• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Doping 25-Atom and 38-Atom Gold Nanoclusters with Palladium

    2011-12-12 02:43:26QIANHuifengBARRYEllenZHUYanJINRongchao
    物理化學學報 2011年3期
    關(guān)鍵詞:磺隆禾本科雜草

    QIAN Huifeng BARRY Ellen ZHU Yan JIN Rongchao,*

    (1Department of Chemistry,Carnegie Mellon University,Pittsburgh,Pennsylvania 15213,USA; 2Department of Chemistry,University of Pittsburgh,Pittsburgh,Pennsylvania 15260,USA)

    1 Introduction

    Quantum-sized gold nanoclusters have been intensely pursued in recent years due to their exciting material properties caused by quantum confinement of electrons in the particle when the particle size is in the ultrasmall size regime(<2 nm diameter).1-10The electronic structure of these nanoclusters shows significantly quantized discrete energy levels,10which is in striking contrast with the quasi-continuous energy bands in bulk materials.Due to electron energy quantization,nanoclusters display many interesting properties,such as single-electron optical absorption and chiro-optical properties,fluorescence,intrinsic magnetism,etc.11-19In particular,gold nanoclusters have been found to show remarkable catalytic activity in some chemical reactions.20-23All these new properties demonstrate the promise of this new class of material.

    A critical aspect towards understanding the new properties of gold nanoclusters involves the development of synthetic procedures that allow for the synthesis of single sized nanoclusters (i.e.,no size dispersity).1,24We have previously developed a kinetically controlled method for the synthesis of atomically precise,thiolate protected Au25(SR)18clusters.25,26The underlying mechanism has been identified to be a size-focusing process.24Among the Aun(SR)mclusters,the 25-atom cluster has gained wide interest as it is the earliest prepared,molecule-like cluster by Whetten and coworkers;2note that the initial incorrect assignment of Au28(SG)16(where,―SG=glutathione)has been corrected as Au25(SG)18by Tsukuda and coworkers.14With respect to the structure,both anionic and neutral Au25(SR)18clusters are composed of a centered icosahedral,13-atom gold core and an exterior shell of twelve gold atoms.10,11The highly symmetric structure(quasi-D2h)of the Au25cluster largely contributes to its exceptional stability.Fields-Zinna et al.27reported doping of the Au25cluster with palladium and found that mono-Pd doped Au25cluster was formed regardless of the initial ratio of Au and Pd precursors.Recently,Negishi et al.28isolated dodecanethiolate-capped Pd1Au24(SC12H25)18by solvent fractionation and high-performance liquid chromatography (HPLC).Theoretical calculations based on density functional theory(DFT)suggest that the Pd atom should replace the central Au atom in the Au25(SR)18structure,forming a Pd@Au12icosahedral core,which is further capped by an exterior shell of Au12,and the entire cluster is protected by eighteen thio-lates.29-31The Pd-doped Pd1Au24cluster exhibits higher stability than the homogold Au25cluster.28-31It is noteworthy that other metal-doped M1Au24clusters(where,M=Ag,Mn,Pt,etc.)have also been theoretically discussed in DFT works.32-34

    It is highly desirable to develop facile protocols that permit the synthesis of monodisperse Pd1Au24(SR)18clusters in order to fully understand the optical,electronic,and catalytic properties.In this work,we report two new methods for preparing mono-palladium doped 25-atom clusters(referred to as Pd1Au24(SC2H4Ph)18).Size exclusion chromatography(SEC)is used to isolate the Pd1Au24(SC2H4Ph)18clusters.The as-obtained clusters are truly monodisperse,evidenced by mass spectrometry and other characterization.The optical and structural properties of Pd1Au24(SC2H4Ph)18,as well as its catalytic activity are investigated in this work.Interestingly,similar central doping behavior is also present in the 38-atom gold cluster which possesses a structure of a biicosahedral Au23core capped by 15 surface Au atoms.Our work is in hope to stimulate wide research interest in this new class ofAun(SR)mnanomaterial.35-52

    2 Experimental

    2.1 Chemicals

    Palladium(II)acetate(Pd(Ac)2,99.9%,Aldrich),tetrachloroauric(III)acid(HAuCl4·3H2O,99.99%,Aldrich),2-phenylethanethiol(PhC2H4SH,99%,Aldrich),sodium borohydride (NaBH4,99.99%,Aldrich),tetraoctylammonium bromide (TOAB,>98%,Fluka),toluene(HPLC grade,99.9%,Aldrich), ethanol(HPLC grade,Aldrich),tetrahydrofuran(THF,HPLC grade,Aldrich),acetonitrile(HPLC grade,99%,Aldrich),and dichloromethane(HPLC grade,99.9%,Aldrich)are used as received.Nanopure water(18.2 MΩ·cm)is used in all experiments that involve water.

    2.2 Two-phase synthesis of Pd1Au24(SC2H4Ph)18clusters

    The method for preparing thiolate protected,mono-palladium doped Au25clusters was an alteration of the low-temperature protocol for monodisperse Au25clusters in high yield.25In a typical experiment,HAuCl4·3H2O(0.157 g,0.4 mmol), Pd(Ac)2(0.010 g,0.044 mmol),and tetraoctylammonium bromide(TOAB,0.281 g)were combined in a 25 mL tri-neck round bottom flask along with 6 mL of nanopure water and 10 mL of toluene.The mixture was vigorously stirred(~1000 r· min-1)for~15 min to enable TOAB-facilitated phase transfer of the gold and palladium precursors from the aqueous phase to the organic phase(toluene).The clear aqueous phase was then removed using a glass pipette.The toluene phase was cooled in an ice-bath for~30 min under constant,slow stirring (~60 r·min-1).Phenylethanethiol(0.202 mL,1.47 mmol)was added into the flask,and the solution was then slowly stirred for~45 min in the ice-bath.After that,the slow magnetic stirring spend was changed to vigorous stirring(~1000 r·min-1) for several seconds,and a freshly made,ice-cold NaBH4solution(0.169 g dissolved in 6 mL cold water,10:1 molar ratio of NaBH4to the total gold and palladium)was immediately added to the flask.The solution in the flask turned black instantly,indicating the formation of clusters.The reaction was allowed to proceed overnight under constant stirring.

    2.3 One-phase synthesis of Pd1Au24(SC2H4Ph)18clusters

    This is a modification of the one phase synthesis of Au25(SR)18clusters.26,27HAuCl4·3H2O(0.157 g,0.4 mmol),Pd(Ac)2(0.010 g,0.044 mmol),and TOAB(~0.281 g)were combined in a 25 mL tri-neck round bottom flask along with 15 mL THF solvent.The mixture was vigorously stirred for 15 min.Phenylethanethiol(0.202 mL)was added to the flask at room temperature(r.t.)without changing the stirring speed.The solution color gradually changed from orange to colorless within~15 min. After that,0.169 g NaBH4dissolved in 6 mL of cold water was added to the flask all at once.The solution turned black immediately,indicating the formation of nanoclusters.The reaction was stopped after 3 h.

    甲基二磺隆和炔草酯防治小麥田禾本科雜草效果研究……………………………… 于金萍,劉亦學,張 惟,李 琦,白鵬華(83)

    2.4 Purification and isolation of Pd1Au24(SC2H4Ph)18clusters

    The nanoclusters were obtained from the two-phase and one-phase syntheses by the following process.The solution containing the crude product was first transferred to a 100 mL round bottom flask and dried using a rotary evaporator(~15 min).The dried nanoclusters were washed with ethanol and then collected by centrifugation.This process was repeated for 3 times.The Pd1Au24(SC2H4Ph)18and Au25(SC2H4Ph)18were then extracted from the solids with acetonitrile and the solution was dried on a rotary evaporator.The process of extraction with acetonitrile and subsequent drying of the solution was repeated twice.The nanoclusters were isolated by size exclusion chromatography(SEC)using a PLgel column(gel particle size:3 μm,pore diameter:10.0 nm).SEC was performed on a HPAgilent 1100 HPLC system equipped with a diode array detector (DAD).The mobile phase was CH2Cl2(flow rate:0.5 mL· min-1).The retention time of Pd1Au24(SC2H4Ph)18is~15 min (peak time).To collect the clusters,the eluate from 14.2 to 14.9 min was collected.

    2.5 Characterization of clusters

    UV-Vis spectra of the clusters(dissolved in CH2Cl2)were acquired on a Hewlett-Packard(HP)Agilent 8453 diode array spectrophotometer at room temperature.Matrix-assisted laser desorption ionization(MALDI)mass spectrometry was performed with a PerSeptiveBiosystems Voyager DE super-STR time-of-flight(TOF)mass spectrometer.Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenyldidene]malononitrile(DCTB) was used as the matrix in MALDI analysis.45Typically,1 mg matrix and 0.1 mg analyte stock solution were mixed in 100 μL CH2Cl2.10 μL solution was applied to the steel plate and then air-dried prior to MALDI analysis.Laser desorption ionization(LDI)mass spectrometry analysis was done on the same mass spectrometer(without the addition of DCTB matrix).

    3 Results and discussion

    3.1 Synthesis and isolation of Pd1Au24(SR)18clusters

    We previously reported the two-phase and one-phase syntheses of Au25(SR)18clusters in high yield.25,26Several variations have also been reported recently.27,42In this work,we have modified these two protocols to prepare mono-palladium doped 25-atom nanoclusters.The main difference between these two methods lies in the solvent(s)used.26In the two-phase protocol, HAuCl4is dissolved in aqueous phase,and phase transferred to toluene phase with the assistance of tetraoctylammonium bromide(TOAB).In the one-phase protocol,HAuCl4is directly dissolved in THF;TOAB is still used,but to facilitate the formation ofAu25clusters.27

    Fig.1(A)(profiles a and b)shows the wide-range MALDI-mass spectra of crude Pd-Au clusters synthesized by the one-phase and two-phase procedures,respectively,and Fig.1 (B)shows the zoom-in spectra.The peaks of m/z 7394 and 6054 are from the ionized Au25(SR)18(where,R=C2H4Ph hereafter)and its fragment,45and the peak of m/z 7303 is assigned to Pd1Au24(SR)18(theoretical formula weight:7303.2).28The yield of Pd1Au24clusters is higher in the two-phase procedure(Fig.1 (B),spectrum a)than that of the one-phase method(Fig.1(B), spectrum b).The ubiquitous existence of Pd1Au24clusters suggests the particular stability of this cluster.28It is probably because that the Pd atom in the center position has a larger interaction energy with the Au24(SR)18cage than the central gold atom does in the case ofAu@Au24(SR)18.29

    Fig.1 (A)Negative-mode MALDI mass spectra(m/z 3000-12000) of clusters and(B)zoom-in spectra in the range of m/z 7000-7800(a)synthesized by the two-phase procedure,(b)synthesized by the one-phase procedure,(c)SEC isolatedAu25(SR)18cluster,(d)SEC isolated Pd1Au24(SR)18cluster,where R=C2H4Ph.

    In our previous work,size exclusion chromatography(SEC) has been used to successfully separate Au38(SR)24and Au40(SR)24clusters.39Herein,SEC is performed to isolate Pd1Au24from the mixture of Pd1Au24and Au25clusters.Fig.2 shows the size exclusion chromatogram of mixed clusters prepared by the two-phase procedure.In the chromatogram,two peaks are observed,which correspond to the two clusters observed in the MALDI mass spectrum.The eluate at the retention time 13.0-13.4 min and 14.2-14.9 min were collected,respectively.The isolated samples were further characterized by MALDI-MS. Profile c(Fig.1(A))is the first fraction and profile d is the second fraction.In profile c,the mass spectrum displays an intense peak at m/z 7394 and a weak peak at m/z 6054;they are assigned to Au25(SR)18(theoretical m/z:7393.7)and its fragment Au21(SR)14(theoretical m/z:6057.2).In profile d,there is only one intense peak at m/z 7303,corresponding to intact Pd1Au24(SC2H4Ph)18(theoretical m/z:7303.4).The observation of a single peak in the wide range from m/z 3000 to 12000 indicates the high purity of the Pd1Au24(SR)18clusters isolated by SEC.The high-resolution MALDI mass spectrum of Pd1Au24(SR)18is shown in Fig.3.The observed isotope pattern of m/z 7303 is superimposable to the simulated pattern of Pd1Au24(SR)18, confirming the assignment of the formula.

    3.2 Probing the structure of Pd1Au24(SR)18clusters

    On the basis of the Au25(SR)18structure,there are three possible doping sites for the palladium atom:in the center of the icosahedral Au13core(Scheme 1),at the icosahedral surface,and in the exterior Au12shell.DFT calculations28-31show that the center-doped Pd1Au24(SR)18has the highest stability compared to the other two doping sites.Here we provide experimental evidences to support the central doping of Pd in the structure of Pd1Au24(SR)18and its overall core-shell structure similar to that of Au25(SR)18.Our experimental evidences include the similar fragments observed in MALDI and LDI mass spectra of Pd1Au24(SR)18and Au25(SR)18,as well as the information from the optical absorption spectra.

    Fig.2 SEC chromatogram of clusters synthesized by the two-phase procedure

    Both MALDI and LDI mass spectra of Pd1Au24(SR)18were acquired to gain insight into the skeletal structure of the cluster by studying the pattern of fragments.The mass peak patterns of Pd1Au24(SR)18and Au25(SR)18are indeed quite similar(Fig.4) in both MALDI and LDI.In the MALDI spectra of Pd1Au24(SR)18(Fig.4(A),upper panel),when the pulsed laser intensity(337 nm,nanosecond N2laser)was sufficiently intense,a fragment at m/z~5964 was observed,which is assigned to Pd1Au20(SR)14(theoretical m/z:5966.5).The loss of Au4(SC2H4Ph)4is identical to the case of homogold Au25(SR)18.In the latter,a fragment at m/z 6064(assigned to Au21(SR)14,theoretical m/z:6057.2) was found in the MALDI spectrum of Au25(SR)18.45,49At present, it has not been clear to us how Au25(SR)18and Pd1Au24(SR)18lose the Au4(SR)4unit.However,according to the core-shell structure of Au25(SR)18,it is most plausible that the Au4(SR)4unit is lost from the Au2(SR)3staple motifs,instead of involving the Au13core.The observation of a similar loss of Au4(SR)4unit in both Pd1Au24(SR)18and Au25(SR)18clusters strongly suggests that they have a similar skeletal structure and that the palladium atom should be located in the icosahedral core.If the Pd atom were located in one of the Au2(SR)3staples,one would have observed a Pd1Au3(SR)4fragment.

    Fig.3 High resolution MALDI mass spectrum of isolated Pd1Au24(SC2H4Ph)18clusters(collected in reflection mode)Inset shows the isotope pattern of m/z 7303,together with a simulated pattern based on a formula Pd1Au24S18C144H162and a resolving power of 8000.

    Scheme 1 Central doping of Pd in the 25-atom cluster

    The LDI spectra(Fig.4(B))of the two clusters also demonstrate that they have a similar framework structure.The major peak atm/z 5213 from Pd1Au24(SR)18corresponds to [Pd1Au24S12]-(theoretical m/z:5218).Likewise,the most abundant peak in the LDI mass spectra of Au25(SR)18is[Au25S12]-at m/z 5305.25,49Recently,Wu et al.49interpreted the formation pathway of[Au25S12]-through the process:Au25(SR)18→[Au25S12]-+6S+18R.The similar fragments,[Pd1Au24S12]-vs [Au25S12]-,strongly imply that both Pd1Au24(SR)18and Au25(SR)18clusters should have a similar structure.It is noted that the structure of[Au25S12]-fragment has been theoretically computed by Jiang et al.53The[Au25S12]-ion should have a symmetric core-in-cage structure:a metallic Au core inside a Au-S cage. [Pd1Au24S12]-should have a similar core-in-cage structure.

    3.3 Optical absorption properties of Pd1Au24(SR)18clusters

    Fig.5 shows the UV-Vis absorption spectra of Pd1Au24(SR)18and[Au25(SR)18]-clusters.Due to strong quantum size effects, Pd1Au24(SR)18and[Au25(SR)18]-clusters show similar multiple transitions in the optical spectra.Although there is only one atom difference between the two clusters,their UV-Vis spectra indeed exhibit distinct differences.The spectrum of the Pd1Au24(SR)18clusters(Fig.5(A,B),wavelength and energy scales,respectively)is also compared with dodecanethiolate protected Pd1Au24clusters reported by Negishi et al.28Both types of clusters show peaks at 3.28,2.77,2.47,and 1.88 eV,indicating that the Pd1Au24core,rather than the type of thiolate,determines the optical properties.By comparing the experimental spectrum with theoretical ones computed by DFT,28the Pd1Au24(SR)18cluster with the Pd atom at the central position matches well with the experimental spectrum,thus,the optical spectrum provides another evidence for the Pd-doped core-shell structure of Pd1Au24(SR)18.As for Au25clusters,the optical absorbance spectrum shows multiple bands at 3.10,2.75,1.80,and 1.55 eV (Fig.5(C,D)).The HOMO-LUMO gap of Pd1Au24(SR)18was determined to be 1.40 eV,slightly higher than the~1.30 eV gap of Au25clusters.Both gap values are consistent with DFT calculations;Jiang et al.32predicted by DFT calculations that the Pd1@Au24(SR)18should have a larger HOMO-LUMO gap thanAu1@Au24(SR)18.

    Fig.4 (A)Negative mode MALDI mass spectra of Pd1Au24(SR)18(top)andAu25(SR)18(bottom), (B)Negative mode LDI mass spectra of Pd1Au24(SR)18(top)andAu25(SR)18(bottom)

    Fig.5 UV-Vis spectra of Pd1Au24(SR)18clusters based on the wavelength(A)and energy(B)scales,and spectra of[Au25(SR)18]-clusters based on the wavelength(C)and energy(D)scalesEnergy-dependent absorbance(Abs(E))vs pwavelength-dependent absorbance(Abs(λ)).Abs(E)∝Abs(λ)×λ2.

    Taken together,these experimental and theoretical results all confirm that Pd1Au24(SR)18should adopt a core-shell structure comprising a Pd-doped icosahedral core(Pd1@Au12)and a homogoldAu12shell.

    3.4 Doping of Au38(SR)24clusters with Pd

    Interestingly,we also found similar central doping behavior in another cluster,Au38(SR)24.Au38(SR)24is also a very stable cluster.12,37,38We have recently determined its crystal structure by X-ray crystallography.12The cluster turned out to be chiral and the unit cell comprises two enantiomers(left-handed and right-handed).The cluster is composed of a face-shared biicosahedralAu23core and anAu15(SR)24shell.

    Unlike Au25(SR)18,Au38(SR)24has two icosahedral centers.If the palladium atom is doped in the center of either icosahedron,one expects to observe Pd1Au37(SR)24and Pd2Au36(SR)24in the product.This is indeed what we have observed as side products in the two-phase synthesis of Pd-doped 25-atom nanoclusters(Fig.6).In the crude product(a mixture comprising both 25-atom and 38-atom clusters)prepared by the two-phase procedure,two small peaks at m/z~10602 and 10691 were found and assigned to Pd2Au36(SR)24(theoretical m/z:10597) and Pd1Au37(SR)24(theoretical m/z:10687).The small deviation is due to the gross calibration of the mass spectrometer.The low yield of Pd1Au37(SR)24and Pd2Au36(SR)24renders it not feasible to isolate them by SEC at this point.But the observation of mono-Pd and di-Pd doped 38-atom clusters provides another evidence that,in both 25-atom and 38-atom clusters,the palladium atom should be at the center of the icosahedron.

    Fig.6 Negative-mode MALDI mass spectra ofAuPd clusters synthesized by two-phase procedureInset shows zooming in the mass range from m/z~10200 to 11000.

    3.5 Catalytic activity of Pd1Au24(SR)18clusters

    Gold nanoparticles(including nanoclusters and nanocrystals)show remarkable catalytic activity in many oxidization and hydrogenation reactions.20-23However,in the case of conventional nanoparticle catalysts,the polydispersity and unknown surface structure of Au nanoparticles preclude an in-depth understanding of the nature of catalysts and correlation of the structure and catalytic properties.In our recent work,we found that intact Au25(SR)18nanoclusters catalyzed hydrogenation of α,β-unsaturated ketones and aldehydes to unsaturated alcohols with 100%selectivity.23The electron-rich Au13core and the low-coordinate surface Au atoms in the Au12shell in the Au25(SR)18cluster are responsible for the remarkable catalytic performance observed.23Herein,we test the catalytic activity of pure Pd1Au24(SR)18isolated by SEC.The hydrogentation reaction of α,β-unsaturated ketones(e.g.,benzalacetone)by H2is chosen as a probe reaction for this purpose. Pd1Au24(SR)18clusters supported on iron oxide shows a catalytic activity comparable to that of Au25(SR)18/Fe2O3(42%conversion vs 40%).The similar catalytic activity of Pd1Au24(SR)18and Au25(SR)18implies that these two clusters have a similar structure and that the central palladium atom does not significantly affect the catalytic properties since the central atom is not directly exposed to reactants,nor involved in the surface reaction.

    4 Conclusions

    In summary,this work reports two new procedures to synthesize palladium doped 25-atom and 38-atom gold nanoclusters. Monodisperse Pd1Au24(SR)18nanoclusters are isolated from Au25(SR)18by size exclusion chromatography.On the basis of the similar fragments of the two clusters observed in MALDI and LDI mass spectra,the information from the UV-Vis spectra,and other evidences as discussed,we conclude that the mono-palladium dopant is located in the center of the 25-atom structure.The central doping behavior is also observed in the case of Au38(SR)24nanoclusters,including mono-Pd and di-Pd doped clusters,as the 38-atom cluster possesses a biicosahedral core.The as-obtained Pd1Au24(SR)18nanoclusters are found to catalyze the selective hydrogenation of α,β-unsaturated ketone to unsaturated alcohol with a conversion of 42%. The similar catalytic activity of Pd1Au24(SR)18and Au25(SR)18also supports that these two clusters have a similar core-shell structure.

    (1) Jin,R.Nanoscale 2010,2,343.

    (2) Schaaff,T.G.;Knight,G.;Shafigullin,M.N.;Borkman,R.F.; Whetten,R.L.J.Phys.Chem.B 1998,102,10643.

    (3) Parker,J.F.;Fields-Zinna,C.A.;Murray,R.W.Accounts Chem. Res.2010,43,1289.

    (4) Tsunoyama,H.;Tsukuda,T.J.Am.Chem.Soc.2009,131, 18216.

    (5) Zhu,Y.;Wu,Z.;Gayathri,G.C.;Qian,H.;Gil,R.R.;Jin,R. J.Catal.2010,271,155.

    (6) Li,J.;Wang,S.G.J.Mol.Model.2010,16,505.

    (7) Shichibu,Y.;Negishi,Y.;Watanabe,T.;Chaki,N.K.; Kawaguchi,H.;Tsukuda,T.J.Phys.Chem.C 2007,111,7845.

    (8) Jiang,D.E.Acta Phys.-Chim.Sin.2010,26,999.

    (9) Zhou,R.J.;Shi,M.M.;Chen,X.Q.;Wang,M.;Chen,H.Z. Chem.-Eur.J.2009,15,4944.

    (10) Zhu,M.;Aikens,C.M.;Hollander,F.J.;Schatz,G.C.;Jin,R. J.Am.Chem.Soc.2008,130,5883.

    (11) Zhu,M.;Eckenhoff,W.T.;Pintauer,T.;Jin,R.J.Phys.Chem.C 2008,112,14221.

    (12) Qian,H.;Eckenhoff,W.T.;Zhu,Y.;Pintauer,T.;Jin,R.J.Am. Chem.Soc.2010,132,8280.

    (13) Schaaff,T.G.;Whetten,R.L.J.Phys.Chem.B 2000,104,2630. (14) Negishi,Y.;Nobusada,K.;Tsukuda,T.J.Am.Chem.Soc.2005, 127,5261.

    (15) Wu,Z.;Jin,R.Nano Lett.2010,10,2568.

    (16) Rao,T.U.B.;Pradeep,T.Angew.Chem.Int.Edit.2010,49, 3925.

    (17)Zhu,M.;Aikens,C.M.;Hendrich,M.P.;Gupta,R.;Qian,H.; Schatz,G.C.;Jin,R.J.Am.Chem.Soc.2009,131,2490.

    (18)Negishi,Y.;Tsunoyama,H.;Suzuki,M.;Kawamura,N.; Matsushita,M.M.;Maruyama,K.;Sugawara,K.;Yokoyama, T.;Tsukuda.T.J.Am.Chem.Soc.2006,128,12034.

    (19) Iwasa,T.;Nobusada,K.Chem.Phys.Lett.2007,441,268.

    (20) Tsunoyama,H.;Ichikuni,N.;Sakurai,H.;Tsukuda,T.J.Am. Chem.Soc.2009,131,7086.

    (21) Zhu,Y.;Qian,H.;Zhu,M.;Jin,R.Adv.Mater.2010,22,1915.

    (22) Zhu,Y.;Qian,H.;Jin,R.Chem.-Eur.J.2010,16,11455.

    (23) Zhu,Y.;Qian,H.;Drake,B.A.;Jin,R.Angew.Chem.Int.Edit. 2010,49,1295.

    (24) Jin,R.;Qian,H.;Wu,Z.;Zhu,Y.;Zhu,M.;Mohanty,A.;Garg, N.J.Phys.Chem.Lett.2010,1,2903.

    (25) Zhu,M.;Lanni,E.;Garg,N.;Bier,M.E.;Jin,R.J.Am.Chem. Soc.2008,130,1138.

    (26) Wu,Z.;Suhan,J.;Jin,R.J.Mater.Chem.2009,19,622.

    (27) Parker,J.F.;Weaver,J.E.F.;McCallum,F.;Fields-Zinna,C. A.;Murray,R.W.Langmuir 2010,26,13650.

    (28) Negishi,Y.;Kurashige,W.;Niihori,Y.;Iwasa,T.;Nobusada,K. Phys.Chem.Chem.Phys.2010,12,6219.

    (29) Jiang,D.;Dai,S.Inorg.Chem.2009,48,2720.

    (30) Kacprzak,K.A.;Lehtovaara,L.;Akola,J.;Lopez-Acevedoa, O.;Hakkinen,H.Phys.Chem.Chem.Phys.2009,11,7123.

    (31)Walter,M.;Moseler,M.J.Phys.Chem.C 2009,113,15834.

    (32) Jiang,D.E;Whetten,R.L.Phys.Rev.B 2009,80,115402.

    (33)Akola,J.;Kacprzak,K.A.;Lopez-Acevedo,O.;Walter,M.; Gronbeck,H.;Hakkinen,H.J.Phys.Chem.C 2010,114,15986.

    (34) Reveles,J.U.;Clayborne,P.A.;Reber,A.C.;Khanna,S.N.; Pradhan,K.;Sen,P.;Pederson,M.R.Nat.Chem.2009,1,310.

    (35)Wyrwas,R.B.;Alvarez,M.M.;Khoury,J.T.;Price,R.C.; Schaaff,T.G.;Whetten,R.L.Eur.Phys.J.D 2007,43,91.

    (36) Schaaff,T.G.;Shafigullin,M.N.;Khoury,J.T.;Vezmar,I.; Whetten,R.L.;Cullen,W.G.;First,P.N.;Gutierrez-Wing,C.; Ascensio,J.;Jose-Yacaman,M.J.J.Phys.Chem.B 1997,101, 7885.

    (37) Chaki,N.K.;Negishi,Y.;Tsunoyama,H.;Shichibu,Y.; Tsukuda,T.J.Am.Chem.Soc.2008,130,8608.

    (38) Qian,H.;Zhu,M.;Andersen,U.N.;Jin,R.J.Phys.Chem.A 2009,113,4281.

    (39) Qian,H.;Zhu,Y.;Jin,R.J.Am.Chem.Soc.2010,132,4583.

    (40) Fields-Zinna,C.A.;Crowe,M.C.;Dass,A.;Weaver,J.E.F.; Murray,R.W.Langmuir 2009,25,7704.

    (41) Qian,H.;Jin,R.Nano Lett.2009,9,4083.

    (42) Dharmaratne,A.C.;Krick,T.;Dass,A.J.Am.Chem.Soc.2009, 131,13604.

    (43) Zhu,M.;Qian,H.;Jin,R.J.Phys.Chem.Lett.2010,1,1003.

    (44)Wu,Z.;Lanni,E.;Chen,W.;Bier,M.E.;Ly,D.;Jin,R.J.Am. Chem.Soc.2009,131,16672.

    (45) Dass,A.;Stevenson,A.;Dubay,G.R.;Tracy,J.B.;Murray,R. W.J.Am.Chem.Soc.2008,130,5940.

    (46)Xiang,H.J.;Wei,S.H.;Gong,X.G.J.Am.Chem.Soc.2010, 132,7355.

    (47) MacDonald,M.A.;Zhang,P.;Qian,H.;Jin,R.J.Phys.Chem. Lett.2010,1,1821.

    (48)Angel,L.A.;Majors,L.T.;Dharmaratne,A.C.;Dass,A.ACS Nano 2010,4,4691.

    (49) Wu,Z.;Gayathri,C.;Gil,R.;Jin,R.J.Am.Chem.Soc.2009, 131,6535.

    (50) Kogo,A.;Sakai,N.;Tatsuma,T.Electrochem.Commun.2010, 12,996.

    (51)Zheng,N.;Johnson,J.P.;Williams,C.C.;Wang,G. Nanotechnology 2010,21,295708.

    (52)Wang,Z.;Cai,W.;Sui,J.ChemPhysChem 2009,10,2012.

    (53) Jiang,D.E.;Walter,M.;Dai,S.Chem.-Eur.J.2010,16,4999.

    猜你喜歡
    磺隆禾本科雜草
    拔雜草
    科教新報(2022年22期)2022-07-02 12:34:28
    SDF5 Encoding P450 Protein Is Required for Internode Elongation in Rice
    Rice Science(2021年4期)2021-07-13 10:00:54
    75%醚苯磺隆水分散粒劑的制備
    禾本科植物遺傳中根癌農(nóng)桿菌介導法的應用
    10%芐嘧磺隆·異丙草胺可濕性粉劑對水稻拋秧田雜草的防除作用
    雜草學報(2015年2期)2016-01-04 14:58:03
    我國冬小麥區(qū)菵草種群對甲基二磺隆的抗性水平
    雜草學報(2015年2期)2016-01-04 14:57:59
    禾本科植物之王
    水稻田幾種難防雜草的防治
    雜草圖譜
    雜草學報(2012年1期)2012-11-06 07:08:33
    豆科與禾本科牧草混播組合篩選試驗研究
    草食家畜(2012年2期)2012-03-20 13:22:34
    久久午夜亚洲精品久久| 香蕉久久夜色| 免费av中文字幕在线| 99精品在免费线老司机午夜| 精品卡一卡二卡四卡免费| 国产免费男女视频| 亚洲国产精品合色在线| 亚洲 国产 在线| 亚洲第一青青草原| 黄频高清免费视频| 男女下面插进去视频免费观看| 午夜免费观看网址| 亚洲国产精品sss在线观看 | 久久久久久久久免费视频了| 久久久国产成人精品二区 | 国产精品1区2区在线观看.| 一级毛片精品| svipshipincom国产片| √禁漫天堂资源中文www| e午夜精品久久久久久久| 精品一区二区三区四区五区乱码| 后天国语完整版免费观看| 18禁黄网站禁片午夜丰满| 久久草成人影院| 精品卡一卡二卡四卡免费| 日韩国内少妇激情av| 精品高清国产在线一区| 亚洲激情在线av| 国产成人欧美| 黄色成人免费大全| 岛国在线观看网站| 一级a爱视频在线免费观看| 亚洲欧美日韩另类电影网站| 色婷婷久久久亚洲欧美| 一二三四在线观看免费中文在| 真人做人爱边吃奶动态| 国产熟女xx| 岛国在线观看网站| 999精品在线视频| 女人被躁到高潮嗷嗷叫费观| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 色婷婷av一区二区三区视频| 精品高清国产在线一区| 在线观看一区二区三区激情| 老鸭窝网址在线观看| 国产亚洲欧美精品永久| 在线观看免费视频日本深夜| 国产精品二区激情视频| 黄色片一级片一级黄色片| 脱女人内裤的视频| 国产高清视频在线播放一区| 日韩视频一区二区在线观看| 精品午夜福利视频在线观看一区| 亚洲av成人一区二区三| 在线观看一区二区三区激情| 中亚洲国语对白在线视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品合色在线| 午夜福利,免费看| 在线观看免费日韩欧美大片| xxxhd国产人妻xxx| 乱人伦中国视频| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9| 黑人操中国人逼视频| 人人妻,人人澡人人爽秒播| 成人亚洲精品一区在线观看| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 国产野战对白在线观看| 高清黄色对白视频在线免费看| 老司机午夜十八禁免费视频| 色婷婷久久久亚洲欧美| 一进一出好大好爽视频| 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 亚洲成国产人片在线观看| 欧美乱色亚洲激情| 欧美黑人精品巨大| 后天国语完整版免费观看| 日日爽夜夜爽网站| 亚洲少妇的诱惑av| 亚洲av熟女| 视频区图区小说| 久久久久久亚洲精品国产蜜桃av| a级毛片黄视频| 精品高清国产在线一区| 亚洲一区二区三区不卡视频| 亚洲精品一卡2卡三卡4卡5卡| 精品一区二区三区视频在线观看免费 | 久久人人爽av亚洲精品天堂| 亚洲精品久久午夜乱码| 精品卡一卡二卡四卡免费| 精品少妇一区二区三区视频日本电影| 亚洲国产欧美日韩在线播放| 亚洲成人精品中文字幕电影 | 亚洲黑人精品在线| 午夜精品在线福利| 极品人妻少妇av视频| 国产精品 欧美亚洲| 久久久久精品国产欧美久久久| 九色亚洲精品在线播放| 一二三四社区在线视频社区8| 久久精品亚洲av国产电影网| 丁香六月欧美| 99国产极品粉嫩在线观看| 久久中文字幕一级| 高清在线国产一区| 亚洲av成人不卡在线观看播放网| 久久中文字幕一级| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 99国产综合亚洲精品| 久久久国产成人精品二区 | 18禁裸乳无遮挡免费网站照片 | 青草久久国产| 午夜福利影视在线免费观看| 一进一出好大好爽视频| 精品久久久久久电影网| 九色亚洲精品在线播放| videosex国产| www国产在线视频色| 欧美日韩精品网址| 亚洲第一青青草原| 无人区码免费观看不卡| 亚洲色图av天堂| 久久天堂一区二区三区四区| 国产欧美日韩综合在线一区二区| 一本大道久久a久久精品| 国产又色又爽无遮挡免费看| 成人手机av| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| 国产成人影院久久av| 免费观看精品视频网站| 亚洲国产精品999在线| 国产精品久久视频播放| 夜夜躁狠狠躁天天躁| 少妇粗大呻吟视频| 免费搜索国产男女视频| 中文字幕av电影在线播放| 亚洲成人精品中文字幕电影 | 午夜91福利影院| 日本五十路高清| 天堂中文最新版在线下载| 97超级碰碰碰精品色视频在线观看| 中亚洲国语对白在线视频| 十八禁人妻一区二区| 亚洲国产精品999在线| 美女高潮到喷水免费观看| 久久精品国产亚洲av高清一级| 久久久国产成人免费| 日本三级黄在线观看| 色综合婷婷激情| 黄网站色视频无遮挡免费观看| 黄色 视频免费看| 精品一区二区三卡| 亚洲精品国产精品久久久不卡| 午夜福利,免费看| 中文字幕人妻丝袜制服| 欧美乱妇无乱码| 欧美一级毛片孕妇| 又黄又粗又硬又大视频| 不卡一级毛片| 亚洲成人免费av在线播放| 久久精品人人爽人人爽视色| 色精品久久人妻99蜜桃| 欧美成狂野欧美在线观看| 精品久久蜜臀av无| 搡老熟女国产l中国老女人| 久久欧美精品欧美久久欧美| 国产不卡一卡二| 久久人妻熟女aⅴ| 可以免费在线观看a视频的电影网站| 激情在线观看视频在线高清| 一区福利在线观看| 久久亚洲真实| 亚洲男人天堂网一区| 亚洲中文日韩欧美视频| 热99国产精品久久久久久7| 国产精品98久久久久久宅男小说| 黄网站色视频无遮挡免费观看| 在线观看免费视频日本深夜| 久久久国产欧美日韩av| 亚洲欧美日韩无卡精品| 国产主播在线观看一区二区| 91av网站免费观看| a在线观看视频网站| av网站在线播放免费| 精品卡一卡二卡四卡免费| 亚洲专区中文字幕在线| 亚洲精品国产精品久久久不卡| 国产97色在线日韩免费| 不卡一级毛片| 午夜福利在线观看吧| 看免费av毛片| 国产av一区二区精品久久| 99在线视频只有这里精品首页| 国产成人精品久久二区二区免费| av欧美777| 又大又爽又粗| 国产成人啪精品午夜网站| 国产高清激情床上av| 黄色 视频免费看| 长腿黑丝高跟| 免费在线观看黄色视频的| 免费在线观看日本一区| 欧美日韩黄片免| 亚洲第一青青草原| 日韩高清综合在线| av天堂久久9| 日日摸夜夜添夜夜添小说| ponron亚洲| 久久中文看片网| 久久精品亚洲av国产电影网| 精品一区二区三区av网在线观看| 热99国产精品久久久久久7| 亚洲自拍偷在线| av在线天堂中文字幕 | 亚洲成国产人片在线观看| 久久精品亚洲精品国产色婷小说| 老司机靠b影院| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 国产亚洲精品久久久久久毛片| 欧美激情极品国产一区二区三区| 校园春色视频在线观看| 精品电影一区二区在线| 在线观看免费日韩欧美大片| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线av高清观看| 免费不卡黄色视频| 国产无遮挡羞羞视频在线观看| 91成年电影在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲 国产 在线| 国产黄色免费在线视频| 国产亚洲精品一区二区www| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 精品电影一区二区在线| tocl精华| 一区二区三区激情视频| 一个人观看的视频www高清免费观看 | www国产在线视频色| 欧美亚洲日本最大视频资源| 免费看十八禁软件| 欧美日韩av久久| 国产亚洲欧美在线一区二区| 怎么达到女性高潮| 亚洲男人天堂网一区| 精品日产1卡2卡| 日本免费一区二区三区高清不卡 | 多毛熟女@视频| 97碰自拍视频| 一区在线观看完整版| 激情在线观看视频在线高清| 日本a在线网址| 一区二区三区国产精品乱码| 十八禁网站免费在线| 校园春色视频在线观看| 久久国产精品男人的天堂亚洲| 中文欧美无线码| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 制服人妻中文乱码| 日本 av在线| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站 | 成年人免费黄色播放视频| 黄色片一级片一级黄色片| 人人澡人人妻人| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 亚洲精品久久午夜乱码| 亚洲成人久久性| 淫秽高清视频在线观看| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| av在线天堂中文字幕 | 最新美女视频免费是黄的| 老熟妇仑乱视频hdxx| 久久精品人人爽人人爽视色| e午夜精品久久久久久久| 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| 香蕉丝袜av| 老司机午夜福利在线观看视频| 日韩免费高清中文字幕av| 国产免费av片在线观看野外av| 久久香蕉激情| 国产一区二区三区视频了| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人| 免费在线观看视频国产中文字幕亚洲| 久久香蕉国产精品| 丁香六月欧美| 久久久久久久午夜电影 | 国产午夜精品久久久久久| 国产av一区在线观看免费| 国产真人三级小视频在线观看| 午夜精品久久久久久毛片777| 国产乱人伦免费视频| 性色av乱码一区二区三区2| 99国产精品99久久久久| 日韩三级视频一区二区三区| 黄色怎么调成土黄色| 久久精品国产清高在天天线| 级片在线观看| 少妇粗大呻吟视频| 亚洲激情在线av| 亚洲av成人不卡在线观看播放网| 岛国视频午夜一区免费看| 99精品久久久久人妻精品| 一级黄色大片毛片| 午夜福利在线观看吧| 美女国产高潮福利片在线看| 亚洲国产精品一区二区三区在线| 国产伦一二天堂av在线观看| 欧美激情高清一区二区三区| 亚洲一区二区三区不卡视频| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜人妻中文字幕| 侵犯人妻中文字幕一二三四区| 日韩视频一区二区在线观看| 欧美乱码精品一区二区三区| 免费高清在线观看日韩| 91在线观看av| 国产精品av久久久久免费| 在线观看免费高清a一片| 亚洲精品粉嫩美女一区| 啦啦啦在线免费观看视频4| 深夜精品福利| 免费观看精品视频网站| 国产三级黄色录像| 国产成人免费无遮挡视频| 亚洲精品美女久久久久99蜜臀| 日韩欧美在线二视频| 在线观看一区二区三区激情| 婷婷丁香在线五月| 亚洲国产看品久久| 亚洲男人的天堂狠狠| 一级a爱片免费观看的视频| 亚洲欧美激情综合另类| 无遮挡黄片免费观看| 亚洲免费av在线视频| 成人国产一区最新在线观看| 精品国产一区二区久久| 91成人精品电影| e午夜精品久久久久久久| 日本五十路高清| 亚洲欧美激情综合另类| 日韩成人在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 精品人妻1区二区| 亚洲欧美激情综合另类| 日韩成人在线观看一区二区三区| 欧美丝袜亚洲另类 | 免费高清视频大片| 国产1区2区3区精品| 成年人免费黄色播放视频| xxxhd国产人妻xxx| 久久精品人人爽人人爽视色| 国产熟女xx| 久久中文字幕一级| 女性被躁到高潮视频| 精品免费久久久久久久清纯| 精品福利观看| 黄片大片在线免费观看| 99久久久亚洲精品蜜臀av| 欧美成狂野欧美在线观看| 身体一侧抽搐| 热99re8久久精品国产| 日韩免费av在线播放| 黄色片一级片一级黄色片| 日韩欧美国产一区二区入口| 久久久久九九精品影院| 美女国产高潮福利片在线看| av在线天堂中文字幕 | 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 亚洲av美国av| 国产片内射在线| 男人舔女人下体高潮全视频| 久久草成人影院| 国产成人欧美| 青草久久国产| 侵犯人妻中文字幕一二三四区| 久久久久久久午夜电影 | 国产欧美日韩一区二区三| 国产精品亚洲av一区麻豆| 亚洲 国产 在线| 91国产中文字幕| 757午夜福利合集在线观看| 久久久久久大精品| 在线av久久热| www.自偷自拍.com| 国产精品成人在线| 国产精品99久久99久久久不卡| 美女高潮到喷水免费观看| 黑人欧美特级aaaaaa片| 午夜a级毛片| 欧美黄色淫秽网站| 亚洲精品在线美女| 中国美女看黄片| 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 99久久综合精品五月天人人| 欧美亚洲日本最大视频资源| 午夜福利在线观看吧| 欧美乱色亚洲激情| 十八禁网站免费在线| 大码成人一级视频| 亚洲 国产 在线| 99riav亚洲国产免费| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产 | 欧美日韩黄片免| 久久亚洲真实| 丝袜美足系列| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 乱人伦中国视频| 后天国语完整版免费观看| 水蜜桃什么品种好| 精品国产乱码久久久久久男人| 精品久久久久久久久久免费视频 | 免费高清在线观看日韩| 精品国产乱子伦一区二区三区| 亚洲国产精品999在线| 老司机午夜十八禁免费视频| 丝袜在线中文字幕| 看免费av毛片| 亚洲av片天天在线观看| 欧美 亚洲 国产 日韩一| a级片在线免费高清观看视频| 性欧美人与动物交配| 一区福利在线观看| 91老司机精品| 大陆偷拍与自拍| 欧美性长视频在线观看| 高清毛片免费观看视频网站 | 久久中文看片网| 国产精品电影一区二区三区| 丝袜美腿诱惑在线| 老熟妇乱子伦视频在线观看| 制服诱惑二区| 乱人伦中国视频| 人妻久久中文字幕网| 他把我摸到了高潮在线观看| 国产成人免费无遮挡视频| 欧美激情高清一区二区三区| 亚洲欧美日韩另类电影网站| 国产极品粉嫩免费观看在线| 欧美在线黄色| 精品第一国产精品| 成人亚洲精品一区在线观看| 美女国产高潮福利片在线看| 久久午夜亚洲精品久久| 涩涩av久久男人的天堂| 国内久久婷婷六月综合欲色啪| 在线视频色国产色| 在线观看免费午夜福利视频| 欧美亚洲日本最大视频资源| 亚洲国产欧美日韩在线播放| 狠狠狠狠99中文字幕| 韩国av一区二区三区四区| 国产一区二区激情短视频| 久久热在线av| 精品人妻在线不人妻| 首页视频小说图片口味搜索| 亚洲成人久久性| 久久九九热精品免费| 97人妻天天添夜夜摸| 免费人成视频x8x8入口观看| 757午夜福利合集在线观看| 99国产综合亚洲精品| 在线观看舔阴道视频| 国产三级黄色录像| 日日爽夜夜爽网站| 亚洲精品美女久久av网站| 9色porny在线观看| 99热只有精品国产| 久久久久精品国产欧美久久久| 悠悠久久av| 波多野结衣一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 制服诱惑二区| 精品国产超薄肉色丝袜足j| 国产成人影院久久av| 黑人巨大精品欧美一区二区mp4| 99国产综合亚洲精品| 在线观看舔阴道视频| 成在线人永久免费视频| 亚洲色图av天堂| 久久香蕉激情| 国产av在哪里看| e午夜精品久久久久久久| 国产野战对白在线观看| 成人影院久久| 一个人免费在线观看的高清视频| 免费一级毛片在线播放高清视频 | 国产av精品麻豆| 亚洲精品一卡2卡三卡4卡5卡| 黄片大片在线免费观看| 国产亚洲精品第一综合不卡| 伦理电影免费视频| 一个人免费在线观看的高清视频| 亚洲一区中文字幕在线| 欧美日韩一级在线毛片| 美女午夜性视频免费| 亚洲情色 制服丝袜| 午夜福利在线免费观看网站| 变态另类成人亚洲欧美熟女 | 亚洲精品av麻豆狂野| 国产亚洲精品久久久久5区| 黄色成人免费大全| 一进一出抽搐动态| 欧美黑人精品巨大| 国产成人精品久久二区二区免费| 亚洲aⅴ乱码一区二区在线播放 | e午夜精品久久久久久久| 国产欧美日韩一区二区三| 亚洲午夜理论影院| 久久天躁狠狠躁夜夜2o2o| 韩国精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 成年人免费黄色播放视频| 欧美日韩瑟瑟在线播放| 制服诱惑二区| 国产又色又爽无遮挡免费看| 丁香六月欧美| 色精品久久人妻99蜜桃| 精品人妻1区二区| 久久影院123| 大陆偷拍与自拍| 亚洲熟女毛片儿| 国产精品亚洲av一区麻豆| 亚洲久久久国产精品| 欧美日韩瑟瑟在线播放| 国产欧美日韩综合在线一区二区| 美女午夜性视频免费| 可以在线观看毛片的网站| 啪啪无遮挡十八禁网站| 日韩精品青青久久久久久| 在线播放国产精品三级| 久久中文字幕人妻熟女| 999久久久精品免费观看国产| 操美女的视频在线观看| 88av欧美| 日韩精品中文字幕看吧| 国产成人av教育| 久久精品国产清高在天天线| 无限看片的www在线观看| 欧美日韩视频精品一区| 久久狼人影院| 丝袜美足系列| 国产精华一区二区三区| 巨乳人妻的诱惑在线观看| 一级毛片精品| 免费看十八禁软件| 波多野结衣av一区二区av| 脱女人内裤的视频| 亚洲精华国产精华精| 日韩欧美国产一区二区入口| 精品第一国产精品| 在线看a的网站| 自线自在国产av| 国产片内射在线| 免费观看人在逋| 亚洲一区二区三区色噜噜 | 国产高清视频在线播放一区| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮到喷水免费观看| 一级a爱视频在线免费观看| 两人在一起打扑克的视频| 99国产精品免费福利视频| 在线十欧美十亚洲十日本专区| 真人一进一出gif抽搐免费| 欧美黑人精品巨大| 国产熟女xx| 久久香蕉激情| 在线永久观看黄色视频| 一本综合久久免费| av福利片在线| 午夜免费观看网址| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图 男人天堂 中文字幕| 久久人人精品亚洲av| 精品国内亚洲2022精品成人| 久久精品91无色码中文字幕| 亚洲成人精品中文字幕电影 | 日韩 欧美 亚洲 中文字幕| 国产激情欧美一区二区| 一级片免费观看大全| av天堂在线播放| 91老司机精品| av超薄肉色丝袜交足视频| 久久久国产欧美日韩av| 日日夜夜操网爽| 99riav亚洲国产免费| 日韩 欧美 亚洲 中文字幕| 99久久99久久久精品蜜桃| 成人黄色视频免费在线看| 午夜福利一区二区在线看| 午夜福利影视在线免费观看| 日韩有码中文字幕| 在线免费观看的www视频|