• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SDF5 Encoding P450 Protein Is Required for Internode Elongation in Rice

    2021-07-13 10:00:54YangYachunLiJuanLiHaoXuZuntaoQinRuiyingWuWengeWeiPengchengDingYongYangJianbo
    Rice Science 2021年4期
    關(guān)鍵詞:雀麥磺隆燕麥

    Yang Yachun, Li Juan, Li Hao, Xu Zuntao, Qin Ruiying, Wu Wenge, Wei Pengcheng, Ding Yong, Yang Jianbo

    Letter

    Encoding P450 Protein Is Required for Internode Elongation in Rice

    Yang Yachun1, 2, Li Juan2, Li Hao2, Xu Zuntao3, Qin Ruiying2, Wu Wenge2, Wei Pengcheng2, Ding Yong3, Yang Jianbo2

    (Agricultural College, Anhui Agricultural University, Hefei 230036, China; Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China)

    Plant height is a critical trait for yield in rice (), and gibberellic acid (GA) is involved in modulating rice height. Here, we identified the() mutant by screening a rice T-DNA insertion mutant library using genome- resequencing.contains a T-DNA insertion that causes the ectopic expression of, whichencodes a 14-α-demethylase cytochrome P450 (CYP51) protein. Levels of the active GA species GA1and GA4were reduced in themutant, and the semi-dwarf phenotype of themutant was rescued by exogenous GA4. In addition to its semi-dwarf height, themutant exhibited compact plant architecture, dark green leaves and low 1000-grain weight. Together, these results suggest thatis involved in GA biosynthesis pathway and modulates rice height and plant development.

    Short plant stature is a primary goal in rice breeding to enhance grain yield, and commonly involves the() mutation (Monna et al, 2002; Sasaki et al, 2002; Spielmeyer et al, 2002). Using semi-dwarfvarieties, rice yield is increased by 100% in southern China, which has been a breakthrough for food security in China. More than 60 dwarf genes have been characterized in rice.encodes GA20-oxidase andencodes endo-kaurene oxidase, and both of them are responsible for the synthesis of gibberellins. The() mutation is associated with GA signal transduction andencodes a heterotrimeric G protein (GTP-binding protein) α-subunit (Ashikari et al, 1999; Fujisawa et al, 1999; Ueguchi-Tanaka et al, 2000).andare involved in the brassinosteroid (BR) biosynthesis pathway, whereas,andare involved in biosynthesis of strigolactones, which are responsible for tiller number and stem elongation (Yan et al, 2007; Arite et al, 2009; Lin et al, 2009; Zhang et al, 2010; Jiang et al, 2013; Sun et al, 2013). In addition, the epigenetic regulation is important for rice height.is a dominant dwarf mutant. The level of H3K9me2 at the 5-end ofdecreases, while the level of H3K4me3 increases, which proves thathas gained function due to apparent modification. Yeast two-hybrid results show that FIE1 interacts with iEZ1 and CLF, which indicates that FIE1 is involved in PRC2-mediated transcriptional repression (Zhang et al, 2012)., which is identified as a dominant half-dwarf gene, acts as a repressor of strigolactone signaling.encodes a 14-α-demethylase cytochrome P450 (CYP51) protein. Decreasedexpression reduces phytosterol and BR concentrations (Xia et al, 2015). After oxidized squalene cyclase mediated cyclization, CYP450 and acyltransferase modify the skeletal structure of triterpene and sterol (Osbourn et al, 2011). The characterization of dwarf genes has greatly improved our understanding of the factors regulating plant morphology. Many recessive dwarf genes have been cloned, and some of their regulatory mechanisms have been revealed. However, the dominant dwarf genes are not well known.

    mutant was derived from a T-DNA insertion mutation of therice variety Nipponbare (wild type, WT). It was approximately 23.6 cm in height, which exhibited a semi-dwarf phenotype (Fig. 1-A). Moreover, the internodes and panicle lengths were shorter than those of the wild type (Fig. 1-B and Fig. S1). Tiller number, total grain number, filled grain number, 1000-grain weight and grain length were remarkably reduced inmutant (Fig. 1-C and Fig. S1). We then investigated the cell length in the fifth internode and showed that the cell length in themutant was reduced (Fig. 1-D).

    Genetic analysis ofwas performed in the T1population following self-fertilization of the T-DNA insertion line. In the progeny, there were 14 semi-dwarf mutants and 7 normal plants. The seeds of 21 plants in the T2generation were planted with 20 seedlings per line. Among the 21 lines, 5 lines were semi-dwarf (100 seedlings), whereas 7 lines were normal, and 9 lines segregated in the next generation (142 semi-dwarf and 38 normal). These results suggested thatis a dominant dwarf mutant based on aχ2test (Table S1).

    To isolate the gene responsible for the dominant dwarf mutation of, we determined the initial position of the inserted fragment by pool re-sequencing and population verification of the candidate gene. DNA was isolated from 10 plants with the semi-dwarf phenotype and 10 plants with normal height from the progeny of the self-fertilized T2lines. Re-sequencing showed that one T-DNA each was inserted into chromosomes 3 and 5. For chromosome 3, a T-DNA was inserted in the region of, which encodes a Cu/Zn superoxide dismutase-like protein. However, this locus was not linked to the dominant dwarf phenotype based on molecular verification. For chromosome 5, a T-DNA was inserted into the intergenic region, 1 743 bp downstream of(encoding a β-hexosaminidase precursor) and 3 488 bp upstream of(encoding a cytochrome P450) (Fig. 1-E).

    Fig. 1. Characterization of

    A, Phenotypes of the wild type (WT) and themutant. B, Internodes of WT and themutant. C, Grain size of WT and themutant. D, Cell length of the fifth internode in WT and themutant. E, Diagram of T-DNA insertion in themutant. FP1, FP2, RP1, and RP2 indicate the primers used for genotyping. F, Transcripts ofand. G, Phenotypes of wild type,mutant andoverexpression lines. T11, T12 and T13 indicate different overexpression plants. H, Transcripts ofin wild type,, T11, T12 and T13. Data are Mean ±SD (= 3). * and ** indicate significant differences at the 0.05 and 0.01 levels by the Student’s-test, respectively.

    These results were further confirmed by genotyping (Fig. S2 and Table S2). T-DNA insertion on chromosome 5 was linked tousing the T2population. The transcription ofwas remarkably induced in themutant but the expression level ofwas not changed (Fig. 1-F). The expression level ofin the mutantwas 715 times higher than that in the wild type. These results suggested that the semi-dwarf phenotype of themutant might be caused by ectopic expression of.

    To test this hypothesis, we generated vectors harboringandcoding sequences driven by the 35S promoter and transformed them into Nipponbare (primers are shown in Table S2). The transgenic plants containingexhibited a shorter height, similar to themutant (Fig. 1-G), but those containingexhibited a similar phenotype to the wild type. The severity of the dwarf phenotype increased with increasingtranscript levels (Fig. 1-G and -H). These results suggested that the dwarf phenotype of themutants was caused by the ectopic expression of, which was named as.

    encodes a member of the P450 protein family, which includes proteins involved in fundamental processes such as synthesis of sterols, and modification of sterols and cyclic terpenes in the BR, abscisic acid and GA pathways. Phylogenetic analysis showed that SDF5belongs to the CYP51 sub-family, which includes six members in rice. CYP51 proteins are conserved in yeast, mammals and plants, which are responsible for sterol biosynthetic pathway in all biological kingdoms (Fig. S3).expressed in stem, leaf and spikelet, but not in root (Fig. S4).

    We treated themutant with active gibberellins GA3and GA4(Fig. S5). The internodes of the wild type and themutant increased in the presences of GA3and GA4. However, the height ofmutant was close to that of the wild type with GA4(Fig. 2-A and -B), but not GA3(Fig. S5-A and -C). GA3slowly promoted the growth of,but the semi-dwarf was not rescued by GA3(Fig. S5)These results suggested thatwas involved in GA biosynthesis. We then treated themutant with paclobutrazol (PAC), an inhibitor of GA biosynthesis, and showed that PAC shortened the internodes of the wild type and themutant. However, themutant died in the presence of high concentrations of PAC (Fig. S5).

    Fig. 2. Gibberellin (GA) compounds were tested in wild type (WT) andmutant.

    A, Phenotypes of WT andmutant treated with different concentrations of GA4. Fifteen-day-old seedlings were subjected to 10 d of homone culture and their plant heights were measured. CK, Control. B, Height of WT andseedlings in different concentrations of GA4. C, Endogenous levels of GAs were measured in WT andmutant. ND indicates not detectable. Data are Mean ± SD (= 3). * and ** indicate significant differences at the 0.05 and 0.01 levels by the Student’s-test, respectively.

    We further tested whether GA levels were affected in themutant. Indeed, GA biosynthesis was reduced in themutant. In particular, the levels of GA1and GA4were much lower in themutant compared with the wild type (Fig. 2-C). We analyzed the transcript levels involving GA biosynthetic pathway in the wild type andmutant, including the genes ent(),, ent(),(),,,and. We also analyzed(),and(), which are involved in GA signaling pathways. The expression levels of,,andwere reduced in themutant compared with the wild type, but,andwere not affected (Fig. S6). These results suggested that the ectopic expression ofrepressed GA biosynthesis.

    We then investigated whether the induced expression ofmodulates the BR or auxin. Plants were treated with different concentrations of BR and benzoyl-CoA ligase (BZL). We detected no differences in the rate of stem elongation between the wild type and themutant, which suggested thatwas not involved in BR or indole-acetic acid biosynthesis (Fig. S5-E to -H, Fig. S7).

    Plant height is an important agronomic trait in rice and is associated with crop yield, lodging and photosynthetic efficiency. In this study, we characterized the dominant semi-dwarf mutant, which is a T-DNA insertion mutant and induced the expression of. GA content was reduced in themutant, including GA biosynthetic components and the active GA species GA1and GA4. These results were confirmed by treatment with exogenous GAs. The semi-dwarf phenotype of themutant was rescued by active GA4, but not by GA3. GA3promoted the internode elongation in the wild type andmutant, but failed to recuse thephenotype. These results are consistent with the results of low GA4content inmutant. Our study showed that theis a new factor involved in GA biosynthesis. GA precursor GA12was reduced in themutant, suggesting thatmight be involved in the upstream of GA biosynthesis. Whyfunctions in GA4content but not in GA3remained to be studied.

    Bothandencode the P450 proteins, which play roles in the growth of rice by reducing the biological activity of GA and are involved in the homeostasis of GA (Magome et al, 2013)encodes a P450 protein and belongs to the CYP51 sub-family, which was placed from sterol 14-α-demethylation. The CYP51 family was first characterized from yeast, followed by determination of the primary structure of several family members.is involved in the BR pathway andis targeted by the stress-responsive microRNA osa-miR1848 (Xia et al, 2015).

    Several dominant dwarf materials have been reported, such as(Xia et al, 2015),(t)(Liu et al, 2009),(Wang et al, 2008),(Asano et al, 2009),(Sunohara et al, 2009),(Zhang et al, 2012) and(Liang et al, 2011). Most of these materials were obtained by mutagenesis or regeneration. Compared with recessive dwarf materials, dominant dwarf materials can reduce plant height in F1generation.has important applications in recurrent selection breeding. Whenis aggregated on the reincarnation parent, it can quickly reduce the height of the reincarnation parent. After the plant height is reduced, the reincarnation parents can better accept foreign pollen to increase the outcrossing rate of seeds.

    ACKNOWLEDGeMENTS

    This work was supported by the Natural Science Foundation of Anhui Province in China (Grant No. 1808085MC66), and the Program of Rice Genetic Breeding Key Laboratory of Anhui Province (Grant No. SDKF-2020-02) and University Synergy Innovation Program of Anhui Province (Grant No. GXXT- 2019-033) in China.

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Agronomic traits of wild type andmutant.

    Fig. S2. Segregation ofin F2population with self-pollilation.

    Fig. S3. Phylogenetic tree of CYP51 proteins.

    Fig. S4. Expression pattern of.

    Fig. S5. Wild type andmutant treated with gibberellin (GA3), paclobutrazol (PAC) and brassinosteriod (BR).

    Fig. S6. Transcriptional analysis of gibberellic acid (GA) genes in wild type (WT) andmutant.

    Fig. S7. Indoleacetic acid (IAA) in wild type andmutant.

    藥后30 d,30g/L甲基二磺隆4個(gè)劑量處理及對(duì)照藥劑(CK)對(duì)野燕麥的鮮重防效分別為82.32%,88.65%,92.88%,97.36%,88.65%;對(duì)雀麥的鮮重防效分別為85.74%,90.13%,94.67%,97.81%,91.22%(表3)。

    Table S1. Genetic analysis of.

    Table S2. Primers used for gene over-expression, PCR and RT-qPCR analysis.

    Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. 2009., a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers., 50(8): 1416?1424.

    Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim R B, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M. 2009. Isolation and characterization of dominant dwarf mutants,, in rice., 281: 223?231.

    Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. 1999. Rice gibberellin-insensitive dwarf mutant geneencodes the α-subunit of GTP-binding protein.,96(18): 10284?10289.

    Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. 1999. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice., 96: 7575?7580.

    Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. 2013.acts as a repressor of strigolactone signalling in rice., 504: 401?405.

    Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. 2009., an iron- containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth., 21(5): 1512?1525.

    Liu B M, Wu Y J, Fu X D, Qian Q. 2009. Characterizations and molecular mapping of a novel dominant semi-dwarf gene(t) in rice ()., 127(2): 125?130.

    Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T, Shinma Y, Katsumata T, Kawaide H, Kamiya Y, Yamaguchi S. 2013. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice., 110(5): 1947?1952.

    Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. 2002. Positional cloning of rice semidwarfing gene,: Rice ‘green revolution gene’ encodes a mutant enzyme involved in gibberellin synthesis., 9(1): 11?17.

    Osbourn A, Goss R J M, Field R A. 2011. The saponins: Polar isoprenoids with important and diverse biological activities., 28: 1261?1268.

    Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. 2002. A mutant gibberellin-synthesis gene in rice., 416(2): 701?702.

    Spielmeyer W, Ellis M H, Chandler P M. 2002. Semidwarf (), ‘green revolution’ rice, contains a defective gibberellin 20-oxidase gene., 99(13): 9043?9048.

    Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. 2013., a member of the GRAS gene family, negatively regulates grain size in rice., 55(5): 938?949.

    Sunohara H, Kawai T, Shimizu-Sato S, Sato Y, Sato K, Kitano H. 2009. A dominant mutation ofencoding an α-tubulin protein causes severe dwarfism and right helical growth in rice., 84(3): 209?218.

    Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. 2000. Rice dwarf mutant, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction., 97(21): 11638?11643.

    Wang X, Yu H X, Tang D, Huang J, Gong Z Y, Cheng Z K. 2008. Genetic analysis of a dominant dwarf mutant in rice (L.)., 41: 3959?3966. (in Chinese with English abstract)

    Xia K F, Ou X J, Tang H D, Wang R, Wu P, Jia Y X, Wei X Y, Xu X L, Kang S H, Kim S K, Zhang M Y. 2015. Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase geneand mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress., 208(3): 790?802.

    Yan H F, Saika H, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. 2007. Rice tillering dwarf mutanthas increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death., 82(4): 361?366.

    Zhang S Y, Li G, Fang J, Chen W Q, Jiang H P, Zou J H, Liu X, Zhao X F, Li X B, Chu C C, Xie Q, Jiang X N, Zhu L H. 2010. The interactions among, auxin and cytokinin underlie lateral bud outgrowth in rice., 52(7): 626?638.

    Zhang L G, Cheng Z J, Qin R Z, Qiu Y, Wang J L, Cui X K, Gu L F, Zhang X, Guo X P, Wang D, Jiang L, Wu C Y, Wang H Y, Cao X F, Wan J M. 2012. Identification and characterization of an Epi-allele ofreveals a regulatory linkage between two epigenetic marks in rice., 24(11): 4407?4421.

    Ding Yong (dingyong@ustc.edu.cn); Yang Jianbo (yjianbo@263.net)

    31 July 2020;

    18 November 2020

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2021.05.001

    猜你喜歡
    雀麥磺隆燕麥
    可嚼燕麥,營養(yǎng)打折
    中老年保健(2022年5期)2022-11-25 14:16:14
    燕麥的栽培技術(shù)
    晉??笛帑?守護(hù)您的健康
    雀麥和節(jié)節(jié)麥科學(xué)防除技術(shù)
    75%醚苯磺隆水分散粒劑的制備
    國審牧草品種
    ——黔南扁穗雀麥
    尋找我的家
    行了,我像所有的他們一樣
    延河(2017年7期)2017-07-19 21:01:10
    比蝸牛爬得慢的雀麥
    快樂語文(2016年10期)2016-11-07 09:44:51
    高頻率使用芐嘧磺隆對(duì)固氮魚腥藻細(xì)胞生長和抗氧化系統(tǒng)的影響
    99久久九九国产精品国产免费| 欧美3d第一页| 97超视频在线观看视频| 色吧在线观看| 欧美bdsm另类| 在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 精品国产亚洲在线| 999久久久精品免费观看国产| 夜夜看夜夜爽夜夜摸| 成人国产综合亚洲| 国产亚洲精品一区二区www| 真实男女啪啪啪动态图| 久久久久九九精品影院| 午夜精品久久久久久毛片777| bbb黄色大片| 欧美日韩福利视频一区二区| 91久久精品国产一区二区成人 | 国产黄a三级三级三级人| 国产一区二区在线观看日韩 | 最近最新中文字幕大全免费视频| 日本精品一区二区三区蜜桃| 国产伦精品一区二区三区视频9 | 亚洲av免费高清在线观看| 中亚洲国语对白在线视频| 久久久国产精品麻豆| 男女下面进入的视频免费午夜| eeuss影院久久| 中文字幕av成人在线电影| 午夜福利在线观看免费完整高清在 | 黑人欧美特级aaaaaa片| 午夜福利免费观看在线| 日韩欧美免费精品| 亚洲黑人精品在线| 3wmmmm亚洲av在线观看| 内射极品少妇av片p| 人人妻人人看人人澡| 真实男女啪啪啪动态图| 少妇的逼好多水| 久99久视频精品免费| 99国产精品一区二区三区| 91九色精品人成在线观看| 欧美+日韩+精品| 免费人成视频x8x8入口观看| 国产精品,欧美在线| 久久亚洲精品不卡| 欧美最新免费一区二区三区 | 国产欧美日韩一区二区精品| 国产淫片久久久久久久久 | 噜噜噜噜噜久久久久久91| 国产三级黄色录像| 久久精品国产清高在天天线| 国产91精品成人一区二区三区| 免费电影在线观看免费观看| 香蕉av资源在线| 乱人视频在线观看| 美女cb高潮喷水在线观看| 人妻久久中文字幕网| 久久久精品大字幕| 高清在线国产一区| 免费看日本二区| 婷婷丁香在线五月| 观看免费一级毛片| 亚洲国产日韩欧美精品在线观看 | 亚洲美女视频黄频| 久久这里只有精品中国| 国产91精品成人一区二区三区| 长腿黑丝高跟| 嫩草影院精品99| 国产成人福利小说| 少妇裸体淫交视频免费看高清| 精品免费久久久久久久清纯| 少妇裸体淫交视频免费看高清| 桃红色精品国产亚洲av| 亚洲成人久久爱视频| 麻豆国产av国片精品| 亚洲人与动物交配视频| 精品无人区乱码1区二区| 国产av一区在线观看免费| 久久久久精品国产欧美久久久| 国产精品电影一区二区三区| 99久久九九国产精品国产免费| 白带黄色成豆腐渣| 久久人人精品亚洲av| 亚洲激情在线av| 国产一区二区亚洲精品在线观看| av在线天堂中文字幕| 日韩高清综合在线| 国产精品久久久久久久久免 | 97超级碰碰碰精品色视频在线观看| 尤物成人国产欧美一区二区三区| netflix在线观看网站| 久久精品91蜜桃| 日韩欧美国产一区二区入口| 手机成人av网站| 狂野欧美白嫩少妇大欣赏| 午夜福利视频1000在线观看| 国产精品久久久久久人妻精品电影| 久久精品91无色码中文字幕| 日韩亚洲欧美综合| aaaaa片日本免费| 真实男女啪啪啪动态图| 伊人久久精品亚洲午夜| 亚洲最大成人手机在线| 热99re8久久精品国产| 精品久久久久久成人av| 在线国产一区二区在线| www日本黄色视频网| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久久久久| 黄色成人免费大全| 国产免费av片在线观看野外av| 日本a在线网址| 首页视频小说图片口味搜索| 熟妇人妻久久中文字幕3abv| 他把我摸到了高潮在线观看| 女警被强在线播放| 伊人久久精品亚洲午夜| 十八禁网站免费在线| 精品熟女少妇八av免费久了| 亚洲欧美日韩东京热| 美女大奶头视频| 99久久无色码亚洲精品果冻| 九色国产91popny在线| 亚洲电影在线观看av| 国产私拍福利视频在线观看| 在线观看免费午夜福利视频| 欧美日韩国产亚洲二区| 国产不卡一卡二| 亚洲精品久久国产高清桃花| 国产 一区 欧美 日韩| 身体一侧抽搐| 极品教师在线免费播放| www.熟女人妻精品国产| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 国产精品 欧美亚洲| 成年女人看的毛片在线观看| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| av天堂中文字幕网| 国产黄a三级三级三级人| 久久久久性生活片| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 少妇熟女aⅴ在线视频| 国产真人三级小视频在线观看| 91久久精品国产一区二区成人 | 听说在线观看完整版免费高清| e午夜精品久久久久久久| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 性色av乱码一区二区三区2| 99久国产av精品| 黄色日韩在线| 亚洲内射少妇av| 日本撒尿小便嘘嘘汇集6| 免费看光身美女| 国内揄拍国产精品人妻在线| 日韩有码中文字幕| 岛国在线观看网站| 99在线人妻在线中文字幕| 美女 人体艺术 gogo| 欧美+日韩+精品| 国产免费av片在线观看野外av| 最近在线观看免费完整版| 欧美乱码精品一区二区三区| 国产主播在线观看一区二区| 久99久视频精品免费| 老司机深夜福利视频在线观看| 最好的美女福利视频网| 中亚洲国语对白在线视频| 亚洲在线观看片| 日本黄色视频三级网站网址| 叶爱在线成人免费视频播放| av黄色大香蕉| 国产精品影院久久| 日本 欧美在线| 欧美一级a爱片免费观看看| 亚洲中文字幕日韩| 免费观看人在逋| 尤物成人国产欧美一区二区三区| 大型黄色视频在线免费观看| 国产精品久久视频播放| 九色国产91popny在线| 午夜福利在线在线| 亚洲国产精品成人综合色| 黑人欧美特级aaaaaa片| 五月伊人婷婷丁香| 久久午夜亚洲精品久久| 国产午夜精品论理片| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 日韩欧美三级三区| www国产在线视频色| av福利片在线观看| 琪琪午夜伦伦电影理论片6080| 免费在线观看亚洲国产| 国产老妇女一区| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av | 欧美黄色淫秽网站| 国产午夜福利久久久久久| 久久这里只有精品中国| 高清毛片免费观看视频网站| 亚洲男人的天堂狠狠| 亚洲电影在线观看av| 亚洲av日韩精品久久久久久密| 成年人黄色毛片网站| 国产探花在线观看一区二区| 国产精品影院久久| 欧美性猛交╳xxx乱大交人| 在线看三级毛片| 亚洲午夜理论影院| 2021天堂中文幕一二区在线观| 精品免费久久久久久久清纯| 狂野欧美白嫩少妇大欣赏| 在线观看舔阴道视频| 日韩成人在线观看一区二区三区| 欧美zozozo另类| 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 男女做爰动态图高潮gif福利片| 国产精品三级大全| 亚洲成av人片免费观看| 免费在线观看日本一区| 亚洲色图av天堂| 老司机午夜十八禁免费视频| 成年免费大片在线观看| 中文字幕高清在线视频| 国产男靠女视频免费网站| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 熟妇人妻久久中文字幕3abv| av欧美777| 亚洲精品影视一区二区三区av| 午夜久久久久精精品| 精品国产亚洲在线| 变态另类丝袜制服| 在线观看免费午夜福利视频| 精品久久久久久久人妻蜜臀av| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美人成| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av五月六月丁香网| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 国产麻豆成人av免费视频| 久久久久亚洲av毛片大全| 成年女人永久免费观看视频| 国产69精品久久久久777片| 免费看光身美女| www日本黄色视频网| 岛国在线免费视频观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产又黄又爽又无遮挡在线| 亚洲精品亚洲一区二区| 日韩欧美免费精品| 精品人妻一区二区三区麻豆 | 国产午夜精品久久久久久一区二区三区 | 亚洲人成网站在线播放欧美日韩| 久久人人精品亚洲av| 国产黄a三级三级三级人| 欧美色欧美亚洲另类二区| 一本综合久久免费| 丁香欧美五月| 久久亚洲真实| 亚洲欧美日韩高清在线视频| 国产午夜精品久久久久久一区二区三区 | 女同久久另类99精品国产91| 亚洲熟妇中文字幕五十中出| 热99re8久久精品国产| 亚洲成av人片在线播放无| 亚洲专区国产一区二区| av天堂在线播放| 90打野战视频偷拍视频| bbb黄色大片| 国产伦在线观看视频一区| 亚洲精品成人久久久久久| 夜夜爽天天搞| 欧美日韩亚洲国产一区二区在线观看| 色老头精品视频在线观看| 男人舔女人下体高潮全视频| 黄片大片在线免费观看| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 嫩草影院入口| 亚洲在线观看片| 日本五十路高清| 免费搜索国产男女视频| 中文在线观看免费www的网站| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频| 国产亚洲欧美98| 亚洲av五月六月丁香网| 免费电影在线观看免费观看| 亚洲人成电影免费在线| 国产免费男女视频| 精品国产美女av久久久久小说| 成人性生交大片免费视频hd| 9191精品国产免费久久| 国产精品久久久久久精品电影| 一本久久中文字幕| 国产精品电影一区二区三区| 最新中文字幕久久久久| 国产v大片淫在线免费观看| 婷婷精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 色吧在线观看| 亚洲人成网站在线播| 亚洲 国产 在线| 欧美成人一区二区免费高清观看| 成人永久免费在线观看视频| 麻豆国产97在线/欧美| 色av中文字幕| 久久人人精品亚洲av| 真人一进一出gif抽搐免费| 国产黄片美女视频| 日韩av在线大香蕉| 在线播放无遮挡| 日本精品一区二区三区蜜桃| 日韩欧美国产在线观看| 美女大奶头视频| 操出白浆在线播放| 久久久久久人人人人人| 麻豆成人午夜福利视频| 动漫黄色视频在线观看| 午夜福利视频1000在线观看| 中文亚洲av片在线观看爽| 18禁美女被吸乳视频| 亚洲午夜理论影院| 精品久久久久久久毛片微露脸| 亚洲av成人精品一区久久| 热99在线观看视频| 99久国产av精品| 亚洲美女黄片视频| 很黄的视频免费| 两个人的视频大全免费| www.www免费av| 伊人久久精品亚洲午夜| 国产精品三级大全| 麻豆一二三区av精品| 久久精品影院6| 国内精品久久久久精免费| 深夜精品福利| 国产aⅴ精品一区二区三区波| 热99在线观看视频| 国产在视频线在精品| 国产高清激情床上av| 亚洲男人的天堂狠狠| 国产不卡一卡二| 色av中文字幕| 国产精品久久久人人做人人爽| 日本三级黄在线观看| 搡女人真爽免费视频火全软件 | 国产精品永久免费网站| 国产99白浆流出| 日本一本二区三区精品| 在线观看午夜福利视频| 欧美日韩一级在线毛片| 精品国产美女av久久久久小说| 亚洲人成网站在线播放欧美日韩| 国产伦在线观看视频一区| 性欧美人与动物交配| 亚洲在线自拍视频| 手机成人av网站| 欧美激情久久久久久爽电影| 夜夜躁狠狠躁天天躁| 国产又黄又爽又无遮挡在线| 三级毛片av免费| a在线观看视频网站| 91麻豆av在线| 久久久久久久亚洲中文字幕 | 精品久久久久久久久久免费视频| 丰满人妻熟妇乱又伦精品不卡| 欧美一级毛片孕妇| 亚洲国产中文字幕在线视频| 一级黄色大片毛片| 波多野结衣高清作品| 噜噜噜噜噜久久久久久91| 在线观看免费午夜福利视频| 国产av一区在线观看免费| 欧美一级a爱片免费观看看| 99久久99久久久精品蜜桃| 90打野战视频偷拍视频| 久久久久久久精品吃奶| 精品久久久久久成人av| 窝窝影院91人妻| 少妇人妻一区二区三区视频| 变态另类丝袜制服| 国产成人影院久久av| 亚洲人与动物交配视频| 一级毛片女人18水好多| 亚洲人成网站在线播放欧美日韩| 亚洲中文日韩欧美视频| 成年女人毛片免费观看观看9| 亚洲一区二区三区不卡视频| eeuss影院久久| 97超视频在线观看视频| 国产亚洲精品久久久com| 最近在线观看免费完整版| 久久久国产成人免费| 色老头精品视频在线观看| 免费看日本二区| 狂野欧美白嫩少妇大欣赏| 日韩欧美在线二视频| 国产亚洲精品一区二区www| 国产黄a三级三级三级人| 国产精品永久免费网站| 久久欧美精品欧美久久欧美| 国产成人av教育| 亚洲成人久久性| 成人av在线播放网站| 黄色日韩在线| 18美女黄网站色大片免费观看| 国产亚洲精品综合一区在线观看| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 久久久精品欧美日韩精品| 亚洲国产日韩欧美精品在线观看 | 精品午夜福利视频在线观看一区| 亚洲精品成人久久久久久| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 国产中年淑女户外野战色| 国产毛片a区久久久久| 国产男靠女视频免费网站| 老鸭窝网址在线观看| 非洲黑人性xxxx精品又粗又长| 禁无遮挡网站| 欧美激情久久久久久爽电影| 两个人视频免费观看高清| 国产精品国产高清国产av| 一个人观看的视频www高清免费观看| 亚洲va日本ⅴa欧美va伊人久久| av视频在线观看入口| 少妇高潮的动态图| 日日干狠狠操夜夜爽| 手机成人av网站| 成人无遮挡网站| 亚洲 欧美 日韩 在线 免费| 男插女下体视频免费在线播放| 国产极品精品免费视频能看的| 麻豆成人午夜福利视频| 日本 av在线| 日韩欧美在线二视频| 国产精品,欧美在线| 亚洲人成网站高清观看| 好男人电影高清在线观看| 男女视频在线观看网站免费| 一区二区三区国产精品乱码| 国产精品野战在线观看| 美女免费视频网站| 嫁个100分男人电影在线观看| 搞女人的毛片| 少妇的逼好多水| 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 国内精品久久久久久久电影| 国产99白浆流出| 欧美在线一区亚洲| 在线播放无遮挡| 男女床上黄色一级片免费看| xxxwww97欧美| 又紧又爽又黄一区二区| 欧美激情在线99| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 中文字幕人妻熟人妻熟丝袜美 | 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 舔av片在线| 窝窝影院91人妻| 精品国产美女av久久久久小说| 欧美3d第一页| 日韩人妻高清精品专区| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 哪里可以看免费的av片| svipshipincom国产片| 国产三级在线视频| 性色avwww在线观看| 欧美日韩国产亚洲二区| 国产蜜桃级精品一区二区三区| 色av中文字幕| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 亚洲狠狠婷婷综合久久图片| 国产又黄又爽又无遮挡在线| eeuss影院久久| 亚洲精品456在线播放app | 尤物成人国产欧美一区二区三区| 亚洲国产精品sss在线观看| 热99re8久久精品国产| 日本黄色视频三级网站网址| 亚洲欧美一区二区三区黑人| av专区在线播放| 国产精品免费一区二区三区在线| 婷婷丁香在线五月| 亚洲乱码一区二区免费版| 在线观看日韩欧美| 成人特级黄色片久久久久久久| 成人特级av手机在线观看| 最近最新中文字幕大全电影3| 91av网一区二区| 亚洲成a人片在线一区二区| 成年女人看的毛片在线观看| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 偷拍熟女少妇极品色| 麻豆一二三区av精品| 国产高清视频在线观看网站| 精品久久久久久成人av| 精品人妻1区二区| 国产精品久久视频播放| 搞女人的毛片| 久久久久久大精品| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 欧美日韩乱码在线| 一区二区三区国产精品乱码| 天堂动漫精品| 一卡2卡三卡四卡精品乱码亚洲| 又粗又爽又猛毛片免费看| 亚洲精品影视一区二区三区av| 欧美乱色亚洲激情| a级毛片a级免费在线| 国产激情偷乱视频一区二区| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 国产一区二区在线观看日韩 | 久久精品亚洲精品国产色婷小说| 亚洲精品国产精品久久久不卡| 国产探花在线观看一区二区| 在线免费观看的www视频| 国产精品 欧美亚洲| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 精品不卡国产一区二区三区| 色精品久久人妻99蜜桃| 日本熟妇午夜| 亚洲无线在线观看| 国产在线精品亚洲第一网站| 久久99热这里只有精品18| 精品午夜福利视频在线观看一区| 91av网一区二区| 欧美色欧美亚洲另类二区| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 韩国av一区二区三区四区| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 午夜福利高清视频| 51国产日韩欧美| 大型黄色视频在线免费观看| 国产亚洲精品久久久com| h日本视频在线播放| 色播亚洲综合网| 亚洲av五月六月丁香网| 国产精品 国内视频| 国产乱人伦免费视频| 亚洲精品影视一区二区三区av| 激情在线观看视频在线高清| 狠狠狠狠99中文字幕| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女| 国产欧美日韩精品一区二区| 国产成人福利小说| 可以在线观看毛片的网站| 变态另类丝袜制服| 丁香六月欧美| 丰满乱子伦码专区| 亚洲成av人片在线播放无| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 亚洲中文字幕一区二区三区有码在线看| 国产免费av片在线观看野外av| 老司机福利观看| 亚洲精品成人久久久久久| 一本一本综合久久| 国产精品乱码一区二三区的特点| 免费观看人在逋| 国产精品国产高清国产av| www.www免费av| 欧美三级亚洲精品| 免费看十八禁软件| 麻豆成人av在线观看| 久久久久九九精品影院| 在线a可以看的网站| 国产成人影院久久av| 国产一级毛片七仙女欲春2| 国产麻豆成人av免费视频| 精品人妻偷拍中文字幕| 51国产日韩欧美| 嫩草影视91久久| 在线观看日韩欧美| 美女大奶头视频| 欧美黄色淫秽网站| 婷婷精品国产亚洲av在线| 黄色片一级片一级黄色片| 亚洲真实伦在线观看| 欧美丝袜亚洲另类 | 国产日本99.免费观看| 亚洲 国产 在线| 男插女下体视频免费在线播放|