• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti)

    2011-12-25 06:39:46LUOYingYUTaiLinHUANGChengMingZHAOTongLIHanHuaLIChangJian
    Zoological Research 2011年4期
    關(guān)鍵詞:基礎(chǔ)代謝率代謝率產(chǎn)熱

    LUO Ying, YU Tai-Lin, HUANG Cheng-Ming, ZHAO Tong, LI Han-Hua, LI Chang-Jian

    (1. Department of Life Science and Chemistry, University of Science and Engineering, Yongzhou 425600, China; 2. College of Life Science, Guangxi Normal University, Guilin 541004, China; 3. Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China)

    Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti)

    LUO Ying1, YU Tai-Lin2,*, HUANG Cheng-Ming3,*, ZHAO Tong2, LI Han-Hua2, LI Chang-Jian1

    (1. Department of Life Science and Chemistry, University of Science and Engineering, Yongzhou 425600, China; 2. College of Life Science, Guangxi Normal University, Guilin 541004, China; 3. Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China)

    To understand metabolic adaptations, the basal metabolic rate (BMR) of Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (Syrmaticus ellioti) were investigated. Metabolic rate (MR), body temperature (Tb) and thermal conductance (C) were determined in both species at a temperatrue range of 5 ? 35 ℃, respectively. Oxygen consumption was measured with a closed circuit respirometer. The thermal neutral zones (TNZ) were 24.5 ? 31.6℃, and 23.0 ?29.2 ℃, respectively. With a temperature range of 5 ? 35 ℃, Mrs Hume’s Pheasant and Elliot’s Pheasant could maintained stable Tbat a mean of (40.47±0.64) and (40.36±0.10) ℃, respectively. Mean BMRs within TNZs were (1.36±0.84) mLO2/(g·h) for Mrs Hume’s Pheasant and (2.03±0.12) mLO2/(g·h) for Elliot’s Pheasant, which were 77% and 86% of the expected value based on their body mass, respectively. Thermal conductance of Mrs Hume’s Pheasant and Elliot’s Pheasant were (0.12±0.01) and (0.17±0.01) mLO2/(g·h·℃), below the lower critical temperature, respectively, which were 119% and 124% of the expected value based on their body mass, respectively. The ecophysiological characteristics of these species were low metabolic rate, high body temperature, and high thermal conductance, which allow both species to better adapt to the warmer climate environment in south China.

    Syrmaticus humiae;Syrmaticus ellioti; Body temperature; Basal metabolic rate; Thermal conductance

    Metabolism is one of the most basic animal characteristics, going with energy flowing and information communion in the course of substance metabolism. Metabolism is a major factors in all life processes, including energy utilization, and important part of life history (Williams & Tieleman, 2000). Bird metabolism affects distribution and abundance, which are considered major survival countermeasures (Weathers, 1997; Lovegrove, 2003). Basal metabolic rate (BMR) is the rate of energy transformation in a rested, awake and fasted state in the absence of thermal stress, and is the minimum metabolic rate of animals maintaining normal physiological function. It is important parameters of energy metabolism comparison (Jessen, 2001). The use of BMR as an index of energy expenditure has received a great deal of attention from environmental physiologists, ecophysiologists and comparative physiologists (Reynolds & Lee, 1996).

    Comparative physiological ecology is important for developing general rules about birds through comparison. Most basal rate variation in bird metabolism can be explained by the combined influences of body size, phylogeny, climate condition, activity and feeding habits (McNab, 2000; McKechnie & Wolf, 2004; Canterbury, 2002; Weathers, 1979). Comparing small birds from different habitats and with different habits highlights, the ecological significance of BMRs (Rezende et al, 2002) is shown. Take the small-sized birds living in cold environments as an example, though feather growth is limited due to body size, they can resist the cold by increasing heat production (Stokkan, 1992; Liknes et al, 2002); birds living in high latitude temperate zones remain active in winter, mainly through behavioral, formal and physiology mechanical changes (Corp et al, 1997); and birds retain hypothermia in tropical areas (Weathers, 1997).

    Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (Syrmaticus ellioti) are threatenedSymmaticus,Phasianidae,Galliformesspecies (Baillie et al, 2004), within Cenwanglaoshan Nature Reserve in China, they are National level protected animals (Zhang et al, 2003). In China, Mrs Hume’s Pheasant is only found in Yunnan and Guangxi provinces, but are also found in Northeast India, Northwest Thailand, and the west, north and east Burma. It is a typical species for the southwest subregion mountain areas of the Oriental Realm (Liu et al, 2008). Mrs Hume’s Pheasant mainly inhabit broad-leaved forest at an altitude of 780?1 800 m, mixed coniferous broad-leaved forest, scrub woodland, grassland and forest edge areas. It is omnivorous, mainly eating acorns, berries, seeds, roots, leaves, buds and other plant food. It also eats insects and other animalbased food, and occasionally targets cultivated crops at the forest edge (Mackinnon et al, 2000). Elliot’s Pheasant, a species peculiar to China, is distributed in Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Guizhou provinces. It is a typical species of eastern hilly subregion in Central China of the Oriental Realm (Shi & Zheng, 1997). Elliot’s Pheasant mainly inhabit rugged mountains and the jungle of valleys at an altitude of 200 ? 1 500 m, more commonly in mixed coniferous broad-leaved forests. It can also be found in dense bamboo and understory. It is omnivorous, mainly eating plant leaves, stems, buds, flowers, fruits, seeds and other plant food crops, athough it also eats insects and other animal-based food (Mackinnon et al, 2000). While limited work has been done on habitat selection and artificial propagation of the two species, no research has been conducted on their energy metabolism. The purpose of this study was to measure the BMR of the two endangered species and research their adaptability to the warm wet climate of Southeast and Southwest China.

    1 Materials and Methods

    1.1 Animals

    Six Mrs Hume’s Pheasants (3 males, 3 females) and 6 Elliot’s Pheasants (3 males, 3 females) hatched in May 2010 were housed at the Biological Park of Guangxi Normal University. The birds were kept in a closed aviary (95.0 cm × 45.0 cm × 45.0 cm) where the temperature was maintained at approximately 38°C in the first two weeks of their life, and at approximately 35°C in the following two weeks. After one month of age, the birds spent most of the day in open aviaries (5.4 m×2.8 m×1.9 m) , which allowed free movement and feeding (food and water suppliedadlimbitum). The experiments were carried out in July 2010 when the birds were 80 days old, the mean body mass of Mrs Hume’s Pheasant and Elliot’s Pheasant were (398.83±22.93) g and (388.25±14.58) g, respectively.

    1.2 Metabolic trials

    Oxygen consumption was measured using a closed circuit respirometer (Górecki, 1975). Temperatures in a water bath inside the animal chambers were measured and maintained at a constant level (to ± 0.5 °C). Volume of the metabolic chamber was 5.8 L. Oxygen consumption rates were measured over a temperature range of 5 ? 35 °C, with each trial conducted 45 min after the animals had been in the metabolic chamber for 1 h to stabilize its environment. Food was removed 15 h before each test to minimize the heat increment of feeding and animals were weighed to the nearest ± 0.1 g. Both H2O and CO2were absorbed by silica gel and NaOH. Recording of oxygen consumption due to animal activity in the chamber were discarded when computing the metabolic rate of each individual. All measurements were made daily between 8:00 and 15:00. The metabolic rates (MR) of birds were measured in the rest phase under natural light conditions. The birds were wrapped with gauze to restrict their activities. Reading interval of O2consumption was 5 min. Two consecutive, stable and minimum recording were used to calculate metabolic rates as mLO2/(g·h). Body temperatures (Tb) of all individuals were recorded before and after each measurement, and Tbwas measured with a digital thermometer (Beijing Normal University Instruments Co.) in the cloaca at a depth of 1.5 cm. Body mass was measured before and after the experiments.

    1.3 Thermal conductance

    Over thermal conductance (C, mLO2/g·h·°C) was calculated at temperature below the thermal neutral zone using the formula as:

    Where MR is metabolic rate (mLO2/g·h), Tais ambient temperature (°C),Tbis body temperature (°C). This formula was suggested by Aschoff (1981) for calculating conductance at any givenTa.

    Aschoff & Pohl (1970) reviewed the BMRs of bird species, and obtained the allometric equations for birds. Expectation ration ofBMRandCpredicted by the appropriate equation of Aschoff & Pohl (1970 ) and Aschoff (1981), respectively, uses the following formulas:

    1.4 Statistics

    Data were analyzed using the SPSS11.5 statistical package. Differences between temperature treatments were determined by repeated measures ANOVA andP<0.05 is taken to be statistically significant. All results were expressed as mean±SE, and linear regression analysis was used to analyze the relationship between energetic parameters andTa.

    2 Results

    2.1 Mrs Hume’s Pheasant

    Mean Tbof Mrs Hume’s Pheasant ranged from a mean of (40.6±0.07) ℃ at 24.5 ℃ to (41.4±0.11) ℃ at 35 ℃. The Tbof Mrs Hume’s Pheasant remained almost constant from 5 to 35℃ Tas, with a mean value of (40.47±0.64) ℃ (Fig. 1a).

    Fig. 1 Changes in body temperature(a), metabolic rate(b) and thermal conductance(c) with ambient temperature in Mrs Hume’s Pheasant

    There was no significant difference for metabolic rates between 24.5 ℃ and 31.6 ℃ (Fig. 1b). The thermal neutral zone (TNZ) was from 24.5℃ to 31.6 ℃. Mean BMR was (1.36±0.84) mLO2/(g·h) (n= 24). Metabolic rates between 20 ℃ and 24.5 ℃ showed a significant difference (t= 4. 148,df= 28,P= 0.000<0.0001), with the difference between 31.6 ℃ and 35 ℃ also significant (t= 6.473,df= 28,P= 0.000<0.0001). The metabolism rate was variable at temperatures below 24.5℃ and dependent onTa.

    Thermal conductance (C) was calculated as (0.12± 0.01) mLO2/(g·h·℃) which was 119% of the predicted value by Aschoff (1981). Within and above the TNZ,Cincreased significantly withTa, and reached to (0.37± 0.03) mLO2/(g·h·℃) at 35 ℃ (Fig. 1c).

    2.2 Elliot’s Pheasant

    Elliot’s Pheasant maintained stableTbs withinTarange of 5 ? 35℃, at which the meanTbwas (40.36± 0.10) ℃ (Fig. 2a).

    Fig. 2 Changes in body temperature(a), metabolic rate(b) and thermal conductance(c) with ambient temperature in Elliot’s Pheasant

    There was no significant difference for metabolic rates between 23 and 29.2℃ (Fig. 2b). The thermal neutral zone (TNZ) was from 23 to 29.2 ℃. MeanBMRwas (2.03±0.12) mLO2/(g·h) (n= 18). Metabolic rates between 20 and 23 ℃ showed a significant difference (t= 4.690,df= 22,P= 0.000<0.0001), with the difference between 29.2 ℃ and 33 ℃ also significant (t= 3.407,df= 22,P= 0.03<0.05). Rate of metabolism was variable at temperature below 23℃ and dependent onTa.

    Thermal conductance (C) was calculated as (0.17± 0.01) mLO2/(g·h·℃), which was 124% of the predicted value by Aschoff (1981). Within and above the TNZ,Cincreased significantly withTa, and reached to (0.44± 0.06) mLO2/(g·h·℃) at 35 ℃ (Fig. 2c).

    3 Discussion

    3.1 Body temperature

    The samples collected in this experiment were relatively small. According to Zhao (2009), the body temperature of Mrs Hume’s Pheasant and Elliot’s Pheasant nestings changes with ages. Specifically at 60 days of age the body temperature of the two nestlings fluctuates, while after 60 days of age body temperature stabilizes close to the adult level. This shows that the ability of chemical thermoregulation of Mrs Hume’s Pheasant and Elliot’s Pheasant is developed to stablity level after being hatched for a certain age, usually about 60 days, which is consistent with previous studies onTragopan caboti(Li et al, 1993). Therefore, we measured the metabolites of 80-day-old Mrs Hume’s Pheasant and Elliot’s Pheasant.

    Fig. 3 Changes in body temperature with age in nestling of Mrs Hume’s Pheasant and Elliot’s Pheasant

    Compared with mammals, birds have relatively high Tbs, due to higher energy metabolism needed for bird flight (Prinzinger et al, 1991). Birds can usually maintain body temperature at 40 ? 42 ℃, and in the TNZ, most birds have a Tbof 38.4 ℃. In this study, the Tbs of Mrs Hume’s Pheasant (40.47 ℃) and Elliot’s Pheasant (40.36℃) were higher thanCrossoptilon mantchuricum(38.7℃) andLyruruste trix baikallensis(39.5 ℃)(Jia et al, 2003; Zhang et al, 2001), similar toCoturnix coturnix(41.5 ℃) andAcridotheres cristatellus(41.4 ℃)(Wang & Zhang, 1986; Lin et al, 2010), but lower thanErythrura gouldiae(42.7 ℃)(Burton & Weathers, 2003). This has great adaptive significance because the high Tbincreases the temperature difference between the body and their environments and increases the ability to dissipate heat in summer (McNab, 2000).

    3.2 Basal metabolic rate (BMR)

    Many factors affect basal metabolism in birds, such as body mass, climate condition, food habits, season, activity and feeding habits (AL-Mansour, 2004; Weathers, 1979; Liknes et al, 2002; McKechnie &Wolf, 2004; McNab, 1988). In this study, the BMR of Mrs Hume’s Pheasant and Elliot’s Pheasant were 77% and 86% of the expected value from Ashoff & Pohl (1970), respectively (Tab. 1). The BMRs of Mrs Hume’s Pheasant and Elliot’s Pheasant were lower thanPrunella rubeculoides(115%)(Deng & Zhang, 1990),Prunella montanella(168%)(Liu et al, 2004a), andFringilla montifringilla(135%)(Liu et al, 2004b); but close toErythrura gouldiae(81%)(Burton & Weathers, 2003),Estrida melpodaandChloebia gouldiae(82% and 80% respectively)(Marschall & Prinzinger, 1991), andPycnonotus sinensisandSturnus sericeus(79% and 90% respectively) (Zhang et al, 2006).Prunella rubeculoideslive in the Qinghai-Tibet Plateau, which experience an average summer temperature of 8.7 ℃;Prunella montanellaandFringillamontif ringillabreed in Siberia and other northern regions, whose heat regulation has obvious high altitudes and cold animals metabolic characteristics.Erythrura gouldiaelives in California and other hot and humid regions, where the average winter temperature is 24.4℃;Estrida melpodaandChloebia gouldiaelive in the humid tropical environment;Pycnonotus sinensisandSturnus sericeuslive mainly in the tropical south and southern subtropical monsoon zone of China, and exhibit energy metabolism characteristics typical of tropical birds. The lower BMR of tropical birds is an adaptation to heat stress and water maintenance (Williams & Tieleman, 2000; Tieleman et al, 2002). The BMRs of Mrs Hume’s Pheasant (77%) were lower than Elliot’s Pheasant (86%), which may relate to the geographical and latitudinal distribution of the two birds as generally a 1℃ increase with latitude causes a 1% higher average metabolic rate (Zhang et al, 2001). Mrs Hume’s Pheasant and Elliot’s Pheasant show characterisitcs of southern humid zone animals, with their lower metabolic levels a strategy for adapting to the environment. In addition, these two different experimental birds were able to maintain constant body temperatures, that is, when the ambient temperature increased, the body temperature did not increase. To maintain a constant body temperature in a high-temperature environment is one reason why the metabolic rate was relatively low (Rozman et al, 2003; Schleucher, 2002).

    Tab. 1 Parameters of energetics in Mrs Hume’s Pheasant and Elliot’s Pheasant

    3.3 Thermal neutral zone

    The thermal neutral zone (TNZ) is difineas as the range of temperatrues where production of surplus heat is sufficient to compensate for heat loss, without regulatory changes in metabolic heat production or evaporative heat loss (McNamara et al, 2004). In the TNZ, metabolic rate is independent of Taand animals can regulate temperature by controlling heat loss instead of metabolic heat production and evaporative heat regulation (Schmidt-Nielsen, 1997). This study showed that the TNZ for Mrs Hume’s Pheasant was 24.5 ? 31.6 ℃ and for Elliot’s Pheasant was 23.0 ? 29.2 ℃ (Tab. 1). The lower critical temperatures of both these special were higher thanCrossoptilon mantchuricum(20 ℃)(Jia et al, 2003),Lyruruste trix baikallensis(20 ℃)(Zhang et al, 2001),Bombycilla garrulusandEmberiza spodocephala(18 ℃and 20 ℃ respectively)(Li et al, 2005); and similar toCoturnix coturnix(25℃)(Wang & Zhang, 1986), but were lower thanErythrura gouldiae(31.7 ℃)(Burton & Weathers, 2003), andAlaemon alaudipes(32.7℃) (Tieleman et al, 2002). A birds’ high thermal conductance and high temperature can increases both lower and the upper critical temperatures, thus reducing evaporative water loss and reduce energy consumption (Burton & Weathers, 2003). Both Mrs Hume’s Pheasant and Elliot’s Pheasant had high thermal conductivity and narrow TNZ, which is conducive to the protection of water evaporation and loss and it is an adaptive characteristics to help survive in hot and humid environments.

    3.4 Thermal conductance

    Overall conductance depends on body weight because of the size dependent changes in the ratio of surfacevolume, and the dependence of plumage thichness on size (Aschoff, 1981). In the present study, conductance of Mrs Hume’s Pheasant and Elliot’s Pheasant were (0.12±0.01) mLO2/(g·h·℃) and (0.17±0.01) mLO2/ (g·h·℃) (Tab. 1), which were 119% and 124% of the expected (Aschoff, 1981) values respectively. As the birds were 80 days old in the experiment and were still in the long feathers period, insulation was relatively poor, and therefor heat dissipation and thermal conductivity were relatively high. In addition, thermal conductivity (C) of birds in tropical areas is relatively high but is relatively low for bird in cold regions (Weathers, 1997) . For Mrs Hume’s Pheasant and Elliot’s Pheasant, the high C observed in summer is adaptation to the hot environment as it is conductive for high heat dissipation to avoid overheating.

    In short, the ecological characteristics of Mrs Hume’s Pheasant and Elliot’s Pheasant are in accordance with the metabolic characteristics of southern birds, that is higher body temperature, lower metabolic rate, and higher thermal conductivity. They can better adapt to hot and humid environments through good physical and chemical regulation.

    Acknowledgements:We are grateful to Professor LIU Jin-Song of Wenzhou University for providing valuable suggestions and references during this experiment.

    AL-Mansour MI. 2004. Seasonal variation in basal metabolic rate and body composition within individual sanderling birdCalidris alba[J].J Biol Sci, 4: 564-567.

    Aschoff J. 1981. Thermal conductance in mammals and birds: its dependence on body size and circadian phase[J].Comp Biochem Physiol, 69A: 611-619.

    Aschoff J, Pohl H. 1970. Metabolism at rest of birds as function of time of day and body size[J].Ornithol, 111: 38-47.

    Baillie JEM, Hiltorr Taylor C, Stuart SN. 2004. 2004 IUCN Red List of Threatened Species: A Globe Species Assessment[M]. Switzerland: IUCN.

    Burton CT, Weathers WW. 2003. Energetics and thermoregulation of the Gouldian finchErythrura gouldiae[J].Emu, 103: 1-10.

    Canterbury G. 2002. Metabolic adaptation and climatic constraints on winter birds distribution[J].Ecology, 83: 946-957.

    Corp N, Goman ML, Speakman JR. 1997. Seasonal variation in the resting metabolic rate of male wood miceApodemus sylvaticusfrom two contrasting habitats 15km apart[J].J Comp Physiol, 167: 229-239.

    Deng HL, Zhang XA. 1990. Standard metabolic rate in several species of passerine birds in alpine meadow[J].Acta Zool Sin, 36(4): 377-384. (in Chinese)

    Górecki A. 1975. Kalabukhov-Skvortsov. Respirometer and Resting Metabolic Rate Measurement[M] // Grodziński W. IBP Handbook, No. 24: Methods for Ecological Energetics. Oxford: Blackwell, 309-313.

    Jessen C. 2001. Temperature Regulation in Humans and other Mammals[M]. New York: Springer - Verlag Berlin Heidelberg, 1-193.

    Jia F, Wu YF, Wu ML, Guo SB, An CL, Pang XB. 2003. Study on the resting metabolic rate (RMR) for the caged female brown eared pheasant (Crossoptilon mantchuricum)[J].Chn J Zool, 38(6): 52-56. (in Chinese)

    Li J, Li QF, Zheng GM. 1993. Studies on the resting metabolic rate of the yellow-bellied tragopan[J].Zool Res, 14(4): 341-345. (in Chinese)

    Li M, Liu JS, Han HL, Zhang HJ, Fang H. 2005. Metabolism and thermoregulation in waxwingsBombycilla garrulousand blackfaced buntingsEmberiza spodocephala[J].Zool Res, 26: 287-293. (in Chinese)

    Liknes ET, Scott SM, Swanson DL. 2002. Seasonal acclimatization in the American goldfinch revisited: to what extent do metabolic rates vary seasonally[J].Condor, 104: 548-557.

    Lin L, Wang LH, Liu JS. 2010. Metabolism and thermoregulation in Crested Mynas (Acridotheres cristatellus)[J].Chn J Zool, 45(5): 47-53. (in Chinese)

    Liu JS, Chen MR, Wang Y, Wang XH, Song CG. 2004a. Metabolic thermogenesis of Siberian accentor (Prunella montanella) [J].Zool Res, 25(2): 117-121. (in Chinese)

    Liu JS, Wang DH, Wang Y, Chen MH, Song CG, Sun RY. 2004b. Energetics and thermoregulation of theCarpodacus roseus,Fringilla montifringillaandAcanthis flammea[J].Acta Zool Sin, 50: 357-363.

    Liu Z, Zhou W, Zhang Q, Li JX, Ling N, Zhang RE. 2008. Selection and plant community characteristics of foraging sites for Hume’s Pheasant (Syramticus humiae) in Nanhua part of Ailaoshan National Nature Reserve[J].Zool Res, 29(6): 464-452. (in Chinese) Lovegrove BG. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum[J].J Comp Physiol, 173: 87-112.

    Mackinnon J, Phillipps, K, He FQ. 2000. A Field Guide toThirds of China[M]. Oxford University Press, 35: 15-30.

    Marschall U, Prinzinger R. 1991. Verleichende okophysiologie von funf prachtfinkenarten (Estrididae) [J].Fur Orni, 132: 319-323.

    McKechnie AE, Wolf BO. 2004. The allometry of avian basal metabolic rate: good predictions need good data[J].Physiol Biochem Zool, 77: 502-521.

    McNab BK. 1988. Food habits and the basal rate of metabolism in birds[J].Oecologia, 77: 343-349.

    McNab BK. 2000. The influence of body mass, climate, and distribution on the energetic of south pacific pigeons[J].Comp Biochem Physiol. 127A: 309-329.

    McNamara JM, Ekman J, Houston AI. 2004. The effect of thermoregulatory substitution on optimal energy reserves of small birds in winter[J].Oikos, 105: 192-196.

    Prinzinger R, Prebmar A, Schleucher E. 1991. Body temperature in Birds[J].Comp Biochem Physiol, 89: 499-506.

    Reynolds PS, Lee RM. 1996. Phylogenetic analysis of avian energetics Passerines and non-passerines do not differ[J].Am Nat, 147: 735-759.

    Rezende EL, Swanson DL, Novoa FF. 2002. Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics[J].J Exp Biol, 205: 101-107.

    Rozman J, Runciman D, Zann RA. 2003. Seasonal variation in body mass and fat of Zebra Finches in south-eastern Australia[J].Emu, 103: 11-19.

    Schleucher E. 2002. Metabolism, body temperature and thermal conductance of fruit-doves (Aves: Columbidae, Treronidae) [J].Comp Biochem Physiol,131: 417-428.

    Schmidt-Nieisen K, 1997. Animal Physiology [M]. 5th ed. London: Cambridge University Press. 169-214.

    Shi JB, Zheng GM. 1997. The seasonal changes of habitats of Elliot’s pheasant[J].Zool Res, 18(3): 275-283. (in Chinese)

    Stokkan KA. 1992. Energetics and adaptation to cold in ptarmigan in winter[J].Ornis Scandinavica, 22: 366-370.

    Tieleman BI, Willians JB, Buschur ME. 2002. Physiological adjustments to arid mesic environments in larks (Alaudidae) [J].Physiol Biochem Zool, 75: 305-313.

    Wang PC, Zhang P. 1986. Resting metabolic rates and homoeothermic level of different aged Eastern Ouill[J].J East China Normal Univ:Natural Science Ed, 4: 108-112. (in Chinese)

    Weathers WW. 1979. Climatic adaptation in avian standard metabolic rate[J].Oecologia, 42: 81-89.

    Weathers WW. 1997. Energetics and thermoregulation by small passerines of the humid, lowland tropics[J].Auk, 114: 341-353.

    Williams JB, Tieleman BI. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperature[J].J Exp Biol, 203(20): 3153-3159.

    Zhang LQ, Yang ZC, Wu YF, Li CQ, Sun RY. 2001. Study on the resting metabolic rate (RMR) of caged black grouse (Lyrurus tetrix baikallensis)[J].J Hebei Normal Univ:Nat Sci Ed, 25(3): 381-384. (in Chinese)

    Zhang YP, Liu JS, Hu XJ, Yang Y, Chen LD. 2006. Metabolism and thermoregulation in two species of passerines from south-eastern China in summer[J].Acta Zool Sin, 52(4): 641-647. (in Chinese)

    Zhang ZW, Ding CQ, Ding P, Zheng GM. 2003. The current status and a conservation strategy for species of Galliformes in China[J].J Biodiver Sci, 11: 414-421. (in Chinese)

    Zhao T. 2009. Comparison of Nestlings Growth betweenSyrmaticus elliotiandSyrmaticus humiaein Captivity[D]. Ph.D. College of Life Science, Guangxi Normal University. (in Chinese)

    籠養(yǎng)黑頸長尾雉和白頸長尾雉代謝產(chǎn)熱特征及體溫調(diào)節(jié)

    駱 鷹1, 庾太林2,*, 黃乘明3,*, 趙 彤2, 李漢華2, 李常健1

    (1.湖南科技學院 生命科學與化學工程系,湖南 永州425100; 2.廣西師范大學 生命科學學院,廣西 桂林541004; 3.中國科學院動物研究所,北京100101)

    采用封閉式流體壓力呼吸儀, 在5~35 ℃的環(huán)境溫度范圍內(nèi)測定了黑頸長尾雉(Syrmaticus humiae)和白頸長尾雉(Syrmaticus ellioti)的代謝率(MR)、熱傳導(C) 和體溫(Tb)等指標, 探討了其代謝產(chǎn)熱特征。結(jié)果顯示:黑頸長尾雉和白頸長尾雉的熱中性區(qū)(TNZ)分別為24.5~31.6 ℃和23.0~29.2 ℃。在5~35 ℃的溫度范圍內(nèi), 黑頸長尾雉和白頸長尾雉能保持穩(wěn)定的體溫, 分別為(40.47±0.64)和(40.36±0.10) ℃; 在熱中性區(qū)內(nèi), 黑頸長尾雉和白頸長尾雉的平均基礎(chǔ)代謝率(BMR)分別為(1.36±0.84)和(2.03±0.12 ) mLO2/(g·h),分別是體重預期值的77 %和86%。在下臨界溫度以下, 黑頸長尾雉和白頸長尾雉的最小熱傳導分別是(0.12±0.01)和(0.17±0.01) mLO2/(g·h·℃), 分別是體重預期值的119%和124%。這兩種鳥的生理生態(tài)學特征是:黑頸長尾雉和白頸長尾雉都具有較低的代謝率, 較高的體溫和熱傳導, 能較好地適應南方濕熱的氣候特征。

    黑頸長尾雉; 白頸長尾雉; 體溫; 基礎(chǔ)代謝率; 熱傳導

    Q959.725; Q958.112.4

    A

    0254-5853-(2011)04-0396-07

    2011-01-17;接受日期:2011-05-19

    駱鷹(1979-),男,講師,碩士研究生。研究方向:動物生理生態(tài)學

    10.3724/SP.J.1141.2011.04396

    date: 2011-01-17; Accepted date: 2011-05-19

    s: This research was funded by the National Natural Science Foundation of China (30760039), the Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, and the projects of Science and Technology Bureau of Yongzhou, Hunan (201019)

    *Corresponding authors (通信作者), E-mail: yutail@163.com; cmhuang@ioz.ac.cn

    猜你喜歡
    基礎(chǔ)代謝率代謝率產(chǎn)熱
    中國人群代謝率數(shù)據(jù)庫的建立與應用
    世界建筑(2022年11期)2022-12-05 06:56:02
    人要活得“涼爽”
    知識窗(2022年6期)2022-07-08 23:40:36
    夜晚長時間開燈容易長胖
    工會博覽(2022年9期)2022-06-30 09:30:48
    中年“發(fā)福”別怪代謝率
    鋰動力電池電化學-熱特性建模及仿真研究
    森林工程(2020年6期)2020-12-14 04:26:52
    小氣候環(huán)境對肉雞能量代謝的影響研究進展
    幸福·婚姻版(2018年3期)2018-03-22 08:06:48
    解讀“大胃王”的秘密
    飲食科學(2016年10期)2016-11-19 08:50:29
    健康之家(2016年10期)2016-10-28 22:21:28
    云南不同地區(qū)大絨鼠體重、產(chǎn)熱和肥滿度的研究
    99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| www日本在线高清视频| 午夜福利影视在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 日韩免费高清中文字幕av| 亚洲精品一卡2卡三卡4卡5卡 | 老司机在亚洲福利影院| 亚洲第一av免费看| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩综合在线一区二区| 日本av手机在线免费观看| 乱人伦中国视频| 亚洲男人天堂网一区| 男女边摸边吃奶| 色综合欧美亚洲国产小说| 久久国产亚洲av麻豆专区| 欧美亚洲日本最大视频资源| 看免费成人av毛片| 久久这里只有精品19| 啦啦啦在线免费观看视频4| 久久精品久久久久久久性| 美女中出高潮动态图| 免费观看av网站的网址| 熟女少妇亚洲综合色aaa.| 欧美性长视频在线观看| 欧美 日韩 精品 国产| 欧美黄色片欧美黄色片| 亚洲人成电影免费在线| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 18禁裸乳无遮挡动漫免费视频| 99久久99久久久精品蜜桃| 亚洲精品国产av蜜桃| 久久久久精品人妻al黑| 国产免费福利视频在线观看| 成人国产av品久久久| 久久久久久亚洲精品国产蜜桃av| 99九九在线精品视频| 嫩草影视91久久| 啦啦啦 在线观看视频| 久9热在线精品视频| 91老司机精品| 伊人久久大香线蕉亚洲五| 成年人免费黄色播放视频| 日本色播在线视频| 亚洲国产欧美网| 国产爽快片一区二区三区| 国产在线免费精品| 免费不卡黄色视频| 久久久久网色| 蜜桃在线观看..| 麻豆av在线久日| 国产精品三级大全| 欧美日韩av久久| 男人添女人高潮全过程视频| 男女下面插进去视频免费观看| 成年女人毛片免费观看观看9 | 国产一区二区激情短视频 | 午夜日韩欧美国产| 国产成人系列免费观看| 母亲3免费完整高清在线观看| 国产精品免费大片| 老司机在亚洲福利影院| 亚洲成av片中文字幕在线观看| 久久性视频一级片| 国产成人免费无遮挡视频| 三上悠亚av全集在线观看| 亚洲精品美女久久av网站| 欧美日韩一级在线毛片| av国产久精品久网站免费入址| 女人高潮潮喷娇喘18禁视频| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 97人妻天天添夜夜摸| 日韩欧美一区视频在线观看| 免费高清在线观看视频在线观看| 久久国产亚洲av麻豆专区| 老熟女久久久| 18禁国产床啪视频网站| 黄色视频不卡| 日韩视频在线欧美| 少妇精品久久久久久久| 人妻 亚洲 视频| 国产精品二区激情视频| 黄色视频不卡| 视频在线观看一区二区三区| 亚洲美女黄色视频免费看| 欧美黑人欧美精品刺激| 熟女av电影| 精品一品国产午夜福利视频| 99精国产麻豆久久婷婷| 久久九九热精品免费| 美女扒开内裤让男人捅视频| 精品福利观看| 亚洲图色成人| 捣出白浆h1v1| 国产熟女欧美一区二区| 视频区图区小说| 一级毛片电影观看| 国产免费一区二区三区四区乱码| 午夜激情av网站| 亚洲精品中文字幕在线视频| 免费黄频网站在线观看国产| 国产av一区二区精品久久| 欧美黄色片欧美黄色片| 成人亚洲欧美一区二区av| 母亲3免费完整高清在线观看| 桃花免费在线播放| 成人18禁高潮啪啪吃奶动态图| 91九色精品人成在线观看| 男人爽女人下面视频在线观看| 妹子高潮喷水视频| 飞空精品影院首页| 日本欧美国产在线视频| 国产精品一二三区在线看| 2021少妇久久久久久久久久久| 国产精品99久久99久久久不卡| 999久久久国产精品视频| 日韩欧美一区视频在线观看| 亚洲成色77777| 婷婷色麻豆天堂久久| 操美女的视频在线观看| 国产精品 欧美亚洲| 啦啦啦在线免费观看视频4| 久久久久久免费高清国产稀缺| 人妻 亚洲 视频| 久久精品国产亚洲av高清一级| 国产精品秋霞免费鲁丝片| 亚洲av电影在线进入| 欧美日韩综合久久久久久| 少妇裸体淫交视频免费看高清 | 色婷婷av一区二区三区视频| 中文字幕最新亚洲高清| 国产免费一区二区三区四区乱码| 久久精品久久久久久久性| 十八禁高潮呻吟视频| 十八禁网站网址无遮挡| 亚洲一区二区三区欧美精品| 精品久久久久久电影网| 黄片播放在线免费| 777久久人妻少妇嫩草av网站| 国产野战对白在线观看| av有码第一页| 亚洲av成人精品一二三区| 中文字幕最新亚洲高清| 久久精品亚洲熟妇少妇任你| 狠狠精品人妻久久久久久综合| 久久久精品免费免费高清| 岛国毛片在线播放| 日韩av不卡免费在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 又粗又硬又长又爽又黄的视频| 久久人人爽av亚洲精品天堂| 免费日韩欧美在线观看| 午夜两性在线视频| av在线app专区| 精品少妇黑人巨大在线播放| 麻豆av在线久日| 国产男人的电影天堂91| 高潮久久久久久久久久久不卡| 国产老妇伦熟女老妇高清| 伊人久久大香线蕉亚洲五| 亚洲av美国av| 亚洲欧美一区二区三区黑人| 性少妇av在线| 午夜福利视频精品| 日韩中文字幕欧美一区二区 | 日本av免费视频播放| e午夜精品久久久久久久| av天堂久久9| 免费日韩欧美在线观看| 日韩制服丝袜自拍偷拍| 国产成人一区二区在线| 欧美在线一区亚洲| 国产精品亚洲av一区麻豆| 国产一区二区 视频在线| 亚洲一区中文字幕在线| 日韩制服丝袜自拍偷拍| 深夜精品福利| 母亲3免费完整高清在线观看| 国产男人的电影天堂91| 亚洲五月色婷婷综合| 在线天堂中文资源库| 成人国产av品久久久| 国产极品粉嫩免费观看在线| 激情五月婷婷亚洲| 一本久久精品| 天天躁夜夜躁狠狠躁躁| 久久久久久人人人人人| 香蕉国产在线看| 七月丁香在线播放| 一级毛片电影观看| 国产亚洲av高清不卡| 美女午夜性视频免费| 国产免费现黄频在线看| 国产亚洲精品久久久久5区| 亚洲精品日韩在线中文字幕| 日本wwww免费看| 久久人人爽av亚洲精品天堂| 国产精品一区二区精品视频观看| 国产亚洲av片在线观看秒播厂| 亚洲成色77777| 亚洲一卡2卡3卡4卡5卡精品中文| 人人澡人人妻人| 亚洲熟女毛片儿| 在线观看免费视频网站a站| 90打野战视频偷拍视频| 在线观看免费午夜福利视频| 亚洲国产精品一区三区| 九色亚洲精品在线播放| 国产成人系列免费观看| 99国产精品一区二区蜜桃av | 久久影院123| 乱人伦中国视频| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 亚洲av电影在线进入| 国产人伦9x9x在线观看| 美女中出高潮动态图| 在线观看免费午夜福利视频| 激情视频va一区二区三区| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区av网在线观看 | 欧美人与性动交α欧美软件| 岛国毛片在线播放| 两个人看的免费小视频| 在线观看免费视频网站a站| 人人妻人人澡人人看| 五月天丁香电影| 大香蕉久久网| 久久久精品94久久精品| 亚洲国产毛片av蜜桃av| 老司机午夜十八禁免费视频| 午夜视频精品福利| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 国产有黄有色有爽视频| 日日夜夜操网爽| 日韩欧美一区视频在线观看| av又黄又爽大尺度在线免费看| 国产成人欧美| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 国产成人精品久久久久久| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 一级毛片电影观看| 国产淫语在线视频| 久久精品亚洲av国产电影网| 欧美 亚洲 国产 日韩一| www.av在线官网国产| 黑人猛操日本美女一级片| 乱人伦中国视频| 成人手机av| 丝袜脚勾引网站| 90打野战视频偷拍视频| 中文字幕av电影在线播放| 成人午夜精彩视频在线观看| 色综合欧美亚洲国产小说| 成人国产一区最新在线观看 | 嫩草影视91久久| 欧美亚洲 丝袜 人妻 在线| 国产精品熟女久久久久浪| 国产精品九九99| 欧美大码av| 国产成人系列免费观看| 桃花免费在线播放| av天堂在线播放| 成年人黄色毛片网站| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区久久久樱花| 国产成人av激情在线播放| 在线观看免费视频网站a站| 国产成人免费观看mmmm| 日韩制服丝袜自拍偷拍| 女警被强在线播放| 欧美日韩亚洲高清精品| 制服诱惑二区| 久久久久久免费高清国产稀缺| av网站免费在线观看视频| 天天躁日日躁夜夜躁夜夜| 日本黄色日本黄色录像| 精品一区二区三区av网在线观看 | 秋霞在线观看毛片| 日韩人妻精品一区2区三区| 欧美人与性动交α欧美软件| 日韩熟女老妇一区二区性免费视频| 欧美精品av麻豆av| 午夜免费观看性视频| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 亚洲av成人不卡在线观看播放网 | 国精品久久久久久国模美| a级片在线免费高清观看视频| 成人三级做爰电影| 欧美在线黄色| 久久久久国产一级毛片高清牌| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 少妇裸体淫交视频免费看高清 | 亚洲欧美激情在线| 最新的欧美精品一区二区| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品自产自拍| av不卡在线播放| 国产男女超爽视频在线观看| 真人做人爱边吃奶动态| 看十八女毛片水多多多| 91精品伊人久久大香线蕉| 99国产精品免费福利视频| 男女国产视频网站| 国产精品久久久人人做人人爽| 一级片'在线观看视频| 午夜福利视频在线观看免费| 在线av久久热| 亚洲成人免费av在线播放| 国产成人av教育| 国产精品久久久久久精品古装| 视频在线观看一区二区三区| 国产视频一区二区在线看| 满18在线观看网站| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 69精品国产乱码久久久| 久久久精品94久久精品| 亚洲国产精品成人久久小说| 日韩视频在线欧美| 亚洲色图 男人天堂 中文字幕| xxxhd国产人妻xxx| 国产亚洲一区二区精品| 夫妻性生交免费视频一级片| 多毛熟女@视频| 欧美日韩亚洲高清精品| 高清黄色对白视频在线免费看| 精品少妇久久久久久888优播| 91成人精品电影| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 亚洲人成网站在线观看播放| 日韩伦理黄色片| 国产片特级美女逼逼视频| 啦啦啦 在线观看视频| 日韩av免费高清视频| 丝袜在线中文字幕| 中文字幕人妻丝袜制服| 91老司机精品| 国产在线观看jvid| 亚洲美女黄色视频免费看| 2021少妇久久久久久久久久久| 成年人免费黄色播放视频| 国产精品免费大片| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 精品国产超薄肉色丝袜足j| 一区二区三区精品91| 亚洲五月色婷婷综合| 麻豆av在线久日| 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| 一边摸一边做爽爽视频免费| 国产色视频综合| 热re99久久精品国产66热6| 成人手机av| 欧美日韩黄片免| 国产精品一国产av| 亚洲国产成人一精品久久久| 精品一区二区三区四区五区乱码 | 后天国语完整版免费观看| 久久久久久免费高清国产稀缺| 国产色视频综合| 另类精品久久| 美女主播在线视频| 日韩制服丝袜自拍偷拍| 十分钟在线观看高清视频www| 国产亚洲av片在线观看秒播厂| 亚洲成国产人片在线观看| 波多野结衣av一区二区av| 亚洲成国产人片在线观看| 国产一区有黄有色的免费视频| av又黄又爽大尺度在线免费看| 国产免费又黄又爽又色| 国产精品 欧美亚洲| 欧美变态另类bdsm刘玥| 青青草视频在线视频观看| 国产在线视频一区二区| 精品卡一卡二卡四卡免费| 99精国产麻豆久久婷婷| 五月天丁香电影| av网站免费在线观看视频| 久热爱精品视频在线9| 亚洲一区二区三区欧美精品| 亚洲av综合色区一区| 美女主播在线视频| 日本五十路高清| 亚洲成国产人片在线观看| 日本欧美视频一区| 亚洲欧洲日产国产| 国产成人一区二区在线| 真人做人爱边吃奶动态| 肉色欧美久久久久久久蜜桃| a级毛片黄视频| 日韩av在线免费看完整版不卡| 亚洲欧美激情在线| 精品熟女少妇八av免费久了| 国产在线一区二区三区精| 亚洲免费av在线视频| 久久国产精品男人的天堂亚洲| 国产激情久久老熟女| 人妻 亚洲 视频| 久久影院123| 精品人妻熟女毛片av久久网站| 啦啦啦视频在线资源免费观看| 久久久国产精品麻豆| 欧美日韩国产mv在线观看视频| 国产亚洲精品久久久久5区| 成年人午夜在线观看视频| 色精品久久人妻99蜜桃| 性色av一级| 在线观看免费午夜福利视频| 在线观看人妻少妇| 黑人猛操日本美女一级片| 久久亚洲国产成人精品v| 免费在线观看日本一区| 99香蕉大伊视频| 自线自在国产av| 日韩大片免费观看网站| 精品人妻在线不人妻| 在线观看国产h片| 日韩,欧美,国产一区二区三区| 国产成人a∨麻豆精品| 99国产综合亚洲精品| 欧美精品啪啪一区二区三区 | 操出白浆在线播放| av在线老鸭窝| 男女高潮啪啪啪动态图| 啦啦啦 在线观看视频| 久久精品国产综合久久久| 肉色欧美久久久久久久蜜桃| 亚洲专区国产一区二区| 别揉我奶头~嗯~啊~动态视频 | 欧美激情高清一区二区三区| 国产黄色视频一区二区在线观看| 成年人黄色毛片网站| www.自偷自拍.com| 自拍欧美九色日韩亚洲蝌蚪91| 建设人人有责人人尽责人人享有的| 91国产中文字幕| 亚洲专区中文字幕在线| 日本vs欧美在线观看视频| 国产xxxxx性猛交| 欧美精品av麻豆av| 美女高潮到喷水免费观看| 婷婷色综合www| cao死你这个sao货| 久久国产精品影院| 亚洲激情五月婷婷啪啪| 黄色 视频免费看| 久久这里只有精品19| 国产xxxxx性猛交| 国产精品一区二区在线不卡| 久久精品人人爽人人爽视色| 久久久久网色| 欧美日韩视频精品一区| 国产野战对白在线观看| 精品一区在线观看国产| 久久久久精品人妻al黑| 高清欧美精品videossex| 电影成人av| 妹子高潮喷水视频| 一级毛片 在线播放| 精品一品国产午夜福利视频| 久久99热这里只频精品6学生| 99国产综合亚洲精品| 亚洲欧美一区二区三区国产| 最黄视频免费看| 国产亚洲av片在线观看秒播厂| √禁漫天堂资源中文www| 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| cao死你这个sao货| 国产成人欧美| 成年女人毛片免费观看观看9 | 亚洲欧洲日产国产| 黄色视频不卡| 久久久久网色| 一区在线观看完整版| 久久久国产欧美日韩av| 中国国产av一级| 波野结衣二区三区在线| 亚洲欧美一区二区三区国产| 99热国产这里只有精品6| 国产在线观看jvid| 欧美日韩视频高清一区二区三区二| 成人亚洲欧美一区二区av| 九色亚洲精品在线播放| 黄色片一级片一级黄色片| 午夜影院在线不卡| 黄色a级毛片大全视频| 国产精品av久久久久免费| 亚洲精品第二区| 人人妻人人澡人人看| 国产淫语在线视频| 亚洲精品av麻豆狂野| 免费女性裸体啪啪无遮挡网站| 亚洲成人免费电影在线观看 | 久久亚洲精品不卡| 黄色毛片三级朝国网站| 久久99一区二区三区| 精品国产超薄肉色丝袜足j| av片东京热男人的天堂| 亚洲精品一二三| 好男人视频免费观看在线| 久久久亚洲精品成人影院| 18禁观看日本| svipshipincom国产片| 看免费成人av毛片| 国产精品久久久久久精品电影小说| 波多野结衣一区麻豆| 国产精品久久久av美女十八| 午夜免费鲁丝| 男女免费视频国产| 亚洲国产欧美日韩在线播放| 又粗又硬又长又爽又黄的视频| 捣出白浆h1v1| 成年人午夜在线观看视频| 日本午夜av视频| 国产一区有黄有色的免费视频| 久久综合国产亚洲精品| 久久人妻熟女aⅴ| 啦啦啦啦在线视频资源| 视频区图区小说| 91成人精品电影| 成人三级做爰电影| 欧美黑人精品巨大| 肉色欧美久久久久久久蜜桃| 国产一区亚洲一区在线观看| 一个人免费看片子| 日韩中文字幕视频在线看片| 青春草视频在线免费观看| 搡老乐熟女国产| 美女高潮到喷水免费观看| 91九色精品人成在线观看| 男女免费视频国产| 亚洲欧美激情在线| 18禁黄网站禁片午夜丰满| 亚洲成人免费av在线播放| 国产亚洲午夜精品一区二区久久| 国产精品国产av在线观看| 国产精品免费大片| av欧美777| 欧美精品av麻豆av| 国产精品久久久人人做人人爽| 青春草亚洲视频在线观看| 亚洲第一青青草原| 黄色a级毛片大全视频| 国产精品.久久久| 天天躁日日躁夜夜躁夜夜| 久久精品国产亚洲av高清一级| 亚洲欧美精品综合一区二区三区| 欧美亚洲 丝袜 人妻 在线| 少妇粗大呻吟视频| 日本vs欧美在线观看视频| 男人添女人高潮全过程视频| 精品一区在线观看国产| www.999成人在线观看| 午夜福利视频精品| 性色av乱码一区二区三区2| 九色亚洲精品在线播放| 香蕉国产在线看| 99久久人妻综合| 日韩大片免费观看网站| 国产免费又黄又爽又色| 亚洲欧洲日产国产| av在线app专区| 亚洲精品国产一区二区精华液| 日韩 欧美 亚洲 中文字幕| av网站在线播放免费| 欧美变态另类bdsm刘玥| 久久青草综合色| 精品国产乱码久久久久久男人| 亚洲精品一卡2卡三卡4卡5卡 | 久久亚洲精品不卡| 成人18禁高潮啪啪吃奶动态图| 欧美黑人欧美精品刺激| 啦啦啦视频在线资源免费观看| 免费高清在线观看日韩| 老司机亚洲免费影院| 1024视频免费在线观看| 免费在线观看影片大全网站 | 婷婷色综合www| 久久久亚洲精品成人影院| 亚洲av综合色区一区| 操美女的视频在线观看| 日韩精品免费视频一区二区三区| 丰满迷人的少妇在线观看| 午夜福利免费观看在线| 久久久久网色| 午夜视频精品福利| 超色免费av| 亚洲 国产 在线| 美女扒开内裤让男人捅视频| 国产在线视频一区二区| 夜夜骑夜夜射夜夜干| 久久精品成人免费网站| 欧美成人精品欧美一级黄| 精品国产一区二区久久| 日韩精品免费视频一区二区三区| 亚洲精品久久午夜乱码| 狠狠婷婷综合久久久久久88av| 一二三四在线观看免费中文在| 观看av在线不卡|