• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    第一性原理方法預(yù)測水相核酸堿基及其代謝物的氧化還原電動勢

    2011-12-12 02:43:24李敏杰劉衛(wèi)霞彭淳容陸文聰
    物理化學(xué)學(xué)報 2011年3期
    關(guān)鍵詞:化學(xué)系第一性上海大學(xué)

    李敏杰 劉衛(wèi)霞 彭淳容 陸文聰

    (上海大學(xué)化學(xué)系,上海200444)

    1 Introduction

    Ionizing radiation,photosensitization,or various oxidants are believed to be responsible for oxidatively generated damage to DNA.The reason is attributed to oxidative processes involving loss of an electron and the concomitant generation of a radical cation that migrates along the nucleobases of the du-plex by ahopping mechanism.1-10Low-energy electrons (LEEs)produced in significant numbers by ionizing radiation can also lead to DNA strand breaks via capture of LEEs to form radical anions.11-15Redox potentials of compounds in solution are fundamental properties in determining the innumerable chemical and biological electron-transfer reactions.16The redox potentials of nucleobases and the metabolites in aqueous solution offer critical insight into the electron transfer in DNA caused by ionizing radiation,oxidizing agent,and LEEs.In addition,they are crucial for the design of new redox-active nucleobase compounds using DNA substituents as building blocks.6,17,18

    Although considerable efforts have been devoted to the determination of the redox potentials of DNA and RNA constituents,only few have been reported.19-22And the experimental data reported by one group are different from those reported by other groups.23-34On one hand,different experimental conditions(such as solvent,pH,detection method,etc.)affect the experimental observations significantly.For example,Fukuzumi et al.29reported a redox potential of 1.42 V for deoxyadenosine in aqueous solution at pH 7,whereas Steenken and Jovanovic27observed 2.03 V at pH 1.On the other hand,unavoidable experimental uncertainties(such as irreversible electrochemistry, proton-coupled electron-transfer reaction,etc.)preclude the determination of redox potentials under well-defined equilibrium conditions.30,35,36Seidel et al.30measured the redox values of the DNA constituents under non-equilibrium irreversible conditions,which were known to be underestimated by ca 0.3 V compared to the standard ones recorded under reversible conditions.In this regard,debates still continue on the accuracy of the experimental redox potentials for the DNA and RNA substituents.35,36

    In addition,limited theoretical work on redox potentials for DNA and RNA substituents in aqueous solution has been disclosed.Crespo-Hernández et al.37determined the redox potentials for DNA nucleosides and relevant nucleoside analogues in N,N-dimethylformamide or acetonitrile solutions using density functional theory and integral equation formulation of polarizable continuum model(IEFPCM)solvation model performed with the Gaussian 98 suite of programs.The difference between the calculated and the experimental oxidation potentials was found to be less than 0.3 V.37Baik et al.19predicted the oxidation potentials for DNA bases analogues in aqueous medium using PW91 functional and the conductor-like screening model for real solvents(COSMORS)solvation model implemented in the Amsterdam density functional package with the difference between the calculated and the experimental oxidation values greater than 0.38 V.

    These experimental and theoretical results have contributed positively to the understanding of the electron transfer in DNA and RNA induced by loss of electrons or capture of LEEs.Nevertheless,they represent limited studies on the redox potentials of DNA and RNA substituents in aqueous medium.More importantly,the reported redox values were obtained under different experimental conditions and theoretical models.The differences of the reported redox potentials limit the applicability of the data.Hence,a unified set of redox potentials for DNA and RNAsubstituents in aqueous solution needs to be established.

    This paper focuses on the one-electron redox potential calculations for nucleobases and the metabolites in aqueous solution.A first-principles theoretical protocol was developed to be the optimal for pH-dependent redox potential predictions in aqueous solution among eight theoretical models by comparing the theoretical predictions with the experimental data of 82 aromatic compounds.With this useful protocol we next predicted the redox potentials for nucleobases and the metabolites.Discussions were then made about interesting connections between the redox potentials and charge/electron transfer in DNA,and the impact of structural variations on redox potentials.

    2 Computational details

    All calculations were performed with the Gaussian 03 suite of programs.38Geometry optimizations in gas phase were performed using the B3LYP/6-31+G(d)method.Frequencies were calculated at the same level of theory for all the species to confirm the nature of the local minima and to obtain the zero-point energy(ZPE).Single-point electronic energies were then calculated at the B3LYP/6-311++G(2df,2p)levels.The free energy change was then computed including ZPE corrections,thermal corrections(0→298 K),and the entropy terms.All the calculated gas-phase free energies correspond to the reference state of 101325 Pa,298 K.

    To calculate solvation energies,we used COSMORS model39at the HF/6-31+G(d)level(ε=78.39,radii=UAHF).Conductorlike polarizable continuum model(CPCM)model40at the HF/ 6-31+G(d)level was used for solution geometry re-optimizations(ε=78.39,radii=UAHF).All the free energies in aqueous solution reported in this paper correspond to the reference state of 1 mol·L-1,298 K.

    3 Results and discussion

    3.1 Developing a reliable protocol to calculate redox potential

    3.1.1 Computing redox potentials in aqueous medium

    From a free energy cycle as shown in Fig.1,the standard oxi-dation potentials(E?)can be calculated through the gas phase adiabatic ionization potentials(IP)and solvation energies using equation(1).

    In equation(1),IP is the gas-phase adiabatic ionization potential(unit:eV),which is defined as the enthalpy changes of reaction(i).The second term,F is the Faraday constant,which equals to 23.06 kJ·mol-1·V-1.The next terms,TΔS(unit:kJ· mol-1)is the gas-phase entropy term of reaction(i).ΔGsol(AH+?) and ΔGsol(AH)(unit:kJ·mol-1),correspond to the solvation free energies of the reduced and oxidized forms in aqueous medium.The last term,-4.44(unit:V),is the free energy change associated with the reference normal hydrogen electrode (NHE)half-reaction(i.e.,H+(aq)+e-(g)→1/2H2(g)).22

    In the same way,the standard reduction potential of reaction (ii)in aqueous medium can be computed using equation(2).

    where,EA is the adiabatic electron affinity in gas phase(unit: eV),which is computed as the difference between the total energies of the appropriate neutral and anion species at their respective optimized geometries defined in the reaction.TΔS (unit:kJ·mol-1)is the gas-phase entropy term of the reaction. ΔGsol(AH-●)and ΔGsol(AH)(unit:kJ·mol-1)correspond to the solvation free energies of the reduced(anion)and oxidized (neutral)forms in aqueous medium.

    3.1.2 Computing pH-dependent redox potentials in aqueous medium

    The redox potentials are highly pH dependent(decrease as pH increase)because of the rapid deprotonation of the corresponding radical cation at neutral(or basic)pH.6Nevertheless, none of the previous theoretical predictions took pH effects into consideration.From the following free energy cycle(Fig.2), oxidation potential can be computed at different pH values using equation(3).

    where,Ka(AH+●)and Ka(AH)correspond to the acidity constant in aqueous medium,which can be computed from the following proton exchange reaction(iii)using equation(4).

    Fig.2 Free energy cycle for the half-wave oxidation potential of AH in aqueous medium affected by pH value

    where,ΔGexchangeis defined as the solvation free energy change of the above reaction in aqueous solution.The experimental pKavalue for phenol is 9.98.41It was noteworthy that we chose phenol for the proton exchange reaction in that we wished to develop a most effective method for redox potential calculations of aromatic compounds.Likewise,reduction potential of reaction(ii)can also be computed at different pH values.

    3.1.3 Evaluation of different theoretical protocols

    We attempt to develop a reliable method to predict the redox potentials of aromatic compounds in aqueous medium.The gas-phase calculations were conducted using the standard B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d)method which was tested for reliability in gas phase IP and EA calculations in previous studies.15The prediction accuracy of the redox potentials in aqueous solution relies heavily on the accuracy of the calculated solvation energies in the same solution.To select an appropriate solvation model,we tested the different solvation models for the calculation of the redox potentials in aqueous medium.

    The CPCM solvation model with UAHF and UAKS cavity models at HF/6-31+G(d)level were used for re-optimized geometries in aqueous solution(ε=78.39).The COSMORS and CPCMsolvation models with UAHF and UAKS cavity models at the HF/6-31+G(d)level were used for solvation energies calculations for gas-phase and re-optimized solution geometries in aqueous solution.

    The redox potentials in aqueous solution of 12 aromatic compounds containing phenol,aniline,and nucleobase analogues were predicted with 8 composite protocols(Table S1 in Supporting Information).Comparing the experimental data with the theoretical predictions,we find that the B3LYP/ 6-311++G(2df,2p)//B3LYP/6-31+G(d)in gas phase and the HF-COSMORS/UAHF for solvation energy calculations at the HF-CPCM/UAHF re-optimized solution geometries in aqueous solution protocol(method 1)is the most reliable theoretical protocol for predicting the redox potentials of aromatic compounds.The evaluation of different theoretical protocols was given in Table S2.

    Using method 1,we also calculated the redox potentials of 70 aromatic compounds in aqueous solution.The results were summarized in Table S3.The experimental42-44and theoretical values of only several compounds were given in Table 1 for the other compounds with different substituent groups.It should be emphasized that several selected compounds have similar functional groups and heteroatoms as those in DNA constituents.In addition,their redox values extend over a wider range of potentials than those expected for the DNA and RNAsubstituents.

    Comparing all the experimental redox potentials with theoretical predictions for the 82 compounds in Table S3,we found that the theoretical predictions were in good agreement with the experimental data.The correlation between the experimen-tal and theoretical redox potentials is shown in Fig.3.It can be seen from Fig.3 that the slope and intercept of the correlation are 1.00 and-0.003 V,respectively,indicating that there is almost no systematic error in the predictions.The correlation coefficient(r)is 0.977.The RMSD between the experimental and theoretical redox potentials is 0.124 V(e.g.12 kJ·mol-1) for 82 hetero-aromatic compounds.

    Table 1 Experimental42-44and theoretical redox potentials(vs NHE,V)in aqueous solution for several compounds

    Fig.3 Comparison between the theoretical and experimental redox potentials in aqueous solution

    3.2 Determination of oxidation potentials for nucleobases and the metabolites

    The above analysis demonstrates that method 1 can predict the redox potentials of hetero-aromatic compounds with a precision of about 0.124 V.Here we utilized this theoretical protocol to predict the oxidation potentials of nucleobases and 15 familiar metabolites in aqueous medium at pH 7.The oxidation values for nucleobases and the metabolites in neutral solution are listed in Table 2.

    Table 2 clearly showed that oxidation potentials of purine nucleobases are lower than those of pyrimidine nucleobases. Guanine(G)has the lowest oxidation potential(1.10 V)among the five natural nucleobases,which show that guanine is the most commonly oxidized of the nucleobases.The oxidation value of adenine,1.38 V,is higher than that of guanine.The values of thymine,uracil,and cytosine were about 0.32,0.52, and 0.66 V higher than that of guanine,respectively.The data for DNA nucleobases follow the trend observed experimentally in solution:guanine<adenine<thymine<cytosine.34The order is also in agreement with the theoretical results predicted by Baik et al.19The relative electron-donating abilities in solution should decrease in the order of:purine nucleobases>pyrimidine nucleobases.

    Table 2 Theoretical oxidation potentials(vs NHE,V)for nucleobases and the metabolites in aqueous solution

    5-hydroxy-C has the lowest oxidation potential(0.53 V) among the five nucleobases and 15 familiar metabolites listed in Table 2,which is 0.57 V lower than that of guanine.Oxidation potentials of 5-hydroxy-U,8-oxoG,and 8-oxoA are 0.81, 0.87,and 1.00 V which are lower than that of guanine,respectively.Oxidation potentials of FAPy-G and FAPy-A are 1.09 and 1.17 V,which are comparable to that of guanine.Among the nucleobases and the metabolites,5-hydroxy-C and 5-hydroxy-U can be used as effective reductants for the design of new redox-active nucleobase compounds.

    From Table 2,it is observed that the 5-hydroxyl group significantly reduces the oxidation potentials for pyrimidine metabolites,5-hydroxyl-C and 5-hydroxyl-U.The oxidation values of 5-hydroxyl derivatives are 1.23 and 0.81 V lower than those of cytosine and uracil respectively.Introduction of hydroxyl to 5-position of 5,6-dihydro-T and 5,6-dihydro-U similarly reduces the oxidation values for the 5-hydroxy derivatives.An opposite tendency is found that the 5-formyl group increases the oxidation potential noticeably for uracil metabolite,5-formyl-U. However,introduction of hydroxyl to 6-position of 5-hydroxy-5,6-dihydro-T and 5-hydroxy-5,6-dihydro-U has less influence on the oxidation values.These results indicate that introduction of different substituents to 5 and 6-positions has different effects on oxidation potentials for pyrimidine analogues, which can be explained by the spin density localized at 5-C and 6-C of the oxidized pyrimidines(see Table 3).The spin density on 5-C is much higher than that on 6-C in the oxidized pyrimidines.Thus,introduction of electron donating groups to 5-position of pyrimidines could significantly decrease the oxidation potentials.On the contrary,introduction of electron withdrawing groups to 5-position increases the oxidation potentials noticeably.Furthermore,additions to 5-position could have more significant effects on oxidation potentials than those to 6-position.

    Table 3 Spin density distributions in the 5-and 6-positions of the oxidized and reduced pyrimidine nucleobases calculated at the B3LYP/6-31+G(d)level

    Oxidation potentials increase markedly with the hydrogenation of carbon(5),carbon(6)double bond of thymine and uracil due to dearomaticity of ring systems.

    The result reported in Table 3 suggests that 8-oxoG has a lower oxidation potential than that of guanine in aqueous solu-tion.26(a)Thus 8-oxoG is a better hole-trap than guanine.These predictions are in good agreement with experimental observations in aqueous solution by Steenken26(a)and Foote45et al.Likewise,8-oxoA is expected to have lower potential than that of guanine,which is in consistent with the observation reported by Baik et al.19

    Table 4 Theoretical reduction potentials(vs NHE,V)for nucleobases and the metabolites in aqueous solution

    The transfer direction of the hole,generated by one-electron oxidation in DNA,is an important topic for using DNA as building blocks for electronic devices.9,23,25,46,47Oxidation potential is intrinsically connected to hole-trapping ability of an agent.In our predictions listed in Table 2,oxidation potentials of 5-hydroxy-C,5-hydroxy-U,8-oxoG,and 8-oxoA are lower than that of guanine(G),which suggest that these four compounds are more powerful hole-trapping agents than guanine.

    3.3 Determination of reduction potentials of nucleobases and the metabolites

    Low electron affinities of nucleobases and limited accessible potential range(background discharge potential ca-1.7 V vs NHE)lead to limited experimental data on one electron reduction potentials.30Here,method 1 was used for reduction potential predictions of nucleobases and the metabolites(Table 4).

    Uracil has the lowest reduction potential(2.05 V)in the five natural nucleobases.The reduction potential of thymine is 2.09 V,comparable to that of uracil.The value of cytosine is 0.10 V higher than that of thymine.The values of adenine and guanine are 0.41 V and 0.90 V higher than that of thymine.The reduction potentials for nucleobases increase in the order of:uracil<thymine<cytosine<adenine.Our results are consistent with Crespo-Hernández and co-workers'theoretical preditions.37Besides,our results are in good agreement with the experimental trend reported by Seidel et al.30

    Reduction potentials for pyrimidine nucleobases are much lower than those for purine nucleobases.Our results suggest that thymine,cytosine and uracil are reduced by LEEs more easily than guanine and adenine.Pyrimidine nucleobases are found to have a stronger tendency to capture low-energy electrons than purine nucleobases.Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA and RNA single-strand break.Our suggestions are in very good agreement with theoretical findings of Gu et al.12

    In general,the reduction potentials of pyrimidine metabolites are much lower than those of purine counterparts.5-formyl-U has the lowest reduction potential(1.27 V)among the nucleobases and the metabolites(Table 4).The reduction potential(1.84 V)of 5-hydroxyhydantoin is higher than that of 5-formyl-U.The data of uridine glycol,5-hydroxy-C and thymine glycol are comparable to that of uracil.Of the nucleobases and the metabolites,5-hydroxy-U and 5-hydroxyhydantoin are the most effective oxidants for the design of new redox-active nucleobase compounds.

    Table 4 clearly shows that introduction of 6-hydroxyl to 5-hydroxy-5,6-dihydro-T and 5-hydroxy-5,6-dihydro-U decreases the reduction potentials by 0.23 and 0.30 V,respectively.In comparison with cytosine and uracil,the reduction potentials of their 5-hydroxy analogs do not have obvious change. The rational explanations for the different changes in the reduction potential of pyrimidine analogues owe to the spin density localized at 5-C and 6-C of the reduced pyrimidines(see Table 3).The spin density on 6-C is much higher than that on 5-C in the reduced pyrimidines,which is the opposite of that in the oxidized forms.Therefore,introduction of hydroxyl to 6-position of pyrimidines could decrease the reduction potentials.Furthermore,introduction of 5-hydroxyl could have negligible effect on oxidation potentials.

    Hydrogenation of carbon(5),carbon(6)double bond of thymine and uracil lead to the increase in the reduction potentials due to dearomaticity of ring systems,which has the same effect on the oxidation potentials.

    In a word,our results indicate that electronic properties and structural variations of the aromatic rings of nucleobase metabolites have predictable impact on the reduction potentials.

    4 Conclusions

    We successfully developed a first-principles method to predict the pH-dependent redox potentials of aromatic compounds in aqueous medium with a RMSD of 0.124 V.Here,the B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d)in gas phase and the HF-COSMORS/UAHF for solvation energy calculations at the HF-CPCM/UAHF re-optimized solution geometries in aqueous solution protocol is found to be the optimal method for predicting the redox potentials of aromatic compounds in aqueous solution.With this protocol,a set of redox potentials of nucleobases and the metabolites in aqueous medium were obtained.In addition,our observations about the impact of structural variations on redox potentials may provide important guidance in the design of new redox-active nucleobases compounds.

    Although our calculations are directly relevant to free molecules in aqueous solution,they might be helpful in elucidation of the charge/electron transfer in nucleic acid.With an accurate knowledge of the redox potentials of H-bonded pairs in nucleic acid,an in-depth understanding of the charge/electron transfer in nucleic acid might be possible.In our further study,the reliable redox potentials for nucleoside base stacks and more complex nucleic acid system in aqueous solution will be determined and the discussion on the charge/electron transfer in nucleic acid will be made more thoroughly.

    Supporting Information Available:Detailed geometrical coordinates optimized at the B3LYP/6-31+G(d)level of theory, and the evaluation of different theoretical method and the experimental and theoretical redox potentials of 82 compounds have been included.This material is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Steenken,S.;Telo,J.P.;Novais,H.M.;Candeias,L.P.J.Am. Chem.Soc.1992,114,4701.

    (2) (a)Colson,A.O.;Sevilla,M.D.Int.J.Radiat.Biol.1995,67, 627. (b)Li,X.;Cai,Z.;Sevilla,M.D.J.Phys.Chem.B 2001,105, 10115. (c)Li,X.;Sevilla,M.D.;Sanche,L.J.Phys.Chem.B 2004, 108,5472. (d)Li,X.;Sanche,L.;Sevilla,M.D.J.Phys.Chem.B 2004, 108,19013.

    (3) Desfrancois,D.;Abdoul-Carime,H.;Schermann,J.P.J.Chem. Phys.1996,104,7792.

    (4) Huels,M.A.;Hahndorf,I.;Illengerger,E.;Sanche,L.J.Chem. Phys.1998,108,1309.

    (5) (a)Li,M.J.;Liu,L.;Wei,K.;Fu,Y.;Guo,Q.X.J.Phys.Chem. B 2006,110,13582. (b)Li,M.J.;Liu,L.;Fu,Y.;Guo,Q.X.J.Phys.Chem.B 2005, 109,13818.

    (6) Burrows,C.J.;Muller,J.G.Chem.Rev.1998,98,1109.

    (7) Kelley,S.O.;Barton,J.K.Science 1999,283,375.

    (8) Berlin,Y.A.;Burin,A.L.;Ratner,M.A.J.Am.Chem.Soc. 2001,123,260.

    (9)(a)Giese,B.;Amaudrut,J.;K?hler,A.K.;Spormann,M.; Wessely,S.Nature 2001,412,318. (b)Giese,B.Accounts Chem.Res.2000,33,631.

    (10) (a)Anusiewicz,I.;Berdys-Kochanska,J.;Sobczyk,M.;Skurski, P.;Simons,J.J.Phys.Chem.A 2004,108,11381. (b)Anusiewicz,I.;Sobczyk,M.;Berdys-Kochanska,J.; Skurski,P.;Simons,J.J.Phys.Chem.A 2005,109,484.

    (11) LaVerne,J.A.;Pimblott,S.M.Radiat.Res.1995,141,208.

    (12) (a)Gu,J.D.;Xie,Y.M.;Schaefer,H.F.J.Am.Chem.Soc. 2005,127,1053. (b)Hou,R.;Gu,J.;Xie,Y.;Yi,X.;Schaefer,H.F.J.Phys. Chem.B 2005,109,22053. (c)Gu,J.D.;Xie,Y.M.;Schaefer,H.F.J.Am.Chem.Soc. 2006,128,1250. (d)Gu,J.D.;Xie,Y.M.;Schaefer,H.F.Nucleic Acids Res. 2007,35,5165. (e)Lyngdoh,R.H.D.;Schaefer,H.F.Accounts Chem.Res. 2009,42,563. (f)Jaeger H.M.and Schaefer,H.F.J.Phys.Chem.B 2009, 113,8142.

    (13) Li,X.;Sevilla,M.D.;Sanche,L.J.Am.Chem.Soc.2003,125, 13668.

    (14) (a)Berdys,J.;Anusiewicz,I.;Skurski,P.;Simons,J.J.Am. Chem.Soc.2004,126,6441. (b)Berdys,J.;Skurski,P.;Simons,J.J.Phys.Chem.B 2004, 108,5800.

    (15) Hendricks,J.H.;Lyapustina,S.A.;de Clercq,H.L.;Bowen,K. H.J.Chem.Phys.1998,108,8.

    (16)(a)Fu,Y.;Liu,L.;Yu,H.Z.;Wang,Y.M.;Guo,Q.X.J.Am. Chem.Soc.2005,127,7227. (b)Fu,Y.;Liu,L.;Wang,Y.M.;Li,J.N.;Yu,T.Q.;Guo,Q.X. J.Phys.Chem.A 2006,110,5874. (c)Feng,Y.;Liu,L.;Fang,Y.;Guo,Q.X.J.Phys.Chem.A 2002,106,11518.

    (17)Abraham,J.;Gosh,A.K.;Schuster,G.B.J.Am.Chem.Soc. 2006,128,5346.

    (18) Becker,D.;Sevilla,M.D.Adv.Radiat.Biol.1993,17,121.

    (19) Baik,M.H.;Silverman,J.S.;Yang,I.V.;Ropp,P.A.;Szalai,V. A.;Yang,W.T.;Thorp,H.H.J.Phys.Chem.B 2001,105,6437.

    (20) Baik,M.H.;Ziegler,T.;Schauer,C.K.J.Am.Chem.Soc.2000, 122,9143.

    (21) Kettle,L.J.;Bates,S.P.;Mount,A.R.Phys.Chem.Chem. Phys.2000,2,195.

    (22) Trasatti,S.Pure Appl.Chem.1986,58,955.

    (23)(a)Kawai,K.;Wata,Y.;Ichinose,N.;Majima,T.Angew.Chem. Int.Edit.2000,39,4327. (b)Kawai,K.;Wata,Y.;Hara,M.;Tojo,S.;Majima,T.J.Am. Chem.Soc.2002,124,3586. (c)Kawai,K.;Takada,T.;Tojo,S.;Ichinose,N.;Majima,T. J.Am.Chem.Soc.2001,123,12688.

    (24) (a)Caruso,T.;Carotenuto,M.;Vasca,E.;Peluso,A.J.Am. Chem.Soc.2005,127,15040. (b)Caruso,T.;Capobianco,A.;Peluso,A.J.Am.Chem.Soc. 2007,129,15347.

    (25) (a)Lewis,F.D.Photochem.Photobiol.2005,81,65. (b)Lewis,F.D.;Letsinger,R.L.;Wasielewski,M.R.Accounts Chem.Res.2001,34,159.

    (26) (a)Steenken,S.;Jovanovic,S.V.;Bietti,M.;Bernhard,K. J.Am.Chem.Soc.2000,122,2373. (b)Steenken,S.Biol.Chem.1997,378,1293. (c)Steenken,S.Chem.Rev.1989,89,503. (d)Jovanovic,S.V.;Simic,M.G.J.Phys.Chem.1986,90,974.

    (27) Steenken,S.;Jovanovic,S.V.J.Am.Chem.Soc.1997,119,617.

    (28) (a)Close,D.M.J.Phys.Chem.A 2004,108,10376. (b)Crespo-Hernández,C.E.;Arce,R.;Ishikawa,Y.;Gorb,L.; Leszczynski,J.;Close,D.M.J.Phys.Chem.A 2004,108, 6373. (c)Close,D.M.;?hman,K.T.J.Phys.Chem.A 2008,112, 11207. (d)Close,D.M.J.Phys.Chem.A 2008,112,8411. (e)Close,D.M.;Crespo-Hernández,C.E.;Gorb,L.; Leszczynski,J.J.Phys.Chem.A 2006,110,7485.

    (29)Fukuzumi,S.;Miyao,H.;Ohkubo,K.;Suenobu,T.J.Phys. Chem.A 2005,109,3285.

    (30) Seidel,C.A.M.;Schulz,A.;Sauer,M.H.M.J.Phys.Chem. 1996,100,5541.

    (31) Lecomte,J.P.;Kirsch-De Mesmaeker,A.;Kelly,J.M.;Tossi,A. B.;G?rner,H.Photochem.Photobiol.1992,55,681.

    (32) Langmaier,J.;Samec,Z.;Samcová,E.;Hobza,P.;Reha,D. J.Phys.Chem.B 2004,108,15896.

    (33) Kittler,L.;L?ber,G.;Gollmick,F.;Berg,H.J.Electroanal. Chem.1980,116,503.

    (34) Oliveira-Brett,A.M.;Piedade,J.A.P.;Silva,L.A.;Diculescu, V.C.Anal.Biochem.2004,332,321.

    (35) Guirado,G.;Fleming,C.N.;Lingenfelter,T.G.;Williams,M. L.;Zuihof,H.;Dinnocenzo,J.P.J.Am.Chem.Soc.2004,126, 14086.

    (36)Fiebig,T.;Wan,C.;Zewail,A.H.Chem.Phys.Chem.2002,3, 781.

    (37) Crespo-Hernández,C.E.;Close,D.M.;Gorb,L.;Leszczynski, J.J.Phys.Chem.B 2007,111,5386.

    (38) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.et al.Gaussian 03, Revision C.02;Gaussian,Inc.:Wallingford,CT,2004.

    (39) Klamt,A.;Schüürmann,G.J.Chem.Soc.Perkin Trans.1993,2, 799.

    (40) (a)Barone,V.;Cossi,M.J.Phem.Chem.A 1998,102,1995. (b)Fu,Y.;Wang,H.J.;Chong,S.S.;Guo,Q.X.;Liu,L. J.Org.Chem.2009,74,810. (c)Fu,Y.;Liu,L.;Li,R.Q.;Liu,R.;Guo,Q.X.J.Am.Chem. Soc.2004,126,814.

    (41) Liptak,D.;Gross,K.C.;Seybold,P.G.;Feldgus,S.;Shields,G. C.J.Am.Chem.Soc.2002,124,6421.

    (42) Suatoni,J.C.;Snyder,R.E.;Clark,R.O.Anal.Chem.1961,33, 1894

    (43) Faraggi,M.;Broitman,F.;Trent,J.B.;Klapper,M.H.J.Phys. Chem.1996,100,14751.

    (44) Lias,S.G.;Bartmess,J.E.;Liebman,J.F.;Holmes,J.L.;Levin R.D.;Mallard,W.G.J.Phys.Chem.Ref.Data 1988,17,Suppl. 1.

    (45) Prat,F.;Houk,K.N.;Foote,C.S.J.Am.Chem.Soc.1998,120, 845.

    (46) Grinstaff,M.W.Angew.Chem.Int.Edit.1999,38,3629.

    (47) Schuster,G.B.Accounts Chem.Res.2000,33,253.

    猜你喜歡
    化學(xué)系第一性上海大學(xué)
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計算
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    上海大學(xué)學(xué)報(自然科學(xué)版)征稿簡則
    《上海大學(xué)學(xué)報(自然科學(xué)版)》征稿簡則
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計算
    缺陷和硫摻雜黑磷的第一性原理計算
    老熟女久久久| 在线天堂最新版资源| 男女啪啪激烈高潮av片| 夫妻午夜视频| 亚洲精品日本国产第一区| 精品亚洲乱码少妇综合久久| 99国产精品免费福利视频| 美女脱内裤让男人舔精品视频| 91aial.com中文字幕在线观看| 欧美少妇被猛烈插入视频| 国产精品熟女久久久久浪| 久久精品国产鲁丝片午夜精品| 亚洲国产日韩一区二区| 国产精品一国产av| 综合色丁香网| 晚上一个人看的免费电影| 久久国产精品男人的天堂亚洲 | 少妇的逼好多水| 国语对白做爰xxxⅹ性视频网站| 欧美亚洲日本最大视频资源| 女性生殖器流出的白浆| 最新中文字幕久久久久| 一区二区三区四区激情视频| 99国产精品免费福利视频| 日韩av免费高清视频| 久久午夜福利片| 亚洲国产欧美日韩在线播放| 日韩熟女老妇一区二区性免费视频| av福利片在线| 中文字幕av电影在线播放| 国产精品一二三区在线看| 日韩电影二区| 亚洲激情五月婷婷啪啪| 在线观看国产h片| 亚洲国产精品成人久久小说| 男人添女人高潮全过程视频| 一级,二级,三级黄色视频| 一级片'在线观看视频| 午夜免费观看性视频| 男女免费视频国产| 欧美少妇被猛烈插入视频| 九色亚洲精品在线播放| 午夜福利,免费看| 91国产中文字幕| 亚洲精品国产色婷婷电影| 日韩成人伦理影院| av免费观看日本| 视频中文字幕在线观看| 天天躁夜夜躁狠狠躁躁| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| 国产免费视频播放在线视频| 亚洲在久久综合| 国产极品天堂在线| 日日爽夜夜爽网站| videos熟女内射| 最近中文字幕2019免费版| 菩萨蛮人人尽说江南好唐韦庄| 18禁在线无遮挡免费观看视频| 九九爱精品视频在线观看| 免费大片黄手机在线观看| 69精品国产乱码久久久| 精品国产国语对白av| 亚洲图色成人| 国产av精品麻豆| 99热网站在线观看| 国内精品宾馆在线| av视频免费观看在线观看| 久久免费观看电影| 中国国产av一级| 99热这里只有是精品在线观看| a级片在线免费高清观看视频| 这个男人来自地球电影免费观看 | 日韩三级伦理在线观看| 中文乱码字字幕精品一区二区三区| 国产色爽女视频免费观看| 狠狠婷婷综合久久久久久88av| 18禁裸乳无遮挡动漫免费视频| 最近手机中文字幕大全| 亚洲第一av免费看| 亚洲精品久久久久久婷婷小说| 黑人欧美特级aaaaaa片| 久久久久久人妻| 看十八女毛片水多多多| 国产精品人妻久久久影院| 五月天丁香电影| 夜夜爽夜夜爽视频| 美女大奶头黄色视频| 黑人猛操日本美女一级片| 少妇人妻精品综合一区二区| 亚洲国产日韩一区二区| 日韩制服骚丝袜av| 美女国产高潮福利片在线看| 久久av网站| 国产精品国产三级专区第一集| 久久人人爽av亚洲精品天堂| 久久精品国产a三级三级三级| 全区人妻精品视频| 午夜久久久在线观看| 亚洲国产色片| 午夜免费男女啪啪视频观看| 制服诱惑二区| 久久韩国三级中文字幕| 国产爽快片一区二区三区| 亚洲国产日韩一区二区| 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 丝袜在线中文字幕| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久小说| 高清不卡的av网站| 高清毛片免费看| 久久精品久久久久久久性| 国产精品久久久av美女十八| 伊人亚洲综合成人网| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 久久精品aⅴ一区二区三区四区 | 亚洲成人av在线免费| 亚洲国产精品专区欧美| 日本欧美国产在线视频| 少妇被粗大的猛进出69影院 | 黄色怎么调成土黄色| 美女视频免费永久观看网站| 欧美最新免费一区二区三区| av免费在线看不卡| 亚洲四区av| 欧美97在线视频| 亚洲欧美精品自产自拍| www.熟女人妻精品国产 | 一区二区三区精品91| 久久午夜综合久久蜜桃| 久久久久久人人人人人| 精品国产露脸久久av麻豆| 七月丁香在线播放| 久久韩国三级中文字幕| 免费女性裸体啪啪无遮挡网站| 免费看不卡的av| 成人毛片a级毛片在线播放| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 不卡视频在线观看欧美| av免费在线看不卡| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频| 中文天堂在线官网| 免费av不卡在线播放| 9热在线视频观看99| 99热6这里只有精品| 久久久久久久国产电影| 亚洲国产看品久久| 国产成人精品福利久久| 亚洲精品视频女| 欧美精品国产亚洲| 国产免费一区二区三区四区乱码| 久久精品久久久久久久性| 9热在线视频观看99| 精品人妻一区二区三区麻豆| 少妇高潮的动态图| av播播在线观看一区| 国产视频首页在线观看| 五月天丁香电影| 精品亚洲成a人片在线观看| 免费看不卡的av| 亚洲精品视频女| 欧美少妇被猛烈插入视频| 久热久热在线精品观看| 免费高清在线观看日韩| 中文字幕最新亚洲高清| videos熟女内射| 国产永久视频网站| 亚洲欧美日韩卡通动漫| 日韩电影二区| 日本vs欧美在线观看视频| 成年人午夜在线观看视频| 中国美白少妇内射xxxbb| 久久久久精品久久久久真实原创| 亚洲人与动物交配视频| 国产男女超爽视频在线观看| av免费在线看不卡| 婷婷成人精品国产| 天天操日日干夜夜撸| 欧美精品av麻豆av| 国产亚洲精品第一综合不卡 | 久久国内精品自在自线图片| 亚洲成av片中文字幕在线观看 | 免费av中文字幕在线| 999精品在线视频| 国产有黄有色有爽视频| 国产精品女同一区二区软件| 国产精品麻豆人妻色哟哟久久| freevideosex欧美| 亚洲精品国产av成人精品| 久久久久久久久久人人人人人人| 久久影院123| 老熟女久久久| 亚洲色图 男人天堂 中文字幕 | 久久久久国产网址| 大码成人一级视频| 中文字幕亚洲精品专区| 1024视频免费在线观看| 在线观看一区二区三区激情| 日韩中字成人| www日本在线高清视频| 赤兔流量卡办理| 亚洲精品视频女| 91精品伊人久久大香线蕉| 日韩一区二区视频免费看| 免费观看a级毛片全部| 亚洲精品国产av成人精品| 熟女av电影| 精品久久久久久电影网| 妹子高潮喷水视频| 永久免费av网站大全| 久久久久久久精品精品| 秋霞伦理黄片| 久久久久精品久久久久真实原创| 久久久精品区二区三区| 日韩一本色道免费dvd| 大片免费播放器 马上看| 国产不卡av网站在线观看| 久久这里只有精品19| 国产片特级美女逼逼视频| 久久精品国产亚洲av涩爱| 日韩三级伦理在线观看| 高清毛片免费看| 亚洲精品日韩在线中文字幕| 在线 av 中文字幕| 99视频精品全部免费 在线| 国产高清国产精品国产三级| 免费少妇av软件| 99香蕉大伊视频| a级毛片黄视频| 岛国毛片在线播放| 伦理电影免费视频| 成人综合一区亚洲| 精品一区二区免费观看| 国产精品久久久久久精品古装| 国产成人精品久久久久久| 天美传媒精品一区二区| 国产av一区二区精品久久| 少妇人妻久久综合中文| 如何舔出高潮| 亚洲精品久久久久久婷婷小说| 美国免费a级毛片| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产 | 国产视频首页在线观看| 久久精品熟女亚洲av麻豆精品| 五月伊人婷婷丁香| 97精品久久久久久久久久精品| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 99热全是精品| 另类亚洲欧美激情| 91aial.com中文字幕在线观看| 免费久久久久久久精品成人欧美视频 | 精品午夜福利在线看| 国产1区2区3区精品| 日本欧美视频一区| 成人亚洲欧美一区二区av| 国产一区二区在线观看av| 国内精品宾馆在线| 午夜影院在线不卡| 免费观看av网站的网址| 亚洲内射少妇av| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 黄片无遮挡物在线观看| 看免费av毛片| 高清毛片免费看| 欧美xxⅹ黑人| 日韩三级伦理在线观看| 欧美精品亚洲一区二区| 国产亚洲午夜精品一区二区久久| 人妻系列 视频| 国产白丝娇喘喷水9色精品| 亚洲欧美成人综合另类久久久| 国产综合精华液| 97精品久久久久久久久久精品| 你懂的网址亚洲精品在线观看| 在线观看免费高清a一片| 久久狼人影院| 中文精品一卡2卡3卡4更新| 久久久久久人妻| 中文欧美无线码| 久久久久精品性色| 天堂中文最新版在线下载| 国产成人a∨麻豆精品| 高清视频免费观看一区二区| 久久影院123| 在线观看免费视频网站a站| 成人国语在线视频| 精品亚洲乱码少妇综合久久| 日韩中字成人| 欧美 日韩 精品 国产| 久久久亚洲精品成人影院| 亚洲国产最新在线播放| 久久这里有精品视频免费| 久久99蜜桃精品久久| 在现免费观看毛片| 99久久人妻综合| 夜夜骑夜夜射夜夜干| 精品国产一区二区久久| 啦啦啦中文免费视频观看日本| 老熟女久久久| 制服丝袜香蕉在线| 国产综合精华液| 欧美精品高潮呻吟av久久| 男人操女人黄网站| 国产精品一区二区在线不卡| 内地一区二区视频在线| 大香蕉久久网| 一级a做视频免费观看| 水蜜桃什么品种好| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 久久久久久久久久人人人人人人| 色吧在线观看| 水蜜桃什么品种好| 伦精品一区二区三区| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 免费大片黄手机在线观看| 各种免费的搞黄视频| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 久久这里只有精品19| 男人爽女人下面视频在线观看| 高清视频免费观看一区二区| 久久久久久伊人网av| 97精品久久久久久久久久精品| 五月开心婷婷网| 五月玫瑰六月丁香| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 午夜久久久在线观看| 久久久精品区二区三区| 欧美日韩综合久久久久久| 国国产精品蜜臀av免费| 欧美 日韩 精品 国产| 国产女主播在线喷水免费视频网站| 午夜免费鲁丝| 一级爰片在线观看| 香蕉国产在线看| 欧美日韩国产mv在线观看视频| 国产免费现黄频在线看| 大片免费播放器 马上看| 国产在线免费精品| 一二三四中文在线观看免费高清| 亚洲久久久国产精品| 中文字幕最新亚洲高清| 日韩在线高清观看一区二区三区| 亚洲情色 制服丝袜| 宅男免费午夜| 国产精品一区二区在线不卡| 伦精品一区二区三区| 两个人看的免费小视频| 国产不卡av网站在线观看| av一本久久久久| 久热这里只有精品99| 色哟哟·www| 在线观看免费视频网站a站| 一边亲一边摸免费视频| 午夜福利乱码中文字幕| 中文字幕最新亚洲高清| 在线精品无人区一区二区三| 黄色毛片三级朝国网站| 亚洲成人av在线免费| videossex国产| 色网站视频免费| 亚洲国产最新在线播放| 天堂中文最新版在线下载| 日本欧美国产在线视频| 国产永久视频网站| 青春草国产在线视频| av在线观看视频网站免费| 天堂俺去俺来也www色官网| 91国产中文字幕| 啦啦啦啦在线视频资源| 欧美bdsm另类| av线在线观看网站| 各种免费的搞黄视频| 天天影视国产精品| 亚洲欧美成人综合另类久久久| 中文乱码字字幕精品一区二区三区| 午夜视频国产福利| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品电影小说| 国产成人精品福利久久| 97在线视频观看| 亚洲美女搞黄在线观看| 久久免费观看电影| 亚洲国产最新在线播放| 亚洲欧美成人精品一区二区| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 久久久久久久久久成人| 少妇的丰满在线观看| 久热久热在线精品观看| 欧美精品一区二区大全| 男男h啪啪无遮挡| 国产又色又爽无遮挡免| 少妇的丰满在线观看| 国产精品蜜桃在线观看| 天天躁夜夜躁狠狠久久av| 精品国产国语对白av| 欧美激情国产日韩精品一区| 久久久久视频综合| 成人二区视频| 欧美精品人与动牲交sv欧美| videossex国产| 国产一区二区三区综合在线观看 | 国产精品一二三区在线看| 国产精品成人在线| 天天躁夜夜躁狠狠躁躁| 色吧在线观看| 久热这里只有精品99| 制服人妻中文乱码| 在线天堂中文资源库| 嫩草影院入口| 亚洲av日韩在线播放| 日韩 亚洲 欧美在线| 只有这里有精品99| 午夜精品国产一区二区电影| 亚洲欧美成人综合另类久久久| 国产日韩欧美亚洲二区| 高清av免费在线| 80岁老熟妇乱子伦牲交| 久久综合国产亚洲精品| 最近最新中文字幕大全免费视频 | 波多野结衣一区麻豆| 中文字幕免费在线视频6| 久久这里只有精品19| 亚洲国产毛片av蜜桃av| www.熟女人妻精品国产 | av电影中文网址| 国产免费福利视频在线观看| 99热全是精品| 国产极品粉嫩免费观看在线| 国产色爽女视频免费观看| 啦啦啦在线观看免费高清www| 少妇被粗大的猛进出69影院 | 另类亚洲欧美激情| 91在线精品国自产拍蜜月| 国产高清不卡午夜福利| 黄色视频在线播放观看不卡| 91国产中文字幕| 国产爽快片一区二区三区| 成人国语在线视频| 国产精品国产av在线观看| 久久人人爽av亚洲精品天堂| 免费av不卡在线播放| 色婷婷久久久亚洲欧美| 国产精品偷伦视频观看了| 国产爽快片一区二区三区| 一本色道久久久久久精品综合| 男人添女人高潮全过程视频| 极品人妻少妇av视频| 久久久a久久爽久久v久久| √禁漫天堂资源中文www| 伦精品一区二区三区| 99久久综合免费| 在线看a的网站| 国产日韩欧美视频二区| av福利片在线| 日本欧美视频一区| 黑人欧美特级aaaaaa片| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 成人黄色视频免费在线看| 另类精品久久| 美女大奶头黄色视频| 黄色视频在线播放观看不卡| 免费观看av网站的网址| 美国免费a级毛片| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| av视频免费观看在线观看| 亚洲综合色网址| 乱码一卡2卡4卡精品| 少妇被粗大猛烈的视频| 日韩一区二区三区影片| 中文天堂在线官网| 亚洲av免费高清在线观看| 看十八女毛片水多多多| 一区二区三区四区激情视频| 99re6热这里在线精品视频| av一本久久久久| 人妻 亚洲 视频| 各种免费的搞黄视频| 伊人久久国产一区二区| 视频区图区小说| 欧美成人精品欧美一级黄| 91国产中文字幕| 一边摸一边做爽爽视频免费| 男的添女的下面高潮视频| 久久国内精品自在自线图片| 精品国产一区二区三区久久久樱花| 五月天丁香电影| 日本与韩国留学比较| 亚洲国产精品国产精品| 国产精品欧美亚洲77777| 91精品三级在线观看| 成人无遮挡网站| 欧美精品人与动牲交sv欧美| 18禁观看日本| 一级片'在线观看视频| 91精品三级在线观看| 一本大道久久a久久精品| 国产极品天堂在线| 高清在线视频一区二区三区| av一本久久久久| 人人妻人人澡人人爽人人夜夜| 黄色视频在线播放观看不卡| 国产极品粉嫩免费观看在线| 秋霞伦理黄片| 毛片一级片免费看久久久久| 精品福利永久在线观看| 晚上一个人看的免费电影| 精品午夜福利在线看| 亚洲久久久国产精品| 欧美人与性动交α欧美软件 | 精品亚洲乱码少妇综合久久| 国产亚洲最大av| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区国产| 草草在线视频免费看| 两个人免费观看高清视频| 卡戴珊不雅视频在线播放| 成人毛片a级毛片在线播放| 国产欧美日韩一区二区三区在线| 国产精品免费大片| 五月开心婷婷网| 国产成人aa在线观看| 亚洲欧洲国产日韩| 国产av一区二区精品久久| 精品少妇内射三级| 国产精品 国内视频| 韩国精品一区二区三区 | 成人免费观看视频高清| a级毛片黄视频| 日韩伦理黄色片| 久久精品aⅴ一区二区三区四区 | 熟女人妻精品中文字幕| 草草在线视频免费看| 国产精品国产av在线观看| av国产久精品久网站免费入址| 一级,二级,三级黄色视频| 亚洲av在线观看美女高潮| 黑人猛操日本美女一级片| 亚洲成色77777| 99热全是精品| 国产精品国产三级国产av玫瑰| 中国美白少妇内射xxxbb| 中文字幕精品免费在线观看视频 | 在线观看人妻少妇| 色视频在线一区二区三区| 大话2 男鬼变身卡| 亚洲精品国产av蜜桃| 国产精品免费大片| 国产精品一区二区在线观看99| 少妇人妻精品综合一区二区| 亚洲伊人久久精品综合| 久久av网站| 在现免费观看毛片| 这个男人来自地球电影免费观看 | 99香蕉大伊视频| 午夜精品国产一区二区电影| 午夜福利网站1000一区二区三区| 久久久久精品性色| 亚洲av中文av极速乱| 亚洲成人一二三区av| 最新中文字幕久久久久| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av涩爱| 黄色毛片三级朝国网站| 亚洲成色77777| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 丰满饥渴人妻一区二区三| 26uuu在线亚洲综合色| 伊人久久国产一区二区| 亚洲成国产人片在线观看| 免费人成在线观看视频色| 有码 亚洲区| 赤兔流量卡办理| 午夜免费鲁丝| 老司机影院毛片| 亚洲av免费高清在线观看| 在线观看免费日韩欧美大片| 欧美精品高潮呻吟av久久| 免费观看无遮挡的男女| 2022亚洲国产成人精品| 亚洲第一av免费看| 在线观看免费高清a一片| 超色免费av| 男人添女人高潮全过程视频| 99久久综合免费| 中文欧美无线码| h视频一区二区三区| 99九九在线精品视频| 91国产中文字幕| h视频一区二区三区| 人妻人人澡人人爽人人| 成人黄色视频免费在线看| 成人午夜精彩视频在线观看| 一本大道久久a久久精品| 免费在线观看黄色视频的| 日韩成人伦理影院| 曰老女人黄片| 亚洲伊人久久精品综合|