• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloning and expression analysis of a long type peptidoglycan recognition protein (PGRP-L) from Xenopus tropicalis

    2011-12-25 01:02:48QIZhiTaoZHANGQiHuanWANGZiShengWANGAiMinHUANGBeiCHANGMingXianNIEPin
    Zoological Research 2011年4期
    關(guān)鍵詞:肽聚糖工學(xué)院鹽城

    QI Zhi-Tao, ZHANG Qi-Huan, WANG Zi-Sheng, WANG Ai-Min, HUANG Bei, CHANG Ming-Xian, NIE Pin

    (1. Department of Ocean Technology, Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China; 2. Central Laboratory of Biology, Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng 224051, China; 3. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China)

    Cloning and expression analysis of a long type peptidoglycan recognition protein (PGRP-L) fromXenopus tropicalis

    QI Zhi-Tao1,2,3,*, ZHANG Qi-Huan2, WANG Zi-Sheng1, WANG Ai-Min1, HUANG Bei3, CHANG Ming-Xian3, NIE Pin3

    (1.Department of Ocean Technology,Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province,Yancheng Institute of Technology,Yancheng224051,China; 2.Central Laboratory of Biology,Chemical and Biological Engineering College,Yancheng Institute of Technology,Yancheng224051,China; 3.State Key Laboratory of Freshwater Ecology and Biotechnology,Institute of Hydrobiology,the Chinese Academy of Sciences,Wuhan430072,China)

    Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors (PRRs) of the immune system, which bind and hydrolyze bacterial peptidoglycan. Here, a long type PGRP (PGRP-L) was first cloned in the lower vertebrate speciesXenopus tropicalis(Xt). The XtPGRP-L possessed a conserved genomic structure with five exons and four introns. The alignment and phylogenetic analysis indicated that XtPGRP-L might be a type of amidase-like PGRP. The 3-D model showed that XtPGRP-L possessed a conserved structure compared with the Drosophila PGRP-Lb. During embryonic development, XtPGRP-L was not expressed until the 72 h tadpole stage. In adult tissues, it was strongly expressed in the liver, lung, intestine, and stomach. Furthermore, after LPS stimulation, the expression of XtPGRP-L was up-regulated significantly in the liver, intestine and spleen, indicating that XtPGRP-L may play an important role in the innate immunity ofXenopus tropicalis.

    Peptidoglycan recognition protein; Gene clone; Expression analysis;Xenopus tropicalis

    Peptidoglycan recognition proteins (PGRPs) are a group of receptors that recognize conserved pathogenassociated molecular patterns (PAMPs) to initiate host immune responses. They were first identified in thehemolymph and cuticle of the silkworm (Bombyx mori), and were shown to bind peptidoglycan (PGN) and activate the prophenoloxidase cascade (Yoshida et al, 1996). Members of the PGRP family have been characterized in insects, teleosts, and mammals and are evolutionarily conserved. Twelve PGRP genes have been reported inDrosophila melanogaster, which are classified into two classes based on length: the short class (PGRP-S) including PGRP-SA, SB1, SB2, SC1A, SC1B, SC2, and SD; and the long class (PGRP-L) including PGRP-LA, LB, LC, LD, and LE. Insect PGRPs have diverse functions and roles such as cell activation and phagocytosis (Werner et al, 2000). In teleost, multiple PGRP genes have been discovered (Chang et al, 2007), some of which exhibit peptidoglycan-lytic amidase activity and broad-spectrum bactericidal activity (Li et al, 2007), and are involved in various pathways (Chang&Nie, 2008; Chang et al, 2009; Wang&Lai, 2010). Unlike insects and fish, only four PGRPs have been identified in mammals (Liu et al, 2000, 2001): PGRP-S (short), PGRP-IA (I for intermediate), PGRP-IB (intermediate), and PGRP-L (long), which also have amidase and antibacterial activities (Li et al, 2007). However, PGRPs have not been reported in other groups of vertebrates.

    Using the available genome database of the clawed frog (Xenopus tropicalis), it is possible to identify PGRPs from this amphibian model. In this study, a single long type PGRP was first identified fromX. tropicalis, with its genomic structure and expression pattern in ontogeny and adult in response to LPS stimulation also investigated.

    1 Material and Methods

    1.1 Database mining and cloning for Xenopus PGRPL (XtPGRP-L)

    To search for possible PGRP homologues, the reported PGRP protein sequences fromDrosophilaand mammals were used to perform tBLASTp search in theXenopusgenome database (http://www.ensembl.org). The obtained DNA sequence was then analyzed for predicted transcripts using GenScan at the Massachusetts Institute of Technology (http://genes.mit.edu/GENSCAN. html). To determine the correct reading frame of each exon, the BLAST program was used to maximize the inframe translated sequence. A PGRP-L was identified in the database.

    To obtain the full length of the identified XtPGRPL gene, total RNA was extracted fromXenopusliver using Trizol reagent (Invitrogen, USA). Approximately 500 ng total RNA was used as the template for the synthesis of first strand cDNA by reverse transcriptase using superscript II reverse transcription system (Invitrogen, USA). The full-length cDNA sequence of XtPGRP-L was amplified by random amplification of cDNA ends (RACE). The 5′ end region of the PGRP-L was amplified by nested PCR with two primer pairs of UPM/PGRP-LRout (1stround PCR) and UPM/PGRPLRin (2ndround). The gene specific primers used for 3′RACE PCR were UPM/PGRP-LFout (1stround PCR) and UPM/PGRP-LFin (2ndround). The PCR was carried out as per the following: in 25 μL solution containing 125 μmol of each dNTP, 0.2 μmol of each primer, 2.5 μL 10 × Taq buffer, 12 U Ex Taq polymerase, 18.1 μL sterile H2O and 1 μL cDNA template, according to the standard protocol, and under the following conditions: an initial cycle of denaturation step at 94 °C for 5 min, followed by 8 cycles of amplification at 94 °C for 30 s, 64 °C for 30 s, 72 °C for 1 min, and 30 cycles at 94 °C for 30 s, 62 °C for 30 s, 72 °C for 1 min, and a final extension step at 72 °C for 10 min. A total of 10 μL of product was size-fractioned by 1.5% (W/V) agarose gel electrophoresis and stained with ethidium bromide. The desired PCR products were isolated using the Omega agarose purification kit, and cloned into pMD18-T vectors (TaKaRa) according to manufacturer’s instructions, before being transformed intoEscherichia coliDH5α competent cells and plated on selective agar plates containing 100 μg/mL of ampicillin. Positive colonies were grown overnight, and then determined using specific primers under the same cycle of PCR, before being sequenced using dideoxy chain-termination on an automatic DNA sequencer (ABI Applied Biosystems Mode 377). All primers used are listed in Tab.1.

    Tab. 1 Primer sequences

    1.2 Sequence analysis of XtPGRP-L

    The XtPGRP-L amino acid sequence was deduced using the Expasy translation tool (http://ca.expasy.org/ tools). The alignment between the amino acid sequence of XtPGRP-L and other known PGRPs was analyzed using the CLUSTAL W program (version 1.83) (Thompson et al, 1994) and decorated using GeneDoc (http://www. nrbsc.org/gfx/genedoc/index.html). Identities between PGRP sequences were determined using the Megalign program within DNASTAR. A phylogenetic tree was constructed using the neighbor-joining (N-J) method within the Mega4.0 software program (http://www. megasoftware.net/mega.html) and all sequences were obtained from the NCBI database and are listed in Tab. 2. The 2-D structure of XtPGRP-L was predicted at PSIPREDView (http://bioinf.cs.ucl.ac.uk/psipred/psiform. html) (Jones, 1999; McGuffin et al, 2000). The 3-D structure of XtPGRP-L was constructed in the SWISSMODEL protein modeling server (http://expasy.org/ swissmod/SWISS-MODEL. html). A suitable structural template for XtPGRP-L,Drosophila melanogaster(Dm) PGRP-Lb (PDB file code: 1OHT-A), was identified by a BLAST search as implemented in the SWISS-MODEL protein modeling server (http://expasy.org/swissmod/ SWISS-MODEL.html) (Arnold et al, 2006). The automatic sequence alignment obtained was used for homology modeling in SWISS-MODEL (Schwede et al, 2003), and the resultant theoretical model was displayed and analyzed with Swiss-PDB Viewer. The model picture was drawn using the Rasmol program (http:// www.umass.edu/microbio/rasmol/Rasmol).

    Tab. 2 Peptidoglycan recognition protein sequences used for phylogenetic tree construction and multiple sequence alignment

    1.3 Expression of XtPGRP-L mRNA in developing embryos and in different organs

    To characterize the expression of XtPGRP-L in relation toXenopusdevelopment and in different organs, developing embryos were collected at 3, 6, 15, 48, 72, 144, 216, and 360 h post-fertilization (hpf) for total RNA isolation (Dale & Slack, 1987). The RT-PCR was performed according to Liang et al. (2006), and the gene specific primers for RT-PCR were designed to the XtPGRP-L fragment and loading control primers were designed according toXenopusβ-actin. The primers used are listed in Tab.1.

    To reveal the expression in different organs of adultXenopus, heart, liver, lung, kidney, intestine, stomach and spleen were collected for total RNA preparation and quantitative -PCR (Qi & Nie, 2008). All primers used are listed in Tab.1.

    1.4 Preparation of polyclonal antibody against XtPGRP-L and Western blotting analysis

    The 1 037 bp expression fragment of XtPGRP-L was obtained by one pair of primers containingKpnI andHind III digestion sites (Ex-PGRPLF/R; Tab. 1). The PCR amplifications were performed at one cycle of 94 °C for 5 min, 33 cycles of 94 °C for 30 s, 58 °C for 30 s, 72 °C for 60 s, with a final extension step of 72 °C for 10 min. Purified fragments were digested withKpnI andHind III, then ligated into the pQE-40 expression vector for recombinant protein construction, and transformed intoEscherichia coliM15 competent cells (TAKARA) for protein expression. Fusion protein was expressed by isopropyl-β-D-thiogalactopyranoside (IPTG) induction, and analyzed by SDS polyacrylamide gel (SDS-PAGE). Compared with the un-induced sample, a predominant extra protein band with molecular weight of about 58 000 was observed in the IPTG induced samples. The recombinant protein was purified by affinity chromatography in a column of Ni2+-charged resin (Novagen) according to manufacturer’s instructions. To prepare the antibody, the purified recombinant protein was used to immunize rabbit. Briefly, the rabbit was first injected with 800 mg purified protein. Every two weeks, the rabbit was then immunized twice with half the initial amount of proteins. Two weeks after the last injection, the rabbit was bled and serum was collected and stored at -80°C.

    To study the expression of XtPGRP-L at the protein level, heart, liver, spleen, lung, kidney, intestine and stomach were dissected and homogenized in buffer containing 1% SDS, 5% β-mercaptoethanol, 10% glycerol, 65 mmol Tris-HCl, pH 6.8 and 1 mmol PMSF. The suspension was vortexed and centrifuged at 10 000gfor 10 min, and the supernatant was retained. Protein concentrations were determined using Bradford protein assay (Biorad). Each sample, equivalent to 10 mg total protein, was run on 12% SDS-PAGE and subsequently transferred to PVDF membrane (Millipore) by standard procedures. The blotting membrane was blocked overnight at 4 °C with TBS containing skimmed milk and 0.05% Tween 20, before being incubated for 2 h with rabbit antiserum (1:300). Subsequently, the membrane was further incubated for 1.5 h with Alkaline Phosphatase goat Anti-Rabbit IgG (Boster, China). After washing, the specific binding to recombinant protein was detected by NBT/BCIP (SABC).

    1.5 Real-time quantitative PCR analysis of XtPGRPL expression

    Quantitative real-time PCR was performed to determine the expression of XtPGRP-L in normal frogs and those injected with LPS. Two groups ofXenopus, each containing three frogs, were injected intraperitoneally with phosphate-buffered saline (PBS, pH7.2) for the control and LPS (150 μg/100g body weight) for the experiment, respectively. Twenty-four hours later,Xenopuswere euthanized and tissues were collected for total RNA extraction and cDNA synthesis. The housekeeping gene β-actin amplified by actin-F/actin-R was used as the control. The primers used for real-time quantitative PCR analysis are listed in Tab. 1.

    Quantitative real-time PCR was conducted on Chromo 4TMContinuous Fluorescence Detection from MJ Research. Amplifications were carried out at 20 μL volume, containing 1 μL of cDNA template, 10 μL of SYBR green Mix (Toyobo, Japan), 0.3 μL of each primer and 8.4 μL of ddH2O. The PCR amplification was performed in triplicate wells, using the following conditions: 3 min at 95 °C, followed by 40 cycles consisting of 30 s at 94 °C, 25 s at 58 °C and 25 s at 72 °C. Melting curve analysis of the amplification products was performed at the end of each PCR reaction to confirm that a single PCR product was detected.

    Expression values were calculated using the relative standard curve method provided by the ABI Sequence Detection System software. Data analysis was done according to Purcell et al (2004). Statistical analyses (t-tests) were performed using Microcal origin 6.0 withP≤0.05 as the significance level.

    2 Results

    2.1 Sequence characteristics and phylogenetic analysis

    A genomic scaffold_149 of 2.34 Mb in size was identified fromXenopusgenome database. About 129 transcripts were predicted using the FGENESH program. Using Netblast analysis, the transcript that shared high identity with PGRP-L was verified. The XtPGRP-L cDNA sequence contained a 40 bp 5′-untranslated region (UTR), a 1 491 bp open reading frame, and a 150 bp 3′-UTR with a discernable poly (A) addition signal (AATAAA) (GenBank accession no. EF095491). The genome structure is conserved inXenopus, zebrafish, mouse and human PGRP-L, which all contain five exons and four introns of similar size. Typical intron splice motifs were observed at the 5′(gt) and 3′(ag) ends of each intron. Putative XtPGRP-L possessed 497 amino acids, with a calculated molecular mass of 55 000 and an isoelectric point of 8.11. Analysis by SignalP showed that XtPGRP-L contained an 18-aa signal peptide (MAKVLLILLCTLCAMAVA). Similar to human, mouse and zebrafish PGRP-L, the XtPGRP-L also possessed a transmembrane domain (Fig.1).

    Comparing the PGRP-L genes with PGRP-L from other vertebrates showed that all PGRP-L genes contained a conserved PGRP domain of approximately 160 amino acids (Fig.2). The identity between XtPGRPL and other reported PGRP-L ranged from 31.3 % -66.7%. Further analysis showed that this domain can be subdivided into three PGRP domains (I, II and III). The three domains in XtPGRP-L had 8.3% to 51.2% identities, while domains II and III had the highest

    (51.2%). The three PGRP domains in XtPGRP-L shared 52.6%, 87.5% and 78.0% identities with human counterparts, respectively. Although the identity between XtPGRP-L and T7 lysozyme (27.4% identity) was low, the positions of the amino acids needed for enzyme activity in T7 lysozyme, such as His-17, Gly40, Trp41, Tyr46, Arg60, His122 and Cys-130, were conserved (Fig. 2). The 2-D structure of XtPGRP-L predicted by PSIPREDView showed that XtPGRP-L was an αhelix/β-strand mixed protein containing four α-helices and seven β-strands (Fig. 3a). The 3-D structure of XtPGRP-L was predicted by comparative modeling usingDrosophila melanogasterPGRP-Lb (PDB file code: 1OHT-A) as a template. The model obtained from SWISS-MODEL was in accordance with the 2-D structure and showed that XtPGRP-L contained four αhelices and seven β-sheets. Compared with the Dm PGRP-LB (GenBank accession no. NP_731576), XtPGRP-L possessed a conserved structure: β2-β3-α1-β4-β5-β6- α2-β7-α3. But, the XtPGRP-L has another αhelix (α*) and β-sheet (β*) (Fig. 3b).

    Fig. 1 Comparing the XtPGRP-L protein and gene structure with other vertebrates’ long type PGRPs

    Fig. 2 Multiple alignment of XtPGRP-L with other PGRPs

    Fig. 3 The predicted secondary structure and homology modeling of XtPGRP-L

    To further analyze the evolutionary relationship between XtPGRP-L and other PGRPs, an unrooted phylogenetic tree was constructed using the Neighbor-Joining methods. The XtPGRP-L was grouped closely with other vertebrate PGRP-L with high bootstrap values (about 99%). Surprisingly, the vertebrate PGRP-L was not clustered with the long type PGRP fromDrosophila melanogaster(Fig.4). A previous study showed that PGRP-S may be the oldest PGRP type and evolved PGRP-L much later (Dziarski, 2004; Qi et al, 2010). Thus, theDrosophila melanogasterand vertebrates PGRP-L may evolve from a common PGRP-S ancestor gene and expanded by gene duplication.

    2.2 Expression of XtPGRP-L gene in developing embryos and normal adults and in response to LPS stimulation

    Using the XtPGRP-L specific primers, XtPGRP-L mRNA was not detected in early development stages (3 -48 h) until 72 h (Fig. 5a). In normal adultXenopus, XtPGRP-L mRNA was detected in liver, lung, intestine, stomach, heart, spleen and kidney (Fig. 5b, d). The XtPGRP-L was detected at the protein level in all organs examined by Western blotting. As shown in Fig. 5c, an immunoreactive band at about 55 000 was observed.

    The XtPGRP-L expression pattern after LPS stimulation was examined using quantitative real-time PCR. The XtPGRP-L expression was obviously upregulated in the heart, liver, spleen and intestine after LPS treatment, with of 3-, 26- 7- and 33- fold increases, respectively. However, significant changes were not detected in the lung, kidney, and stomach (Fig. 5e).

    3 Discussion

    The present work described for the first time a long type PGRP fromX. tropicalisby analyzing its genome database. The genomic structure of this PGRP and its expression pattern were analyzed.

    The XtPGRP-L was 497-aa in length and contained a conserved genome structure, as in human, mouse and zebrafish. Furthermore, the XtPGRP-L also contained a highly conserved PGRP domain and shared high sequence identities with mammalian long type PGRP (eg. 66.7% withMus musculus; 65.3% withHomo sapiens). The phylogenetic tree showed that XtPGRP-L grouped closely with PGRP-L from other vertebrates. These results confirmed that the cloned gene belonged to the long type PGRP. The predicted 3-D structure for the XtPGRP-L showed that the mixed β-sheet of six strands and three α-helices that formed the protein core was conserved in evolution. Furthermore, the Cys, Tyr and Thr residues located in β3-α1, α1-β4 and β7-α3 loops, respectively, are essential for PGN recognition (Reiser et al, 2004).

    Fig. 4 An unrooted phylogenetic tree constructed by the neighbor joining from amino acid sequences of PGRPs together with the XtPGRP-L gene

    Fig. 5 Expression pattern of the XtPGRP-L gene in developing embryos, tissues of normal Xenopus and LPS stimulated Xenopus

    In T7 lysozyme, His-17, His-122, and Cys-130 are Zn2+binding ligands, and Tyr-46 and Lys-128 are needed for enzymatic activity. Site directed mutagenesis of T7 lysozyme has shown that activity is retained when Lys-128 is replaced by Thr (Cheng et al, 1994). Divalent cations are required for the amidase activity of human PGRP-L, and Zn2+fully restores its amidase activity. Among of four mammalian PGRPs, only PGRP-L has all amino acids needed for the amidase activity of T7 lysozyme conserved. In human PGRP-L, the Zn2+binding amino acids and Cys419 are required for the amidase activity, whereas the three other amino acids, needed for the activity of T7 amidase, are not required (Wang et al, 2003). The alignment of the XtPGRP-L with T7 lysozyme and other PGRPs showed that residues needed for T7 lysozyme activity, were found in XtPGRP-L and other PGRPs proved to be amidase (Fig.3) (Steiner, 2004). This analysis suggests that XtPGRP-L might also be an amidase.

    The expression pattern of PGRPs is different from insect to mammalian. In insects, many PGRPs are expressed in immune competent organs, consistent with their role in insect immunity (Dimopoulos et al, 2002). Long insect PGRPs are mainly expressed in hemocytes. Human PGRPs have highly differential expression in various organs and tissues (Dziarski, 2004). In the present study,XenopusPGRP-L mRNA, similar to human PGRP-L, was expressed in a wide range of tissues including liver, lung, kidney, stomach, and intestine, although there may be quantitative differences. Furthermore, after LPS stimulation, the expression of XtPGRP-L was significantly up-regulated in several tissues, which suggests an important role for XtPGRP-L in the fight against bacterial infections in adultXenopus. Furthermore, the XtPGRP-L expressed in the developing embryo armed the embryo to defend against bacterial infections before the development of adaptive immunity.

    Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling [J].Bioinformatics, 22: 195-201.

    Chang MX, Nie P, Wei LL. 2007. Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish [J].Mol Immunol, 44: 3005-3023.

    Chang MX, Nie P. 2008. RNAi suppression of zebrafish peptidoglycan recognition protien 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility toFlavobacterium columnare[J].Vet Immunol Immunopathol, 124: 295-301.

    Chang MX, Wang YP, Nie P. 2009. Zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) mediates multiple intracellular signaling pathways [J].Fish Shellfish Immunol, 26: 264-274.

    Cheng X, Zhang X, Pflugrath JW, Studier FW. 1994. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase [J].Proc Natl Acad Sci USA, 91: 4034-4038.

    Dale L, Slack JM. 1987. Fate map for the 32-cell stage ofXenopus laevis[J].Development, 99: 527-551.

    Dimopoulos G, Christophides GK, Meister S, Schultz J, White KP, Barillas-Mury C, Kafatos FC. 2002. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection [J].Proc Natl Acad Sci USA, 99: 8814-8819.

    Dziarski R. 2004. Peptidoglycan recognition proteins (PGRPs) [J].Mol Immunol, 40: 877-886.

    Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices [J].J Mol Biol, 292:195-202.

    Li XN, Wang SY, Qi J, Echtenkamp SF, Chatterjee R, Wang M, Boons GJ, Dziarski R, Gupta D. 2007. Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections [J].Immunity, 27: 518–529.

    Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA. 2006. Interleukin 22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides [J].J Exp Med, 203: 2271–2279.

    Liu C, Gelius E, Liu G, Steiner H, ziarski R. 2000. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth [J].J Biol Chem, 275: 24490-24499.

    Liu C, Xu Z, Gupta D, Dziarski R. 2001. Peptidoglycan recognition proteins: A novel family of four human innate immunity pattern recognition molecules [J].J Biol Chem, 276: 34686–34694.

    McGuffin L, Bryson K, Jones DT. 2000. The PSIPRED protein structure prediction server [J].Bioinformatics, 16: 404-405.

    Purcell MK, Kurath G, Garver KA, Herwig RP, Winton JR. 2004. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination [J].Fish Shellfish Immunol, 17: 262-447.

    Qi ZT, Nie P. 2008. Comparative study and expression analysis of the interferon gamma gene locus cytokines inXenopus tropicalis[J].Immunogenetics, 60:699-710.

    Qi ZT, Gao Q, Huang B, Chang MX, Nie P. 2010. Cloning and identification of a short type Peptidoglycan recognition protein inXenopus tropicalis[J].Acta Hyrobiol Sin, 34:922-926. (in Chinese)

    Reiser JB, Teyton L, Wilson IA. 2004. Crystal structure of the Drosophila peptidoglycan recognition protein (PGRP)-SA at 1.56 A resolution [J].J Mol Biol, 340: 909-917.

    Schwede T, Kopp J, Guex N, Peitsch MC. 2003. SWISS-MODEL: An automated protein homology-modeling server [J].Nucleic Acids Res, 31: 3381-3385.

    Steiner H. 2004. Peptidoglycan recognition proteins: on and off switches for innate immunity [J].Immunol Rev, 198: 83-96.

    Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J].Nucleic Acids Res, 22: 4673-4680.

    Wang YP, Lai R. 2010. Insect antimicrobial peptides: structures, properties and gene regulation [J].Zool Res, 31: 27-34. (in Chinese)

    Wang ZM, Li X, Cocklin RR, Wang M, Fukase K, Inamura S, Kusumoto S, Gupta D, Dziarski R. 2003. Human peptidoglycan recognition protein-L is anN-acetylmuramoyl-L-alanine amidase [J].J Biol Chem, 278(49): 49044-49052.

    Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D. 2000. A family of peptidoglycan recognition proteins in the fruit flyDrosophila melanogaster[J].Proc Natl Acad Sci USA, 97: 13772-13777.

    Yoshida H, Kinoshita K, Ashida M. 1996. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm,Bombyx mori[J].J Biol Chem, 271: 13854-13860.

    非洲爪蟾中一種長型肽聚糖識(shí)別蛋白的克隆與表達(dá)分析

    齊志濤1,2,3,*, 張啟煥2, 王資生1, 王愛民1, 黃 貝3, 昌鳴先3, 聶 品3

    (1. 鹽城工學(xué)院 海洋技術(shù)系,江蘇省沿海池塘養(yǎng)殖生態(tài)重點(diǎn)實(shí)驗(yàn)室, 江蘇 鹽城 224051; 2. 鹽城工學(xué)院 化學(xué)與生物工程學(xué)院生物實(shí)驗(yàn)中心, 江蘇 鹽城 224051; 3. 中國科學(xué)院水生生物研究所 淡水生態(tài)與生物技術(shù)國家重點(diǎn)實(shí)驗(yàn)室, 湖北 武漢 430070)

    肽聚糖識(shí)別蛋白(peptidoglycan recognition proteins, PGRPs)是固有免疫系統(tǒng)中一類重要的模式識(shí)別受體。該文首次從兩棲類模式生物-非洲爪蟾 (Xenopus tropicalis)中克隆得到了一個(gè)長型 PGRP(XtPGRP-L)基因。XtPGRP-L具有5個(gè)外顯子和4個(gè)內(nèi)含子的基因組結(jié)構(gòu), 該結(jié)構(gòu)在進(jìn)化的過程中比較保守。序列比對與系統(tǒng)進(jìn)化分析顯示XtPGRP-L具有保守的酰胺酶活性位點(diǎn)。蛋白質(zhì)建模顯示XtPGRP-L擁有保守的3-D結(jié)構(gòu)。實(shí)時(shí)定量PCR檢測顯示, XtPGRP-L在非洲爪蟾胚胎早期不表達(dá), 到72 h蝌蚪期開始表達(dá)。在成體的肝臟、肺、腸和胃高表達(dá)。同時(shí), 在LPS刺激后, XtPGRP-L在肝臟、腸和胃中呈明顯上調(diào)表達(dá)。結(jié)果表明,XtPGRP-L在非洲爪蟾固有免疫系統(tǒng)中可能具有重要的作用。

    肽聚糖識(shí)別蛋白; 基因克隆; 表達(dá)分析; 非洲爪蟾

    Q959.53;Q786;R392.1

    A

    0254-5853-(2011)04-0371-08

    2011-03-15;接受日期:2011-06-27

    10.3724/SP.J.1141.2011.04371

    date: 2011-03-15; Accepted date: 2011-06-27

    s: This study was financially supported by the Project from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (10KJB240001), the Foundation for Talent Recruitment of Yancheng Institute of Technology (XKR2011007), and the National Natural Science Foundation of China (30830083)*

    (通信作者), E-mail: Tel: 0515-88298281, E-mail address: qizhitao@ycit.edu.cn

    猜你喜歡
    肽聚糖工學(xué)院鹽城
    乳酸菌肽聚糖的提取純化及其對河豚毒素的毒性消減效果研究
    從鹽瀆到鹽城——鹽城命名記
    非遺鹽城
    三個(gè)關(guān)鍵詞,讀懂鹽城這座城!
    淺析肽聚糖以及其相關(guān)功能
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    “東方濕地之都”——鹽城
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《鹽城工學(xué)院學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    欧美精品一区二区大全| 青春草亚洲视频在线观看| 最后的刺客免费高清国语| 国产精品久久久久久久久免| 人妻一区二区av| 国产女主播在线喷水免费视频网站 | 少妇丰满av| 国产精品女同一区二区软件| 啦啦啦啦在线视频资源| 99re6热这里在线精品视频| 91午夜精品亚洲一区二区三区| 亚洲伊人久久精品综合| 午夜老司机福利剧场| 午夜福利成人在线免费观看| 91狼人影院| 亚洲av国产av综合av卡| av在线天堂中文字幕| 51国产日韩欧美| 国产色婷婷99| 九九在线视频观看精品| 国产一区亚洲一区在线观看| 插阴视频在线观看视频| 中文字幕久久专区| 日韩人妻高清精品专区| 国产成人福利小说| 韩国av在线不卡| 80岁老熟妇乱子伦牲交| 在线观看av片永久免费下载| 最近视频中文字幕2019在线8| 亚洲精品日本国产第一区| 精品久久久久久久久久久久久| 国产黄片美女视频| 亚洲一级一片aⅴ在线观看| 亚洲高清免费不卡视频| 国产高清三级在线| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 久久久久九九精品影院| 观看免费一级毛片| 一级毛片黄色毛片免费观看视频| 国产成人精品婷婷| 麻豆成人午夜福利视频| 亚洲精华国产精华液的使用体验| 黄片无遮挡物在线观看| 日韩av在线大香蕉| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 中文乱码字字幕精品一区二区三区 | 自拍偷自拍亚洲精品老妇| 男女国产视频网站| 男人狂女人下面高潮的视频| 久久久久久久久久久免费av| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 尤物成人国产欧美一区二区三区| 成人毛片60女人毛片免费| 高清av免费在线| av女优亚洲男人天堂| 免费人成在线观看视频色| 大陆偷拍与自拍| 街头女战士在线观看网站| 精品国产三级普通话版| 国内揄拍国产精品人妻在线| 中文欧美无线码| av免费观看日本| 国产一区亚洲一区在线观看| 国产美女午夜福利| 内射极品少妇av片p| 黄片无遮挡物在线观看| 18禁在线无遮挡免费观看视频| 蜜桃久久精品国产亚洲av| 少妇高潮的动态图| 黑人高潮一二区| 97热精品久久久久久| 天堂影院成人在线观看| 欧美日韩综合久久久久久| 99久久中文字幕三级久久日本| 又粗又硬又长又爽又黄的视频| 五月天丁香电影| 成年女人在线观看亚洲视频 | 免费电影在线观看免费观看| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 亚洲精品久久久久久婷婷小说| 我要看日韩黄色一级片| 日本黄色片子视频| 免费av不卡在线播放| 草草在线视频免费看| 国模一区二区三区四区视频| 国产精品麻豆人妻色哟哟久久 | 啦啦啦啦在线视频资源| 岛国毛片在线播放| 久久99热这里只有精品18| 好男人视频免费观看在线| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 综合色av麻豆| 亚洲精品乱码久久久v下载方式| 欧美最新免费一区二区三区| 高清av免费在线| 非洲黑人性xxxx精品又粗又长| 亚洲欧美成人精品一区二区| 草草在线视频免费看| 一本久久精品| 亚洲精品一二三| 午夜日本视频在线| 亚洲精品影视一区二区三区av| 精品人妻一区二区三区麻豆| 91午夜精品亚洲一区二区三区| 18禁在线播放成人免费| 中文字幕人妻熟人妻熟丝袜美| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 国产精品嫩草影院av在线观看| 午夜免费观看性视频| 亚洲精品视频女| 免费大片18禁| 亚洲av在线观看美女高潮| 免费观看av网站的网址| 男女边吃奶边做爰视频| 亚洲av电影不卡..在线观看| 国产女主播在线喷水免费视频网站 | 别揉我奶头 嗯啊视频| 亚洲电影在线观看av| 国产av不卡久久| 97精品久久久久久久久久精品| 久久久久免费精品人妻一区二区| 99久久中文字幕三级久久日本| 在线免费十八禁| 亚洲欧美成人精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 久久国内精品自在自线图片| 特级一级黄色大片| 爱豆传媒免费全集在线观看| 三级国产精品片| 伦理电影大哥的女人| 丰满人妻一区二区三区视频av| 人妻少妇偷人精品九色| 99久久九九国产精品国产免费| 日韩欧美三级三区| 欧美丝袜亚洲另类| 久久精品国产亚洲av涩爱| www.色视频.com| 2021少妇久久久久久久久久久| 小蜜桃在线观看免费完整版高清| 婷婷六月久久综合丁香| 国产中年淑女户外野战色| 国产一区二区三区综合在线观看 | 少妇被粗大猛烈的视频| 国产亚洲av嫩草精品影院| 国产在线男女| av免费观看日本| 午夜免费激情av| 精品国内亚洲2022精品成人| 久久精品国产自在天天线| 国产在视频线精品| 亚洲,欧美,日韩| 日本wwww免费看| 在线 av 中文字幕| 亚洲欧美日韩东京热| 七月丁香在线播放| 51国产日韩欧美| 久久久久国产网址| 亚洲自偷自拍三级| 狠狠精品人妻久久久久久综合| 日本免费在线观看一区| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 日本黄大片高清| 最近视频中文字幕2019在线8| 蜜桃久久精品国产亚洲av| 我的老师免费观看完整版| 乱人视频在线观看| 日本一本二区三区精品| 美女主播在线视频| 国产精品一区www在线观看| 伊人久久精品亚洲午夜| 日韩av免费高清视频| 亚洲成人一二三区av| 人体艺术视频欧美日本| 综合色丁香网| 亚洲av成人精品一区久久| 国产黄频视频在线观看| 五月天丁香电影| 十八禁网站网址无遮挡 | 亚洲欧美成人精品一区二区| 色吧在线观看| 91精品国产九色| 全区人妻精品视频| av在线播放精品| 午夜精品一区二区三区免费看| 国产精品福利在线免费观看| 亚洲最大成人手机在线| 欧美激情国产日韩精品一区| 一边亲一边摸免费视频| 亚洲国产精品国产精品| 国产一区二区三区av在线| 18禁裸乳无遮挡免费网站照片| 午夜免费观看性视频| 日韩伦理黄色片| 国产片特级美女逼逼视频| 亚洲在久久综合| 亚洲精品色激情综合| 麻豆av噜噜一区二区三区| 欧美区成人在线视频| 搡老乐熟女国产| 精品亚洲乱码少妇综合久久| av播播在线观看一区| 国产在视频线精品| 免费无遮挡裸体视频| 一边亲一边摸免费视频| 亚洲天堂国产精品一区在线| 看非洲黑人一级黄片| 精品一区二区三区视频在线| av福利片在线观看| 国产精品女同一区二区软件| 国产激情偷乱视频一区二区| 国产精品一及| 中文字幕制服av| 中文天堂在线官网| 99久久精品国产国产毛片| 久久久久久久久久成人| 精品一区在线观看国产| a级毛色黄片| 日韩国内少妇激情av| 又粗又硬又长又爽又黄的视频| 国产视频内射| 身体一侧抽搐| 最后的刺客免费高清国语| 亚洲无线观看免费| 久久精品综合一区二区三区| 十八禁国产超污无遮挡网站| 亚洲欧美成人综合另类久久久| 久99久视频精品免费| 国产精品一区二区在线观看99 | 国产成人a区在线观看| 日本色播在线视频| 午夜爱爱视频在线播放| av福利片在线观看| 一夜夜www| 青春草视频在线免费观看| 国产不卡一卡二| 狂野欧美白嫩少妇大欣赏| 最近中文字幕2019免费版| 成人漫画全彩无遮挡| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 麻豆av噜噜一区二区三区| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 日韩欧美一区视频在线观看 | 久久久久久久久中文| 免费av毛片视频| 亚洲成人一二三区av| 亚洲精品aⅴ在线观看| 在线观看免费高清a一片| 国产激情偷乱视频一区二区| 午夜激情久久久久久久| 观看免费一级毛片| 久久久久久伊人网av| 国产单亲对白刺激| 蜜臀久久99精品久久宅男| 亚洲最大成人手机在线| 精品国产露脸久久av麻豆 | 少妇的逼水好多| 99久久中文字幕三级久久日本| 国产v大片淫在线免费观看| 成人毛片a级毛片在线播放| av国产久精品久网站免费入址| 特级一级黄色大片| 乱人视频在线观看| 18+在线观看网站| 亚洲自偷自拍三级| 老女人水多毛片| 看非洲黑人一级黄片| 久久精品国产亚洲网站| 在线观看av片永久免费下载| 久久久久精品性色| 午夜福利网站1000一区二区三区| 亚洲精品国产av成人精品| 免费看光身美女| 欧美另类一区| 成人一区二区视频在线观看| 久久人人爽人人爽人人片va| 国产日韩欧美在线精品| av免费在线看不卡| 午夜久久久久精精品| 久久国产乱子免费精品| 麻豆av噜噜一区二区三区| av网站免费在线观看视频 | 看十八女毛片水多多多| 校园人妻丝袜中文字幕| 搞女人的毛片| 天美传媒精品一区二区| 国产精品99久久久久久久久| 免费大片18禁| 欧美人与善性xxx| 精品久久国产蜜桃| 国产探花在线观看一区二区| 国产av不卡久久| 国产亚洲av片在线观看秒播厂 | 亚洲成人一二三区av| 午夜日本视频在线| 国产中年淑女户外野战色| 1000部很黄的大片| 国产精品嫩草影院av在线观看| 大陆偷拍与自拍| 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 狂野欧美激情性xxxx在线观看| 亚洲在线观看片| 亚洲国产精品专区欧美| 国产乱人偷精品视频| 少妇被粗大猛烈的视频| 久久久久久久国产电影| 91av网一区二区| a级毛色黄片| 男女边摸边吃奶| 亚洲国产精品成人久久小说| 永久免费av网站大全| 国语对白做爰xxxⅹ性视频网站| 成年版毛片免费区| 欧美成人a在线观看| 久久久久国产网址| 日韩av在线大香蕉| 亚洲成色77777| 欧美zozozo另类| 国产午夜精品论理片| 亚洲最大成人av| 国产在线男女| 国产高清国产精品国产三级 | 午夜精品一区二区三区免费看| 色吧在线观看| 国产成人精品一,二区| 日韩制服骚丝袜av| 尤物成人国产欧美一区二区三区| 日日撸夜夜添| 国产综合懂色| 亚洲国产欧美在线一区| 久久精品熟女亚洲av麻豆精品 | 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 色尼玛亚洲综合影院| 日韩不卡一区二区三区视频在线| 免费黄网站久久成人精品| 日本色播在线视频| 欧美极品一区二区三区四区| 搡女人真爽免费视频火全软件| 久久久久久久国产电影| 草草在线视频免费看| 熟妇人妻不卡中文字幕| 国产不卡一卡二| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 亚洲成人一二三区av| 亚洲乱码一区二区免费版| 久久99热6这里只有精品| 亚洲精品视频女| 欧美xxxx性猛交bbbb| 午夜福利高清视频| 久久久久性生活片| 国产午夜精品久久久久久一区二区三区| 99热这里只有是精品在线观看| freevideosex欧美| 又爽又黄无遮挡网站| 街头女战士在线观看网站| 国产69精品久久久久777片| 只有这里有精品99| 成人二区视频| 日韩精品有码人妻一区| 亚洲不卡免费看| 亚洲怡红院男人天堂| 国产在线一区二区三区精| 久久99热这里只有精品18| 久久久久久久久久久丰满| www.色视频.com| 中文字幕人妻熟人妻熟丝袜美| 亚洲av.av天堂| 国产 一区 欧美 日韩| 草草在线视频免费看| 少妇人妻精品综合一区二区| 亚洲欧美日韩东京热| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 十八禁网站网址无遮挡 | 一边亲一边摸免费视频| 亚洲精品国产av蜜桃| av网站免费在线观看视频 | 亚洲在线观看片| 在线观看一区二区三区| 99热6这里只有精品| 插逼视频在线观看| 日本av手机在线免费观看| 欧美97在线视频| 欧美bdsm另类| 日韩一区二区三区影片| 精品一区二区三区人妻视频| 一个人观看的视频www高清免费观看| 欧美变态另类bdsm刘玥| 国产 亚洲一区二区三区 | 国产乱来视频区| 一级毛片黄色毛片免费观看视频| 日韩成人av中文字幕在线观看| 国产成人a区在线观看| av播播在线观看一区| 亚洲高清免费不卡视频| 真实男女啪啪啪动态图| 久久久午夜欧美精品| 免费观看性生交大片5| 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 最近的中文字幕免费完整| 亚洲成人av在线免费| 亚洲精品久久午夜乱码| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 国产精品一二三区在线看| av在线蜜桃| 卡戴珊不雅视频在线播放| 亚洲无线观看免费| 精品久久久久久久久av| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 久久久久精品性色| 天堂中文最新版在线下载 | 国产成人福利小说| 蜜桃久久精品国产亚洲av| 免费av毛片视频| 天堂网av新在线| 777米奇影视久久| 精品久久久久久久人妻蜜臀av| 欧美一区二区亚洲| 国产精品.久久久| 97热精品久久久久久| 国产免费福利视频在线观看| 韩国av在线不卡| 哪个播放器可以免费观看大片| 亚洲精品乱码久久久v下载方式| 美女黄网站色视频| 国产午夜精品一二区理论片| 一区二区三区四区激情视频| 99视频精品全部免费 在线| 在线 av 中文字幕| 国产黄频视频在线观看| 99久久人妻综合| 五月玫瑰六月丁香| 91精品一卡2卡3卡4卡| 久久99热这里只频精品6学生| av天堂中文字幕网| 插阴视频在线观看视频| 国产精品综合久久久久久久免费| 婷婷色av中文字幕| www.色视频.com| 免费观看精品视频网站| 欧美一区二区亚洲| 在线a可以看的网站| 亚洲精品日本国产第一区| 亚洲精品久久久久久婷婷小说| 欧美 日韩 精品 国产| 日日撸夜夜添| 中文字幕av在线有码专区| 国产黄片视频在线免费观看| 国产熟女欧美一区二区| 人妻少妇偷人精品九色| 91av网一区二区| 又爽又黄a免费视频| 国产成人福利小说| 国产一区二区三区综合在线观看 | 女人十人毛片免费观看3o分钟| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 亚洲自拍偷在线| 直男gayav资源| 五月玫瑰六月丁香| 国产伦理片在线播放av一区| 欧美xxxx黑人xx丫x性爽| 亚洲精品aⅴ在线观看| 国产69精品久久久久777片| 亚洲怡红院男人天堂| 精品一区二区三卡| 一个人免费在线观看电影| 国产高清不卡午夜福利| 亚洲人与动物交配视频| 男女下面进入的视频免费午夜| 国产成人a区在线观看| 最近视频中文字幕2019在线8| 国产白丝娇喘喷水9色精品| 亚洲av免费高清在线观看| 2022亚洲国产成人精品| 日本三级黄在线观看| 床上黄色一级片| 免费看光身美女| 禁无遮挡网站| 中文欧美无线码| 精品人妻一区二区三区麻豆| 亚洲精品国产成人久久av| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久com| 久久99精品国语久久久| 亚洲av在线观看美女高潮| 一级a做视频免费观看| 日本熟妇午夜| 亚洲av免费高清在线观看| 亚洲乱码一区二区免费版| 伊人久久国产一区二区| 国产亚洲最大av| 国产精品.久久久| 国产淫片久久久久久久久| 亚洲欧美精品专区久久| 观看免费一级毛片| 久久综合国产亚洲精品| 夜夜看夜夜爽夜夜摸| 在线免费观看不下载黄p国产| 成人国产麻豆网| 日韩一区二区视频免费看| 欧美激情在线99| 永久免费av网站大全| 久热久热在线精品观看| 日韩三级伦理在线观看| 久久精品国产亚洲av涩爱| 免费观看的影片在线观看| 中文欧美无线码| 国产色爽女视频免费观看| 青春草亚洲视频在线观看| 在线a可以看的网站| 亚洲精品第二区| 久久99热这里只有精品18| 看黄色毛片网站| 好男人视频免费观看在线| 亚洲精品乱码久久久久久按摩| 亚洲精品国产av蜜桃| 日本猛色少妇xxxxx猛交久久| 欧美激情久久久久久爽电影| 国产老妇伦熟女老妇高清| 美女主播在线视频| 可以在线观看毛片的网站| 国产高清有码在线观看视频| 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 日韩av免费高清视频| 国产毛片a区久久久久| 在线 av 中文字幕| 26uuu在线亚洲综合色| 久久这里有精品视频免费| 日日摸夜夜添夜夜爱| 国内少妇人妻偷人精品xxx网站| 成人亚洲精品av一区二区| 一级a做视频免费观看| 亚洲色图av天堂| 精品人妻熟女av久视频| 日韩制服骚丝袜av| 国产伦理片在线播放av一区| 大香蕉97超碰在线| 免费观看a级毛片全部| 亚洲在线自拍视频| 日本av手机在线免费观看| 成人毛片60女人毛片免费| 亚洲精品国产av蜜桃| 欧美另类一区| 国产老妇女一区| 青春草国产在线视频| 亚洲精品乱久久久久久| 久久精品国产亚洲av涩爱| 国产老妇伦熟女老妇高清| 在线观看一区二区三区| 午夜免费男女啪啪视频观看| 最后的刺客免费高清国语| 91aial.com中文字幕在线观看| 亚洲av成人精品一区久久| 日日干狠狠操夜夜爽| 国产永久视频网站| 又爽又黄a免费视频| 国产成人福利小说| av在线亚洲专区| 国产精品久久久久久av不卡| 你懂的网址亚洲精品在线观看| 老司机影院成人| 亚洲激情五月婷婷啪啪| 天堂俺去俺来也www色官网 | 搡老乐熟女国产| 一个人看视频在线观看www免费| 在线观看免费高清a一片| 色网站视频免费| 老司机影院成人| 日产精品乱码卡一卡2卡三| 国产91av在线免费观看| 久久久久久久久久黄片| 波多野结衣巨乳人妻| 一区二区三区四区激情视频| 国产av码专区亚洲av| 免费黄色在线免费观看| 黄片wwwwww| 天堂网av新在线| 嫩草影院精品99| 在线播放无遮挡| av卡一久久| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 插逼视频在线观看| 观看美女的网站| 亚洲欧美一区二区三区黑人 | 成人鲁丝片一二三区免费| 久久99热这里只有精品18| 久久这里有精品视频免费| 91在线精品国自产拍蜜月| 大陆偷拍与自拍| 少妇熟女欧美另类| 亚洲熟女精品中文字幕| 别揉我奶头 嗯啊视频| 国产亚洲91精品色在线| 精品少妇黑人巨大在线播放| 69人妻影院| 成人毛片60女人毛片免费| 干丝袜人妻中文字幕|