• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器

    2011-12-11 09:08:08支澤勇劉鵬程黃巖誼趙新生
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:核酸酶混合器微流

    支澤勇 劉鵬程 黃巖誼 趙新生,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;2北京大學(xué)工學(xué)院,北京100871;3北京大學(xué)生物動(dòng)態(tài)光學(xué)成像中心,北京100871)

    用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器

    支澤勇1,3劉鵬程1,3黃巖誼2,3趙新生1,3,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;2北京大學(xué)工學(xué)院,北京100871;3北京大學(xué)生物動(dòng)態(tài)光學(xué)成像中心,北京100871)

    設(shè)計(jì)制作了用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器,該混合器用聚二甲基硅氧烷(PDMS)芯片和石英載玻片密封而成,具有低的熒光背景,廣泛的生物相容性,結(jié)合激光共聚焦顯微鏡能夠在非平衡態(tài)下進(jìn)行單分子熒光探測(cè).我們?cè)O(shè)計(jì)的壓力控制系統(tǒng)和進(jìn)樣流路方便而穩(wěn)定,保證了微流路中流形的長(zhǎng)時(shí)間穩(wěn)定,從而實(shí)現(xiàn)了樣品流速和流量的精準(zhǔn)控制.這些技術(shù)特點(diǎn)保證了單分子探測(cè)得到準(zhǔn)確和高信噪比的結(jié)果.利用蛋白質(zhì)的塌縮過(guò)程遠(yuǎn)快于混合過(guò)程的特點(diǎn),采用熒光標(biāo)記的金黃色葡萄球菌核酸酶作為指示物,分辨出蛋白質(zhì)變性態(tài)的特征峰,并利用變性態(tài)的熒光共振能量傳遞效率隨時(shí)間的變化表征出混合器在適合于單分子探測(cè)條件下的混合時(shí)間為150 ms.

    微流控混合;單分子探測(cè);熒光共振能量傳遞;蛋白質(zhì)折疊;金黃色葡萄球菌核酸酶

    1 Introduction

    The protein folding study involves structure,thermodynamics,and kinetics.The kinetics of protein folding concerns the folding pathway,the rate,and the energy landscape.1-3In order to characterize the protein folding,experiments needs to be performed both under equilibrium and nonequilibrium conditions.4,5Single-molecule fluorescence resonance energy transfer (smFRET)can separate the subpopulations of the protein molecules beyond the capacity of common ensemble experiments.6-8Equilibrium smFRET experiments have addressed a number of important issues in protein folding by resolving the thermodynamic states and the sizes of the protein molecules within a heterogeneous mixture.9-12

    Microfluidic laminar-flow mixers have been applied in many fields for kinetics measurements of biomolecular conformational changes with ultrafast mixing times.13-18Microfabricated mixers often utilize hydrodynamic focusing to squeeze the sample stream into submicron width to achieve extremely fast mixing through molecular diffusion.19Compared with traditional stopped flow method,the microfluidic mixer has advantages of submillisecond mixing time,greater uniformity,and low sample consumption.The mixing devices have the capacity of single-molecule fluorescence detection with the accessible window for high numerical aperture objectives.20-22Ensemble nonequilibrium experiments can only measure the kinetics of protein folding with the averaged and overall information, while the individual processes were indirectly resolved with kinetic modeling.23Single-molecule fluorescence detection under nonequilibrium conditions can be used to study the protein folding kinetics with the full distribution of conformations to separate the unfolded and folded states.24The combination of smFRET and a microfluidic mixer will generate novel insights into protein folding mechanism and is a powerful method to study biomolecular interactions and reactions.

    Here,we constructed a microfluidic mixing system suitable for single-molecule fluorescence detection,which requires high signal-to-noise ratio,low protein adhesion,and stable flow rate for a long time.The mixing device was made of a cast of poly(dimethylsiloxane)(PDMS)sealed by a microscopic coverglass.The mixer channel pattern was designed to achieve comprehensive mixing at a minimal dead time and the flow was then slowed down to provide sufficient dwell time for single-molecule detection,and the device possessed wide biological compatibility.The mixer was easy to fabricate with common apparatus and could be improved for faster mixing with finer design and fabrication.The device was optimized to reduce the protein adhesion to the channel walls by using a long period of cure time and by adding wild-type protein at micromolar concentration into the injected sample.Novel design was implemented on the pressure regulation and sample-inlet lines so as to achieve a stable hydrodynamic flow in the mixer for many hours,which was a key factor for the single-molecule fluorescence measurements.To our knowledge,for the first time the mixing process along the mixing channel using smFRET histograms and the accurate flow velocity profile using fluorescence correlation spectroscopy(FCS)were characterized simultaneously.Then,the mixing time was determined by monitoring the collapse of denatured staphylococcal nuclease(SNase).25Although the mixing system was designed for single-molecule experiments,the mixer can also be used in ensemble measurements with a submillisecond time resolution by applying higher pressures.

    2 Materials and methods

    2.1 Construction of microfluidic mixing device

    The channel drawing was created using computer-aided software.The patten was written by an electron beam on a chrome coated glass plate to generate the mask.The microfluidic mixer was made of a PDMS chip(RTV 615,GE Silicones)sealed to a No.1 coverglass(Fisher Scientific).The master was fabricated by contact photolithography.A 20 μm layer of SU-8 2010 (MicroChem,U.S.)was spin-coated onto a cleaned silicon wafer,after a soft bake the photoresist was exposed to UV light with 144 mJ·cm-2through the mask and the wafer was then baked on a hot-plate for 4.5 min at 95°C and developed.

    In order to prevent PDMS adhesion,the master was silanized by exposure to a vapor of chlorotrimethylsilane (TMCS)in a sealed box for 15 min.To make the PDMS chip, a~4 mm thick layer of PDMS mixture,five parts by weight of PDMS and one part of crosslinking agent,was poured onto the mold and cured at 80°C for 10 min.The PDMS chip was then peeled off from the master,trimmed to the individual chip size and cured at 80°C for another 8 h.Finally,the PDMS chips were punched to generate inlet and outlet ports and bonded to a coverglass permanently using an air plasma.

    2.2 Sample delivery system

    A pressure-driven pump was used because it is applicable in the situation of low flow rate.26The pressure-driven sample delivery creates stable flow rate about 0.1 nL·s-1in the centre inlet for many hours.The protein sample and buffer were delivered into the inlets from two reservoirs which were made of 0.6 mL centrifuge tubes and PDMS plugs with two punched holes for Gauge 18 needles.The two sample reservoirs were connected to compressed air,and the pressures were regulated by two accurate pressure regulators(8286,Porter Instruments, U.S.)and measured with two accurate digital pressure gauges (DPG4000,Omega,U.S.)respectively.Another high pressure regulator having a range of 0-250 kPa was built to drive the solutions into the mixer in a faster flow speed,which can also be used in rapid mixing ensemble experiments.

    In order to maintain the flow speed around 1 mm·s-1in the measurement channel for single-molecule detection,the side inlet pressure was regulated typically to 6.00 kPa and the centre inlet pressure was 7.80 kPa.The resolution of the regulators was about 0.01 kPa with a careful tuning.The pressures would change a little for individual mixers due to small deviation in the fabrication.The high pressure regulator was used to drive the solutions into the mixer at 150 kPa to focus the sample stream in a short time.If the solutions were pumped into the mixer by the precise but low pressure regulators,hours would be needed to obtain a stable focused sample stream.After the formation of the focused stream,the pressures of the reservoirs were switched to the precise and low pressure regulators for single-molecule experiments.

    2.3 Single-molecule confocal microscope

    Single-molecule fluorescence measurements were performed on a home-built dual-channel confocal fluorescence microscope27,28based on a TE2000 microscope(Nikon).The labeled protein sample was excited by a solid-state laser(MLLIII-532,CNI)at 532 nm with 100 μW for experiments on the coverglass and 130 μW in the mixer,focused through an oil immersion objective(100×,NA 1.3,Nikon,Japan).The donor and acceptor fluorescences,seperated from the excitation light by a dichroic mirror(Z532,Chroma,U.S.),were collected by the same objective and spatially filtered using a 30 μm pinhole. The passed fluorescence was separated into donor and acceptor components with a second dichroic mirror(FF650-Di01,Semrock,U.S.)and two final filters(FF01-593/40 and FF01-692/ 40,Semrock,U.S.)for the donor and acceptor channels,respectively.Each component was detected by a photon-counting Avalanche Photodiode(SPCM-AQRH-14,PerkinElmer Optoelectronics,U.S.).Fluorescence intensities were recorded with a photon counters card(PMS-400A,Becker&Hickl,Germany). Autocorrelation functions were simultaneously recorded using a multiple-digital hardware correlator device(Flex02-01D, www.correlator.com,U.S.).

    The raw single-molecule fluorescence data were corrected for several factors11,29to obtain the actual FRET efficiency,including background,differences in quantum yields,different collection efficiencies of the donor and acceptor channels, cross-talk,and direct excitation of the acceptor.

    2.4 Protein expression,purification and labeling

    Expression,purification,and labeling of the mutant of SNase,K28C-H124C,were carried out as described previously.30Briefly,The mutant proteins were reduced with excess of Dithiothreitol(DTT,Sigma,U.S.)followed by chromatography in labeling buffer to remove the excess DTT.Site-specific labeling was achieved by reaction with thiol-reactive fluorescence dyes Alexa Fluor 555 and Alexa Fluor 647(Invitrogen, U.S.).Free dyes were removed through a PD-10 Desalting Column(GE Healthcare,U.S.)and the labeled protein solution was stored at-80°C with 10%glycerol.

    Labeled SNase of 50-100 pmol·L-1was diluted in 1 μmol·L-1unlabeled SNase in Tris-HCl buffer(pH 7.8,50 mmol·L-1Tris-HCl with 100 mmol·L-1NaCl)at appropriate GdmCl concentration.The dwell time bin was 1 ms10and a threshold was set at 50 counts in the sum of photon counts from the two channels.

    3 Results and discussion

    3.1 Controbility of the mixer

    The microfluidic mixer shown in Fig.1 was designed with a resistance model using Ohm?s law.19The relationship of flow rate,pressure difference,and flow impedance in a rectangular pipe can be described with the following equation:31

    where Q is the flow rate,dp/dl is the pressure gradient,w is the channel width,h is the channel height,and η is the solution viscosity.The two side channels of an actual microfluidic mixer were connected to the same entry,reducing a set of pressure regulator system.The channel dimensions and the flow impedances are shown in Table 1.The impedance of the mixing neck is less than 1%of the other channels which can be ignored in the calculation.When the change of inlets pressure is 0.05 kPa, the maximum pressure fluctuation of the system,the change in flow ratio is about 2%,so that the mixer can maintain a stable flow rate for smFRET measurement.

    Fig.1 (A)Scheme of the microfluidic mixer,(B)a white light microscopy image of the microfluidic mixing region,(C)the impedance model for the designed mixerThe height of the channels in figure B is 20 μm.In figure C:Zcand Zmare the impedances of the centre and measurement channels,respectively;Zsis the impedance equivalent to the side flow impedance of a mixer with two parallel side channels.

    Table 1 Channel dimensions and impedances

    Fig.2 Flow stability in the microfluidic mixer(A)fluorescence images of focused dye solution stream over hours;The intensity profiles of the cross line(the white line)for all images are extracted. (B)The peak intensities of the cross lines are plotted as time,which is 11270±280,indicating that the flow rate fluctuation was about 2%.

    The robustness of the flow velocity was examined by fluorescence images over several hours.The pressure was set to maintain appropriate hydrodynamic focusing and a flow rate in the detection channel around 1 mm·s-1.A 0.1 μmol·L-1AF532 solution with 0.01%Tween 20(Pierce)to prevent dye adhesion was delivered into the centre inlet and water was injected into the side inlets.The focused dye solution stream was excited by mercury lamp and recorded by a CCD camera through an emission filter(Fig.2).The high stability of the flow rate guaranteed the fidelity of single-molecule measurements over a long time for a good signal-to-noise ratio.When a denatrued potein sample with 2 mol·L-1GdmCl was fed into the centre inlet,simulation reslults showed that the concentration deviation of the denatrurant was less than 0.05 mol·L-1.As a consequence,the protein concentration and conformation were stable at the focus of the optics.

    3.2 Flow velocity profile

    In order to convert the focus position into the corresponding time,the flow velocity in the channels was measured by FCS.32,33Advantage of this approach is the large measurable velocity range,from 0.1 mm·s-1to 10 m·s-1,and the simultaneous measurement of the flow rate with the collection of smFRET events.FCS measured the fluorescent molecule number fluctuations in a small focal volume15about 1 fL.In the mixing experiments,FCS curves(Fig.3A)were fit using a model of considering diffusion,flow,and singlet-triplet transition of the fluorescent molecule,27,33

    where N is the average number of molecules in the focus volume,τdiffis the characteristic diffusion time,τ/τflowis the characteristic flow time,K is the fraction of the triplet state,and τTis the characteristic triplet state time.τflowis obtained from the fitting for each FCS curve,which is related to the flow speed by

    where r0is the radius of the focus volume,which is determined using Rhodamine 6G34to be(270±7)nm.

    We measured the velocities along the central axis of the channels.In an smFRET experiment each fluorescent burst needs at least dozens of effective photons35and requires the flow rate to be about 1 mm·s-1so that each molecule can spend about 1 ms at the focus.Fig.3B shows the velocity distri-bution along the central axis adjusted at such a condition.

    Fig.3 (A)Autocorrelation curves at different positions in the device,(B)the velocity profile in the mixerIn figureA:the beginning point of the measurement channel is 0 μm(Fig.1B).-165 μm is located in the centre channel with the minimum flow rate, -50 μm is in the mixing neck with the maximum flow rate to achieve rapid mixing,and 500 μm is in the measurement channel with a flow rate of about 1 mm·s-1,suitable for smFRET experiments.

    Fig.4 Single-molecule fluorescence traces(A)single-molecule signal of a dye solution of 10 pmol·L-1AF546 on a coverglass and in the mixer,(B)raw smFRET data of 100 pmol·L-1AF555 and AF647 dual labeled SNase in the mixer channel,excited by a 532 nm laser

    3.3 Single-molecule detection

    To test the fluorescence collection efficiency and the background level in the mixer channel,the single-molecule fluorescence trace of a 10 pmol·L-1dye solution of Alexa Fluor(AF) 546 in water was collected both on a coverglass and in the mixer channel in static experiments(Fig.4A).The dye solution was excited by a 532 nm laser at a power of 100 μW,and the collected raw data were binned into 1 ms dwell time.The background was fitted by a Poisson distribution,and the average photon counting rates are 0.32 m·s-1on a coverglass and 0.81 m·s-1in the mixer channel.

    We also tested the data quality for a protein sample labeled with a dye pair in the mixer channel.A 100 pmol·L-1AF555 and AF647(Invitrogen)dual labeled SNase30mixed with 1 μmol·L-1wild-type SNase to prevent labeled protein adhesion was delivered into the microfluidic device.The sample was excited with a 130 μW laser beam to generate FRET events (Fig.4B).The background levels for the donor channel and acceptor channel were 1.5 and 1.2 m·s-1,respectively,which were higher than the pure dye solution due to impurities and higher concentration,but the signal levels were higher as well, resulting in even better signal-to-noise ratio of nearly 100 for the protein sample.

    3.4 Mixing time characterized using collapse of denatured SNase

    When unfolded protein is transferred from high denaturant concentration to low concentration,the size of the protein molecule will collapse which leads to higher intramolecular smFRET efficiency and the protein collapse time is about several hundred nanoseconds,36much faster than the mixing time. This property was used to measure the mixing time precisely. Fig.5A shows the smFRET histograms taken at different positions in the channels,fitted by lognormal and Gaussian distributions to obtain the apparent FRET efficiency of the unfolded state.The rectangular box in Fig.5B indicates the onset and completion of the mixing.The initial position was set to Eapp= 0.42,5%larger than the Eapp=0.40 before mixing,and the end point was set to the first accessible position for single-molecule detection.So doing,we found that the mixing time was 150 ms.The simplest way to enhance the mixing process is to minimize the width of mixing regions with better manufacture. Because the adequate dwell time for single-molecule detection is about 1 ms for fluorescent molecules flowing in the focus volume,the ultrafast mixing can be realized by a design of flow velocity deceleration.22The mixercombining with smFRET for kinetics study has been applied to the measurement of the folding rate of denatured SNase.We will report our results in a future publication.

    Fig.5 Mixing process elucidated by smFRET experiments(A)smFRET histograms along the central axis of the channels,(B)the fitted FRET efficiencies of the denatured SNase; The rectangular box indicates the mixing region with a mixing time tmixof 150 ms.

    4 Conclusions

    A microfluidic mixing system was constructed especially for single-molecule kinetic measurement,which has the advantages of high signal-to-noise ratio,stable flow rate over hours,accurate time determination by employing FCS,and easy fabrication.This technique has the capacity to study a wide variety of biological reactions requiring the combination of fast mixing, single-molecule detection,and small sample consumption.The construction of the mixer makes it possible for us to study the kinetics of various biochemical processes at a single-molecule level.

    (1) Wolynes,P.G.;Onuchic,J.N.;Thirumalai,D.Science 1995, 267,1619.

    (2) Oliveberg,M.;Wolynes,P.G.Q.Rev.Biophys.2005,38,245.

    (3) Ferreon,A.C.M.;Deniz,A.A.BBA-Proteins Proteomics 2011, in press.

    (4)Haas,E.ChemPhysChem 2005,6,858.

    (5) Bilsel,O.;Matthews,C.R.Curr.Opin.Struct.Biol.2006,16, 86.

    (6) Ha,T.;Enderle,T.;Ogletree,D.F.;Chemla,D.S.;Selvin,P.R.; Weiss,S.Proc.Natl.Acad.Sci.U.S.A.1996,93,6264.

    (7) Weiss,S.Science 1999,283,1676.

    (8)Deniz,A.A.;Mukhopadhyay,S.;Lemke,E.A.J.R.Soc. Interface 2008,5,15.

    (9) Deniz,A.A.;Laurence,T.A.;Beligere,G.S.;Dahan,M.; Martin,A.B.;Chemla,D.S.;Dawson,P.E.;Schultz,P.G.; Weiss,S.Proc.Natl.Acad.Sci.U.S.A.2000,97,5179.

    (10) Schuler,B.;Lipman,E.A.;Eaton,W.A.Nature 2002,419,743.

    (11) Hoffmann,A.;Kane,A.;Nettels,D.;Hertzog,D.E.; Baumgartel,P.;Lengefeld,J.;Reichardt,G.;Horsley,D.A.; Seckler,R.;Bakajin,O.;Schuler,B.Proc.Natl.Acad.Sci.U.S. A.2007,104,105.

    (12) Muller-Spath,S.;Soranno,A.;Hirschfeld,V.;Hofmann,H.; Ruegger,S.;Reymond,L.;Nettels,D.;Schuler,B.Proc.Natl. Acad.Sci.U.S.A.2010,107,14609.

    (13) Hertzog,D.E.;Michalet,X.;Jager,M.;Kong,X.X.;Santiago, J.G.;Weiss,S.;Bakajin,O.Anal.Chem.2004,76,7169.

    (14)Hertzog,D.E.;Ivorra,B.;Mohammadi,B.;Bakajin,O.; Santiago,J.G.Anal.Chem.2006,78,4299.

    (15) Park,H.Y.;Qiu,X.Y.;Rhoades,E.;Korlach,J.;Kwok,L.W.; Zipfel,W.R.;Webb,W.W.;Pollack,L.Anal.Chem.2006,78, 4465.

    (16) Lapidus,L.J.;Yao,S.H.;McGarrity,K.S.;Hertzog,D.E.; Tubman,E.;Bakajin,O.Biophys.J.2007,93,218.

    (17) Park,H.Y.;Kim,S.A.;Korlach,J.;Rhoades,E.;Kwok,L.W.; Zipfell,W.R.;Waxham,M.N.;Webb,W.W.;Pollack,L.Proc. Natl.Acad.Sci.U.S.A.2008,105,542.

    (18)Guo,S.;Xue,M.Q.;Qian,M.X.;Cao,T.B.;Zhao,X.S.Acta Phys.-Chim.Sin.2007,23,1827.[郭 素,薛面起,錢(qián)民協(xié),曹廷炳,趙新生.物理化學(xué)學(xué)報(bào),2007,23,1827.]

    (19) Knight,J.B.;Vishwanath,A.;Brody,J.P.;Austin,R.H.Phys. Rev.Lett.1998,80,3863.

    (20) Hamadani,K.M.;Weiss,S.Biophys.J.2008,95,352.

    (21)Pfeil,S.H.;Wickersham,C.E.;Hoffmann,A.;Lipman,E.A. Rev.Sci.Instrum.2009,80,055105.

    (22)Gambin,Y.;VanDelinder,V.;Ferreon,A.C.M.;Lemke,E.A.; Groisman,A.;Deniz,A.A.Nat.Methods 2011,8,239.

    (23) Maki,K.;Cheng,H.;Dolgikh,D.A.;Roder,H.J.Mol.Biol. 2007,368,244.

    (24) Lipman,E.A.;Schuler,B.;Bakajin,O.;Eaton,W.A.Science 2003,301,1233.

    (25) Ye,K.Q.;Wang,J.F.J.Mol.Biol.2001,307,309.

    (26) Kim,S.J.;Blainey,P.C.;Schroeder,C.M.;Xie,X.S.Nat. Methods 2007,4,397.

    (27) Krichevsky,O.;Bonnet,G.Rep.Prog.Phys.2002,65,251.

    (28)Chen,X.D.;Zhou,Y.;Qu,P.;Zhao,X.S.J.Am.Chem.Soc. 2008,130,16947.

    (29) Sherman,E.;Haran,G.Proc.Natl.Acad.Sci.U.S.A.2006, 103,11539.

    (30) Liu,P.C.;Meng,X.L.;Qu,P.;Zhao,X.S.;Wang,C.C. J.Phys.Chem.B 2009,113,12030.

    (31) White,F.Viscous Fluid Flow,2nd ed.;McGraw Hill:Boston, Massachusetts,1991.

    (32) Gosch,M.;Blom,H.;Holm,J.;Heino,T.;Rigler,R.Anal. Chem.2000,72,3260.

    (33) Kuricheti,K.K.;Buschmann,V.;Weston,K.D.Appl. Spectrosc.2004,58,1180.

    (34)Nie,S.M.;Chiu,D.T.;Zare,R.N.Anal.Chem.1995,67,2849.

    (35) Gell,C.;Brockwell,D.;Smith,A.Handbook of Single Molecule Fluorescence Spectroscopy;Oxford University:Oxford,2006.

    (36) Nettels,D.;Gopich,I.V.;Hoffmann,A.;Schuler,B.Proc.Natl. Acad.Sci.U.S.A.2007,104,2655.

    April 27,2011;Revised:June 1,2011;Published on Web:June 9,2011.

    A Microfluidic Mixer for Single-Molecule Kinetics Experiments

    ZHI Ze-Yong1,3LIU Peng-Cheng1,3HUANG Yan-Yi2,3ZHAO Xin-Sheng1,3,*
    (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Department of Chemical Biology,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871, P.R.China;2College of Engineering,Peking University,Beijing 100871,P.R.China;3Biodynamic Optical Imaging Center, Peking University,Beijing 100871,P.R.China)

    We designed and built a microfluidic mixer based on the principle of hydrodynamic focusing governed by Navier-Stokes equation for single-molecule kinetics experiments.The mixer is a cast of poly(dimethylsiloxane)(PDMS)sealed with transparent fused-silica coverglass,which results in low fluorescence background and broad biological compatibility and this enables single-molecule fluorescence detection under nonequilibrium conditions.The pressure regulated sample delivery system is convenient for loading a sample and allows for precise and stable flow velocity control.The combination of microfluidic mixer and single-molecule fluorescence resonance energy transfer(smFRET)allows us to measure the time course of the distribution of the smFRET efficiency in protein folding.We used the fact that denatured protein collapses much faster than the mixing process to characterize the mixing time using donor and acceptor dyes labeled staphylococcal nuclease(SNase)as an smFRET efficiency indicator.By monitoring the smFRET efficiency of denatured SNase during the course of mixing,we determined that the mixing time was 150 ms under conditions suitable for single-molecule detection.

    Microfluidic mixing;Single-molecule detection;Fluorescence resonance energy transfer; Protein folding;Staphylococcal nuclease

    ?Corresponding author.Email:zhaoxs@pku.edu.cn;Tel:+86-10-62751727.

    The project was supported by the National Natural Science Foundation of China(20733001,20973015)and National Key Basic Research Program of China(973)(2006CB910300,2010CB912302).

    國(guó)家自然科學(xué)基金(20733001,20973015)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2006CB910300,2010CB912302)資助

    O643

    猜你喜歡
    核酸酶混合器微流
    粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
    船用發(fā)動(dòng)機(jī)SCR混合器優(yōu)化仿真分析
    含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性
    多種Cas12a蛋白變體能識(shí)別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
    微流控法制備P(NIPA-co-MAA)水凝膠微球及其性能表征
    用megaTAL 核酸酶對(duì)原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
    旋轉(zhuǎn)盤(pán)式混合器混合過(guò)程數(shù)值模擬
    微流控芯片在食品安全分析中的應(yīng)用進(jìn)展
    微流控SERS芯片的設(shè)計(jì)制備及其在細(xì)菌檢測(cè)中的應(yīng)用
    紙芯片微流控技術(shù)的發(fā)展及應(yīng)用
    97超碰精品成人国产| 欧美xxⅹ黑人| 一级毛片 在线播放| 国产高清有码在线观看视频| 麻豆精品久久久久久蜜桃| 中文在线观看免费www的网站| 日韩国内少妇激情av| 国产永久视频网站| 国产成年人精品一区二区| 午夜福利视频精品| 晚上一个人看的免费电影| 中文资源天堂在线| 自拍偷自拍亚洲精品老妇| 夫妻午夜视频| 狂野欧美白嫩少妇大欣赏| 国产免费又黄又爽又色| 久久久久久九九精品二区国产| 免费不卡的大黄色大毛片视频在线观看 | 国产成人a∨麻豆精品| a级毛色黄片| a级一级毛片免费在线观看| 国内精品美女久久久久久| 日日撸夜夜添| 日本一二三区视频观看| 亚洲人成网站高清观看| 夫妻性生交免费视频一级片| 亚洲av中文av极速乱| 日日啪夜夜撸| 联通29元200g的流量卡| 成人漫画全彩无遮挡| 免费看美女性在线毛片视频| 日韩大片免费观看网站| 一级二级三级毛片免费看| 2021少妇久久久久久久久久久| 亚洲欧美清纯卡通| 毛片女人毛片| 一本久久精品| 久久久色成人| 国产亚洲一区二区精品| 欧美xxxx性猛交bbbb| 国内精品宾馆在线| 亚洲成人久久爱视频| 97精品久久久久久久久久精品| 少妇熟女欧美另类| 精品久久久久久成人av| 少妇的逼水好多| 日韩av不卡免费在线播放| 日韩欧美三级三区| 男插女下体视频免费在线播放| 精品人妻一区二区三区麻豆| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区| 国产黄频视频在线观看| 一级黄片播放器| 国产亚洲av嫩草精品影院| 欧美xxxx性猛交bbbb| 久99久视频精品免费| 一本一本综合久久| 人妻少妇偷人精品九色| 久久草成人影院| 大又大粗又爽又黄少妇毛片口| 成年女人看的毛片在线观看| 亚洲国产av新网站| 精品一区二区免费观看| 超碰97精品在线观看| 午夜福利视频1000在线观看| 人妻少妇偷人精品九色| 午夜激情欧美在线| 久久人人爽人人片av| 熟女人妻精品中文字幕| 午夜激情福利司机影院| 极品教师在线视频| 国产高清三级在线| 日韩成人伦理影院| 免费看a级黄色片| 青春草亚洲视频在线观看| 国产亚洲av嫩草精品影院| 久久久色成人| 国产乱来视频区| 久久久久久久久久久丰满| 亚洲成色77777| 国产 一区精品| 国产国拍精品亚洲av在线观看| 性插视频无遮挡在线免费观看| 99久国产av精品国产电影| 最后的刺客免费高清国语| 午夜福利视频1000在线观看| 亚洲精品第二区| av线在线观看网站| 午夜免费男女啪啪视频观看| 自拍偷自拍亚洲精品老妇| 一夜夜www| 中文字幕制服av| 伦理电影大哥的女人| 日本wwww免费看| 丰满少妇做爰视频| 美女被艹到高潮喷水动态| 亚洲精品视频女| 听说在线观看完整版免费高清| 亚洲成人一二三区av| 黄色配什么色好看| 热99在线观看视频| 国产精品熟女久久久久浪| 精品一区二区三卡| 男的添女的下面高潮视频| 夫妻午夜视频| 国产男女超爽视频在线观看| 大香蕉97超碰在线| 国产69精品久久久久777片| 精品久久久久久成人av| 18+在线观看网站| 天堂av国产一区二区熟女人妻| 夜夜爽夜夜爽视频| 免费av观看视频| 网址你懂的国产日韩在线| 中文天堂在线官网| 日日撸夜夜添| 一夜夜www| 亚洲图色成人| 亚洲欧美一区二区三区黑人 | 久久久久久久大尺度免费视频| 网址你懂的国产日韩在线| 最近最新中文字幕免费大全7| 精品欧美国产一区二区三| av专区在线播放| freevideosex欧美| 97热精品久久久久久| 国产免费又黄又爽又色| 免费观看a级毛片全部| 国产免费视频播放在线视频 | 一级毛片电影观看| 亚洲精品国产av蜜桃| 一个人看的www免费观看视频| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 国产亚洲精品av在线| 91av网一区二区| 午夜福利视频精品| 精品一区二区三卡| 男人舔女人下体高潮全视频| 午夜福利视频1000在线观看| 午夜视频国产福利| av在线观看视频网站免费| 国精品久久久久久国模美| 日韩欧美国产在线观看| 亚洲av日韩在线播放| 亚洲内射少妇av| 免费黄色在线免费观看| 国产黄片美女视频| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 看免费成人av毛片| 亚洲欧洲日产国产| 如何舔出高潮| 亚洲精品aⅴ在线观看| 成人特级av手机在线观看| 亚洲精品成人av观看孕妇| 国产成人一区二区在线| 亚洲国产av新网站| 日韩一区二区三区影片| 国产精品久久久久久久电影| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载 | 欧美激情在线99| 亚洲人成网站高清观看| 3wmmmm亚洲av在线观看| 简卡轻食公司| 三级经典国产精品| 欧美性猛交╳xxx乱大交人| 秋霞在线观看毛片| 亚洲精品456在线播放app| 久久久国产一区二区| 一级毛片久久久久久久久女| 91久久精品国产一区二区成人| 亚洲欧美清纯卡通| 狠狠精品人妻久久久久久综合| 精品久久久久久久人妻蜜臀av| 女人久久www免费人成看片| 亚洲欧美精品自产自拍| 色吧在线观看| 亚洲精品乱久久久久久| 嫩草影院新地址| 最后的刺客免费高清国语| videos熟女内射| 欧美最新免费一区二区三区| 少妇丰满av| 嫩草影院入口| 日韩一区二区三区影片| 夜夜爽夜夜爽视频| 插逼视频在线观看| 精华霜和精华液先用哪个| 少妇裸体淫交视频免费看高清| 国产v大片淫在线免费观看| 午夜免费观看性视频| 在线a可以看的网站| 亚洲成人精品中文字幕电影| 国产成人精品婷婷| 成人无遮挡网站| 嘟嘟电影网在线观看| 精品久久久久久久人妻蜜臀av| 大话2 男鬼变身卡| 欧美性猛交╳xxx乱大交人| 天堂影院成人在线观看| 亚洲精品日韩在线中文字幕| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产成人一精品久久久| 免费高清在线观看视频在线观看| 毛片女人毛片| 欧美最新免费一区二区三区| 国产视频首页在线观看| 精品久久久噜噜| 国产精品无大码| 2021少妇久久久久久久久久久| 国产精品99久久久久久久久| 成人特级av手机在线观看| 欧美成人午夜免费资源| av播播在线观看一区| 日本一二三区视频观看| 九草在线视频观看| av在线天堂中文字幕| 国产一级毛片在线| 三级经典国产精品| 亚洲欧洲日产国产| 国产精品蜜桃在线观看| 日韩国内少妇激情av| 国产成人精品婷婷| 中文在线观看免费www的网站| 自拍偷自拍亚洲精品老妇| 最近手机中文字幕大全| 一个人看的www免费观看视频| 精品一区在线观看国产| 亚洲在线观看片| 哪个播放器可以免费观看大片| 国产精品熟女久久久久浪| 久久鲁丝午夜福利片| 国产一区二区三区av在线| 国产黄色小视频在线观看| 亚洲欧洲国产日韩| 国产亚洲91精品色在线| 日本欧美国产在线视频| 啦啦啦韩国在线观看视频| 1000部很黄的大片| 七月丁香在线播放| av在线天堂中文字幕| 水蜜桃什么品种好| 日本一本二区三区精品| 精品酒店卫生间| 久久这里只有精品中国| 亚洲国产最新在线播放| 日本三级黄在线观看| 国产永久视频网站| 欧美激情在线99| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| av国产久精品久网站免费入址| 成人一区二区视频在线观看| 亚洲精品,欧美精品| 六月丁香七月| 国产乱人偷精品视频| 亚洲精品aⅴ在线观看| 日本免费a在线| 直男gayav资源| 国产高潮美女av| 69人妻影院| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 视频中文字幕在线观看| 精品人妻一区二区三区麻豆| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 国产在视频线在精品| 蜜臀久久99精品久久宅男| 一级毛片我不卡| 成人午夜精彩视频在线观看| 97人妻精品一区二区三区麻豆| 精品久久久久久久末码| 青春草视频在线免费观看| 精品人妻视频免费看| 中文乱码字字幕精品一区二区三区 | 亚洲国产精品成人久久小说| 国产激情偷乱视频一区二区| 1000部很黄的大片| 亚洲国产欧美人成| 99热6这里只有精品| 国产亚洲精品av在线| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 特级一级黄色大片| 超碰av人人做人人爽久久| 大又大粗又爽又黄少妇毛片口| 草草在线视频免费看| 久久草成人影院| 亚洲精品久久久久久婷婷小说| 中文乱码字字幕精品一区二区三区 | 嫩草影院精品99| 中文字幕久久专区| 777米奇影视久久| 尤物成人国产欧美一区二区三区| 亚洲成人中文字幕在线播放| 亚洲精品456在线播放app| 神马国产精品三级电影在线观看| 欧美xxxx性猛交bbbb| 日本黄大片高清| 日韩欧美精品免费久久| 欧美区成人在线视频| 卡戴珊不雅视频在线播放| 久久久久久久久久成人| 综合色丁香网| 尾随美女入室| 亚洲av电影在线观看一区二区三区 | 91久久精品国产一区二区三区| 看非洲黑人一级黄片| 青春草亚洲视频在线观看| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 亚洲成人中文字幕在线播放| 国语对白做爰xxxⅹ性视频网站| 成年女人在线观看亚洲视频 | 国产av码专区亚洲av| 少妇裸体淫交视频免费看高清| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 真实男女啪啪啪动态图| 亚洲伊人久久精品综合| 精品亚洲乱码少妇综合久久| 亚洲怡红院男人天堂| 中文字幕亚洲精品专区| 国内揄拍国产精品人妻在线| 99热这里只有精品一区| 久久久久精品久久久久真实原创| 九九爱精品视频在线观看| 亚洲精品日韩av片在线观看| 国产一级毛片在线| 日韩伦理黄色片| 女的被弄到高潮叫床怎么办| 街头女战士在线观看网站| 国产乱来视频区| 日韩一本色道免费dvd| 日本一二三区视频观看| 人体艺术视频欧美日本| 美女cb高潮喷水在线观看| 国内精品一区二区在线观看| 国产av国产精品国产| av在线亚洲专区| 我要看日韩黄色一级片| 91狼人影院| 偷拍熟女少妇极品色| 尾随美女入室| 91久久精品国产一区二区三区| 天堂av国产一区二区熟女人妻| 高清av免费在线| 亚洲在线自拍视频| 中文精品一卡2卡3卡4更新| 99热这里只有是精品50| 亚洲熟妇中文字幕五十中出| 一级毛片aaaaaa免费看小| 五月玫瑰六月丁香| 秋霞伦理黄片| 亚洲精品国产成人久久av| 美女被艹到高潮喷水动态| 国产成人福利小说| 国产伦精品一区二区三区四那| 久久久国产一区二区| 最近最新中文字幕大全电影3| 婷婷色综合大香蕉| 亚洲图色成人| 丰满人妻一区二区三区视频av| 国产亚洲av片在线观看秒播厂 | 欧美成人精品欧美一级黄| 少妇人妻一区二区三区视频| 男人狂女人下面高潮的视频| 免费看a级黄色片| 美女高潮的动态| 91aial.com中文字幕在线观看| 午夜爱爱视频在线播放| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 午夜福利在线在线| 国产精品久久久久久久久免| 婷婷六月久久综合丁香| 又黄又爽又刺激的免费视频.| 日韩三级伦理在线观看| 99久久精品一区二区三区| 夫妻午夜视频| 国产午夜精品论理片| 欧美性猛交╳xxx乱大交人| 麻豆成人av视频| 日本av手机在线免费观看| 日本熟妇午夜| 男女视频在线观看网站免费| 国产av码专区亚洲av| 国产亚洲精品久久久com| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 神马国产精品三级电影在线观看| 亚洲精品中文字幕在线视频 | 身体一侧抽搐| 久久精品夜色国产| 国产 一区精品| 欧美日韩亚洲高清精品| 99热网站在线观看| 欧美一级a爱片免费观看看| 天堂√8在线中文| 国产激情偷乱视频一区二区| 免费大片18禁| 黄色一级大片看看| 亚洲国产最新在线播放| 熟女电影av网| 亚洲av免费高清在线观看| 欧美精品一区二区大全| 韩国高清视频一区二区三区| 日韩精品有码人妻一区| 观看免费一级毛片| 九色成人免费人妻av| 国产成人午夜福利电影在线观看| 嫩草影院新地址| 精品少妇黑人巨大在线播放| videossex国产| 亚洲欧美一区二区三区黑人 | 亚洲激情五月婷婷啪啪| 又爽又黄无遮挡网站| 美女主播在线视频| 尤物成人国产欧美一区二区三区| 久久久国产一区二区| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 在线天堂最新版资源| 男人爽女人下面视频在线观看| 久久热精品热| 一级av片app| 少妇丰满av| 午夜久久久久精精品| av又黄又爽大尺度在线免费看| 午夜免费观看性视频| 美女xxoo啪啪120秒动态图| 黄色配什么色好看| 午夜福利视频1000在线观看| 日韩精品青青久久久久久| 女人被狂操c到高潮| 26uuu在线亚洲综合色| 久久精品国产鲁丝片午夜精品| 日韩三级伦理在线观看| 国产成人午夜福利电影在线观看| 国产av国产精品国产| 欧美日韩综合久久久久久| 中文乱码字字幕精品一区二区三区 | av国产久精品久网站免费入址| 永久网站在线| 人妻系列 视频| 26uuu在线亚洲综合色| 老女人水多毛片| 国产一区二区亚洲精品在线观看| 免费看光身美女| 亚洲国产最新在线播放| 毛片一级片免费看久久久久| 九九在线视频观看精品| 亚洲成人久久爱视频| 黄片无遮挡物在线观看| 国产乱人偷精品视频| 日韩大片免费观看网站| 老师上课跳d突然被开到最大视频| 国产一区二区三区av在线| 男人狂女人下面高潮的视频| 蜜臀久久99精品久久宅男| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 精品一区二区三区人妻视频| 亚洲精品国产av成人精品| 黄色日韩在线| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频 | 一级毛片电影观看| 亚洲在线自拍视频| 在线免费观看的www视频| 尤物成人国产欧美一区二区三区| 亚洲美女视频黄频| 成人亚洲精品av一区二区| 日韩中字成人| 欧美日韩亚洲高清精品| av免费观看日本| 国产精品久久久久久久久免| 国产真实伦视频高清在线观看| 国产黄色视频一区二区在线观看| 身体一侧抽搐| 一本一本综合久久| 精品一区二区三区人妻视频| 久久久久网色| 麻豆久久精品国产亚洲av| 六月丁香七月| 亚洲人成网站在线观看播放| 美女黄网站色视频| 晚上一个人看的免费电影| 亚洲成色77777| 精品一区在线观看国产| 免费少妇av软件| 亚洲av.av天堂| 欧美成人精品欧美一级黄| 人人妻人人澡欧美一区二区| 免费在线观看成人毛片| 婷婷色麻豆天堂久久| 午夜激情欧美在线| 男的添女的下面高潮视频| 五月天丁香电影| 亚洲av日韩在线播放| 嫩草影院入口| 久久久久久久久久人人人人人人| 久久午夜福利片| 九九在线视频观看精品| 男插女下体视频免费在线播放| 全区人妻精品视频| av卡一久久| 色网站视频免费| 亚洲综合精品二区| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 国产女主播在线喷水免费视频网站 | 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 日韩欧美国产在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲久久久久久中文字幕| 免费电影在线观看免费观看| 亚洲国产日韩欧美精品在线观看| 一本久久精品| 国产黄频视频在线观看| 亚洲天堂国产精品一区在线| 一级二级三级毛片免费看| 熟女电影av网| 干丝袜人妻中文字幕| 亚洲av免费在线观看| 日日摸夜夜添夜夜添av毛片| 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级专区第一集| 精品久久久久久久久久久久久| 国产黄a三级三级三级人| 九草在线视频观看| 国产片特级美女逼逼视频| 五月伊人婷婷丁香| 国产淫语在线视频| 成人午夜高清在线视频| 亚洲电影在线观看av| 又爽又黄无遮挡网站| 777米奇影视久久| 看免费成人av毛片| 熟女人妻精品中文字幕| 精品久久久久久电影网| 中文资源天堂在线| 99久国产av精品国产电影| 精华霜和精华液先用哪个| 免费少妇av软件| 午夜亚洲福利在线播放| 1000部很黄的大片| 亚洲av不卡在线观看| 有码 亚洲区| 国产精品一区二区三区四区免费观看| 亚洲国产精品成人久久小说| 亚洲av成人精品一二三区| 看黄色毛片网站| 插阴视频在线观看视频| 亚洲熟女精品中文字幕| 成年女人在线观看亚洲视频 | 直男gayav资源| 听说在线观看完整版免费高清| 肉色欧美久久久久久久蜜桃 | 成年版毛片免费区| 亚洲精品成人av观看孕妇| 色吧在线观看| 国产一区二区三区综合在线观看 | 午夜福利视频精品| freevideosex欧美| 国产精品麻豆人妻色哟哟久久 | 午夜福利在线观看免费完整高清在| 久久草成人影院| 一级a做视频免费观看| av天堂中文字幕网| 干丝袜人妻中文字幕| 又粗又硬又长又爽又黄的视频| 国产精品.久久久| 国产精品国产三级国产专区5o| 国产精品三级大全| 黄色日韩在线| 国产69精品久久久久777片| 午夜激情久久久久久久| 白带黄色成豆腐渣| 麻豆乱淫一区二区| 777米奇影视久久| h日本视频在线播放| 国产精品一二三区在线看| 国产男人的电影天堂91| h日本视频在线播放| 国产亚洲一区二区精品| 日韩av免费高清视频| 国产成人精品福利久久| 简卡轻食公司| 国产精品一及| 一个人看视频在线观看www免费| 国产精品一区www在线观看| 99久久精品热视频| 特级一级黄色大片| 日韩 亚洲 欧美在线| 最近最新中文字幕免费大全7| 国内精品一区二区在线观看| 久久人人爽人人片av| xxx大片免费视频| 波野结衣二区三区在线| 成人二区视频| 色综合站精品国产| 午夜福利在线观看免费完整高清在| 免费黄网站久久成人精品| 舔av片在线| 人人妻人人澡人人爽人人夜夜 |