• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    薄壁中孔碳材料的精細控制合成

    2011-12-12 02:43:22朱月香謝有暢
    物理化學學報 2011年3期
    關鍵詞:中孔工程學院薄壁

    王 羽 隗 罡 蔡 斌 朱月香 謝有暢

    (北京大學化學與分子工程學院,分子動態(tài)與穩(wěn)態(tài)結構國家重點實驗室,北京分子科學國家實驗室,北京100871)

    1 Introduction

    Mesoporous carbon materials have important applications in adsorption of large molecules,1-3as catalyst supports in fuel cells,4-6and as electrode materials in electric double-layer capacitors,7-10due to their large surface area,pore volume,and chemical and mechanical stability.This has motivated many studies on controllable synthesis of such materials to meet the requirements of specific applications.Recently,the template method has attracted much attention and has been proved to be effective,because the porous structure of the carbon replica largely corresponds to that of the template.11-13Thus carbon materials with different texture can be obtained by choosing appropriate templates.

    Ordered mesoporous silicas(OMSs),such as MCM-48 and SBA-15,are among the most studied hard templates because of their ordered pore structure,and many well-defined carbon replicas have been obtained from those templates.4,14-18Anodic aluminum oxide(AAO)19-21has also been utilized for preparing tubular mesoporous carbon materials due to its well-aligned pore channels.An important drawback of the OMSs and AAO templates is that their synthesis is time-consuming and requires a special technique which is not easily scaled up for industrial application.

    To find a more cost-efficient method,a wide diversity of disordered templates have been used to prepare mesoporous carbon,such as alumina,22silica nanoparticles,1MgO,23Ni(OH)2/ NiO,8CaCO3,24,25TiO2,26and natural clay minerals.27Those works focused on low-cost and commercial available templates,convenient synthesis procedure,or easy removal of the templates.Nevertheless,some carbon materials had very broad pore size distribution(PSD),1and some had quite a few micropores.8,24-26In addition,the relationship between the pore structures of templates and the corresponding carbon materials was not clear.

    In order to enhance the controllability during the synthesis of mesoporous carbons which are able to meet the various demands in different application areas,key factors influencing the texture of the carbon materials need to be found out.Recently,a review summarized the control of pore structure in MgO-templated nanoporous carbons.28Its two main conclusions,size of mesopores in the resultant carbons was tunable by selecting MgO precursor and relative volume between mesopores and micropores was controlled by carbon precursor, could be universal in other disordered template systems and may enlighten the controllable synthesis of mesoporous carbons.However,in this review,there was no detailed discussion about the thickness of pore walls and it seemed that in this carbon coating method mesopores in the resulting carbons mainly generated by removing nanoparticles of the templates.

    We herein proposed another possible synthesis mechanism, demonstrating that mesopores of the carbons had two sources, one from the removal of the template particles and the other from the original pores of the template.In order to get sufficient evidence to the mechanism,we chose three types of γ-alumina as templates and investigated the pore structures of the carbon materials obtained.Pore volume of the carbon materials calculated based on the mechanism showed good agreements with the experimental data.This mechanism,for the first time, pointed out the importance of template pores in a disorderedtemplate system and the correlation between the texture of the templates and that of the corresponding carbon materials was clearly elucidated.In the meanwhile,a series of carbon materials with narrow pore size distribution(PSD)in small mesopore range(5-15 nm),high mesopore ratio,large surface area,and thin pore walls were obtained,which have competitive mesoporous properties among the reported results.

    2 Experimental

    2.1 Source of alumina templates

    The three types of alumina used are denoted Al2O3-I (SBA150,Engelhard Corp.,America,chemically pure),Al2O3-II(prepared by calcination of pseudoboehmite from Shandong Aluminum Corp.,chemically pure),and Al2O3-III(Shanxi Aluminum Plant,chemically pure).All of the templates were calcined at 800°C for 4 h before use.

    2.2 Synthesis of carbon-covered alumina(CCA)

    CCA samples were prepared with sucrose(analytical reagent)as the carbon source,using the previously reported procedure.22The alumina templates were impregnated with aqueous solutions of sucrose.In a typical procedure,Route A,the sucrose:alumina mass ratio was kept below the monolayer dispersion threshold value,29which is 0.27:1 for the alumina template with surface area of 100 m2·g-1.Hence the sucrose:alumina mass ratios in alumina systems I,II,and III were 0.30:1, 0.40:1,and 0.40:1,respectively.After drying at 90°C,the precursors were calcined at 800°C under N2purge gas(flow rate of 50 mL·min-1)for 1 h.The as-prepared black powder was denoted as CCA-x-1,where x represents the type(I,II,or III)of alumina.

    The impregnation and carbonization steps were repeated one to three times,to obtain CCA-x-2,CCA-x-3,and CCA-x-4 with higher carbon content,where the numbers(2-4)indicate the times of impregnation/carbonization steps.For example, sample CCA-I-4 means the CCA using Al2O3-I as template, with four impregnation/carbonization steps.

    To test the effect of the sucrose dosage,a special CCA control sample following Route B,CCA-I-1-Q,was prepared using a sucrose:alumina mass ratio of 1.2:1(Q stands for quadruple of sucrose mass ratio in this sample,compared with that in sample CCA-I-1),which greatly exceeded the monolayer dispersion threshold of sucrose.

    2.3 Synthesis of mesoporous carbon materials

    The CCA samples were immersed overnight in 24%hydrofluoric acid(HF,guaranteed reagent)solution at room temperature to dissolve the alumina templates.The carbon samples,obtained as insoluble fractions,were washed several times with distilled water and absolute alcohol,then dried in air at 110°C. The resulting carbons were denoted as C-CCA.

    2.4 Characterization

    Nitrogen sorption isotherms were obtained with a Micromeritics ASAP 2010 volumetric adsorption system(America)at liquid-nitrogen temperature(77 K).All samples were degassed at 200°C prior to the measurements.Specific surface area was determined using the Brunauer-Emmett-Teller(BET)method based on adsorption data in the relative pressure(p/p0)range of 0.05 to 0.2.PSD was evaluated by the Barrett-Joyner-Halenda (BJH)method from the desorption branch of the isotherm,except when the most probable pore size was around 4 nm,in which case the PSD curve was calculated from the adsorption branch,to avoid the tension strength effect(TSE).30The total pore volume(Vtotal)was estimated from the single point adsorption at p/p0of 0.995.The micro pore volume(Vmicro)was obtained from the t-plot method.

    The carbon contents of the CCA precursors were measured using a thermogravimetric analyzer(SDT Q600,TA Instruments,America)from room temperature to 800°C at a heating rate of 10°C·min-1and an air flow rate of 100 mL·min-1; α-Al2O3was used as the reference.

    Transmission electron microscopy(TEM)images were recorded on a Hitachi H-9000NAR high-resolution microscope (Japan)at an acceleration voltage of 100 kV.

    X-ray diffraction(XRD)was performed with a Rigaku D/ MAX-200 powder diffractometer(Japan)using Ni-filtered Cu Kαradiation at 40 kV and 100 mA.

    Raman spectroscopy was carried out with a confocal microprobe Raman system(Horiba Jobin Yvon LabRAM HR800, France)with excitation wavelength 632.8 nm from an internal He-Ne laser.

    3 Results and discussion

    3.1 Texture of alumina templates

    After calcination,all three types of alumina used in the preparation of the carbon materials were still γ-alumina,according to the XRD results(Figures not shown),with the BET surface areas of 127,176,and 167 m2·g-1and total pore volumes of 0.49,0.40,and 0.38 cm3·g-1,respectively.Fig.1 shows the nitrogen sorption isotherms and PSD of the alumina templates. Although the pores in these alumina templates were disordered,all of the aluminas had relatively narrow PSD in the mesopore range.The most probable pore sizes of Al2O3-II and Al2O3-III were very similar at about 6-7 nm,while that of Al2O3-I was about 12 nm,with little overlap of its PSD with the PSDs of the other two types of alumina.Thus texture correlation of the as-prepared carbon samples and their templates could be obtained by comparing the results for the alumina templates with different PSDs.

    3.2 Effect of synthesis parameters on carbon texture

    3.2.1 Effect of the completeness and firmness of the carbon framework in the precursor CCA on resultant carbon texture

    Fig.2 shows nitrogen sorption isotherms and PSDs of carbon samples prepared using the different aluminas as templates. For all three alumina systems,carbon samples C-CCA-x-3 and C-CCA-x-4 showed relatively narrow PSD curves,whose shape and position were similar to those of the alumina templates,except for 0.3-3.0 nm broadening or a few nm shift of the most probable pore size.Thus these carbon materials duplicated most of the texture of the corresponding alumina templates after the alumina was removed.As shown in Table 1,all of the C-CCA-x-3 and C-CCA-x-4 samples had BET surface areas larger than 1000 m2·g-1and the micropore ratio in those carbon samples was≤1%.Table 2 lists some mesoporous carbons prepared with other disordered templates reported in literature.Apparently,carbons in this work(C-CCA-I-4 and CCCA-II-3)not only had few micro pores,but also presented the largest pore volume among the carbons with similar pore size.

    However,the PSDs of samples C-CCA-I-1 and C-CCA-I-2 derived from the desorption branch were artificially narrow,unlike the PSD derived from the adsorption branch,most probably due to the TSE.30To obtain more realistic texture information,the PSD curves derived from the adsorption branch were adopted for C-CCA-I-1 and C-CCA-I-2.The PSD curve of CCCA-I-2 was fairly broad and centered at about 6 nm,while the pore size of C-CCA-I-1 was even smaller.Similar results were also obtained for the Al2O3-II and Al2O3-III systems.This should be attributed to the lower carbon contents of their precursor CCAs,which directly affects the toughness of the carbon layer.

    Fig.1 Nitrogen sorption isotherms(A)and pore size distributions(PSDs)(B)of alumina templates derived by the BJH method from the desorption branches of the isotherms

    Fig.2 Nitrogen sorption isotherms(I-IIIA)and PSDs(I-III B)of C-CCAsamples prepared usingAl2O3I-III as templatesThe PSD curves were derived by the BJH method from the desorption branches of the isotherms except for C-CCA-I-1(a)and C-CCA-I-2(a),which were derived from the adsorption branches to avoid the tension strength effect(TSE).30The vertical dotted lines in Figs.I-III B denote the most probable pore sizes of the alumina templates.

    As reported previously,22,31carbon in CCA is uniformly distributed on an alumina surface as graphene flakes.The number of graphene layers in the CCAsamples listed in Table 1 was deduced from the carbon content(wC)measured by thermogravimetric analysis and the estimated carbon content(wg,g·g-1)of CCA with one intact graphene layer,which was calculated according to formula(1).

    The data in Table 1 indicate that the carbon in CCA-I-1 is too low to form an intact graphene layer and the nominal graphene layer in CCA-I-2 is only 1.1.Even if the graphene layer is highly graphitized,the disordered porous structure of alumina makes it difficult to form strong junctions between every two graphene flakes.Thus,the carbon framework in CCA-I-1 and CCA-I-2 tended to collapse without the support of the alumina template.

    3.2.2 Effect of sucrose impregnation-carbonization patterns on resultant carbon texture

    Increasing the sucrose dosage in a single-pass impregnation-carbonization procedure could possibly give precursor CCAs with higher carbon content than those attainable with the optimized multipass pattern.However,our experimental results show that neglecting the monolayer-dispersion threshold of sucrose,carbon materials prepared with the simplified procedure had inferior mesoporous properties to those of the carbon materials prepared by the optimized multipass procedure(Table 1 and Fig.3).For the sample C-CCA-I-1-Q prepared by impregnation with sucrose:alumina mass ratio of 1.2:1,the shape of the PSD curve was deformed and the peak shifted to much lower pore size,compared with that of C-CCA-I-4.The pore volume of C-CCA-I-1-Q was only about 75%of that of CCCA-I-4,while its micropore ratio was four times as that of CCCA-I-4.

    Table 1 Texture properties of resultant carbons and carbon contents(wC)of the corresponding CCAs

    Table 2 Texture of mesoporous carbons prepared by different disordered templates

    Fig.3 Nitrogen sorption isotherms(A)and PSDs(B)of C-CCA-I samples prepared by different impregnation-carbonization patterns

    Fig.4 TEM images of carbon samples(A)C-CCA-I-4,(B)C-CCA-II-4,(C)C-CCA-III-4

    3.3 TEM,XRD and Raman characterization of typical carbon samples

    The TEM images shown in Fig.4 illustrate the nanostructures of the resultant carbon materials.The materials from all three alumina templates have disordered porous structure produced by stacking of small carbon flakes.The pores in C-CCA-I-4 are larger than those in the other two carbon samples,in accordance with the difference in template pore size. The thin pore walls can be seen at the edges of the carbon materials.The XRD patterns in Fig.5 show two broad peaks with 2θ values about 24.0°and 43.7°,which are indexed to the (002)and(100)/(101)reflections,respectively,of graphite.The weak diffraction intensity indicates low crystallinity of the samples,and the broader d002(2θ value lower than 26.6°)indicates disordered stacking of the graphene flakes,in accordance with the TEM results.The ID/IGvalue from Raman spectra is also used for characterizing the ordering of the carbon structure. The broad and intense D peak of the carbon samples in Fig.6 provides further confirmation of the disordered carbon structure.

    3.4 Mechanism and verification calculation

    Fig.5 XRD patterns of(a)C-CCA-I-4,(b)C-CCA-II-4,and (c)C-CCA-III-4

    From these results,a typical mechanism of this synthesis can be proposed as follows with Al2O3-I system for example (Fig.7).In each impregnation step,when the amount of sucrose is below the monolayer-dispersion threshold sucrose spontaneously disperses on the alumina surface as a monolayer.During in situ pyrolysis,due to the interaction between the sucrose molecules and the alumina surface,sucrose is converted to graphene flakes that uniformly cover the alumina surface without aggregating.After repeating the impregnation and carbonization procedure,a complete carbon framework with 1-2 graphene layers thick forms.Finally,the optimized carbon material is obtained by removing the alumina template.

    Fig.6 Raman spectra of(a)C-CCA-I-4,(b)C-CCA-II-4,and (c)C-CCA-III-4

    The completeness and firmness of the carbon framework is a key factor that affects the mesoporous properties of the carbon materials thus obtained.When the carbon framework is complete and sufficiently strong,it almost duplicates the pore structure of the alumina template and has good mesoporous properties,after removal of alumina.When the carbon framework is far from complete(e.g.,C-CCA-I-1 in Section 3.2.1)or not sufficiently strong(e.g.,C-CCA-I-2),it collapses without the support of alumina,and the resulting carbon material does not copy the texture of the template.

    The reason for the increased proportion of micropores in sample C-CCA-I-1-Q in Section 3.2.2 can also be understood from Fig.7.When the amount of sucrose exceeds the monolayerdispersion threshold in a single impregnation step,crystalline sucrose forms and leads to the formation of not only a thin carbon layer but also microporous particulate nano-carbon,after pyrolysis.Those crumbs of carbon block some of the alumina pores and cause the shift of the PSD curve as well as the decrease in the total pore volume of the final carbon materials.

    Fig.7 Schematic representation of the synthesis mechanism with Al2O3-I system for instance

    To test the proposed mechanism,the predicted pore volume after removal of the alumina template was calculated as follows.Assuming that the carbon framework with a thickness of 1-2 graphene layers does not change its texture after removing the alumina template,as shown in Fig.7,the pore volume in the final carbon material is composed of two parts:the original pores in the precursor CCA(VCCA)and new pores generated by removing alumina(VAl2O3).Thus,the predicted pore volume of the carbon material,Vcalc,can be calculated by formula(2),in which wCis the carbon content in CCA andργ-Al2O3is the density of γ-Al2O3(3.67 g·cm-3).

    The calculated results are listed in Table 3.For most of the carbon samples prepared under optimized synthesis conditions (C-CCA-I-4,C-CCA-II-3,C-CCA-II-4,C-CCA-III-3,and CCCA-III-4),the difference between the calculated and measured pore volume was less than 7%.The good match of Vcalcand Vmeasin these samples establishes the feasibility of the proposed synthesis mechanism,and also implies that the carbon materials obtained have very thin walls with thickness of 1-2 graphene layers.

    Table 3 Comparison of calculated and measured pore volumes of carbon samples

    In the case of C-CCA-I-3 and C-CCA-II-3,for which the calculated number of graphene layers is 1.4,the difference between Vmeasand Vcalcfor C-CCA-I-3(-25%)is much larger than for C-CCA-II-3(-4%).This indicates that at similar carbon content and average thickness of carbon layer,the framework of carbon samples prepared by alumina with larger pores can more easily shrink than in the case of the framework from alumina with smaller pores.Nevertheless,sample C-CCA-I-4 with higher carbon content and thicker graphene layer(1.7 layers)duplicated the alumina pore structure quite well.The difference between the calculated and measured pore volumes was only 3%in that case.

    The difference for C-CCA-I-1-Q was only 4%,indicating that the carbon framework of this sample did not collapse much after removing the alumina template,probably because of its high carbon content,even though the particulate nanocarbon generated from crystalline sucrose blocked some of the pores and caused a shift of the PSD curve.The generation of new pores after removing alumina also leads to the broadening and slight shift of the peaks in the PSD curves.

    Comparing the VCCAwithVAl2O3data of the same sample in Table 3,it is worth noting that even covered with a thin layer of carbon,VCCAwas still comparable or larger thanVAl2O3.This result revealed the importance of VCCA,which should not be neglected during the synthesis procedure of mesoporous carbon with large mesopore volume.

    4 Conclusions

    Mesoporous carbon materials with narrow PSD,large surface area,large pore volume,and high mesopore ratio were synthesized from carbon-covered alumina.A mechanism of this synthesis was proposed by comparing the results of three alumina systems,to elucidate the correlation between the textures of the alumina templates and the resultant carbon materials.Forming a complete and robust carbon layer in the precursor CCA is a crucial step for controlled production of carbon materials with excellent mesoporous properties,and controlling the sucrose:alumina mass ratio in each impregnation step helped to form a uniform carbon layer and minimize the generation of micropores.It is worthy of noting that the resultant mesoporous carbon materials had very thin pore walls with a thickness of only 1-2 graphene layers.The synthesis method presented herein exploits low-cost raw materials and has great potential for scale-up in practical applications.

    (1) Han,S.J.;Sohn,K.;Hyeon,T.Chem.Mater.2000,12,3337.

    (2)Hartmann,M.;Vinu,A.;Chandrasekar,G.Chem.Mater.2005, 17,829.

    (3)Zhuang,X.;Wan,Y.;Feng,C.M.;Shen,Y.;Zhao,D.Y.Chem. Mater.2009,21,706.

    (4) Joo,S.H.;Choi,S.J.;Oh,I.;Kwak,J.;Liu,Z.;Terasaki,O.; Ryoo,R.Nature 2001,412,169.

    (5) Nam,J.H.;Jang,Y.Y.;Kwon,Y.U.;Nam,J.D.Electrochem. Commun.2004,6,737.

    (6) Cui,X.Z.;Shi,J.L.;Zhang,L.X.;Ruan,M.L.;Gao,J.H. Carbon 2009,47,186.

    (7) Li,L.X.;Song,H.H.;Chen,X.H.Electrochim.Acta 2006,51, 5715.

    (8)Wang,D.W.;Li,F.;Liu,M.;Lu,G.Q.;Cheng,H.M.Angew. Chem.Int.Edit.2008,47,373.

    (9) Xia,K.S.;Gao,Q.M.;Jiang,J.H.;Hu,J.Carbon 2008,46, 1718.

    (10) Numaoa,S.;Judaia,K.;Nishijoa,J.;Mizuuchib,K.;Nishia,N. Carbon 2009,47,306.

    (11) Lu,A.H.;Schüth,F.Adv.Mater.2006,18,1793.

    (12) Lee,J.;Kim,J.;Hyeon,T.Adv.Mater.2006,18,2073.

    (13) Liang,C.D.;Li,Z.J.;Dai,S.Angew.Chem.Int.Edit.2008,47, 3696.

    (14) Ryoo,R.;Joo,S.H.;Jun,S.J.Phys.Chem.B 1999,103,7743.

    (15) Lee,J.;Yoon,S.;Oh,S.M.;Shin,C.H.;Hyeon,T.Adv.Mater. 2000,12,359.

    (16) Jun,S.;Joo,S.H.;Ryoo,R.;Kruk,M.;Jaroniec,M.;Liu,Z.; Ohsuna,T.;Terasaki,O.J.Am.Chem.Soc.2000,122,10712.

    (17) Lu,A.H.;Schmidt,W.;Spliethoff,B.;Schüth,F.Adv.Mater. 2003,15,1602.

    (18) Gierszal,K.P.;Jaroniec,M.;Liang,C.D.;Dai,S.Carbon 2007, 45,2171.

    (19) Kyotani,T.;Tsai,L.;Tomita,A.Chem.Mater.1995,7,1427.

    (20) Parthasarathy,R.V.;Phani,K.L.N.;Martin,C.R.Adv.Mater. 1995,7,896.

    (21) Cott,D.J.;Petkov,N.;Morris,M.A.;Platschek,B.;Bein,T.; Holmes,J.D.J.Am.Chem.Soc.2006,128,3920.

    (22)Lin,L.;Wang,P.;Wang,S.R.;Zhu,Y.X.;Zhao,B.Y.;Xie,Y. C.Carbon 2006,44,3120.

    (23) Inagaki,M.;Kato,M.;Morishita,T.;Morita,K.;Mizuuchi,K. Carbon 2007,45,1121.

    (24)Zhao,C.R.;Wang,W.K.;Yu,Z.B.;Zhang,H.;Wang,A.B.; Yang,Y.S.J.Mater.Chem.2010,20,976,

    (25)Xu,B.;Peng,L.;Wang,G.Q.;Cao,G.P.;Wu,F.Carbon 2010, 48,2377.

    (26) Ng,Y.H.;Ikeda,S.;Harada,T.;Park,S.;Sakata,T.;Mori,H.; Matsumura,M.Chem.Mater.2008,20,1154.

    (27) Shi,L.M.;Yao,J.F.;Jiang,J.L.;Zhang,L.X.;Xu,N.P. Microporous Mesoporous Mat.2009,122,294.

    (28) Morishita,T.;Tsumura,T.;Toyoda,M.;Przepiórski,J.; Morawski,A.W.;Konno,H.;Inagaki,M.Carbon 2010,48, 2690.

    (29)Wang,Y.;Lin,L.;Zhu,B.S.;Zhu,Y.X.;Xie,Y.C.Appl.Surf. Sci.2008,254,6560.

    (30) Groen,J.C.;Peffer,L.A.A.;Pérez-Ramírez,J.Microporous Mesoporous Mat.2003,60,1.

    (31) Lin,L.;Lin,W.;Zhu,Y.X.;Zhao,B.Y.;Xie,Y.C.;Jia,G.Q.; Li,C.Langmuir 2005,21,5040.

    猜你喜歡
    中孔工程學院薄壁
    福建工程學院
    福建工程學院
    磁流變液仿生薄壁吸能管及其耐撞性可控度的研究
    汽車工程(2021年12期)2021-03-08 02:34:06
    超小型薄壁線圈架注射模設計
    模具制造(2019年7期)2019-09-25 07:29:58
    福建工程學院
    航空發(fā)動機維修中孔探技術的應用分析
    電子制作(2019年12期)2019-07-16 08:45:46
    烏東德大壩首個中孔鋼襯澆筑完成
    福建工程學院
    一種薄壁件的加工工藝介紹
    采用鋁熱噴涂反刺薄壁鑄鐵缸套的1.4L發(fā)動機開發(fā)
    欧美激情久久久久久爽电影| 三级男女做爰猛烈吃奶摸视频| 一级黄片播放器| 偷拍熟女少妇极品色| 中文欧美无线码| 人妻制服诱惑在线中文字幕| 成人亚洲精品av一区二区| 亚洲精品影视一区二区三区av| 久久久久久伊人网av| 三级国产精品欧美在线观看| 一级爰片在线观看| 最近的中文字幕免费完整| 欧美性感艳星| 欧美bdsm另类| 国产精品1区2区在线观看.| 级片在线观看| 中文乱码字字幕精品一区二区三区 | 十八禁国产超污无遮挡网站| 国产淫片久久久久久久久| 欧美性猛交黑人性爽| 亚洲成人精品中文字幕电影| 国产精品一区二区三区四区免费观看| 女的被弄到高潮叫床怎么办| 亚洲国产最新在线播放| 免费不卡的大黄色大毛片视频在线观看 | 国产精品永久免费网站| 欧美极品一区二区三区四区| 国产精品久久视频播放| 亚洲国产欧美在线一区| 亚洲精品自拍成人| 亚洲最大成人中文| 成人美女网站在线观看视频| 色5月婷婷丁香| 亚洲av二区三区四区| 黄色配什么色好看| 最新中文字幕久久久久| 亚洲av二区三区四区| 国产淫语在线视频| 国产精品国产三级国产专区5o | 国产成人午夜福利电影在线观看| 91精品国产九色| 男人的好看免费观看在线视频| АⅤ资源中文在线天堂| 美女大奶头视频| 亚洲第一区二区三区不卡| 日韩欧美在线乱码| 亚洲美女搞黄在线观看| av女优亚洲男人天堂| 日本免费a在线| 久久久久久久久大av| 日韩av在线免费看完整版不卡| 九草在线视频观看| 国产色婷婷99| 蜜桃亚洲精品一区二区三区| 免费观看的影片在线观看| 嫩草影院精品99| 精品久久久久久电影网 | 亚洲av免费高清在线观看| 激情 狠狠 欧美| 精品一区二区免费观看| 欧美人与善性xxx| 国产亚洲一区二区精品| 又粗又硬又长又爽又黄的视频| av免费观看日本| 国内精品美女久久久久久| 国产伦理片在线播放av一区| 中文在线观看免费www的网站| 亚洲国产精品成人久久小说| 岛国在线免费视频观看| 国产精品一区二区三区四区久久| 亚洲精品,欧美精品| 最近中文字幕2019免费版| 中文字幕av在线有码专区| 九九爱精品视频在线观看| 亚洲成人久久爱视频| 91精品伊人久久大香线蕉| 男女边吃奶边做爰视频| 99久久精品热视频| 日韩av在线免费看完整版不卡| 一级黄色大片毛片| 国产精品不卡视频一区二区| 级片在线观看| 国产精品伦人一区二区| 成人av在线播放网站| 毛片一级片免费看久久久久| 国产视频首页在线观看| 久久99热这里只有精品18| 欧美又色又爽又黄视频| 你懂的网址亚洲精品在线观看 | 欧美一区二区国产精品久久精品| 最新中文字幕久久久久| 久久久午夜欧美精品| 亚洲成人av在线免费| 日韩在线高清观看一区二区三区| 国产色爽女视频免费观看| 如何舔出高潮| 久久精品夜色国产| 一边摸一边抽搐一进一小说| 在线观看美女被高潮喷水网站| 高清av免费在线| 亚洲国产精品专区欧美| 国产三级在线视频| 身体一侧抽搐| 亚洲色图av天堂| 久久亚洲国产成人精品v| 亚洲在线观看片| 免费黄网站久久成人精品| 人妻系列 视频| 日韩亚洲欧美综合| 一个人观看的视频www高清免费观看| 乱人视频在线观看| 亚洲熟妇中文字幕五十中出| 久久亚洲精品不卡| 欧美日韩在线观看h| 中文天堂在线官网| 精品不卡国产一区二区三区| 国产精品乱码一区二三区的特点| 免费一级毛片在线播放高清视频| 级片在线观看| 欧美另类亚洲清纯唯美| 少妇熟女欧美另类| 午夜精品在线福利| 亚洲五月天丁香| 国产成人a区在线观看| 九九爱精品视频在线观看| 女人被狂操c到高潮| 久99久视频精品免费| av国产久精品久网站免费入址| 日本av手机在线免费观看| 国国产精品蜜臀av免费| 久久久久久久久久黄片| 男女下面进入的视频免费午夜| 中文欧美无线码| 日日啪夜夜撸| 中文字幕av成人在线电影| 免费观看在线日韩| av福利片在线观看| 伦理电影大哥的女人| 精品少妇黑人巨大在线播放 | 亚洲熟妇中文字幕五十中出| 亚洲av.av天堂| 欧美日韩精品成人综合77777| 亚洲精品日韩在线中文字幕| 亚洲中文字幕一区二区三区有码在线看| av天堂中文字幕网| 国产精品国产高清国产av| 内射极品少妇av片p| 亚洲成av人片在线播放无| 午夜精品一区二区三区免费看| 蜜桃久久精品国产亚洲av| 91精品国产九色| 国产乱来视频区| 中文字幕精品亚洲无线码一区| 国产人妻一区二区三区在| 国产精品熟女久久久久浪| 亚洲综合精品二区| 18禁裸乳无遮挡免费网站照片| 丝袜美腿在线中文| 嫩草影院新地址| 在线观看美女被高潮喷水网站| 欧美性猛交╳xxx乱大交人| 亚洲精品国产成人久久av| 久久久久久久午夜电影| 麻豆国产97在线/欧美| 床上黄色一级片| 变态另类丝袜制服| 亚洲av福利一区| 精品午夜福利在线看| 久久久久久久久久黄片| 亚洲精品乱久久久久久| 国产精品国产三级国产av玫瑰| 美女国产视频在线观看| 国产成人91sexporn| 亚洲伊人久久精品综合 | 国产黄片视频在线免费观看| 日韩成人av中文字幕在线观看| 午夜亚洲福利在线播放| 精品免费久久久久久久清纯| 一级毛片久久久久久久久女| 欧美一区二区亚洲| 青青草视频在线视频观看| 少妇裸体淫交视频免费看高清| 天美传媒精品一区二区| 91在线精品国自产拍蜜月| 嫩草影院新地址| 69av精品久久久久久| 欧美成人a在线观看| 日韩欧美精品免费久久| 久久久久九九精品影院| 日本欧美国产在线视频| 在现免费观看毛片| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区国产| 欧美成人一区二区免费高清观看| 97热精品久久久久久| 日本一二三区视频观看| 老司机影院成人| 在线免费十八禁| 精品无人区乱码1区二区| a级毛色黄片| 老司机福利观看| 九九爱精品视频在线观看| 久久精品国产鲁丝片午夜精品| 男人狂女人下面高潮的视频| 午夜福利成人在线免费观看| 别揉我奶头 嗯啊视频| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久亚洲中文字幕| 啦啦啦韩国在线观看视频| 少妇的逼水好多| 国产免费男女视频| 成年版毛片免费区| 全区人妻精品视频| 纵有疾风起免费观看全集完整版 | 久久久精品大字幕| 国产精品野战在线观看| 国产伦理片在线播放av一区| 黄色一级大片看看| 你懂的网址亚洲精品在线观看 | 18禁裸乳无遮挡免费网站照片| 国产精品,欧美在线| 国产私拍福利视频在线观看| 亚洲av福利一区| 国产高清国产精品国产三级 | 久久久久久久午夜电影| 美女xxoo啪啪120秒动态图| 欧美激情在线99| 日韩高清综合在线| 亚洲四区av| 久久久久性生活片| 亚洲欧美精品综合久久99| av黄色大香蕉| 免费一级毛片在线播放高清视频| 伦精品一区二区三区| 国产黄片美女视频| 三级国产精品欧美在线观看| 国产亚洲5aaaaa淫片| 成人三级黄色视频| 99热网站在线观看| 国产黄a三级三级三级人| 18禁在线播放成人免费| 性插视频无遮挡在线免费观看| 毛片女人毛片| 久久人人爽人人片av| 午夜精品国产一区二区电影 | 熟女电影av网| 91午夜精品亚洲一区二区三区| av国产免费在线观看| 丰满人妻一区二区三区视频av| 国国产精品蜜臀av免费| 两个人视频免费观看高清| 亚洲最大成人手机在线| 日本三级黄在线观看| 免费av不卡在线播放| 日本wwww免费看| 99在线人妻在线中文字幕| 国产精品女同一区二区软件| 亚洲精品影视一区二区三区av| av女优亚洲男人天堂| 久热久热在线精品观看| 国产成人a区在线观看| av在线亚洲专区| 插逼视频在线观看| 午夜日本视频在线| 草草在线视频免费看| 国产一区二区在线av高清观看| 久久精品久久精品一区二区三区| 亚洲四区av| 一级av片app| 久久久精品大字幕| 熟妇人妻久久中文字幕3abv| 高清午夜精品一区二区三区| 国产精品国产三级专区第一集| 最新中文字幕久久久久| 日本猛色少妇xxxxx猛交久久| 成人午夜高清在线视频| 精品欧美国产一区二区三| 国产v大片淫在线免费观看| 亚洲在线观看片| 人妻制服诱惑在线中文字幕| 午夜福利网站1000一区二区三区| 97人妻精品一区二区三区麻豆| 国产精品,欧美在线| 一级毛片久久久久久久久女| 久久国内精品自在自线图片| 婷婷色av中文字幕| 大又大粗又爽又黄少妇毛片口| 日韩,欧美,国产一区二区三区 | 一边摸一边抽搐一进一小说| 少妇熟女欧美另类| 国产综合懂色| 国产免费男女视频| 成人毛片60女人毛片免费| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| 99久久无色码亚洲精品果冻| 久久精品夜色国产| 老师上课跳d突然被开到最大视频| 尾随美女入室| 精品一区二区三区人妻视频| 国产不卡一卡二| 97在线视频观看| 18禁裸乳无遮挡免费网站照片| 亚洲一区高清亚洲精品| 国产成人a区在线观看| 欧美激情久久久久久爽电影| 男女啪啪激烈高潮av片| 亚洲av.av天堂| 嫩草影院新地址| 国产黄色视频一区二区在线观看 | 黄片wwwwww| 噜噜噜噜噜久久久久久91| 国内精品宾馆在线| 99热这里只有精品一区| 国产精品不卡视频一区二区| 亚洲中文字幕一区二区三区有码在线看| 3wmmmm亚洲av在线观看| 久久6这里有精品| 男女那种视频在线观看| 你懂的网址亚洲精品在线观看 | 人妻系列 视频| 夜夜爽夜夜爽视频| av天堂中文字幕网| 91av网一区二区| 淫秽高清视频在线观看| 亚洲av免费高清在线观看| 亚洲久久久久久中文字幕| 欧美日韩国产亚洲二区| 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 国产成人a∨麻豆精品| 少妇人妻精品综合一区二区| 国产精品麻豆人妻色哟哟久久 | 国产伦一二天堂av在线观看| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 青青草视频在线视频观看| 国产麻豆成人av免费视频| 又黄又爽又刺激的免费视频.| 国语自产精品视频在线第100页| 亚洲欧美日韩无卡精品| 亚洲最大成人av| 人妻少妇偷人精品九色| 国产成人精品一,二区| av福利片在线观看| 久久久久精品久久久久真实原创| 免费大片18禁| 日韩一区二区三区影片| 国产探花在线观看一区二区| 日本免费在线观看一区| 亚洲伊人久久精品综合 | 婷婷色av中文字幕| 亚洲国产日韩欧美精品在线观看| 国产乱人视频| 天堂√8在线中文| 春色校园在线视频观看| 午夜福利成人在线免费观看| 特级一级黄色大片| 日产精品乱码卡一卡2卡三| 欧美一区二区国产精品久久精品| 1024手机看黄色片| 老女人水多毛片| 色网站视频免费| 婷婷六月久久综合丁香| 日韩av在线大香蕉| 久热久热在线精品观看| 久久久久久久久久成人| 汤姆久久久久久久影院中文字幕 | 国产精品一区二区性色av| 爱豆传媒免费全集在线观看| 91精品伊人久久大香线蕉| 精品久久久久久成人av| 精品午夜福利在线看| 亚洲av一区综合| 成人二区视频| 精品少妇黑人巨大在线播放 | 亚洲一区高清亚洲精品| 久久精品91蜜桃| 久久久精品94久久精品| av女优亚洲男人天堂| 国产淫语在线视频| 纵有疾风起免费观看全集完整版 | 精品酒店卫生间| 一本一本综合久久| 国产成人a区在线观看| 国产精品1区2区在线观看.| 九色成人免费人妻av| 麻豆av噜噜一区二区三区| 久久亚洲国产成人精品v| 亚洲精品,欧美精品| 欧美一区二区亚洲| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| av在线观看视频网站免费| 国产视频首页在线观看| 国产乱来视频区| 国产伦一二天堂av在线观看| 欧美日本亚洲视频在线播放| 欧美一区二区亚洲| 一级av片app| 亚洲中文字幕日韩| 亚洲欧美日韩卡通动漫| 国产精品人妻久久久久久| 亚洲18禁久久av| 亚洲欧美精品综合久久99| 大香蕉久久网| 亚洲国产精品专区欧美| 最近手机中文字幕大全| 男女那种视频在线观看| 亚洲精品,欧美精品| 精品欧美国产一区二区三| 日本熟妇午夜| 久久精品影院6| 别揉我奶头 嗯啊视频| 亚洲精品日韩在线中文字幕| 国产精品女同一区二区软件| 久久久久久久国产电影| 一区二区三区高清视频在线| 国产精品久久久久久av不卡| 啦啦啦观看免费观看视频高清| 亚洲真实伦在线观看| 久久99热这里只频精品6学生 | 久久久a久久爽久久v久久| 村上凉子中文字幕在线| 中文字幕精品亚洲无线码一区| 亚洲电影在线观看av| 91久久精品国产一区二区三区| 男女那种视频在线观看| 亚洲欧洲国产日韩| 老司机影院成人| 欧美高清成人免费视频www| 亚洲欧美日韩无卡精品| 男女视频在线观看网站免费| 久久久a久久爽久久v久久| ponron亚洲| 国产亚洲最大av| 国产v大片淫在线免费观看| av天堂中文字幕网| 99在线人妻在线中文字幕| 麻豆精品久久久久久蜜桃| 国产一级毛片七仙女欲春2| 日韩av在线大香蕉| 91狼人影院| 在线免费观看的www视频| 国产探花在线观看一区二区| 日韩人妻高清精品专区| 青青草视频在线视频观看| 直男gayav资源| 我的老师免费观看完整版| 亚洲av电影在线观看一区二区三区 | 中文在线观看免费www的网站| 成人毛片60女人毛片免费| 深爱激情五月婷婷| 欧美成人午夜免费资源| 三级国产精品欧美在线观看| 中国国产av一级| 亚洲久久久久久中文字幕| 精品一区二区三区人妻视频| 免费看美女性在线毛片视频| 日本三级黄在线观看| av在线蜜桃| 嫩草影院新地址| 亚洲av成人精品一区久久| 久久久午夜欧美精品| av卡一久久| 国产伦精品一区二区三区四那| 91av网一区二区| 午夜福利视频1000在线观看| 亚洲欧美成人精品一区二区| 成人国产麻豆网| 国产精品久久久久久精品电影小说 | 51国产日韩欧美| 伦理电影大哥的女人| 一边亲一边摸免费视频| 成人鲁丝片一二三区免费| 熟女电影av网| 听说在线观看完整版免费高清| 亚洲不卡免费看| 亚洲激情五月婷婷啪啪| 色播亚洲综合网| 成人午夜精彩视频在线观看| 日韩精品有码人妻一区| 午夜爱爱视频在线播放| 国产精品国产高清国产av| 久久人人爽人人爽人人片va| 99久国产av精品| 两个人的视频大全免费| 一区二区三区四区激情视频| 免费观看精品视频网站| 亚洲精品日韩av片在线观看| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 亚洲熟妇中文字幕五十中出| 亚洲欧美精品综合久久99| 我的老师免费观看完整版| 成人午夜高清在线视频| 亚洲丝袜综合中文字幕| 国产不卡一卡二| 乱系列少妇在线播放| 国语自产精品视频在线第100页| 丰满乱子伦码专区| 国产在视频线在精品| 国产精品福利在线免费观看| 国产亚洲av嫩草精品影院| 国产免费男女视频| 国产成人精品婷婷| 成人亚洲精品av一区二区| 国产乱人视频| 插阴视频在线观看视频| 国产免费男女视频| 少妇的逼好多水| 亚洲国产精品国产精品| 日本与韩国留学比较| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 国产精品三级大全| 久久精品国产鲁丝片午夜精品| 人人妻人人澡欧美一区二区| 禁无遮挡网站| 免费无遮挡裸体视频| 中国国产av一级| 联通29元200g的流量卡| 99久久精品热视频| 超碰97精品在线观看| 国产爱豆传媒在线观看| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 天堂影院成人在线观看| 热99在线观看视频| 亚洲欧美中文字幕日韩二区| 国产精品1区2区在线观看.| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品 | 成人高潮视频无遮挡免费网站| 国国产精品蜜臀av免费| 真实男女啪啪啪动态图| 国内揄拍国产精品人妻在线| 欧美丝袜亚洲另类| 身体一侧抽搐| 亚洲国产最新在线播放| 伊人久久精品亚洲午夜| 一级毛片电影观看 | 夫妻性生交免费视频一级片| 视频中文字幕在线观看| 亚洲人成网站在线观看播放| 国产亚洲91精品色在线| 级片在线观看| 久久精品久久久久久噜噜老黄 | 中文字幕av成人在线电影| 禁无遮挡网站| 色网站视频免费| 色播亚洲综合网| 久久精品国产亚洲av涩爱| 丰满乱子伦码专区| 国产免费又黄又爽又色| 色吧在线观看| 亚洲精品一区蜜桃| 少妇丰满av| 久热久热在线精品观看| 2021天堂中文幕一二区在线观| 最近的中文字幕免费完整| 两个人的视频大全免费| 午夜福利视频1000在线观看| 一级黄色大片毛片| 男女视频在线观看网站免费| 天天一区二区日本电影三级| 免费大片18禁| 日韩成人伦理影院| 日韩强制内射视频| 午夜视频国产福利| 色哟哟·www| 欧美潮喷喷水| 亚洲内射少妇av| 天堂网av新在线| 亚州av有码| 国产精品麻豆人妻色哟哟久久 | 婷婷六月久久综合丁香| 亚洲av不卡在线观看| 精品久久久久久电影网 | 草草在线视频免费看| 别揉我奶头 嗯啊视频| 菩萨蛮人人尽说江南好唐韦庄 | 精品酒店卫生间| 最后的刺客免费高清国语| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 免费观看在线日韩| 能在线免费观看的黄片| 国产女主播在线喷水免费视频网站 | 国产 一区精品| 一级av片app| www日本黄色视频网| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 如何舔出高潮| 26uuu在线亚洲综合色| 国产在线一区二区三区精 | 我要搜黄色片| 精品少妇黑人巨大在线播放 | 18+在线观看网站| 久久久精品欧美日韩精品| 亚洲欧美成人精品一区二区| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 国产精品女同一区二区软件| 国产免费男女视频| 狠狠狠狠99中文字幕| 伦理电影大哥的女人| 亚洲婷婷狠狠爱综合网| 欧美区成人在线视频| 亚洲精品国产av成人精品| 精品熟女少妇av免费看| 精品欧美国产一区二区三| 91久久精品电影网|