J.;Xu,R.Microporous Mesoporous Mat.2009,126,26.doi:10.1016/j.micromeso. 2009.05.015

    (15) Janas,J.;Shishido,T.;Che,M.;Dzwigaj,S.Appl.Catal.B: Environ.2009,89,196.doi:10.1016/j.apcatb.2008.11.028

    (16) Pai,S.;Newalkar,B.L.;Choudary,N.V.Microporous Mesoporous Mat.2006,96,135.doi:10.1016/j.micromeso. 2006.06.027

    (17) Nagase,T.;Chatterjee,A.;Tanaka,A.P.;Tanco,M.L.;Tazaki, K.Chem.Lett.2004,33,1416.doi:10.1246/cl.2004.1416

    (18) Meier,W.M.Z.Kristallogr.1961,115,439.doi:10.1524/ zkri.1961.115.5-6.439

    (19) Degnan,T.F.,Jr.J.Catal.2003,216,32.doi:10.1016/ S0021-9517(02)00105-7

    (20) Kato,M.;Ikeda,T.;Kodaira,T.;Takahashi,S.Microporous Mesoporous Mat.2011,142,444.doi:10.1016/j.micromeso. 2010.12.030

    (21) Qiao,K.;Zhang,F.M.;Pan,D.L.;Zhang,N.F.;Jian,P.M. Chin.J.Inorg.Chem.2008,24,748.[喬 虧,張富民,潘多麗,張鳥飛,菅盤銘.無機化學(xué)學(xué)報,2008,24,748.]

    (22)Watanabe,K.;Ogura,M.Microporous Mesoporous Mat.2008, 114,229.doi:10.1016/j.micromeso.2008.01.008

    (23) Chen,B.;Huang,Y.Microporous Mesoporous Mat.2009,123, 71.doi:10.1016/j.micromeso.2009.03.025

    (24) Niphadkar,P.S.;Kotwal,M.S.;Deshpande,S.S.;Bokade,V. V.;Joshi,P.N.Mater.Chem.Phys.2009,114,344.doi:10.1016/ j.matchemphys.2008.09.026

    (25) Xia,Q.H.;Tatsumi,T.Mater.Chem.Phys.2005,89,89.doi: 10.1016/j.matchemphys.2004.08.034

    (26)Yang,D.H.;Zhao,J.F.;Zhang,J.L.;Dou,T.;Wu,Z.H.;Chen, Z.J.Acta Phys.-Chim.Sin.2012,28,720. [楊冬花,趙君芙,張軍亮,竇 濤,吳忠華,陳中軍.物理化學(xué)學(xué)報,2012,28, 720.]doi:10.3866/PKU.WHXB201201031

    (27) Song,J.W.;Dai,L.;Ji,Y.Y.;Xiao,F.S.Chem.Mater.2006,18, 2775.doi:10.1021/cm052593o

    (28) Zhang,W.;Wu,Y.J.;Gu,J.;Zhou,H.L.;Wang,J.Mater.Res. Bull.2011,46,1451.doi:10.1016/j.materresbull.2011.05.006

    (29) Chandwadkar,A.J.;Bhat,R.N.;Ratnasamy,P.Zeolites 1991, 11,42.doi:10.1016/0144-2449(91)80354-3

    (30)Dong,M.;Wang,J.G.;Sun,Y.H.Microporous Mesoporous Mat.2001,43,237.doi:10.1016/S1387-1811(01)00211-6

    (31)Wu,P.;Komastsu,T.;Yashima,T.Microporous Mesoporous Mat.1998,20,139.doi:10.1016/S1387-1811(97)00005-X

    (32) Treacy,M.M.J.;Higgins,J.B.Collection of Simulated XRD Powder Patterns for Zeolites,5th ed.;Elsevier:Netherlands, 2007;p 284.

    (33)Mohamed,M.M.;Salama,T.M.;Othman,I.;Ellah,I.A. Microporous Mesoporous Mat.2005,84,84.doi:10.1016/ j.micromeso.2005.05.017

    (34) Hunger,M.;Weitkamp,J.Angew.Chem.Int.Edit.2001,40, 2954.doi:10.1002/1521-3773(20010817)40:16<2954:: AID-ANIE2954>3.0.CO;2-#

    (35) Duran,A.;Fernandez Navarro,J.M.;Casariego,P.;Joglar,A. J.Non-Cryst.Solids 1986,812,391.

    (36) Fujii,Y.;Kyuno,E.;Tsuchiya,R.Bull.Chem.Soc.Jpn.1970, 43,786.doi:10.1246/bcsj.43.786

    (37)Weckhuysen,B.M.;Verberckmoes,A.A.;Uytterhoeven,M.G.; Mabbs,F.E.;Collison,D.;de Boer,E.;Schoonheydt,R.A. J.Phys.Chem.B.2000,104,37.doi:10.1021/jp991762n

    (38)Weckhuysen,B.M.;Rao,R.R.;Martens,J.A.;Schoonheydt,R. A.Eur.J.Inorg.Chem.1999,565.

    (39) Hartmann,M.;Kevan,L.Chem.Rev.1999,99,635.doi: 10.1021/cr9600971

    (40)Verberckmoes,A.A.;Weckhuysen,B.M.;Schoonheydt,R.A. Microporous Mesoporous Mat.1998,22,165.doi:10.1016/ S1387-1811(98)00091-2

    (41)Fan,W.;Weckhuysen,B.M.;Schoonheydt,R.A.Phys.Chem. Chem.Phys.2001,3,3240.

    (42) Dzwigaj,S.;Che,M.J.Phys.Chem.B 2006,110,12490.doi: 10.1021/jp0623387

    (43)Thomson,S.;Luca,V.;Howe,R.F.Phys.Chem.Chem.Phys. 1999,1,615.

    (44)Eldewik,A.;Howe,R.F.Microporous Mesoporous Mat.2001, 48,65.doi:10.1016/S1387-1811(01)00331-6

    (45) Persson,A.E.;Schoeman,B.J.;Sterte,J.Zeolites 1995,15, 611.doi:10.1016/0144-2449(95)00070-M

    (46) Cheng,Z.L.;Chao,Z.S.;Lin,H.Q.;Wan,H.L.Chin.J.Inorg. Chem.2003,19,396.[程志林,晁自勝,林海強,萬惠霖.無機化學(xué)學(xué)報,2003,19,396.]

    (47) Shin,D.K.;Shi,H.N.;Kyeong,H.S.;Wha,J.K.Microporous Mesoporous Mat.2004,72,185.doi:10.1016/j.micromeso. 2004.04.024

    (48) Jansen,J.C.;Stocker,M.;Kargc,H.G.;Weilkamp,J.Stud. Surf.Sci.Catal.1994,85,43.doi:10.1016/S0167-2991(08) 60764-8

    猜你喜歡
    程志化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    中醫(yī)情志關(guān)懷在婦產(chǎn)科護理中的應(yīng)用
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Chemical Concepts from Density Functional Theory
    程志宏印象
    中國篆刻(2017年5期)2017-07-18 11:09:30
    《化工學(xué)報》贊助單位
    小溪
    岷峨詩稿(2014年2期)2014-11-15 03:21:29
    日韩大片免费观看网站| 精品人妻一区二区三区麻豆| 肉色欧美久久久久久久蜜桃| 国产日韩欧美在线精品| 亚洲五月色婷婷综合| 国产男人的电影天堂91| 黄色片一级片一级黄色片| 性高湖久久久久久久久免费观看| 一区福利在线观看| 丰满饥渴人妻一区二区三| 国产精品一区二区精品视频观看| 精品第一国产精品| 国产激情久久老熟女| 亚洲七黄色美女视频| 美女视频免费永久观看网站| 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 欧美激情极品国产一区二区三区| 免费看不卡的av| 91字幕亚洲| 亚洲国产欧美日韩在线播放| 精品卡一卡二卡四卡免费| 欧美大码av| 亚洲欧洲日产国产| 国产精品成人在线| 国产女主播在线喷水免费视频网站| 久久99一区二区三区| 国产成人精品久久久久久| 叶爱在线成人免费视频播放| 午夜福利一区二区在线看| 美女视频免费永久观看网站| 一边摸一边抽搐一进一出视频| 亚洲成国产人片在线观看| 久久久久国产一级毛片高清牌| 婷婷色综合大香蕉| 国产亚洲欧美在线一区二区| 国产91精品成人一区二区三区 | 少妇被粗大的猛进出69影院| 欧美成人精品欧美一级黄| 亚洲中文字幕日韩| 又黄又粗又硬又大视频| 男女边吃奶边做爰视频| 久久性视频一级片| 成人午夜精彩视频在线观看| 黄色怎么调成土黄色| 精品国产乱码久久久久久小说| 国产xxxxx性猛交| 精品第一国产精品| 日本色播在线视频| 90打野战视频偷拍视频| 熟女av电影| av天堂在线播放| 又紧又爽又黄一区二区| 日韩免费高清中文字幕av| 久久精品久久精品一区二区三区| 久久久久精品国产欧美久久久 | 国产精品一二三区在线看| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区久久| 午夜久久久在线观看| xxx大片免费视频| 99久久精品国产亚洲精品| 欧美日韩成人在线一区二区| 亚洲av欧美aⅴ国产| 狠狠婷婷综合久久久久久88av| 免费女性裸体啪啪无遮挡网站| 女性被躁到高潮视频| 亚洲欧美日韩高清在线视频 | 成年女人毛片免费观看观看9 | 亚洲成人免费电影在线观看 | 国产av精品麻豆| 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡| 狂野欧美激情性bbbbbb| 久久精品aⅴ一区二区三区四区| 天天添夜夜摸| 欧美人与性动交α欧美精品济南到| 久久青草综合色| 亚洲精品成人av观看孕妇| av在线老鸭窝| videosex国产| 亚洲成国产人片在线观看| 啦啦啦视频在线资源免费观看| 少妇 在线观看| 波多野结衣av一区二区av| 免费观看人在逋| 日韩伦理黄色片| 亚洲国产精品一区三区| 亚洲熟女毛片儿| 午夜福利乱码中文字幕| 精品国产一区二区三区久久久樱花| 男女边摸边吃奶| 国产精品人妻久久久影院| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美| 国产欧美亚洲国产| 又大又爽又粗| 中文字幕人妻熟女乱码| 丝袜美足系列| 999精品在线视频| 久久久欧美国产精品| 免费观看av网站的网址| 久久午夜综合久久蜜桃| 亚洲三区欧美一区| a级片在线免费高清观看视频| 亚洲五月婷婷丁香| www.精华液| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 黄频高清免费视频| 一级毛片 在线播放| 99国产精品99久久久久| 精品视频人人做人人爽| 人体艺术视频欧美日本| 十分钟在线观看高清视频www| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产中文字幕在线视频| 亚洲欧美清纯卡通| 少妇精品久久久久久久| 美女高潮到喷水免费观看| 国产成人一区二区三区免费视频网站 | 啦啦啦在线观看免费高清www| 美女国产高潮福利片在线看| av欧美777| 美女脱内裤让男人舔精品视频| 免费在线观看黄色视频的| 久久热在线av| 久久久国产欧美日韩av| 精品免费久久久久久久清纯 | 国产深夜福利视频在线观看| 国产欧美亚洲国产| 国产一区二区在线观看av| 美国免费a级毛片| 91字幕亚洲| 国产欧美亚洲国产| 免费观看a级毛片全部| 少妇猛男粗大的猛烈进出视频| 亚洲精品在线美女| 啦啦啦 在线观看视频| 观看av在线不卡| 咕卡用的链子| 美女午夜性视频免费| 久久av网站| 黄色片一级片一级黄色片| 少妇猛男粗大的猛烈进出视频| 亚洲av综合色区一区| 国产一区二区激情短视频 | 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 久久人人97超碰香蕉20202| 国产精品av久久久久免费| 精品久久久久久电影网| 热99国产精品久久久久久7| 91成人精品电影| 少妇裸体淫交视频免费看高清 | 18禁国产床啪视频网站| 国产av精品麻豆| 国产精品三级大全| 一二三四在线观看免费中文在| 精品视频人人做人人爽| 两性夫妻黄色片| 国产亚洲午夜精品一区二区久久| 999久久久国产精品视频| 美女高潮到喷水免费观看| 国产欧美日韩综合在线一区二区| 久久精品国产综合久久久| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频 | 国产成人欧美| 黑丝袜美女国产一区| 日韩制服骚丝袜av| 国产不卡av网站在线观看| 日韩伦理黄色片| 不卡av一区二区三区| 丝袜喷水一区| 午夜福利免费观看在线| 国产男人的电影天堂91| 日韩一区二区三区影片| 国产精品九九99| 爱豆传媒免费全集在线观看| 无限看片的www在线观看| 久久久国产欧美日韩av| 欧美精品一区二区大全| 久久久久精品国产欧美久久久 | 老司机影院成人| 亚洲国产毛片av蜜桃av| 亚洲av欧美aⅴ国产| 一级毛片女人18水好多 | 免费观看av网站的网址| 亚洲一区二区三区欧美精品| 欧美在线黄色| 午夜精品国产一区二区电影| 久久人人97超碰香蕉20202| 亚洲av在线观看美女高潮| 午夜影院在线不卡| 18禁国产床啪视频网站| 欧美日本中文国产一区发布| 婷婷色麻豆天堂久久| 女警被强在线播放| 日韩大片免费观看网站| 亚洲欧洲精品一区二区精品久久久| 在线观看免费高清a一片| 国产精品久久久久成人av| 亚洲成人免费电影在线观看 | 久久亚洲国产成人精品v| 丝袜美腿诱惑在线| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 国产91精品成人一区二区三区 | 蜜桃国产av成人99| 国产欧美日韩精品亚洲av| 国产熟女午夜一区二区三区| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 99香蕉大伊视频| 91精品伊人久久大香线蕉| 波多野结衣av一区二区av| 麻豆av在线久日| 黄色a级毛片大全视频| 免费看av在线观看网站| 色精品久久人妻99蜜桃| 高清不卡的av网站| av在线老鸭窝| 亚洲欧洲国产日韩| 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区| 啦啦啦在线观看免费高清www| 久久国产精品影院| 捣出白浆h1v1| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的| 男人添女人高潮全过程视频| 日韩制服骚丝袜av| 久久国产精品影院| 国产精品一区二区在线观看99| 国产视频首页在线观看| 韩国精品一区二区三区| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 精品人妻一区二区三区麻豆| 一级,二级,三级黄色视频| 大片免费播放器 马上看| 久久狼人影院| 亚洲美女黄色视频免费看| 亚洲中文日韩欧美视频| 亚洲av美国av| 18禁裸乳无遮挡动漫免费视频| 丝袜脚勾引网站| 欧美黑人欧美精品刺激| xxx大片免费视频| 一级黄片播放器| 欧美激情极品国产一区二区三区| 一级毛片 在线播放| a 毛片基地| 亚洲,欧美,日韩| 18禁黄网站禁片午夜丰满| 亚洲一区中文字幕在线| 久久久国产精品麻豆| 777米奇影视久久| 纯流量卡能插随身wifi吗| 亚洲九九香蕉| 精品一区二区三区av网在线观看 | 最新的欧美精品一区二区| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 只有这里有精品99| 国产精品久久久久成人av| 欧美黑人精品巨大| 国产熟女午夜一区二区三区| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 欧美xxⅹ黑人| 国产亚洲欧美精品永久| 亚洲精品国产av成人精品| tube8黄色片| 老司机影院毛片| 青草久久国产| av天堂久久9| 久久国产精品影院| 亚洲男人天堂网一区| 天堂中文最新版在线下载| 久久久国产一区二区| 咕卡用的链子| 老熟女久久久| 大话2 男鬼变身卡| 国产亚洲欧美精品永久| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| 亚洲国产欧美一区二区综合| 在线观看国产h片| 久久久久网色| 日本91视频免费播放| 亚洲av日韩在线播放| 国产成人一区二区三区免费视频网站 | 亚洲熟女精品中文字幕| 亚洲国产最新在线播放| 亚洲国产成人一精品久久久| 亚洲av在线观看美女高潮| 国产一级毛片在线| 国产野战对白在线观看| 亚洲国产精品999| 久久99精品国语久久久| 欧美少妇被猛烈插入视频| 91精品国产国语对白视频| 韩国高清视频一区二区三区| 精品视频人人做人人爽| 你懂的网址亚洲精品在线观看| 精品国产乱码久久久久久小说| 久久ye,这里只有精品| a级毛片黄视频| 精品人妻一区二区三区麻豆| 免费在线观看完整版高清| 嫁个100分男人电影在线观看 | 亚洲精品成人av观看孕妇| 日本欧美视频一区| 国产精品av久久久久免费| 性少妇av在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲图色成人| 午夜福利在线免费观看网站| 中文字幕色久视频| 亚洲精品国产av成人精品| 乱人伦中国视频| www.av在线官网国产| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕最新亚洲高清| 亚洲精品日本国产第一区| 涩涩av久久男人的天堂| 国产精品二区激情视频| 国产成人av教育| 9色porny在线观看| 国产精品一区二区精品视频观看| 伊人久久大香线蕉亚洲五| 国产在线免费精品| 婷婷色综合大香蕉| 国产欧美日韩综合在线一区二区| 精品国产国语对白av| 晚上一个人看的免费电影| 成年人免费黄色播放视频| 日本av免费视频播放| 丁香六月欧美| 韩国高清视频一区二区三区| 亚洲男人天堂网一区| 国产女主播在线喷水免费视频网站| 激情五月婷婷亚洲| 午夜福利影视在线免费观看| 久久精品国产a三级三级三级| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 精品少妇内射三级| 午夜福利视频在线观看免费| 只有这里有精品99| 搡老乐熟女国产| 国产视频一区二区在线看| av在线老鸭窝| 精品国产乱码久久久久久男人| 黄色片一级片一级黄色片| 成年女人毛片免费观看观看9 | 美女高潮到喷水免费观看| 视频区图区小说| 午夜福利影视在线免费观看| 精品一区二区三卡| 国产国语露脸激情在线看| 人妻人人澡人人爽人人| 午夜福利乱码中文字幕| 观看av在线不卡| 水蜜桃什么品种好| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 极品人妻少妇av视频| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 国产精品国产av在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三卡| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 多毛熟女@视频| 考比视频在线观看| 黑人欧美特级aaaaaa片| 成年人免费黄色播放视频| 高清不卡的av网站| 色网站视频免费| 亚洲国产最新在线播放| 国产成人精品久久久久久| 国产老妇伦熟女老妇高清| 亚洲七黄色美女视频| 国产片特级美女逼逼视频| 美女大奶头黄色视频| 午夜激情av网站| 永久免费av网站大全| 一边摸一边抽搐一进一出视频| 在线看a的网站| av在线播放精品| av天堂在线播放| 亚洲黑人精品在线| 国产在线免费精品| 一区二区av电影网| 美女国产高潮福利片在线看| 亚洲视频免费观看视频| 国产精品秋霞免费鲁丝片| 9热在线视频观看99| 国产有黄有色有爽视频| 欧美少妇被猛烈插入视频| 亚洲国产精品国产精品| 免费观看av网站的网址| 色综合欧美亚洲国产小说| 婷婷色av中文字幕| 欧美精品人与动牲交sv欧美| 亚洲国产中文字幕在线视频| 久久久亚洲精品成人影院| 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| 成年动漫av网址| 天天操日日干夜夜撸| 亚洲免费av在线视频| 欧美日韩黄片免| 岛国毛片在线播放| 欧美日韩视频精品一区| 我的亚洲天堂| 国产日韩欧美在线精品| 欧美精品一区二区大全| 一级毛片电影观看| 曰老女人黄片| 国产日韩欧美在线精品| 国产精品av久久久久免费| 欧美日韩福利视频一区二区| 精品一区在线观看国产| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产 | av有码第一页| 交换朋友夫妻互换小说| 亚洲av男天堂| 婷婷丁香在线五月| 久久精品久久精品一区二区三区| 曰老女人黄片| 国产成人精品无人区| 日日摸夜夜添夜夜爱| 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| 99精国产麻豆久久婷婷| 丁香六月欧美| 久久av网站| 91精品国产国语对白视频| 欧美黑人欧美精品刺激| 成人影院久久| 大香蕉久久网| 久久久久久久精品精品| 精品久久久久久久毛片微露脸 | 777米奇影视久久| 亚洲av在线观看美女高潮| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线| 色精品久久人妻99蜜桃| 亚洲国产精品成人久久小说| 久久人人97超碰香蕉20202| 两性夫妻黄色片| 日韩制服丝袜自拍偷拍| 大片电影免费在线观看免费| 中文字幕色久视频| 国产精品国产av在线观看| 亚洲精品久久午夜乱码| 欧美日韩亚洲综合一区二区三区_| 一边摸一边抽搐一进一出视频| 男女边摸边吃奶| 国产成人欧美| 在线av久久热| 免费看不卡的av| 亚洲欧美日韩高清在线视频 | 欧美黄色片欧美黄色片| 久久国产亚洲av麻豆专区| 国产亚洲精品久久久久5区| 亚洲欧美精品综合一区二区三区| 国产一区二区三区av在线| 乱人伦中国视频| 国产亚洲欧美精品永久| a级片在线免费高清观看视频| 男女国产视频网站| 在线天堂中文资源库| 国产97色在线日韩免费| 亚洲人成网站在线观看播放| svipshipincom国产片| 在线观看免费视频网站a站| 久久久久久亚洲精品国产蜜桃av| 十八禁高潮呻吟视频| 在线观看免费日韩欧美大片| 在线观看www视频免费| 国产福利在线免费观看视频| 我要看黄色一级片免费的| 成人亚洲精品一区在线观看| 亚洲精品日本国产第一区| 国产伦人伦偷精品视频| 99热全是精品| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 99香蕉大伊视频| 亚洲欧美色中文字幕在线| 99久久精品国产亚洲精品| 国产av一区二区精品久久| 操出白浆在线播放| 欧美日韩视频高清一区二区三区二| 久久久久久人人人人人| 亚洲精品国产av蜜桃| 91老司机精品| 欧美av亚洲av综合av国产av| 日韩av不卡免费在线播放| 青青草视频在线视频观看| 午夜两性在线视频| 国产黄色免费在线视频| 亚洲欧美一区二区三区久久| 国产精品久久久av美女十八| 亚洲成色77777| 久久综合国产亚洲精品| 国产亚洲精品第一综合不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 在线 av 中文字幕| 女性生殖器流出的白浆| 欧美少妇被猛烈插入视频| 亚洲 国产 在线| 99国产精品一区二区蜜桃av | 国产在视频线精品| a级片在线免费高清观看视频| 老司机午夜十八禁免费视频| 国产老妇伦熟女老妇高清| 亚洲,欧美,日韩| 国产精品秋霞免费鲁丝片| 中文乱码字字幕精品一区二区三区| 亚洲国产日韩一区二区| 成人国产av品久久久| 久久人妻福利社区极品人妻图片 | av天堂在线播放| 人人妻人人澡人人看| 飞空精品影院首页| 国产黄色免费在线视频| 国产亚洲av高清不卡| 久久精品成人免费网站| 又紧又爽又黄一区二区| www.av在线官网国产| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区| 最黄视频免费看| 曰老女人黄片| 成人免费观看视频高清| 99九九在线精品视频| 精品国产乱码久久久久久男人| 丰满少妇做爰视频| 99国产综合亚洲精品| 韩国高清视频一区二区三区| 久久性视频一级片| 亚洲av综合色区一区| 男人操女人黄网站| 亚洲三区欧美一区| 嫁个100分男人电影在线观看 | 午夜免费成人在线视频| 日韩伦理黄色片| 午夜两性在线视频| 1024视频免费在线观看| 建设人人有责人人尽责人人享有的| 两性夫妻黄色片| 国产精品久久久久久精品古装| 美女主播在线视频| 在线亚洲精品国产二区图片欧美| av网站免费在线观看视频| 老司机靠b影院| 国产精品免费大片| 成人免费观看视频高清| 一本大道久久a久久精品| 成人免费观看视频高清| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 水蜜桃什么品种好| 男的添女的下面高潮视频| 九色亚洲精品在线播放| 国产成人免费观看mmmm| 国产xxxxx性猛交| 日韩av免费高清视频| 国产不卡av网站在线观看| av一本久久久久| 一级毛片黄色毛片免费观看视频| 老司机深夜福利视频在线观看 | 国产亚洲av高清不卡| 超色免费av| 少妇粗大呻吟视频| bbb黄色大片| 自线自在国产av| 亚洲av男天堂| 男女无遮挡免费网站观看| 免费av中文字幕在线| 亚洲,欧美精品.| 七月丁香在线播放| 国产亚洲精品第一综合不卡| 成人国语在线视频| 亚洲人成网站在线观看播放| 久久青草综合色| 色网站视频免费| 精品福利观看| 中文欧美无线码| 丝袜在线中文字幕| 99精品久久久久人妻精品| 国产爽快片一区二区三区| 高清av免费在线| 国产精品二区激情视频| 国精品久久久久久国模美| 国产精品av久久久久免费| 夜夜骑夜夜射夜夜干| 免费观看人在逋| 免费一级毛片在线播放高清视频 | 一边亲一边摸免费视频| 国产精品久久久人人做人人爽| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 中文字幕精品免费在线观看视频|