• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pervaporation of Aqueous Solution of Acetaldehyde Through ZSM-5 Filled PDMS Composite Membrane*

    2012-02-14 08:26:24WUYanhui伍艷輝TANHuifen譚惠芬LIDongming李佟茗andJINYuan金源
    關(guān)鍵詞:金源

    WU Yanhui (伍艷輝)**, TAN Huifen (譚惠芬), LI Dongming (李佟茗) and JIN Yuan (金源)

    Department of Chemistry, Tongji University, Shanghai 200092, China

    1 INTRODUCTION

    Acetaldehyde is one of the most important chemical intermediates in chemical industry. It can be used to synthesize butanol, acetone, acetic anhydride,trichloroacetaldehyde and so on. Several traditional processes, such as acetylene hydration and ethane oxidization, have been used to produce acetaldehyde, generating acetaldehyde waste water that is toxic and hazardous to the environment and creatures. Thus the treatment of acetaldehyde waste water becomes urgent [1, 2].

    Several methods are used to treat acetaldehyde waste water such as distillation [3-5], adsorption [6] and condensation [7]. In addition, pervaporation, a novel and effective membrane technique, is suitable for separating organics from its dilute aqueous solution [8, 9].Due to its simplicity, high permselectivity, energy and cost saving, pervaporation technique presents enormous potentiality in water treatment. For example, toluene was removed from the wastewaters of chemical industry with unfilled and carbon black filled polydimethylsiloxane (PDMS) membranes, with the removal of toluene amounted to 90% and 93% for PDMS +carbon black and PDMS, respectively [10]. Similarly,Peng et al. [11] obtained extremely high separation factor and acceptable permeation flux for removal of toxic volatile compound benzene from aqueous solution with carbon molecular sieve filled PDMS membranes. The processes coupled with pervaporation of acetaldehyde were also investigated. Papaefstathiou et al. [12] separated acetaldehyde with polytetrafluoroethylene (PTFE) membrane from 2% (by volume)aqueous solution of acetaldehyde by pervaporation and determined acetaldehyde by combining enzymic method. Gas chromatograph [13] and capillary electrophoresis [14] coupled with pervaporation pretreatment were applied to detect acetaldehyde and acetone successfully. Zeng and Zeng [15] separated the flavoring compositions in a new Chinese spirits by pervaporation with PDMS membrane at 40 °C and the removal efficiency of acetaldehyde reached 87% for the feed with 0.2 mg·ml-1acetaldehyde. In order to enhance the permeation flux and selectivity of acetaldehyde,more suitable membrane needs to be developed.

    PDMS is a commonly used hydrophobic polymeric material for separating minor organic compounds from aqueous solution. The rapid motion of chain segments in PDMS leads to a large free volume that favors the diffusion of the permeating molecules.In recent years, some effective methods such as filling adsorbents into the polymers have been used to improve the permeation flux or selectivity. High-silica ZSM-5 zeolite filled PDMS composite membrane was applied to recover isopropanol from its aqueous solution [16]. With the increase of zeolite content in the mixed matrix membrane, the permeation flux and selectivity increased simultaneously.

    In this work, considering that the high-silica ZSM-5 zeolite can improve the hydrophobicity and enhance the mechanical property of the composite membrane as mentioned in literature [16, 17], we prepare ZSM-5 zeolite filled PDMS composite membranes with Nylon microfiltration membrane as the support layer and use them to remove acetaldehyde from its aqueous solution by pervaporation. The chemical and physical properties of the composite membrane are characterized.The effects of ZSM-5 zeolite content and pervaporation operation conditions on pervaporation performance are investigated.

    2 EXPERIMENTAL

    2.1 Materials

    107-silicone rubber (viscosity 5 Pa·s), tetraethylorthosilicate (TEOS) and dibutyltin dilaurate were obtained from Shanghai Resin Company. ZSM-5 zeolite (H type, Si/Al=360) with particle size of 3.5 μm was purchased from Shanghai Fuxu Molecular Sieve Limited Company. Ethyl acetate with analytical pure grade was supplied by Sinopharm Chemical Reagent Co., Ltd. Acetaldehyde was prepared from the depolymerization of paraldehyde (chemical pure grade, Aladdin Reagent Database Inc.) with concentrated sulfuric acid as the catalyst and then was used to make the acetaldehyde solution. The Nylon microfiltration membrane(pore diameter 0.45 μm) was bought from Shanghai Mosu Tech. Co., Ltd.

    2.2 Membrane preparation

    ZSM-5 zeolite was weighed and roasted in muffle furnace at 400°C for 5 h to remove the water and carbon dioxide adsorbed. The pretreated zeolite was then cooled to room temperature in a desiccator. 5 g of 107-silicone rubber was added into ethyl acetate with stirring until the silicone rubber dissolved completely.The pretreated zeolite was added into ethyl acetate with ultrasonic dispersion for 30 min. The two mixtures were mixed with crosslinking agent TEOS and catalyst dibutyltin dilaurate, stirred for 1 h. The prepared casting solution was toppled on a Nylon membrane supported on a glass plate (the Nylon membrane was saturated with distilled water beforehand). Then the solution was cast with a glass scraper. The composite membrane was dried at 60°C for 12 h and peeled off from the glass plate when the solvent evaporated completely.

    2.3 Membrane characterization

    X-ray powder diffraction (XRD, D8FOUCUS,Bruker AXS) was used to examine the crystalline diffraction characteristics of the PDMS, ZSM-5 and ZSM-5-PDMS samples. The radiation was generated using Cu Kα(λ=0.154 nm) from graphite monochromator at 40 kV and 100 mA. The scanning rate was 2(°)·min-1and the scanning range was 10°-70°.

    The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments were carried out on a Bruker Vector 22 FTIR spectrometer equipped with a MCT detector and Harrick diffuse reflectance accessory. All infrared data were evaluated in Kubelka-Munk units. Background signals from gas-phase were subtracted before the spectra were reported.

    SEM 515 scanning electron microscopy (Phillip Corp.) was used to observe the surface and cross-section morphologies of the membranes.

    The thermal stability of the membranes was measured by thermogravimetric analyzer (Q600SDT,TA Instrument Inc.) at a heating rate of 10 K·min-1in nitrogen atmosphere.

    2.4 Swelling study

    The dried ZSM-5-PDMS membrane was weighed and immersed in aqueous solution of acetaldehyde at 25 °C. Then the membrane sample was taken out at intervals and wiped carefully with filter paper to remove the liquid on the surface. After weighed, the sample was put back into the acetaldehyde aqueous solution again until its mass was unchanged. The degree of swelling (DS) was determined by

    where Wsand Wdare the mass of swollen and dry membranes, respectively.

    2.5 Pervaporation measurement

    The schematic diagram of the experimental equipment for pervaporation is shown in Fig. 1. The acetaldehyde aqueous solution in liquid reservoir was sent to the membrane cell by a recycle pump. With the vapor pressure difference over the membrane, part of the feed liquid permeated through the membrane and evaporated in vacuum environment. The permeate was condensed and collected in a liquid nitrogen cold trap and the retentive feed liquid was circulated back to the liquid reservoir. The feed temperature was controlled by the temperature-controller and the feed flux was measured by a rotameter. The temperatures at the entrance and exit of the membrane cell were measured by the thermocouples. The effective membrane area was 3.6×10-3m2. The permeate mass was obtained by weighing the collector.

    The concentrations of permeate and feed liquid were measured by gas chromatography (GC7890F,TECHCOMP [HOLDINGS) LIMITED]. The column was HP-FFAP capillary column. The pervaporation performance is usually described with separation factor α and permeation flux J,

    where Pwaterand Pacetaare mass fractions of water and acetaldehyde in permeate, respectively; Fwaterand Facetaare mass fractions of water and acetaldehyde in liquid feed, respectively; J is the permeation flux, g·m-2·h-1;W is the mass of the permeate, g; A is the effective membrane area, m2; and t is the permeation time, h.

    Figure 1 Schematic diagram of the pervaporation (PV) equipment1—temperature control unit; 2—liquid reservoir; 3—level gauge; 4—liquid pump; 5—rotameter; 6—membrane cell; 7—cold trap;8—pressure sensor; 9—dryer; 10—vacuum buffer; 11—vacuum pump

    3 RESULTS AND DISCUSSION

    3.1 Membrane characterization

    3.1.1Fourier transform-infrared (FT-IR) analysis

    The FT-IR spectra of PDMS/Nylon and 5%ZSM-5-PDMS/Nylon membranes are displayed in Fig. 2,which seem very similar. A stretching vibration band of C H appears at 2962 cm-1and a stretching vibration band of SiC is at 1260 cm-1. 1000-1150 cm-1is the characteristic absorption band of SiO Si. 800 cm-1is the stretching vibration band of SiC. In 5%ZSM-5-PDMS/Nylon membrane, the characteristic absorption band of SiO Si is much weaker than that in PDMS/Nylon membrane. There are two reasons accounting for this: incorporation of ZSM-5 zeolite may destroy the crosslinking of PDMS and TEOS,and OH in ZSM-5 zeolite forms hydrogen bond with O in SiO Si.

    Figure 2 FT-IR spectra of PDMS/Nylon and ZSM-5-PDMS/Nylon samplesPDMS/Nylon; 5%ZSM-5-PDMS/Nylon

    3.1.2XRD analysis

    Figure 3 XRD patterns for ZSM-5 zeolite, PDMS/Nylon membrane and 5%ZSM-5-PDMS/Nylon membrane

    The XRD patterns of ZSM-5 zeolite, PDMS/Nylon and 5%ZSM-5-PDMS/Nylon samples are shown in Fig. 3. The characteristic diffraction peaks of ZSM-5 zeolite are at 8.0°, 8.9°, 23.1°, 23.3° and 24.0° [18].Comparing Fig. 3 (b) with Fig. 3 (c), we can see the characteristic diffraction peak of PDMS at 11.8° and diffraction peaks ranged from 23° to 24° in 5%ZSM-5-PDMS/Nylon sample. This demonstrates that the addition of ZSM-5 zeolite does not change the state of PDMS. The XRD pattern of ZSM-5-PDMS/Nylon composite membrane is the superposition of ZSM-5 zeolite and PDMS/Nylon samples.

    3.1.3Thermogravimetric analysis

    The thermogravimetric curves of PDMS and 5%ZSM-5-PDMS/Nylon samples are shown in Fig. 4.The two samples begin to decompose at about 200 °C and decompose completely at about 700 °C, because PDMS polymer is at rubbery state and the internal structure changes a lot as temperature increases. At about 350 °C the crosslinking structure is destroyed.

    Figure 4 TG analysis curves of PDMS and ZSM-5-PDMS samplesPDMS/Nylon; 5%ZSM-5-PDMS/Nylon

    Figure 5 SEM images of PDMS/Nylon and ZSM-5-PDMS/Nylon membranes

    The analysis of FT-IR shows that incorporation of ZSM-5 would influence the crosslinking of PDMS.Therefore, the weight loss of the zeolite filled membrane from 350 to 450 °C is higher than that of the unfilled membrane. In the whole decomposing process,since zeolite is an inorganic particle, the mass loss of zeolite filled membrane is less.

    3.1.4Scanning electron microscope (SEM) analysisFigures 5 and 6 show the SEM images of PDMS/Nylon, 5%ZSM-5-PDMS/Nylon and 15%ZSM-5-PDMS/Nylon membranes. The composite membrane filled with 15% ZSM-5 zeolite is very different from the unfilled membrane (Fig. 5). The PDMS dense layer of unfilled membrane is more homogeneous. The surface layer structure of ZSM-5 filled PDMS membranes with different ZSM-5 mass contents (Fig. 6) shows that the zeolite particles distribute uniformly in 5%ZSM-5-PDMS/Nylon membrane while agglomerate in 15%ZSM-5-PDMS/Nylon membrane. In the study of Sunet al. [19], zeolite ZSM-5 began to agglomerate at mass content of 10%.

    3.2 Swelling and sorption properties of composite membrane

    Figure 7 shows the swelling behavior of composite membranes in 8% aqueous solution of acetaldehyde at 25 °C. Compared with the PDMS/Nylon membrane, the zeolite filled membrane has lower DS value and takes shorter time to reach swelling equilibrium. The addition of zeolite is helpful to avoid the excessive swelling [20].

    Figure 6 SEM images of the surface layer of ZSM-5-PDMS/Nylon membranes

    Figure 7 Swelling curves of ZSM-5-PDMS/Nylon membrane at different times (8% acetaldehyde, 25°C)■ PDMS/Nylon; ● 2%ZSM-5-PDMS/Nylon;▲ 5%ZSM-5-PDMS/Nylon; ▼ 8%ZSM-5-PDMS/Nylon;◆ 15%ZSM-5-PDMS/Nylon

    In swelling process, there are three steps in succession: (1) solvent molecules diffuse into the polymer system, (2) the polymer chains become relaxed, and (3)the polymer network expands in the solution. If step 1 is dominant, the amount of solvent adsorption will be directly proportional to the square root of time. If step 2 is rate-determining, the amount of adsorbed solvent is proportional to time,while the swelling degreevs.the square root of time exhibits sigmoidal pattern [21].In Fig. 7, the swelling degree curve of PDMS/Nylon membranes is sigmoidal, which means that the relaxation of polymer chains is the rate-determining step.For the ZSM-5 filled PDMS/Nylon membrane, the swelling degree looks more likely linear with the square root of time. The filled zeolite ZSM-5 influences the swelling process.

    Hydrophobic ZSM-5 zeolite adsorbs acetaldehyde more easily than water, so the zeolite in the composite membrane has preferential sorption to acetaldehyde. Fig. 8 shows that the DS values of membranes in pure water and in acetaldehyde solution have similar trend as zeolite content increases in the membrane. And in the whole range, the DS value in water is lower than that in acetaldehyde solution.

    Figure 8 Effect of zeolite content on DS (25°C)■ in 8% acetaldehyde; ▲ in water

    The membrane without filling zeolite has the highest DS in acetaldehyde solution and in water. The reason is that pure PDMS is a kind of rubbery polymer at ambient temperature [22, 23], so the active movement of PDMS segments makes its free volume relatively large [24]. After filling with ZSM-5 zeolite,the free volume of PDMS is partly inhabited by zeolite. Moreover, as a kind of inorganic filler, ZSM-5 zeolite is inflexible, which restricts the segment movement in PDMS-ZSM-5/Nylon membrane to some extent and therefore suppresses the swelling of the composite membrane.

    Since ZSM-5 zeolite can improve the sorption of acetaldehyde but suppress the swelling of membrane,the DS of the composite membrane first increases and then decreases with increasing zeolite content (Fig. 8).When zeolite mass content exceeds 8%, the segment movement of PDMS in the composite membrane is weakened and the swelling suppression effect is dominant. Therefore, the quantity of adsorbed acetaldehyde solution is small in 15%ZSM-5-PDMS/Nylon membrane.

    3.3 Pervaporation performance of composite membrane

    3.3.1Effect of zeolite content

    The effect of ZSM-5 zeolite content on selectivity of ZSM-5 filled PDMS composite membrane in 8% (by mass) acetaldehyde solution is shown in Fig. 9.The separation factor increases with zeolite mass content first and achieves the maximum value 35 at 5% zeolite content. The separation factor of 8%ZSM-5-PDMS/Nylon membrane is close to that of the membrane with 5%ZSM-5 content, both of which show better adsorption to acetaldehyde (Fig. 8). As the zeolite mass content increases to 15%, the smaller value of DS (Fig. 8)causes less adsorption of acetaldehyde molecules on the membrane, lowering the separation factor considerably. On the whole, the separation factor of ZSM-5 filled membranes is much better than that of the unfilled membrane.

    Figure 9 Effect of zeolite content on separation factor (8%acetaldehyde, 50 L·h-1, 25 °C)

    The effect of zeolite content on permeation flux in 8% acetaldehyde solution at 50 L·h-1flow rate and 25 °C is shown in Fig. 10. The unfilled PDMS/Nylon membrane gives the maximum permeation flux (309.4 g·m-2·h-1), because the unfilled membrane has the highest DS in the aqueous solution of acetaldehyde,providing more free volume for the sorption and diffusion of acetaldehyde and water molecules. The zeolite filled membranes has lower permeation flux than the unfilled membrane as the zeolite suppresses membrane swelling and decreases the free volume of the composite membrane. As the zeolite loading increases,the sorption capacity of acetaldehyde increases while the sorption of water shows opposite trend. Since the DS of the composite membrane increases as zeolite mass content increases from 2% to 5%, the permeation flux of 5%ZSM-5-PDMS/Nylon membrane is higher than that of 2%ZSM-5-PDMS/Nylon membrane. However, further increase of zeolite content may lead to the aggregation of zeolite, so that the movement of segments decreases and the transport resistance of the filled membrane is increased [11]. Therefore, the permeation fluxes of 8%ZSM-5-PDMS-Nylon and 15%ZSM-5-PDMS-Nylon membranes are less. This phenomenon is in agreement with that in a previous pervaporation experiment with silicalite-filled polyether-block-amides membrane [20].

    Figure 10 Effect of zeolite content on permeation flux (8%acetaldehyde, 50 L·h-1, 25 °C)

    3.3.2Effect of feed concentration

    The swelling of membrane has some relation with the concentration of acetaldehyde in the feed, so the feed concentration influences the membrane performance. As shown in Fig. 11, the total permeation flux of 5%ZSM-5-PDMS/Nylon membrane increases with the feed concentration. The reason is that PDMS and zeolite ZSM-5 are both hydrophobic, the DS of the composite membrane in acetaldehyde solution increases with its concentration. The interactions between PDMS polymer chains will be weakened when the DS is higher, enlarging the free volume of composite membrane. Then it is favorable for molecules to permeate through the membrane, increasing the total permeation flux. Fig. 12 shows the partial permeation flux of acetaldehyde and water at different feed concentrations. Although water molecule is smaller than acetaldehyde molecule, the water flux is lower than the acetaldehyde flux in this work since the composite membrane has preferential sorption to acetaldehyde.As the acetaldehyde concentration increases, the acetaldehyde flux increases, while the water flux decreases slightly. Similar tendency of partial permeation flux can be found in literature [11, 25, 26]. Higher acetaldehyde concentration in the membrane may hinder the diffusion of water through membrane.

    Figure 11 Effect of feed concentration on total permeation flux (5%ZSM-5-PDMS/Nylon, 25 °C, 50 L·h-1)

    Figure 12 Effect of feed concentration on partial permeation flux (5%ZSM-5-PDMS/Nylon, 25 °C, 50 L·h-1)■ acetaldehyde; ▲ water

    Figure 13 shows that the separation factor for 5%ZSM-5-PDMS/Nylon membrane also increases with feed concentration. The more acetaldehyde molecules adsorb on membrane surface, the more easily acetaldehyde permeates through the membrane. When the acetaldehyde concentration is higher, the sorption and solution of acetaldehyde in the membrane are improved, enhancing the permselectivity.

    Figure 13 Effect of feed concentration on separation factor (5%ZSM-5-PDMS/Nylon, 25 °C, 50 L·h-1)

    3.3.3Effect of operating temperature

    The vapor pressure increases with upstream temperature, increasing the driving force of the pervaporation process. Furthermore, since PDMS is an amorphous rubbery polymer, the segments of PDMS can move more frequently at higher temperatures. The free volume of ZSM-5-PDMS/Nylon membrane is enlarged,so that the solution and diffusion of the preferentially adsorbed acetaldehyde are improved. The partial flux of acetaldehyde increases evidently with temperature but the water flux changes little (Fig. 14). Thus the separation factor increases with temperature (Fig. 15).The total permeation flux also increases with temperature, as shown in Fig. 16. For 5%ZSM-5-PDMS/Nylon membrane, the highest total flux obtained is more than 400 g·m-2·h-1at 45 °C and the separation factor can reach 50.

    Figure 14 Effect of liquid temperature on partial permeation flux (5%ZSM-5-PDMS/Nylon, 8% acetaldehyde, 50 L·h-1)■ acetaldehyde; ▲ water

    Figure 15 Effect of liquid temperature on separation factor(5%ZSM-5-PDMS/Nylon, 8% acetaldehyde, 50 L·h-1)

    4 CONCLUSIONS

    In this study, we prepared zeolite ZSM-5 filled PDMS composite membranes. FT-IR analysis demonstrates that the filling of ZSM-5 zeolite may destroy the crosslinking of PDMS and form hydrogen bond with oxygen in PDMS chains. The SEM analysis shows that the zeolite distributes well in PDMS when the zeolite content is proper. The DS of ZSM-5 filled PDMS/Nylon membrane is lower than that of the unfilled membrane.

    Figure 16 Effect of liquid temperature on total permeation flux (5%ZSM-5-PDMS/Nylon, 8% acetaldehyde, 50 L·h-1)

    The prepared ZSM-5 filled PDMS/Nylon membranes were used to pervaporate acetaldehyde from its aqueous solution. The membrane incorporated with 5% zeolite presents the best separation characteristics.The separation selectivity is 35 with permeation flux of 233.3 g·m-2·h-1at 25 °C for 8% acetaldehyde mass concentration in the feed. Both separation factor and permeation flux increase with the feed concentration.At higher temperature, the driving force for the pervaporation process increases and the motion of polymer chains is accelerated, so that the free volume of membrane is enlarged, improving the solution and diffusion of acetaldehyde in the membrane. As a result,the separation factor and permeation flux of the composite membrane increase with temperature.

    1 Zhang, X.C., Li, S.Y., Brown, R.A., Ren, J., “Ethanol and acetaldehyde in alcoholic cardiomyopathy: from bad to ugly en route to oxidative stress”,Alcohol, 32, 175-186 (2004).

    2 Vaca, C.E., Fang, J.L., Schweda, E.K.H., “Studies of the reaction of acetaldehyde with deoxynucleosides”,Chem.Biol.Interact., 98,51-67 (1995).

    3 Jiang, L., Lei, L.H., “Research on one-step method for synthesis of ethyl acetate separation technology”,Mod.Chem.Ind., 11, 32-33(1996). (in Chinese)

    4 Chen, Z., Wu, G., Zhu, P., Hu, X., Shen, X., Li, J. X., Liu, X., “Metaldehyde production process”, CN Pat., 1150590 (1997). (in Chinese)

    5 Chen, L., Zhang, N., “Pressure distillation for energy conservation in acetaldehyde production”,Mod.Chem.Ind., 3, 20-22 (1995). (in Chinese)

    6 Mueller, U., Weiss, R., Diehl, K., Sandrick, G., Sauvage, L., “Separation of acetaldehyde from hydrocarbons using zeolites”, Germany Pat., 4226302 (1994).

    7 Lü, X., Jing, Q., “Successive condensation of benzaldehyde and acetaldehyde for preparing cinnamaldehyde in near-critical water with ammonia as catalyst”, CN Pat., 1837171 (2008). (in Chinese)

    8 Wu, Y., Huang, W.X., Xiao, Z.Y., Zhong, Y.H., “Ethanol recovery from fermentation broth by pervaporation using a composite polydimethylsiloxane”,Chin.J.Chem.Eng., 12, 586-589 (2004).

    9 Peng, F.B., Jiang, Z.Y., “Modeling of pervaporation separation benzene from dilute aqueous solutions through polydimethylsiloxane membranes”,Chin.J.Chem.Eng., 13, 343-349 (2005).

    10 Panek, D., Konieczny, K., “Pervaporative separation of toluene from wastewaters by use of filled and unfilled poly(dimethylosiloxane)(PDMS)membranes”, Desalination, 241, 197-200 (2009).

    11 Peng, F.B., Jiang, Z.Y., Hu, C.L., Wang, Y.Q., Xu, H.Q., Liu, J.Q.,“Removing benzene from aqueous solution using CMS-filled PDMS pervaporation membranes”, Sep. Purif. Technol., 48, 229-234 (2006).

    12 Papaefstathiou, I., Bilitewskib, U., de Castroa, M.D.L, “Pervaporation:An interface between fermentors and monitoring”, Anal. Chim. Acta,330, 265-272 (1996).

    13 Priego-López, E., Luque de Castro, M.D., “Pervaporation-gas chromatography coupling for slurry samples determination of acetaldehyde and acetone in food”, J. Chromatogr. A, 976, 399-407 (2002).

    14 Ruiz-Jiménez, J., Luque de Castro, M.D., “On-line pervaporation-capillary electrophoresis for the determination of volatile analytes in food slurries”, J. Chromatogr. A, 1128, 251-258 (2006).

    15 Zeng, L., Zeng, F.J., “Study on the improvement of quality in new type Chinese Spirits by pervaporation using composite silicone rubber membrane”, Liquor Making, 31, 79-82 (2004).(in Chinese)

    16 Kittur, A.A., Kariduraganavar, M.Y., Kulkarni, S.S., Aralaguppi,M.I., “Preparation of zeolite-incorporated poly(dimethyl siloxane)membranes for the pervaporation separation of isopropyl alcohol/water mixtures”, J. Appl. Polym. Sci., 96, 1377-1387 (2005).

    17 Travis, C.B., Richard G.M., Leland M.V., “Stability of MFI zeolite-filled PDMS membranes during pervaporative ethanol recovery from aqueous mixtures containing acetic acid”, J. Membr. Sci., 298,117-125 (2007).

    18 Liu, Y., Yu, X.B., Qin, L., Wang, J.D., Yang, Y.R., “In-situ synthesis of ZSM-5 zeolite from metakaolin/spinel and its catalytic performance on methanol conversion”, China Pet. Process. Petrochem. Technol.,12, 23-28 (2010).

    19 Sun, H.L., Lu, L.Y., Chen, X., Jiang, Z.Y., “Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes”, Sep. Purif. Technol., 58, 429-436 (2008).

    20 Gu, J., Shi, X., Bai, Y.X., Zhang, H.M., Zhang, L., Huang, H., “Silicalitefilled polyether-block-amides membranes for recovering ethanol from aqueous solution by pervaporation”, Chem. Eng. Technol., 32,155-160 (2009).

    21 Zhang, X.Z., Zhuo, R.X., “Synthesis of temperature-sensitive poly(N-isopropylacrylamide) hydrogel with improved surface property”, J. Colloid Interface Sci., 223, 311-313 (2000).

    22 Peng, P., Shi, B.L., Lan, Y.Q., “Preparation of PDMS-silica nanocomposite membranes with silane coupling for recovering ethanol by pervaporation”, Sep. Sci. Technol., 46, 420-427 (2011).

    23 Liang, L., Ruckenstein, E., “Pervaporation of ethanol-water mixtures through polydimethylsiloxane-polystyrene interpenetrating polymer network supported membranes”, J. Membr. Sci., 114, 227-234 (1996).

    24 Qi, R.B., Wang, Y.J., Chen, J., Li, J.D., Zhu, S.L., “Pervaporative desulfurization of model gasoline with Ag2O-filled PDMS membranes”, Sep. Purif. Technol., 57, 170-175 (2007).

    25 Luo, Y., Tan, S. J., Wang, H., Wu, F.W., Liu, X.M., Li, L., Zhang,Z.B., “PPMS composite membranes for the concentration of organics from aqueous solutions by pervaporation”, Chem. Eng. J., 137,496-502 (2008).

    26 Yahaya, G.O., “Separation of phenol from aqueous streams by a composite hollow fiber based pervaporation process using polydimethyl siloxane (PDMS)/polyether-block-amide (PEBA) as two-layer membranes”, Sep. Sci. Technol., 44, 2894-2914 (2009).

    猜你喜歡
    金源
    常州金源汽車內(nèi)飾有限公司
    金源文化研究的回顧與展望
    金源文化與旅游產(chǎn)業(yè)融合創(chuàng)新路徑
    金源照明:現(xiàn)金質(zhì)量下降經(jīng)營(yíng)情況惡化
    半夜響起敲門聲
    簞盡瓢空志未磨
    雨花(2018年12期)2018-11-15 04:18:36
    哎呀,骨折了
    哎呀,骨折了!
    金史研究領(lǐng)域的鴻篇巨著——評(píng)《金源文化辭典》
    文化的旅程與心靈的洗禮——讀王禹浪先生《金源文化研究》有感
    99香蕉大伊视频| 亚洲精品乱码久久久久久按摩| 十八禁高潮呻吟视频| 97人妻天天添夜夜摸| 亚洲av免费高清在线观看| 亚洲精品色激情综合| 日韩伦理黄色片| 蜜臀久久99精品久久宅男| a级片在线免费高清观看视频| 亚洲av在线观看美女高潮| 妹子高潮喷水视频| 国产精品蜜桃在线观看| 国产日韩欧美视频二区| 国产亚洲欧美精品永久| 一级片免费观看大全| kizo精华| 性色av一级| 男男h啪啪无遮挡| 看非洲黑人一级黄片| 成人毛片60女人毛片免费| 亚洲成色77777| 欧美人与善性xxx| 国产在线一区二区三区精| 啦啦啦在线观看免费高清www| 免费在线观看完整版高清| 99热这里只有是精品在线观看| 一边亲一边摸免费视频| 日韩人妻精品一区2区三区| 成年动漫av网址| 国产成人aa在线观看| 99久久中文字幕三级久久日本| 你懂的网址亚洲精品在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲成人av在线免费| 久久久久久久亚洲中文字幕| 国产免费视频播放在线视频| 精品国产一区二区久久| 欧美最新免费一区二区三区| 中文字幕制服av| 18禁在线无遮挡免费观看视频| av片东京热男人的天堂| 香蕉丝袜av| 午夜免费观看性视频| 最近2019中文字幕mv第一页| 久久人人爽人人爽人人片va| 国产精品一国产av| 欧美激情国产日韩精品一区| 成年av动漫网址| 一区二区三区乱码不卡18| 国产亚洲欧美精品永久| 91国产中文字幕| 大陆偷拍与自拍| 成人午夜精彩视频在线观看| 欧美xxxx性猛交bbbb| 久久久精品94久久精品| 波多野结衣一区麻豆| 久久久久久久久久人人人人人人| 成年女人在线观看亚洲视频| 激情视频va一区二区三区| 91精品伊人久久大香线蕉| 日韩三级伦理在线观看| 两性夫妻黄色片 | 满18在线观看网站| 不卡视频在线观看欧美| 国产精品久久久av美女十八| 亚洲精品中文字幕在线视频| 国产1区2区3区精品| 777米奇影视久久| 日本av免费视频播放| 国产精品久久久久久久电影| 热99久久久久精品小说推荐| 晚上一个人看的免费电影| 热99国产精品久久久久久7| 亚洲国产精品一区三区| 精品一区二区免费观看| 香蕉丝袜av| 99国产精品免费福利视频| 国产亚洲av片在线观看秒播厂| 日韩一区二区三区影片| 99九九在线精品视频| 欧美精品国产亚洲| 69精品国产乱码久久久| 高清黄色对白视频在线免费看| 亚洲精品美女久久久久99蜜臀 | 秋霞在线观看毛片| 亚洲精品av麻豆狂野| 亚洲精品色激情综合| 久久99精品国语久久久| 亚洲经典国产精华液单| 久久精品熟女亚洲av麻豆精品| 熟女人妻精品中文字幕| 黄片播放在线免费| 国产国语露脸激情在线看| 免费大片黄手机在线观看| 亚洲欧美色中文字幕在线| 免费看av在线观看网站| 久久韩国三级中文字幕| 国产一区亚洲一区在线观看| 亚洲精品久久久久久婷婷小说| 十八禁网站网址无遮挡| 午夜福利,免费看| 欧美+日韩+精品| 国产精品久久久av美女十八| 亚洲精品成人av观看孕妇| 国产1区2区3区精品| 午夜激情久久久久久久| av播播在线观看一区| 你懂的网址亚洲精品在线观看| 国产一区二区三区综合在线观看 | 精品人妻偷拍中文字幕| 91精品三级在线观看| av又黄又爽大尺度在线免费看| 各种免费的搞黄视频| 日韩成人av中文字幕在线观看| 亚洲欧美清纯卡通| 免费看av在线观看网站| 成年动漫av网址| 久久国产精品大桥未久av| 男人操女人黄网站| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲av片在线观看秒播厂| 国产乱人偷精品视频| 男女无遮挡免费网站观看| 大香蕉久久网| 最新的欧美精品一区二区| 亚洲国产精品一区三区| 男女午夜视频在线观看 | 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 五月伊人婷婷丁香| 亚洲国产色片| 少妇高潮的动态图| 亚洲内射少妇av| 国产日韩欧美视频二区| 夫妻性生交免费视频一级片| 国产片内射在线| 亚洲精品456在线播放app| 人人妻人人澡人人爽人人夜夜| 中国三级夫妇交换| 麻豆乱淫一区二区| 精品人妻熟女毛片av久久网站| 欧美日韩精品成人综合77777| 午夜91福利影院| 成人综合一区亚洲| 免费观看a级毛片全部| 美女内射精品一级片tv| 午夜免费男女啪啪视频观看| 亚洲国产精品专区欧美| 在线免费观看不下载黄p国产| 亚洲在久久综合| 国产国语露脸激情在线看| 一本大道久久a久久精品| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 国精品久久久久久国模美| 亚洲精品一区蜜桃| 亚洲精品自拍成人| 日日摸夜夜添夜夜爱| videos熟女内射| 天天躁夜夜躁狠狠久久av| 色视频在线一区二区三区| 亚洲av在线观看美女高潮| 亚洲一码二码三码区别大吗| 国产视频首页在线观看| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 校园人妻丝袜中文字幕| 久久狼人影院| 欧美日韩成人在线一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久成人aⅴ小说| 蜜臀久久99精品久久宅男| 在线观看免费高清a一片| 国产xxxxx性猛交| 亚洲精品久久久久久婷婷小说| 国产1区2区3区精品| 国产一区有黄有色的免费视频| 天天躁夜夜躁狠狠久久av| xxxhd国产人妻xxx| 精品一区二区三卡| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 黄色配什么色好看| 欧美精品av麻豆av| 久久久久久久亚洲中文字幕| av福利片在线| 免费日韩欧美在线观看| 在线天堂中文资源库| 日韩三级伦理在线观看| 纯流量卡能插随身wifi吗| 国产成人精品久久久久久| 国产高清国产精品国产三级| 国产高清三级在线| 69精品国产乱码久久久| 51国产日韩欧美| 国产毛片在线视频| 国产国拍精品亚洲av在线观看| 欧美亚洲日本最大视频资源| 成人毛片a级毛片在线播放| 欧美日韩视频高清一区二区三区二| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 国产成人精品福利久久| 国产片内射在线| 亚洲图色成人| 久久99蜜桃精品久久| 午夜福利影视在线免费观看| 在线天堂中文资源库| 啦啦啦在线观看免费高清www| 欧美3d第一页| 国产精品 国内视频| 亚洲,一卡二卡三卡| 久久狼人影院| 美女国产视频在线观看| 国产成人欧美| 亚洲精品日韩在线中文字幕| 夜夜骑夜夜射夜夜干| 亚洲性久久影院| 久久久久视频综合| 黄色 视频免费看| 在线看a的网站| 看免费av毛片| 国产午夜精品一二区理论片| 最近最新中文字幕免费大全7| 在线免费观看不下载黄p国产| 久久国产精品大桥未久av| av天堂久久9| videos熟女内射| 久久99蜜桃精品久久| 我要看黄色一级片免费的| 免费在线观看完整版高清| 国产欧美另类精品又又久久亚洲欧美| 狠狠精品人妻久久久久久综合| 亚洲精品aⅴ在线观看| 久久国产亚洲av麻豆专区| 秋霞伦理黄片| 少妇被粗大猛烈的视频| 久久久久精品性色| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看| 日韩中文字幕视频在线看片| 内地一区二区视频在线| 男人操女人黄网站| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久电影| 久久99热这里只频精品6学生| 日本欧美视频一区| 国产成人91sexporn| 韩国高清视频一区二区三区| 母亲3免费完整高清在线观看 | a 毛片基地| 大香蕉久久网| 狂野欧美激情性xxxx在线观看| 精品亚洲成国产av| 99热国产这里只有精品6| 免费黄色在线免费观看| 精品视频人人做人人爽| 五月伊人婷婷丁香| 激情视频va一区二区三区| 男女免费视频国产| 国产1区2区3区精品| 日韩制服丝袜自拍偷拍| 男女啪啪激烈高潮av片| 在线 av 中文字幕| 久久人妻熟女aⅴ| av在线播放精品| 热99久久久久精品小说推荐| 大码成人一级视频| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片| 97精品久久久久久久久久精品| 亚洲成人av在线免费| 校园人妻丝袜中文字幕| 人妻一区二区av| 亚洲成国产人片在线观看| 超碰97精品在线观看| 天天操日日干夜夜撸| 好男人视频免费观看在线| 久久久久久久久久成人| 91久久精品国产一区二区三区| 精品亚洲成国产av| 美女国产视频在线观看| 亚洲av在线观看美女高潮| 男人操女人黄网站| 国产精品久久久久久精品古装| 男女下面插进去视频免费观看 | 男女啪啪激烈高潮av片| 黄色视频在线播放观看不卡| 寂寞人妻少妇视频99o| 午夜福利视频精品| www.av在线官网国产| 中文字幕最新亚洲高清| 热99久久久久精品小说推荐| 丰满乱子伦码专区| 久久这里有精品视频免费| 亚洲一级一片aⅴ在线观看| 在线亚洲精品国产二区图片欧美| 亚洲熟女精品中文字幕| 国产一级毛片在线| 91aial.com中文字幕在线观看| 国产精品99久久99久久久不卡 | 国产精品一区二区在线观看99| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 黄片播放在线免费| 伦精品一区二区三区| 伦理电影免费视频| kizo精华| 成人漫画全彩无遮挡| 两个人免费观看高清视频| 亚洲精品乱久久久久久| videos熟女内射| 精品国产一区二区久久| av线在线观看网站| 亚洲伊人久久精品综合| 97在线人人人人妻| av片东京热男人的天堂| 十八禁高潮呻吟视频| 免费播放大片免费观看视频在线观看| 美女视频免费永久观看网站| 免费观看a级毛片全部| 国产亚洲一区二区精品| 大香蕉久久成人网| 欧美3d第一页| 一区在线观看完整版| 99热这里只有是精品在线观看| 91午夜精品亚洲一区二区三区| av女优亚洲男人天堂| 欧美xxⅹ黑人| 国产片特级美女逼逼视频| 你懂的网址亚洲精品在线观看| 好男人视频免费观看在线| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频| 在线精品无人区一区二区三| 久久青草综合色| 尾随美女入室| 亚洲情色 制服丝袜| av视频免费观看在线观看| 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕 | 精品亚洲成a人片在线观看| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区 | 精品一区二区三卡| 免费久久久久久久精品成人欧美视频 | 久久鲁丝午夜福利片| 久久热在线av| 国产探花极品一区二区| 黄色毛片三级朝国网站| 成人免费观看视频高清| 99九九在线精品视频| 免费av不卡在线播放| 国产精品久久久久久av不卡| 黑丝袜美女国产一区| 国产精品久久久久久av不卡| 黑丝袜美女国产一区| 精品国产国语对白av| 女性生殖器流出的白浆| 免费观看无遮挡的男女| 成人免费观看视频高清| 咕卡用的链子| 国产免费福利视频在线观看| 中文乱码字字幕精品一区二区三区| 免费观看av网站的网址| 免费日韩欧美在线观看| 母亲3免费完整高清在线观看 | 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 乱人伦中国视频| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 五月伊人婷婷丁香| 老熟女久久久| 99久久中文字幕三级久久日本| 精品亚洲成国产av| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 777米奇影视久久| 巨乳人妻的诱惑在线观看| 久久人人爽人人爽人人片va| 少妇的逼水好多| 国产高清国产精品国产三级| 精品少妇黑人巨大在线播放| 男男h啪啪无遮挡| 久久国产精品大桥未久av| 午夜老司机福利剧场| 久久国产精品大桥未久av| 一级毛片我不卡| 你懂的网址亚洲精品在线观看| 亚洲欧美清纯卡通| 交换朋友夫妻互换小说| 欧美成人午夜精品| 国产熟女午夜一区二区三区| 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| 老女人水多毛片| 一本色道久久久久久精品综合| 国产精品久久久av美女十八| 国国产精品蜜臀av免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 综合色丁香网| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久久久久| 曰老女人黄片| 最新的欧美精品一区二区| 啦啦啦啦在线视频资源| 波多野结衣一区麻豆| 天天躁夜夜躁狠狠躁躁| 18禁裸乳无遮挡动漫免费视频| 巨乳人妻的诱惑在线观看| 精品久久国产蜜桃| 国产毛片在线视频| 美女福利国产在线| av.在线天堂| 丝袜脚勾引网站| 亚洲精品久久久久久婷婷小说| 啦啦啦啦在线视频资源| 一区二区av电影网| 国产免费又黄又爽又色| av一本久久久久| 欧美激情国产日韩精品一区| 国产1区2区3区精品| 欧美日韩综合久久久久久| 久久精品国产综合久久久 | 最近中文字幕高清免费大全6| 国产精品国产av在线观看| 男女下面插进去视频免费观看 | 9热在线视频观看99| 九九在线视频观看精品| 中文字幕最新亚洲高清| 精品视频人人做人人爽| 一级毛片 在线播放| 亚洲av综合色区一区| 欧美精品一区二区大全| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 大码成人一级视频| 狠狠精品人妻久久久久久综合| 91国产中文字幕| 欧美bdsm另类| 欧美丝袜亚洲另类| 日韩人妻精品一区2区三区| 亚洲av免费高清在线观看| 亚洲人成77777在线视频| 亚洲,一卡二卡三卡| 国产毛片在线视频| 搡老乐熟女国产| 人妻 亚洲 视频| 一级片'在线观看视频| av女优亚洲男人天堂| 国产高清不卡午夜福利| 人妻少妇偷人精品九色| 男人操女人黄网站| 在线观看人妻少妇| 国产亚洲最大av| 亚洲在久久综合| 9191精品国产免费久久| 一级片免费观看大全| 亚洲精品中文字幕在线视频| 国产成人免费观看mmmm| 80岁老熟妇乱子伦牲交| 中文字幕av电影在线播放| 全区人妻精品视频| 欧美成人午夜精品| 国产麻豆69| 久久狼人影院| 精品少妇久久久久久888优播| 亚洲经典国产精华液单| 下体分泌物呈黄色| 欧美日韩视频精品一区| av在线老鸭窝| 美女xxoo啪啪120秒动态图| 久久久国产精品麻豆| www日本在线高清视频| 这个男人来自地球电影免费观看 | 在线 av 中文字幕| 两性夫妻黄色片 | 国产一区二区在线观看日韩| 免费黄频网站在线观看国产| 搡老乐熟女国产| 国产精品.久久久| 老司机影院成人| 成人手机av| 97在线人人人人妻| 亚洲欧洲精品一区二区精品久久久 | 青青草视频在线视频观看| 国产免费现黄频在线看| a级毛片黄视频| 亚洲色图 男人天堂 中文字幕 | 婷婷色综合大香蕉| 久久国产精品男人的天堂亚洲 | 国产有黄有色有爽视频| 国产日韩欧美视频二区| 色婷婷av一区二区三区视频| 久久久精品免费免费高清| 黄色怎么调成土黄色| 色网站视频免费| 97人妻天天添夜夜摸| 亚洲天堂av无毛| av在线老鸭窝| 国产综合精华液| 成人亚洲欧美一区二区av| 一二三四在线观看免费中文在 | 激情视频va一区二区三区| 日本vs欧美在线观看视频| 亚洲人成网站在线观看播放| 美女内射精品一级片tv| 亚洲精品自拍成人| 乱人伦中国视频| 一级毛片电影观看| 国产精品一区二区在线观看99| 水蜜桃什么品种好| 少妇人妻 视频| 男女无遮挡免费网站观看| 看免费av毛片| 免费女性裸体啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 久久久久国产精品人妻一区二区| 国产精品国产三级专区第一集| 国产一级毛片在线| 亚洲av成人精品一二三区| 在线观看人妻少妇| 亚洲av福利一区| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 老司机影院成人| 欧美亚洲 丝袜 人妻 在线| 欧美 日韩 精品 国产| 精品久久久久久电影网| 国产高清三级在线| 激情五月婷婷亚洲| 尾随美女入室| 91精品伊人久久大香线蕉| 免费观看av网站的网址| 国产 精品1| 中文欧美无线码| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 18+在线观看网站| 校园人妻丝袜中文字幕| 免费av不卡在线播放| www日本在线高清视频| 丝袜人妻中文字幕| 三上悠亚av全集在线观看| 99久久中文字幕三级久久日本| 亚洲三级黄色毛片| 精品第一国产精品| 在线天堂中文资源库| av电影中文网址| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 国产成人精品无人区| 欧美精品亚洲一区二区| 午夜日本视频在线| 国产69精品久久久久777片| 少妇被粗大猛烈的视频| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| 人妻 亚洲 视频| 在线观看美女被高潮喷水网站| 亚洲国产日韩一区二区| 丝袜美足系列| 欧美xxⅹ黑人| 欧美xxxx性猛交bbbb| 香蕉国产在线看| 欧美成人午夜免费资源| 各种免费的搞黄视频| 日韩欧美一区视频在线观看| 亚洲情色 制服丝袜| 国产精品.久久久| 一本大道久久a久久精品| 母亲3免费完整高清在线观看 | 精品少妇内射三级| 1024视频免费在线观看| 久久久a久久爽久久v久久| 久久青草综合色| 日韩一本色道免费dvd| videos熟女内射| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠久久av| 男女午夜视频在线观看 | av.在线天堂| 久久久久久人人人人人| 亚洲欧洲精品一区二区精品久久久 | 老司机影院成人| 成人国产麻豆网| 亚洲,欧美精品.| 国产片特级美女逼逼视频| 国产麻豆69| 亚洲成av片中文字幕在线观看 | 亚洲精品国产av蜜桃| 欧美另类一区| 狠狠婷婷综合久久久久久88av| 在线亚洲精品国产二区图片欧美| 欧美精品av麻豆av| 大话2 男鬼变身卡| 乱人伦中国视频| 久久久久久久精品精品| 日韩av在线免费看完整版不卡| 国产高清三级在线| 午夜福利视频精品| 成人手机av| 久热这里只有精品99| 一本大道久久a久久精品| 国产欧美日韩综合在线一区二区| 欧美老熟妇乱子伦牲交| a级毛片黄视频| 桃花免费在线播放| 大香蕉久久网|