• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Notch signaling dependent differentiation of cholangiocyte-like cells from rhesus monkey embryonic stem cells

    2011-12-25 06:39:44JINLiFangJIShaoHuiYANGJiFengJIWeiZhi
    Zoological Research 2011年4期
    關(guān)鍵詞:獼猴膽管生物學(xué)

    JIN Li-Fang, JI Shao-Hui, YANG Ji-Feng,3, JI Wei-Zhi,*

    (1. College of Life Science of Shaoxing University, Shaoxing Zhejiang 312000, China; 2. Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223, China; 3. College of Life Science of Wenzhou Medical College, Shaoxing Zhejiang 325035, China)

    Notch signaling dependent differentiation of cholangiocyte-like cells from rhesus monkey embryonic stem cells

    JIN Li-Fang1,2, JI Shao-Hui2, YANG Ji-Feng2,3, JI Wei-Zhi2,*

    (1. College of Life Science of Shaoxing University, Shaoxing Zhejiang 312000, China; 2. Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming Yunnan 650223, China; 3. College of Life Science of Wenzhou Medical College, Shaoxing Zhejiang 325035, China)

    Rhesus monkey embryonic stem (rES) cells have similar characteristics to human ES cells, and might be useful as a substitute model for preclinical research. Notch signaling is involved in the formation of bile ducts, which are composed of cholangiocytes. However, little is known about the role of Notch signaling in cholangiocytic commitment of ES cells. We analyzed the effect of Notch signaling on the induction of cholangiocyte-like cells from rES cells. About 80% of definitive endoderm (DE) cells were generated from rES cells after treatment with activin A. After treatment with BMP4 and FGF1 on matrigel coated wells in serum-free medium, rES-derived DE gave rise to cholangiocyte-like cells by expression of cholangiocytic specific proteins (CK7, CK18, CK19, CK20, and OV-6) and genes (GSTPi, IB4, and HNF1β). At the same time, expression of Notch 1 and Notch 2 mRNA were detected during cell differentiation, as well as their downstream target genes such as Hes 1 and Hes 5. Inhibition of the Notch signal pathway by L-685458 resulted in decreased expression of Notch and their downstream genes. In addition, the proportion of cholangiocyte-like cells declined from ~90% to ~20%. These results suggest that Notch signaling may play a critical role in cholangiocytic development from ES cells.

    Rhesus monkey; Embryonic stem cells; Cholangiocytes; Notch signaling

    Based on their ability to proliferate and their capacity to differentiate into specific cell types, embryonic stem (ES) cells are a potential source for cell transfer therapy in hepatic diseases. Although several studies have reported on the differentiation of hepatic cells from human (Duan et al, 2007), mouse (Hamazaki et al, 2001) and monkey ES cells (Ma et al, 2008; Jin et al, 2009), it remains unclear which factors are responsible for the induction of hepatic differentiation of ES cells.

    Notch proteins are cell-surface receptors activated by interactions with cell surface ligands of the Jagged/Delta family. The mammalian family of Notch receptors consists of four members: Notch 1 through 4. Binding of the ligand to the Notch receptor induces site specific cleavage resulting in the release of the Notch Intracellular Domain (NICD). The NICD translocates to the nucleus where it modulates gene expression through interaction with members of the CSL (CBF-1, Suppressor of Hairless, lag-1) family of transcription factors. Activated Notch signaling elevates the expression of specific genes, including Hes 1 and Hes 5. Notch signaling has been shown to play an important role in cell-fate determination, cell survival, proliferation, and differentiation (Ma et al, 2007). The association of Notch signaling with cholangiocytes formation has been implicated in the literature (Lozier et al, 2008; Tanimizu & Miyajima, 2004); however, little is known about the mechanism of cholangiocytic commitment of ES cells.

    In view of the close similarities between human and nonhuman primates, the rhesus monkey is a perfect animal model to better understand liver developmental processes in primates, and for preclinical assessment of cell transfer therapy protocols. In the present study, we analyzed the effect of Notch signaling on cholangiocytelike cells induction from rES cells in monolayer differentiation systems.

    1 Materials and Methods

    1.1 Culture of rhesus monkey ES cells

    The rES cell line (366.4) was obtained from Dr. James Thomson, Wisconsin National Primate Research Center. Undifferentiated rES cells were expanded on a feeder layer of mitomycin-treated mouse embryonic fibroblasts seeded on 0.1% gelatin-coated plates, and cultured in Dulbecco’s modified Eagle medium (DMEM, Invitrogen, Fremont, CA) containing 15% FBS (Hyclone, Logan, UT), 1% nonessential amino acids (Sigma-Aldrich, Louis, MO), 0.1 mmol/L 2-mercaptomethanol (Sigma-Aldrich, St. Louis, MO), 2 mmol/L L-glutamine (Sigma-Aldrich, Louis, MO), and 1% penicillin/ streptomycin (Sigma-Aldrich, Louis, MO). Medium was changed daily, and rES colonies were manually split every four days to select for undifferentiated rES cells.

    1.2 Growth factors induced cholangiocyte-like differentiation of rES cells

    For definitive endoderm (DE) differentiation, the rES cell colonies were manually cut into small clumps of approximately 100 cells, plated on Matrigel-coated culture dishes, and differentiated in DMEM/F12 containing 1% FBS with 100 ng/mL human activin A (R&D systems) for 4-5 days. For cholangiocytic-like differentiation, the rES-derived DE cultures were passaged with 10 mg/mL of dispase and plated at a ratio of 1:2 on type I collagen (Sigma-Aldrich, Louis, MO) coated wells, and cultured in F12 medium supplemented with 2% knockout serum replacement (Gibco, Auckland, NZ), 100 ng/mL FGF1(R&D systems), and 20 ng/mL of BMP4(R&D systems) for 5?7 days. To study the effect of Notch signaling on cell differentiation, cells were cultured with or without 50 nmol/L Notch inhibitor (L-685458) (Bachem Bioscience, King of Prussia, PA) in F12 medium supplemented with 2% knockout serum replacement, 100 ng/mL of FGF1, and 20 ng/mL of BMP4 for 5?7 days.

    1.3 Immunocytochemistry (ICC)

    Cells were fixed with 4% paraformaldehyde in PBS for 10 min and washed with PBS three times, followed by permeabilization with 0.2% Triton X-100 for 10 min and blockage with 4% goat serum for 30 min at 25 °C. Subsequently, the cells were incubated with the primary antibodies (see Tab. 1) in staining solution (PBS containing 4% goat serum) for 40 min at 37 °C, and then incubated with the appropriate Texas red, PE or FITC-conjugated secondary antibody in staining solution for 30 min at 37 °C. The negative control was incubated in thestaining solution without primary antibodies.

    Tab. 1 Primary antibodies

    1.4 Reverse transcription-polymerase chain reaction (RT-PCR)

    Total RNA was isolated with Trizol reagent (Invitrogen, Calsbad, CA) according to the manufacturer’s protocols. Reverse transcription was carried out with approximately 1 μg of total RNA in 20 μL of 1 × master mix (1 × reverse transcription buffer, 0.5 mol/L dNTPs, 50 pmol of oligo(dT) primer, 20 U of RNase inhibitor and 5 U of reverse transcriptase) at 42 °C for one hour. For PCR, 1 μL of RT products was added to 1 × PCR master mix (1 × PCR reaction buffer, 1.5 mmol/L of MgCl2, 0.5 mmol/L of dNTPs, 0.4 μmol/L of forward primer, and 0.4 μmol/L of reverse primer (see supplemental Tab. 2), 1.25 U of Taq DNA polymerase in a 25 μL final volume and amplified by 25?35 cycles of PCR (95°C 30 s; 52 ? 60 °C 30 s; 72 °C 30 s ) followed by a final extension at 72 °C for 5 min. All reagents in RT-PCR were purchased from Takara (Takara, Dalian, China) unless otherwise mentioned. Products of PCR were separated on a 2% agarose gel and stained with ethidium bromide. The primer sequence for IB4 is 5′-GCACGGACGAGATGTTCAG-3′/5′-ACTTGC CAAATCCAATAGTGTAG-3′; for GSTpi is 5′-GGACGG AGACCTCACCCTGTA-3′/5′-TCTTGCCTCCCTGGTTC TGG-3′; for HNF1β is 5′-GAAACAATGAGATCACTT CCTCC-3′/5′-CTTTGTGCAATTGCCATGACTCC-3′.

    1.5 Analysis

    For qualitative analysis, all differentiation experiments were replicated three times, andP≤0.05 was taken as significant.

    2 Results and Discussion

    2.1 Efficient generation of DE from rES cells

    The rES clumps containing approximately 100 cells were collected and seeded on Matrigel-coated 4-well plates, and cultured with 100 ng/mL of activin A and 1% FBS for 5 days. After one day of induction, more than 90% of cells were strongly positive for brachyury, and only a few of the brachyury positive cells were faintly costained for SOX17(Fig. 1A). After two days of induction, the ratio of cells staining for both SOX17 and brachyury was beyond 80% (Fig. 1A). The SOX17/ brachyury double positive populations are regarded as generation of DE from ES cells (D'Amour et al, 2005; Yasunaga et al, 2005). In addition, the brachyury expression level gradually declined while the SOX17 expression level gradually increased with culture, with the peak of SOX17 expression observed at day four of differentiation (Fig. 1A), indicating that production of DE was a gradual differentiation process. On the contrary, untreated rES did not express brachyury and Sox17 (Fig. 1B).

    Fig. 1 Double labeling of differentiated cells by brachyury (red), SOX17 (green), Hoechst (nuclei, blue) and merged views of the same field of DE and rES cells

    Fig. 2 FoxA2 was expressed in activin A induced rES cells

    Consistent with the expression pattern of SOX17, we observed an increase in FoxA2 levels in activin A treated rES cells as differentiation proceeded (Fig. 2A), and untreated rES did not express FoxA2 (Fig. 2A). Genetic studies of nonmammalian organisms support a role for FoxA2 factors in endoderm development (Rehorn et al, 1996). Thus, expression of FoxA2 in differentiated cells also indicated that DE cells were generated.

    To further verify that the SOX17 positive cells were DE cells, the CXCR4 expression was examined to distinguish DE from visceral endoderm (D'Amour et al, 2005). The CXCR4 positive cells were first observed on the third day of differentiation, and the proportion of CXCR4 positive cells increased up to 80% on the fourth day of differentiation (Fig. 3). Almost 100% of CXCR4 positive cells co-expressed SOX17 (Fig. 3). As previously mentioned, SOX17 was expressed in definitive, primitive and parietal endoderm cells, while CXCR4 was expressed in the mesoderm and DE cells. Thus, the SOX17/CXCR4 double positive populations should be definitive endoderm. Furthermore, the differentiated cells did not express the visceral endoderm marker alpha fetoprotein at any point during culture (data not shown). This evidence clearly indicates that activin A efficiently generated definitive endoderm from rES under low serum conditions.

    Fig. 3 Double labeling of differentiated cells by CXCR4 (red), SOX17 (green), Hoechst (nuclei, blue) and merged views of the same field at 4 days

    2.2 Cholangiocyte-like cells lineages differentiation of rES-derived definitive endoderm (DE) cells

    Growth factors, such as FGFs, BMPs, HGF, OSM and Dex, are critical for hepatic endoderm morphogenesis and can promote hepatic differentiation (Kinoshita & Miyajima, 2002), and HGF, FGF-2 and OSM/Dex are critical for generation of hepatocytes from DEin vitro. In the present study, we examined the effect of BMP4 and FGF1 on hepatic fate differentiation from rES-derived DE. After 5?7 days induction, more than 90% of cultured cells expressed CK18 and CK19 (Fig. 4A), specific markers of bile duct cells. About 40% of cultured cells were stained for CK7 and CK20 (Fig. 4A), which are present in mature bile duct cells. In addition, another important protein of cholangiocytic marker OV6 was also detected in the differentiated cells (Fig. 4A). Conversely, DE cells were negative for CK7, CK20 and OV-6 (Fig. 4A). Cells were further analyzed by RT-PCR to confirm the presence of cholangiocyte-like cells in the differentiated cells. As expected, the differentiated cells expressed HNF1β, an important transcription factor controlling bile duct cell differentiation during liver development, as well as GSTPi and IB4, which are indicative of the presence of cholangiocyte-like cells (Fig. 4B). Unexpectedly, neither AFP nor ALB were detected in induced cells at either protein or mRNA levels. Thus, expression of the CK7, CK19, CK20 and OV6 proteins as well as the HNF1β, GSTPi and IB4 genes in cells from rES indicated that cholangiocyte-like cells were generated.

    Fig. 4 Induction of cholangiocytes from rES-derived definitive endoderm by FGF1 and BMP4

    2.3 Specification of rES-derived cholangiocyte like cells was Notch dependent

    The Notch signaling pathway specifies cell fate during bipotential cell fate decisions and controls various biological events (Ehebauer et al, 2006), including the expression of transcription factors for exocrine cells, formation of bile ducts, and association with human Alagille syndrome (Crosnier et al, 2000). Notch 1 and Notch 2 are specifically expressed in proliferating hepatoblasts. Deletion of Notch 2 results in cholangiocyte and bile duct defects, while deletion of Notch 1 does not result in bile duct paucity (Lozier et al, 2008). Both the Hes1 and Hes5 genes, which encode a basic helix-loophelix protein, are downstream effectors of the Notch pathway. The Hes1-null mice formed a relatively-normal ductal plate consisting of cytokeratin- and DBA-positive cholangiocyte precursors, suggesting that the primary defect in these mice was not in the initial bipotential cell fate decision of the hepatoblasts (Kodama et al, 2004).

    Given the importance of Notch activation in cholangiocyte-like specification from rES-derived definitive endoderm, we tested the expression of Notches and downstream target genes in the differentiation cultures. Notch 1 and Notch 2 mRNA were clearly detected after five days differentiation, as well as their downstream target genes such as Hes 1 and Hes 5 (Fig. 5B, line 1). The expression of Notch genes was accompanied by the expression of Notch intracellular domain (NICD) (Fig. 5A, untreated group). These results suggested that Notch signaling was active in cholangiocyte-like differentiation from rES-derived definitive endoderm.

    To further confirm the role of Notch on cholangiocytelike specification, Notch inhibitor (L-685458) was supplemented in the differentiated medium at a concentration of 50 nM. After five days of culture, the expression of Notch genes as well as Hes 1 and Hes 5 significantly declined in the treatment group compared with the control group (Fig. 5B, line 2). As expected, the expression of NICD also declined (Fig 5B, treatment group). In addition, the proportion of CK19 positive cells significantly decreased to ~20% (as a percentage of total number of CK19-positive cells in multiple fields of hoechst positive cells), compared with ~90% of CK19 positive cells in the control group. Thus, consistent with previous studies (Kodama et al, 2004; Tanimizu & Miyajima, 2004), our results suggested Notch was essential for cholangiocyte-like differentiation from rES-derived DE.

    Fig. 5 Notch signaling was critical for cholangiocytic differentiation from rES-derived definitive endoderm

    In this study, we established reproducible and efficient protocols for definitive endoderm and cholangiocyte-like cell generation from rES cells by monitoring lineage development at different stages. Furthermore, our results suggested that the cholangiocytelike development of DE was Notch signaling dependent.

    Crosnier C, Attie-Bitach T, Encha-Razavi F, Audollent S, Soudy F, Hadchouel M, Meunier-Rotival M, Vekemans M. 2000. JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome [J].Hepatology, 32(3): 574-581.

    D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. 2005. Efficient differentiation of human embryonic stem cells to definitive endoderm [J].Nat Biotechnol, 23(12): 1534-1541.

    Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, Gambhir SS, Zern MA. 2007. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells invitroandin vivo[J].Stem Cells, 25(12): 3058-3068.

    Ehebauer M, Hayward P, Arias AM. 2006. Notch, a universal arbiter of cell fate decisions [J].Science, 314(5804): 1414-1415.

    Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, Zon LI, Terada N. 2001. Hepatic maturation in differentiating embryonic stem cellsin vitro[J].FEBS lett, 497(1): 15-19.

    Jin LF, Ji SH, Guo XY, Wang XH, Ji WZ. 2009. Induction of rhesus monkey embryonic stem cells into hepatocyte-like cells by a three-step method [J].Zool Res, 30(5): 509-514 (in Chinese).

    Kinoshita T, Miyajima A. 2002. Cytokine regulation of liver development [J].Biochim Biophys Acta, 1592(3): 303-312.

    Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T. 2004. The role of notch signaling in the development of intrahepatic bile ducts [J].Gastroenterology, 127(6): 1775-1786.

    Lozier J, McCright B, Gridley T. 2008. Notch signaling regulates bile duct morphogenesis in mice [J].PLOS One, 3(3): e1851, 1-6.

    Ma A, Boulton M, Zhao B, Connon C, Cai J, Albon J. 2007. A role for notch signaling in human corneal epithelial cell differentiation and proliferation [J].IOVS, 48(8): 3576-3585.

    Ma X, Duan Y, Jung CJ, Wu J, VandeVoort CA, Zern MA. 2008. The differentiation of hepatocyte-like cells from monkey embryonic stem cells [J].Cloning Stem Cells, 10(4): 485-493.

    Rehorn KP, Thelen H, Michelson AM, Reuter R. 1996. A molecular aspect of hematopoiesis and endoderm development common to vertebrates andDrosophila[J].Development, 122(12): 4023-4031.

    Tanimizu N, Miyajima A. 2004. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors [J].J Cell Sci, 117(15): 3165-3174.

    Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa S. 2005. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells [J].Nat Biotechnol, 23(12): 1542-1550.

    Notch 信號(hào)通路調(diào)控獼猴胚胎干細(xì)胞的膽管樣細(xì)胞分化

    金立方1,2, 紀(jì)少琿2, 楊紀(jì)峰2,3, 季維智2,*

    (1.紹興文理學(xué)院 生命科學(xué)學(xué)院,浙江 紹興312000; 2.中國科學(xué)院昆明動(dòng)物研究所 云南省動(dòng)物生殖生物學(xué)重點(diǎn)實(shí)驗(yàn)室,云南 昆明650223; 3.溫州醫(yī)學(xué)院 生命科學(xué)學(xué)院,浙江 溫州325035)

    獼猴胚胎干細(xì)胞(rhesus monkey embryonic stem (rES))與人胚胎干細(xì)胞有相似的生物學(xué)特性, 因此是理想的臨床前研究的替代模型。Notch信號(hào)通路在膽管及膽管上皮細(xì)胞的形成中有重要的作用, 然而, 有關(guān)Notch信號(hào)通路在ES細(xì)胞的膽向分化中的作用了解甚少。該實(shí)驗(yàn)以rES為模型, 對(duì)Notch信號(hào)通路對(duì)ES細(xì)胞的膽向分化過程中的作用進(jìn)行了較為系統(tǒng)的研究。rES在細(xì)胞因子Activin A誘導(dǎo)作用下產(chǎn)生約80%的限定性內(nèi)胚層細(xì)胞。以Matrigel作為細(xì)胞外基質(zhì), 在含BMP4和FGF1的無血清培養(yǎng)體系中繼續(xù)誘導(dǎo)5~7 d, rES細(xì)胞來源的限定性內(nèi)胚層細(xì)胞分化產(chǎn)生約膽管樣細(xì)胞。分化的細(xì)胞表達(dá)膽管細(xì)胞的特異性蛋白((CK7、CK18、CK19、CK20 和OV-6)及基因(GSTPi、IB4 和 HNF1β)。在膽管樣細(xì)胞的分化過程中檢測(cè)到了Notch 1和Notch 2基因及下游信號(hào)分子hes 1和hes 5的表達(dá)。用Notch抑制劑L-685458處理分化過程中的細(xì)胞可導(dǎo)致Notch 1和Notch 2基因及下游信號(hào)分子hes 1和hes 5的表達(dá)下降, 同時(shí)CK19陽性的膽管樣細(xì)胞分化比率也從90%下降至約20%。這一研究提示Notch信號(hào)通路可能在ES細(xì)胞的膽管樣分化過程中扮演重要的角色。

    獼猴; 胚胎干細(xì)胞; 膽管細(xì)胞; Notch 信號(hào)通路

    Q813; Q959.848

    A

    0254-5853-(2011)04-0391-05

    2011-01-21;接受日期:2011-06-11

    金立方(1978-),男,浙江上虞人,講師,博士,研究方向?yàn)楦杉?xì)胞生物學(xué);E-mail: lifangj@sohu.com

    10.3724/SP.J.1141.2011.04391

    date: 2011-01-21; Accepted date: 2011-06-11

    s: This work was supported by research grants from Zhejiang Natural Sciences Foundation of China (Y2110911; Y2080996), and the National Key Technologies R&D Program of China (2007CB947701)

    *Corresponding author (通信作者), Tel/Fax: +86-0871-5139413, E-mail: wji@mail.kiz.ac.cn

    猜你喜歡
    獼猴膽管生物學(xué)
    小獼猴征集令
    谷稗的生物學(xué)特性和栽培技術(shù)
    小獼猴話跆拳道
    童話世界(2020年32期)2020-12-25 02:59:14
    初中生物學(xué)糾錯(cuò)本的建立與使用
    初中生物學(xué)糾錯(cuò)本的建立與使用
    小獼猴偵探社
    小獼猴偵探社
    PEDF抗腫瘤的生物學(xué)作用
    腹腔鏡膽囊切除術(shù)膽管損傷12例
    膽管支氣管瘺1例
    内地一区二区视频在线| 男女免费视频国产| 欧美激情国产日韩精品一区| 精品亚洲成a人片在线观看 | 国产大屁股一区二区在线视频| 在线免费观看不下载黄p国产| 麻豆乱淫一区二区| 男人爽女人下面视频在线观看| 成年人午夜在线观看视频| 麻豆成人午夜福利视频| 18禁裸乳无遮挡免费网站照片| 亚洲va在线va天堂va国产| 婷婷色综合www| 嫩草影院入口| 国产精品久久久久久av不卡| 国产免费一区二区三区四区乱码| 日韩免费高清中文字幕av| 亚洲四区av| 夜夜骑夜夜射夜夜干| 免费观看的影片在线观看| 国语对白做爰xxxⅹ性视频网站| 好男人视频免费观看在线| 亚洲国产最新在线播放| 女人十人毛片免费观看3o分钟| 免费观看性生交大片5| 国产成人免费无遮挡视频| 国产免费视频播放在线视频| 免费观看无遮挡的男女| 美女福利国产在线 | 少妇人妻精品综合一区二区| 青春草国产在线视频| 男人狂女人下面高潮的视频| 妹子高潮喷水视频| 国产欧美日韩一区二区三区在线 | 最新中文字幕久久久久| 深夜a级毛片| 日本色播在线视频| 最新中文字幕久久久久| 国产成人91sexporn| 18禁裸乳无遮挡动漫免费视频| 精品一区二区免费观看| 国产成人91sexporn| 国产男女内射视频| 中文精品一卡2卡3卡4更新| 日韩av免费高清视频| 国产成人91sexporn| 久久久成人免费电影| 成人国产av品久久久| 丝袜喷水一区| 欧美高清性xxxxhd video| 精品人妻一区二区三区麻豆| 联通29元200g的流量卡| 成人一区二区视频在线观看| 日韩一区二区视频免费看| 国产精品不卡视频一区二区| 97超碰精品成人国产| 看免费成人av毛片| 国产av码专区亚洲av| av.在线天堂| 久久久久久九九精品二区国产| 这个男人来自地球电影免费观看 | 精品久久久久久久久亚洲| 国产成人91sexporn| 一边亲一边摸免费视频| 伦理电影免费视频| 欧美性感艳星| 精品久久久久久久末码| 大香蕉97超碰在线| 国产精品99久久99久久久不卡 | 日韩电影二区| 亚洲欧美成人精品一区二区| 精品少妇黑人巨大在线播放| 欧美区成人在线视频| 日韩欧美 国产精品| 只有这里有精品99| 一区在线观看完整版| 日韩制服骚丝袜av| 97在线视频观看| 校园人妻丝袜中文字幕| 性色avwww在线观看| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区国产| 极品教师在线视频| 精品亚洲乱码少妇综合久久| 亚洲第一av免费看| 亚洲人成网站在线观看播放| 九草在线视频观看| 精品国产一区二区三区久久久樱花 | 国产在线一区二区三区精| 国产日韩欧美亚洲二区| 免费人成在线观看视频色| 久久av网站| 看十八女毛片水多多多| 大香蕉久久网| 国产精品99久久久久久久久| 国产成人精品福利久久| 亚洲欧美精品自产自拍| 免费人妻精品一区二区三区视频| 搡女人真爽免费视频火全软件| 久久人人爽人人爽人人片va| 午夜免费鲁丝| 嫩草影院入口| 国产 精品1| 久热久热在线精品观看| 久热久热在线精品观看| 亚洲av成人精品一区久久| 国产精品人妻久久久久久| 五月开心婷婷网| 欧美xxⅹ黑人| 亚洲天堂av无毛| 中文精品一卡2卡3卡4更新| 午夜免费鲁丝| 中文字幕精品免费在线观看视频 | 国产黄色视频一区二区在线观看| 极品教师在线视频| 精品久久久噜噜| 高清视频免费观看一区二区| 老司机影院毛片| 天天躁夜夜躁狠狠久久av| 最新中文字幕久久久久| 亚洲国产欧美人成| 国产精品爽爽va在线观看网站| 色哟哟·www| 伦理电影免费视频| 国产国拍精品亚洲av在线观看| 精品少妇久久久久久888优播| 一本久久精品| 天堂俺去俺来也www色官网| 精品亚洲成a人片在线观看 | 国产精品三级大全| 久久 成人 亚洲| 色婷婷久久久亚洲欧美| 色视频www国产| 国产 一区 欧美 日韩| 欧美高清成人免费视频www| 网址你懂的国产日韩在线| 午夜福利网站1000一区二区三区| 99久久精品热视频| 午夜福利网站1000一区二区三区| 日产精品乱码卡一卡2卡三| 欧美bdsm另类| 久久人人爽人人爽人人片va| 国产免费视频播放在线视频| 久久久久精品性色| 久久久久久人妻| 男女无遮挡免费网站观看| 日本黄色日本黄色录像| 大陆偷拍与自拍| 午夜福利在线在线| 丰满人妻一区二区三区视频av| 久久久久人妻精品一区果冻| 性色avwww在线观看| 欧美丝袜亚洲另类| 99热这里只有是精品50| 内射极品少妇av片p| 国产免费一级a男人的天堂| 一区在线观看完整版| 97在线视频观看| 亚洲四区av| 丝瓜视频免费看黄片| av视频免费观看在线观看| 大陆偷拍与自拍| av播播在线观看一区| 国产精品国产三级国产av玫瑰| 久久6这里有精品| 亚洲精品日本国产第一区| 亚洲不卡免费看| 赤兔流量卡办理| 久久人妻熟女aⅴ| 欧美bdsm另类| 在线观看国产h片| 99久久精品国产国产毛片| 老熟女久久久| 国产在线视频一区二区| 日本黄大片高清| 精品国产三级普通话版| 国产视频首页在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品456在线播放app| 亚洲人成网站在线观看播放| 国产免费福利视频在线观看| 26uuu在线亚洲综合色| 在线观看美女被高潮喷水网站| av女优亚洲男人天堂| 尤物成人国产欧美一区二区三区| 十八禁网站网址无遮挡 | 1000部很黄的大片| 99久久精品热视频| 午夜免费鲁丝| 国产精品一二三区在线看| 久久毛片免费看一区二区三区| 久久热精品热| 一本色道久久久久久精品综合| 能在线免费看毛片的网站| 久久精品国产亚洲av天美| 中国美白少妇内射xxxbb| 制服丝袜香蕉在线| 一区二区av电影网| 丰满迷人的少妇在线观看| 精品人妻熟女av久视频| 国产高清三级在线| 波野结衣二区三区在线| 精华霜和精华液先用哪个| 成人漫画全彩无遮挡| 国产 精品1| 亚洲天堂av无毛| 国产精品爽爽va在线观看网站| 日韩亚洲欧美综合| 老女人水多毛片| 日韩,欧美,国产一区二区三区| 久久热精品热| 精品午夜福利在线看| 欧美日韩国产mv在线观看视频 | 22中文网久久字幕| 日韩三级伦理在线观看| 好男人视频免费观看在线| 如何舔出高潮| 国产精品不卡视频一区二区| 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| videossex国产| 99热这里只有精品一区| 中文资源天堂在线| 亚洲欧美一区二区三区黑人 | 日本欧美视频一区| 久久久a久久爽久久v久久| 婷婷色综合www| 婷婷色麻豆天堂久久| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 美女中出高潮动态图| 国产亚洲av片在线观看秒播厂| 欧美日本视频| 三级国产精品欧美在线观看| 少妇人妻久久综合中文| 啦啦啦视频在线资源免费观看| 国产精品伦人一区二区| 高清视频免费观看一区二区| 国产精品国产三级专区第一集| 丰满乱子伦码专区| 午夜激情福利司机影院| 秋霞伦理黄片| av网站免费在线观看视频| 精品久久国产蜜桃| 亚洲国产精品成人久久小说| 国产日韩欧美在线精品| 夜夜看夜夜爽夜夜摸| 美女国产视频在线观看| av卡一久久| 免费黄网站久久成人精品| 亚洲中文av在线| 欧美日韩精品成人综合77777| 一级a做视频免费观看| 国内精品宾馆在线| 直男gayav资源| 色综合色国产| 又大又黄又爽视频免费| 美女福利国产在线 | 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 91在线精品国自产拍蜜月| 国产一级毛片在线| 黄色配什么色好看| 国内揄拍国产精品人妻在线| 免费观看无遮挡的男女| 亚洲人成网站在线播| 亚洲中文av在线| 搡女人真爽免费视频火全软件| 一二三四中文在线观看免费高清| 久久久久久久国产电影| av福利片在线观看| 大码成人一级视频| 在线免费十八禁| 日韩欧美一区视频在线观看 | 免费av不卡在线播放| 99热网站在线观看| videossex国产| 尤物成人国产欧美一区二区三区| 精品国产露脸久久av麻豆| 色吧在线观看| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 你懂的网址亚洲精品在线观看| 亚洲一级一片aⅴ在线观看| 日本一二三区视频观看| 99热这里只有是精品50| 男女免费视频国产| 国国产精品蜜臀av免费| 免费在线观看成人毛片| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 18禁在线播放成人免费| 国产无遮挡羞羞视频在线观看| 国产探花极品一区二区| 欧美日韩精品成人综合77777| 欧美zozozo另类| 亚洲图色成人| 亚洲国产高清在线一区二区三| 国产成人精品婷婷| av女优亚洲男人天堂| 午夜免费男女啪啪视频观看| av播播在线观看一区| 最近中文字幕高清免费大全6| 在线亚洲精品国产二区图片欧美 | 亚洲欧美日韩卡通动漫| 午夜精品国产一区二区电影| 伦精品一区二区三区| 婷婷色综合大香蕉| av卡一久久| 一个人免费看片子| 1000部很黄的大片| 欧美少妇被猛烈插入视频| 欧美丝袜亚洲另类| 亚洲中文av在线| 高清日韩中文字幕在线| 久久久色成人| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 伦理电影免费视频| 成人二区视频| av福利片在线观看| 各种免费的搞黄视频| 国产淫片久久久久久久久| 成人午夜精彩视频在线观看| 这个男人来自地球电影免费观看 | 26uuu在线亚洲综合色| 欧美日韩视频高清一区二区三区二| 干丝袜人妻中文字幕| 成人免费观看视频高清| 国产伦精品一区二区三区视频9| 最近手机中文字幕大全| 亚洲三级黄色毛片| 中文字幕av成人在线电影| 久久人人爽av亚洲精品天堂 | av免费观看日本| 免费大片18禁| 中文字幕亚洲精品专区| 精品国产露脸久久av麻豆| 中文精品一卡2卡3卡4更新| 久久精品夜色国产| 精品少妇黑人巨大在线播放| 久久99热6这里只有精品| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 国产视频首页在线观看| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 日日撸夜夜添| 国产美女午夜福利| 国产成人freesex在线| 亚洲综合色惰| 下体分泌物呈黄色| 欧美人与善性xxx| 最新中文字幕久久久久| 国产在视频线精品| 国产午夜精品一二区理论片| 亚洲成人中文字幕在线播放| 毛片一级片免费看久久久久| 久久国产精品男人的天堂亚洲 | 国产精品偷伦视频观看了| 视频中文字幕在线观看| 免费黄频网站在线观看国产| 国产永久视频网站| 国产精品精品国产色婷婷| 内地一区二区视频在线| 免费观看在线日韩| 国产精品爽爽va在线观看网站| 亚洲国产成人一精品久久久| 国产高潮美女av| 天堂8中文在线网| 国产亚洲av片在线观看秒播厂| 日韩一本色道免费dvd| 亚洲精品久久午夜乱码| 最近最新中文字幕大全电影3| 日本黄大片高清| 久久久久久久精品精品| 亚洲人成网站在线播| 全区人妻精品视频| 高清av免费在线| 亚洲国产成人一精品久久久| 人体艺术视频欧美日本| 有码 亚洲区| 亚洲精品国产av蜜桃| 黑丝袜美女国产一区| xxx大片免费视频| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| a级毛片免费高清观看在线播放| 久久久久国产精品人妻一区二区| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 大香蕉久久网| 亚州av有码| 久久精品国产亚洲网站| 国产探花极品一区二区| 亚洲精品乱久久久久久| 国产v大片淫在线免费观看| 高清黄色对白视频在线免费看 | av一本久久久久| 国产v大片淫在线免费观看| 在线看a的网站| 91精品伊人久久大香线蕉| 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久| 久久久久精品性色| 伦理电影大哥的女人| 欧美少妇被猛烈插入视频| 国产v大片淫在线免费观看| 亚洲欧美一区二区三区黑人 | 日韩一本色道免费dvd| 国产免费视频播放在线视频| 联通29元200g的流量卡| 3wmmmm亚洲av在线观看| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 日日撸夜夜添| 欧美xxxx性猛交bbbb| 精品酒店卫生间| 免费av中文字幕在线| av线在线观看网站| 国产黄频视频在线观看| 亚洲欧美清纯卡通| 另类亚洲欧美激情| 七月丁香在线播放| 狂野欧美白嫩少妇大欣赏| 看十八女毛片水多多多| 激情五月婷婷亚洲| av在线老鸭窝| 亚洲成人中文字幕在线播放| 我要看黄色一级片免费的| 亚洲图色成人| 久久久午夜欧美精品| 久久 成人 亚洲| 久久久精品免费免费高清| 亚洲激情五月婷婷啪啪| 精品一区在线观看国产| 乱码一卡2卡4卡精品| 久久人妻熟女aⅴ| 又粗又硬又长又爽又黄的视频| 超碰97精品在线观看| 日本-黄色视频高清免费观看| av在线播放精品| 蜜桃在线观看..| 亚洲自偷自拍三级| 久久久久久人妻| 免费人妻精品一区二区三区视频| 色婷婷久久久亚洲欧美| 精品酒店卫生间| a级毛片免费高清观看在线播放| 精品人妻一区二区三区麻豆| av播播在线观看一区| 国产老妇伦熟女老妇高清| av天堂中文字幕网| 欧美日韩视频高清一区二区三区二| 久久国产精品男人的天堂亚洲 | av专区在线播放| 国产伦精品一区二区三区视频9| 亚洲欧美中文字幕日韩二区| 三级经典国产精品| 亚洲精品国产色婷婷电影| 在线观看人妻少妇| 国产精品成人在线| 女性被躁到高潮视频| 99视频精品全部免费 在线| 天美传媒精品一区二区| 欧美一级a爱片免费观看看| 视频区图区小说| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 好男人视频免费观看在线| 人人妻人人爽人人添夜夜欢视频 | 波野结衣二区三区在线| 又大又黄又爽视频免费| 久久久久精品性色| 午夜福利在线观看免费完整高清在| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 一级a做视频免费观看| 99热这里只有是精品50| 日韩伦理黄色片| 日本黄色片子视频| 日韩人妻高清精品专区| 国产精品久久久久成人av| 亚洲色图av天堂| 日本av手机在线免费观看| 亚洲精华国产精华液的使用体验| 国产精品人妻久久久影院| 直男gayav资源| 免费人妻精品一区二区三区视频| 久久久色成人| 国产熟女欧美一区二区| 91在线精品国自产拍蜜月| 18+在线观看网站| 有码 亚洲区| 青春草视频在线免费观看| 久久久国产一区二区| 免费黄网站久久成人精品| 最黄视频免费看| 嘟嘟电影网在线观看| 亚洲美女黄色视频免费看| 人妻系列 视频| 在线观看av片永久免费下载| 久久久久精品性色| 永久网站在线| 国产亚洲精品久久久com| 亚洲国产高清在线一区二区三| 毛片一级片免费看久久久久| 十八禁网站网址无遮挡 | 日韩成人av中文字幕在线观看| 亚洲国产精品999| 成人漫画全彩无遮挡| 国产成人午夜福利电影在线观看| 日本猛色少妇xxxxx猛交久久| 久久国产精品男人的天堂亚洲 | 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 男人添女人高潮全过程视频| 亚洲国产欧美在线一区| 国产一区有黄有色的免费视频| 九九久久精品国产亚洲av麻豆| 欧美成人精品欧美一级黄| 亚洲天堂av无毛| 韩国av在线不卡| 亚洲一区二区三区欧美精品| 成年人午夜在线观看视频| 欧美xxⅹ黑人| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 国模一区二区三区四区视频| 免费av不卡在线播放| 成人无遮挡网站| 一个人看的www免费观看视频| 久久久久久久精品精品| 内射极品少妇av片p| 97在线视频观看| 久久久久久久久久久丰满| 日本av免费视频播放| 久热久热在线精品观看| 亚洲天堂av无毛| 亚洲人成网站在线播| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 又大又黄又爽视频免费| 免费黄网站久久成人精品| 亚洲美女视频黄频| 国产在线一区二区三区精| 亚洲av.av天堂| 国产一区有黄有色的免费视频| 中文精品一卡2卡3卡4更新| 日韩欧美一区视频在线观看 | 舔av片在线| 欧美日本视频| 视频中文字幕在线观看| 国产成人freesex在线| 欧美zozozo另类| 人人妻人人澡人人爽人人夜夜| 丰满少妇做爰视频| 永久网站在线| 国产精品一区www在线观看| 国产精品一区二区性色av| 水蜜桃什么品种好| 男的添女的下面高潮视频| 免费在线观看成人毛片| 在线观看免费日韩欧美大片 | 亚洲av福利一区| 成年女人在线观看亚洲视频| 亚洲国产欧美人成| 蜜桃在线观看..| 国产黄片视频在线免费观看| 午夜福利高清视频| 久久久久精品性色| 婷婷色麻豆天堂久久| 青春草国产在线视频| 91aial.com中文字幕在线观看| 欧美3d第一页| 国产一区二区在线观看日韩| 亚洲精品乱码久久久v下载方式| 日日撸夜夜添| 男人添女人高潮全过程视频| 男女国产视频网站| 中国美白少妇内射xxxbb| 日本av手机在线免费观看| 女人久久www免费人成看片| 亚洲综合精品二区| av在线蜜桃| 男女啪啪激烈高潮av片| 亚洲精品日本国产第一区| 日韩av不卡免费在线播放| 色视频www国产| 少妇丰满av| 老熟女久久久| 亚洲一级一片aⅴ在线观看| 亚洲第一av免费看| 精品一区在线观看国产| 精品少妇黑人巨大在线播放| 在线观看免费高清a一片| 你懂的网址亚洲精品在线观看| 简卡轻食公司| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 18禁裸乳无遮挡动漫免费视频| 青春草视频在线免费观看| 国产高清国产精品国产三级 | 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱| 天天躁日日操中文字幕| 肉色欧美久久久久久久蜜桃| 精品人妻熟女av久视频| 亚洲欧美精品专区久久| 直男gayav资源| 免费久久久久久久精品成人欧美视频 | 我的女老师完整版在线观看| 在线观看一区二区三区激情|