• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器

    2011-12-11 09:08:08支澤勇劉鵬程黃巖誼趙新生
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:核酸酶混合器微流

    支澤勇 劉鵬程 黃巖誼 趙新生,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;2北京大學(xué)工學(xué)院,北京100871;3北京大學(xué)生物動(dòng)態(tài)光學(xué)成像中心,北京100871)

    用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器

    支澤勇1,3劉鵬程1,3黃巖誼2,3趙新生1,3,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;2北京大學(xué)工學(xué)院,北京100871;3北京大學(xué)生物動(dòng)態(tài)光學(xué)成像中心,北京100871)

    設(shè)計(jì)制作了用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器,該混合器用聚二甲基硅氧烷(PDMS)芯片和石英載玻片密封而成,具有低的熒光背景,廣泛的生物相容性,結(jié)合激光共聚焦顯微鏡能夠在非平衡態(tài)下進(jìn)行單分子熒光探測(cè).我們?cè)O(shè)計(jì)的壓力控制系統(tǒng)和進(jìn)樣流路方便而穩(wěn)定,保證了微流路中流形的長(zhǎng)時(shí)間穩(wěn)定,從而實(shí)現(xiàn)了樣品流速和流量的精準(zhǔn)控制.這些技術(shù)特點(diǎn)保證了單分子探測(cè)得到準(zhǔn)確和高信噪比的結(jié)果.利用蛋白質(zhì)的塌縮過(guò)程遠(yuǎn)快于混合過(guò)程的特點(diǎn),采用熒光標(biāo)記的金黃色葡萄球菌核酸酶作為指示物,分辨出蛋白質(zhì)變性態(tài)的特征峰,并利用變性態(tài)的熒光共振能量傳遞效率隨時(shí)間的變化表征出混合器在適合于單分子探測(cè)條件下的混合時(shí)間為150 ms.

    微流控混合;單分子探測(cè);熒光共振能量傳遞;蛋白質(zhì)折疊;金黃色葡萄球菌核酸酶

    1 Introduction

    The protein folding study involves structure,thermodynamics,and kinetics.The kinetics of protein folding concerns the folding pathway,the rate,and the energy landscape.1-3In order to characterize the protein folding,experiments needs to be performed both under equilibrium and nonequilibrium conditions.4,5Single-molecule fluorescence resonance energy transfer (smFRET)can separate the subpopulations of the protein molecules beyond the capacity of common ensemble experiments.6-8Equilibrium smFRET experiments have addressed a number of important issues in protein folding by resolving the thermodynamic states and the sizes of the protein molecules within a heterogeneous mixture.9-12

    Microfluidic laminar-flow mixers have been applied in many fields for kinetics measurements of biomolecular conformational changes with ultrafast mixing times.13-18Microfabricated mixers often utilize hydrodynamic focusing to squeeze the sample stream into submicron width to achieve extremely fast mixing through molecular diffusion.19Compared with traditional stopped flow method,the microfluidic mixer has advantages of submillisecond mixing time,greater uniformity,and low sample consumption.The mixing devices have the capacity of single-molecule fluorescence detection with the accessible window for high numerical aperture objectives.20-22Ensemble nonequilibrium experiments can only measure the kinetics of protein folding with the averaged and overall information, while the individual processes were indirectly resolved with kinetic modeling.23Single-molecule fluorescence detection under nonequilibrium conditions can be used to study the protein folding kinetics with the full distribution of conformations to separate the unfolded and folded states.24The combination of smFRET and a microfluidic mixer will generate novel insights into protein folding mechanism and is a powerful method to study biomolecular interactions and reactions.

    Here,we constructed a microfluidic mixing system suitable for single-molecule fluorescence detection,which requires high signal-to-noise ratio,low protein adhesion,and stable flow rate for a long time.The mixing device was made of a cast of poly(dimethylsiloxane)(PDMS)sealed by a microscopic coverglass.The mixer channel pattern was designed to achieve comprehensive mixing at a minimal dead time and the flow was then slowed down to provide sufficient dwell time for single-molecule detection,and the device possessed wide biological compatibility.The mixer was easy to fabricate with common apparatus and could be improved for faster mixing with finer design and fabrication.The device was optimized to reduce the protein adhesion to the channel walls by using a long period of cure time and by adding wild-type protein at micromolar concentration into the injected sample.Novel design was implemented on the pressure regulation and sample-inlet lines so as to achieve a stable hydrodynamic flow in the mixer for many hours,which was a key factor for the single-molecule fluorescence measurements.To our knowledge,for the first time the mixing process along the mixing channel using smFRET histograms and the accurate flow velocity profile using fluorescence correlation spectroscopy(FCS)were characterized simultaneously.Then,the mixing time was determined by monitoring the collapse of denatured staphylococcal nuclease(SNase).25Although the mixing system was designed for single-molecule experiments,the mixer can also be used in ensemble measurements with a submillisecond time resolution by applying higher pressures.

    2 Materials and methods

    2.1 Construction of microfluidic mixing device

    The channel drawing was created using computer-aided software.The patten was written by an electron beam on a chrome coated glass plate to generate the mask.The microfluidic mixer was made of a PDMS chip(RTV 615,GE Silicones)sealed to a No.1 coverglass(Fisher Scientific).The master was fabricated by contact photolithography.A 20 μm layer of SU-8 2010 (MicroChem,U.S.)was spin-coated onto a cleaned silicon wafer,after a soft bake the photoresist was exposed to UV light with 144 mJ·cm-2through the mask and the wafer was then baked on a hot-plate for 4.5 min at 95°C and developed.

    In order to prevent PDMS adhesion,the master was silanized by exposure to a vapor of chlorotrimethylsilane (TMCS)in a sealed box for 15 min.To make the PDMS chip, a~4 mm thick layer of PDMS mixture,five parts by weight of PDMS and one part of crosslinking agent,was poured onto the mold and cured at 80°C for 10 min.The PDMS chip was then peeled off from the master,trimmed to the individual chip size and cured at 80°C for another 8 h.Finally,the PDMS chips were punched to generate inlet and outlet ports and bonded to a coverglass permanently using an air plasma.

    2.2 Sample delivery system

    A pressure-driven pump was used because it is applicable in the situation of low flow rate.26The pressure-driven sample delivery creates stable flow rate about 0.1 nL·s-1in the centre inlet for many hours.The protein sample and buffer were delivered into the inlets from two reservoirs which were made of 0.6 mL centrifuge tubes and PDMS plugs with two punched holes for Gauge 18 needles.The two sample reservoirs were connected to compressed air,and the pressures were regulated by two accurate pressure regulators(8286,Porter Instruments, U.S.)and measured with two accurate digital pressure gauges (DPG4000,Omega,U.S.)respectively.Another high pressure regulator having a range of 0-250 kPa was built to drive the solutions into the mixer in a faster flow speed,which can also be used in rapid mixing ensemble experiments.

    In order to maintain the flow speed around 1 mm·s-1in the measurement channel for single-molecule detection,the side inlet pressure was regulated typically to 6.00 kPa and the centre inlet pressure was 7.80 kPa.The resolution of the regulators was about 0.01 kPa with a careful tuning.The pressures would change a little for individual mixers due to small deviation in the fabrication.The high pressure regulator was used to drive the solutions into the mixer at 150 kPa to focus the sample stream in a short time.If the solutions were pumped into the mixer by the precise but low pressure regulators,hours would be needed to obtain a stable focused sample stream.After the formation of the focused stream,the pressures of the reservoirs were switched to the precise and low pressure regulators for single-molecule experiments.

    2.3 Single-molecule confocal microscope

    Single-molecule fluorescence measurements were performed on a home-built dual-channel confocal fluorescence microscope27,28based on a TE2000 microscope(Nikon).The labeled protein sample was excited by a solid-state laser(MLLIII-532,CNI)at 532 nm with 100 μW for experiments on the coverglass and 130 μW in the mixer,focused through an oil immersion objective(100×,NA 1.3,Nikon,Japan).The donor and acceptor fluorescences,seperated from the excitation light by a dichroic mirror(Z532,Chroma,U.S.),were collected by the same objective and spatially filtered using a 30 μm pinhole. The passed fluorescence was separated into donor and acceptor components with a second dichroic mirror(FF650-Di01,Semrock,U.S.)and two final filters(FF01-593/40 and FF01-692/ 40,Semrock,U.S.)for the donor and acceptor channels,respectively.Each component was detected by a photon-counting Avalanche Photodiode(SPCM-AQRH-14,PerkinElmer Optoelectronics,U.S.).Fluorescence intensities were recorded with a photon counters card(PMS-400A,Becker&Hickl,Germany). Autocorrelation functions were simultaneously recorded using a multiple-digital hardware correlator device(Flex02-01D, www.correlator.com,U.S.).

    The raw single-molecule fluorescence data were corrected for several factors11,29to obtain the actual FRET efficiency,including background,differences in quantum yields,different collection efficiencies of the donor and acceptor channels, cross-talk,and direct excitation of the acceptor.

    2.4 Protein expression,purification and labeling

    Expression,purification,and labeling of the mutant of SNase,K28C-H124C,were carried out as described previously.30Briefly,The mutant proteins were reduced with excess of Dithiothreitol(DTT,Sigma,U.S.)followed by chromatography in labeling buffer to remove the excess DTT.Site-specific labeling was achieved by reaction with thiol-reactive fluorescence dyes Alexa Fluor 555 and Alexa Fluor 647(Invitrogen, U.S.).Free dyes were removed through a PD-10 Desalting Column(GE Healthcare,U.S.)and the labeled protein solution was stored at-80°C with 10%glycerol.

    Labeled SNase of 50-100 pmol·L-1was diluted in 1 μmol·L-1unlabeled SNase in Tris-HCl buffer(pH 7.8,50 mmol·L-1Tris-HCl with 100 mmol·L-1NaCl)at appropriate GdmCl concentration.The dwell time bin was 1 ms10and a threshold was set at 50 counts in the sum of photon counts from the two channels.

    3 Results and discussion

    3.1 Controbility of the mixer

    The microfluidic mixer shown in Fig.1 was designed with a resistance model using Ohm?s law.19The relationship of flow rate,pressure difference,and flow impedance in a rectangular pipe can be described with the following equation:31

    where Q is the flow rate,dp/dl is the pressure gradient,w is the channel width,h is the channel height,and η is the solution viscosity.The two side channels of an actual microfluidic mixer were connected to the same entry,reducing a set of pressure regulator system.The channel dimensions and the flow impedances are shown in Table 1.The impedance of the mixing neck is less than 1%of the other channels which can be ignored in the calculation.When the change of inlets pressure is 0.05 kPa, the maximum pressure fluctuation of the system,the change in flow ratio is about 2%,so that the mixer can maintain a stable flow rate for smFRET measurement.

    Fig.1 (A)Scheme of the microfluidic mixer,(B)a white light microscopy image of the microfluidic mixing region,(C)the impedance model for the designed mixerThe height of the channels in figure B is 20 μm.In figure C:Zcand Zmare the impedances of the centre and measurement channels,respectively;Zsis the impedance equivalent to the side flow impedance of a mixer with two parallel side channels.

    Table 1 Channel dimensions and impedances

    Fig.2 Flow stability in the microfluidic mixer(A)fluorescence images of focused dye solution stream over hours;The intensity profiles of the cross line(the white line)for all images are extracted. (B)The peak intensities of the cross lines are plotted as time,which is 11270±280,indicating that the flow rate fluctuation was about 2%.

    The robustness of the flow velocity was examined by fluorescence images over several hours.The pressure was set to maintain appropriate hydrodynamic focusing and a flow rate in the detection channel around 1 mm·s-1.A 0.1 μmol·L-1AF532 solution with 0.01%Tween 20(Pierce)to prevent dye adhesion was delivered into the centre inlet and water was injected into the side inlets.The focused dye solution stream was excited by mercury lamp and recorded by a CCD camera through an emission filter(Fig.2).The high stability of the flow rate guaranteed the fidelity of single-molecule measurements over a long time for a good signal-to-noise ratio.When a denatrued potein sample with 2 mol·L-1GdmCl was fed into the centre inlet,simulation reslults showed that the concentration deviation of the denatrurant was less than 0.05 mol·L-1.As a consequence,the protein concentration and conformation were stable at the focus of the optics.

    3.2 Flow velocity profile

    In order to convert the focus position into the corresponding time,the flow velocity in the channels was measured by FCS.32,33Advantage of this approach is the large measurable velocity range,from 0.1 mm·s-1to 10 m·s-1,and the simultaneous measurement of the flow rate with the collection of smFRET events.FCS measured the fluorescent molecule number fluctuations in a small focal volume15about 1 fL.In the mixing experiments,FCS curves(Fig.3A)were fit using a model of considering diffusion,flow,and singlet-triplet transition of the fluorescent molecule,27,33

    where N is the average number of molecules in the focus volume,τdiffis the characteristic diffusion time,τ/τflowis the characteristic flow time,K is the fraction of the triplet state,and τTis the characteristic triplet state time.τflowis obtained from the fitting for each FCS curve,which is related to the flow speed by

    where r0is the radius of the focus volume,which is determined using Rhodamine 6G34to be(270±7)nm.

    We measured the velocities along the central axis of the channels.In an smFRET experiment each fluorescent burst needs at least dozens of effective photons35and requires the flow rate to be about 1 mm·s-1so that each molecule can spend about 1 ms at the focus.Fig.3B shows the velocity distri-bution along the central axis adjusted at such a condition.

    Fig.3 (A)Autocorrelation curves at different positions in the device,(B)the velocity profile in the mixerIn figureA:the beginning point of the measurement channel is 0 μm(Fig.1B).-165 μm is located in the centre channel with the minimum flow rate, -50 μm is in the mixing neck with the maximum flow rate to achieve rapid mixing,and 500 μm is in the measurement channel with a flow rate of about 1 mm·s-1,suitable for smFRET experiments.

    Fig.4 Single-molecule fluorescence traces(A)single-molecule signal of a dye solution of 10 pmol·L-1AF546 on a coverglass and in the mixer,(B)raw smFRET data of 100 pmol·L-1AF555 and AF647 dual labeled SNase in the mixer channel,excited by a 532 nm laser

    3.3 Single-molecule detection

    To test the fluorescence collection efficiency and the background level in the mixer channel,the single-molecule fluorescence trace of a 10 pmol·L-1dye solution of Alexa Fluor(AF) 546 in water was collected both on a coverglass and in the mixer channel in static experiments(Fig.4A).The dye solution was excited by a 532 nm laser at a power of 100 μW,and the collected raw data were binned into 1 ms dwell time.The background was fitted by a Poisson distribution,and the average photon counting rates are 0.32 m·s-1on a coverglass and 0.81 m·s-1in the mixer channel.

    We also tested the data quality for a protein sample labeled with a dye pair in the mixer channel.A 100 pmol·L-1AF555 and AF647(Invitrogen)dual labeled SNase30mixed with 1 μmol·L-1wild-type SNase to prevent labeled protein adhesion was delivered into the microfluidic device.The sample was excited with a 130 μW laser beam to generate FRET events (Fig.4B).The background levels for the donor channel and acceptor channel were 1.5 and 1.2 m·s-1,respectively,which were higher than the pure dye solution due to impurities and higher concentration,but the signal levels were higher as well, resulting in even better signal-to-noise ratio of nearly 100 for the protein sample.

    3.4 Mixing time characterized using collapse of denatured SNase

    When unfolded protein is transferred from high denaturant concentration to low concentration,the size of the protein molecule will collapse which leads to higher intramolecular smFRET efficiency and the protein collapse time is about several hundred nanoseconds,36much faster than the mixing time. This property was used to measure the mixing time precisely. Fig.5A shows the smFRET histograms taken at different positions in the channels,fitted by lognormal and Gaussian distributions to obtain the apparent FRET efficiency of the unfolded state.The rectangular box in Fig.5B indicates the onset and completion of the mixing.The initial position was set to Eapp= 0.42,5%larger than the Eapp=0.40 before mixing,and the end point was set to the first accessible position for single-molecule detection.So doing,we found that the mixing time was 150 ms.The simplest way to enhance the mixing process is to minimize the width of mixing regions with better manufacture. Because the adequate dwell time for single-molecule detection is about 1 ms for fluorescent molecules flowing in the focus volume,the ultrafast mixing can be realized by a design of flow velocity deceleration.22The mixercombining with smFRET for kinetics study has been applied to the measurement of the folding rate of denatured SNase.We will report our results in a future publication.

    Fig.5 Mixing process elucidated by smFRET experiments(A)smFRET histograms along the central axis of the channels,(B)the fitted FRET efficiencies of the denatured SNase; The rectangular box indicates the mixing region with a mixing time tmixof 150 ms.

    4 Conclusions

    A microfluidic mixing system was constructed especially for single-molecule kinetic measurement,which has the advantages of high signal-to-noise ratio,stable flow rate over hours,accurate time determination by employing FCS,and easy fabrication.This technique has the capacity to study a wide variety of biological reactions requiring the combination of fast mixing, single-molecule detection,and small sample consumption.The construction of the mixer makes it possible for us to study the kinetics of various biochemical processes at a single-molecule level.

    (1) Wolynes,P.G.;Onuchic,J.N.;Thirumalai,D.Science 1995, 267,1619.

    (2) Oliveberg,M.;Wolynes,P.G.Q.Rev.Biophys.2005,38,245.

    (3) Ferreon,A.C.M.;Deniz,A.A.BBA-Proteins Proteomics 2011, in press.

    (4)Haas,E.ChemPhysChem 2005,6,858.

    (5) Bilsel,O.;Matthews,C.R.Curr.Opin.Struct.Biol.2006,16, 86.

    (6) Ha,T.;Enderle,T.;Ogletree,D.F.;Chemla,D.S.;Selvin,P.R.; Weiss,S.Proc.Natl.Acad.Sci.U.S.A.1996,93,6264.

    (7) Weiss,S.Science 1999,283,1676.

    (8)Deniz,A.A.;Mukhopadhyay,S.;Lemke,E.A.J.R.Soc. Interface 2008,5,15.

    (9) Deniz,A.A.;Laurence,T.A.;Beligere,G.S.;Dahan,M.; Martin,A.B.;Chemla,D.S.;Dawson,P.E.;Schultz,P.G.; Weiss,S.Proc.Natl.Acad.Sci.U.S.A.2000,97,5179.

    (10) Schuler,B.;Lipman,E.A.;Eaton,W.A.Nature 2002,419,743.

    (11) Hoffmann,A.;Kane,A.;Nettels,D.;Hertzog,D.E.; Baumgartel,P.;Lengefeld,J.;Reichardt,G.;Horsley,D.A.; Seckler,R.;Bakajin,O.;Schuler,B.Proc.Natl.Acad.Sci.U.S. A.2007,104,105.

    (12) Muller-Spath,S.;Soranno,A.;Hirschfeld,V.;Hofmann,H.; Ruegger,S.;Reymond,L.;Nettels,D.;Schuler,B.Proc.Natl. Acad.Sci.U.S.A.2010,107,14609.

    (13) Hertzog,D.E.;Michalet,X.;Jager,M.;Kong,X.X.;Santiago, J.G.;Weiss,S.;Bakajin,O.Anal.Chem.2004,76,7169.

    (14)Hertzog,D.E.;Ivorra,B.;Mohammadi,B.;Bakajin,O.; Santiago,J.G.Anal.Chem.2006,78,4299.

    (15) Park,H.Y.;Qiu,X.Y.;Rhoades,E.;Korlach,J.;Kwok,L.W.; Zipfel,W.R.;Webb,W.W.;Pollack,L.Anal.Chem.2006,78, 4465.

    (16) Lapidus,L.J.;Yao,S.H.;McGarrity,K.S.;Hertzog,D.E.; Tubman,E.;Bakajin,O.Biophys.J.2007,93,218.

    (17) Park,H.Y.;Kim,S.A.;Korlach,J.;Rhoades,E.;Kwok,L.W.; Zipfell,W.R.;Waxham,M.N.;Webb,W.W.;Pollack,L.Proc. Natl.Acad.Sci.U.S.A.2008,105,542.

    (18)Guo,S.;Xue,M.Q.;Qian,M.X.;Cao,T.B.;Zhao,X.S.Acta Phys.-Chim.Sin.2007,23,1827.[郭 素,薛面起,錢(qián)民協(xié),曹廷炳,趙新生.物理化學(xué)學(xué)報(bào),2007,23,1827.]

    (19) Knight,J.B.;Vishwanath,A.;Brody,J.P.;Austin,R.H.Phys. Rev.Lett.1998,80,3863.

    (20) Hamadani,K.M.;Weiss,S.Biophys.J.2008,95,352.

    (21)Pfeil,S.H.;Wickersham,C.E.;Hoffmann,A.;Lipman,E.A. Rev.Sci.Instrum.2009,80,055105.

    (22)Gambin,Y.;VanDelinder,V.;Ferreon,A.C.M.;Lemke,E.A.; Groisman,A.;Deniz,A.A.Nat.Methods 2011,8,239.

    (23) Maki,K.;Cheng,H.;Dolgikh,D.A.;Roder,H.J.Mol.Biol. 2007,368,244.

    (24) Lipman,E.A.;Schuler,B.;Bakajin,O.;Eaton,W.A.Science 2003,301,1233.

    (25) Ye,K.Q.;Wang,J.F.J.Mol.Biol.2001,307,309.

    (26) Kim,S.J.;Blainey,P.C.;Schroeder,C.M.;Xie,X.S.Nat. Methods 2007,4,397.

    (27) Krichevsky,O.;Bonnet,G.Rep.Prog.Phys.2002,65,251.

    (28)Chen,X.D.;Zhou,Y.;Qu,P.;Zhao,X.S.J.Am.Chem.Soc. 2008,130,16947.

    (29) Sherman,E.;Haran,G.Proc.Natl.Acad.Sci.U.S.A.2006, 103,11539.

    (30) Liu,P.C.;Meng,X.L.;Qu,P.;Zhao,X.S.;Wang,C.C. J.Phys.Chem.B 2009,113,12030.

    (31) White,F.Viscous Fluid Flow,2nd ed.;McGraw Hill:Boston, Massachusetts,1991.

    (32) Gosch,M.;Blom,H.;Holm,J.;Heino,T.;Rigler,R.Anal. Chem.2000,72,3260.

    (33) Kuricheti,K.K.;Buschmann,V.;Weston,K.D.Appl. Spectrosc.2004,58,1180.

    (34)Nie,S.M.;Chiu,D.T.;Zare,R.N.Anal.Chem.1995,67,2849.

    (35) Gell,C.;Brockwell,D.;Smith,A.Handbook of Single Molecule Fluorescence Spectroscopy;Oxford University:Oxford,2006.

    (36) Nettels,D.;Gopich,I.V.;Hoffmann,A.;Schuler,B.Proc.Natl. Acad.Sci.U.S.A.2007,104,2655.

    April 27,2011;Revised:June 1,2011;Published on Web:June 9,2011.

    A Microfluidic Mixer for Single-Molecule Kinetics Experiments

    ZHI Ze-Yong1,3LIU Peng-Cheng1,3HUANG Yan-Yi2,3ZHAO Xin-Sheng1,3,*
    (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Department of Chemical Biology,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871, P.R.China;2College of Engineering,Peking University,Beijing 100871,P.R.China;3Biodynamic Optical Imaging Center, Peking University,Beijing 100871,P.R.China)

    We designed and built a microfluidic mixer based on the principle of hydrodynamic focusing governed by Navier-Stokes equation for single-molecule kinetics experiments.The mixer is a cast of poly(dimethylsiloxane)(PDMS)sealed with transparent fused-silica coverglass,which results in low fluorescence background and broad biological compatibility and this enables single-molecule fluorescence detection under nonequilibrium conditions.The pressure regulated sample delivery system is convenient for loading a sample and allows for precise and stable flow velocity control.The combination of microfluidic mixer and single-molecule fluorescence resonance energy transfer(smFRET)allows us to measure the time course of the distribution of the smFRET efficiency in protein folding.We used the fact that denatured protein collapses much faster than the mixing process to characterize the mixing time using donor and acceptor dyes labeled staphylococcal nuclease(SNase)as an smFRET efficiency indicator.By monitoring the smFRET efficiency of denatured SNase during the course of mixing,we determined that the mixing time was 150 ms under conditions suitable for single-molecule detection.

    Microfluidic mixing;Single-molecule detection;Fluorescence resonance energy transfer; Protein folding;Staphylococcal nuclease

    ?Corresponding author.Email:zhaoxs@pku.edu.cn;Tel:+86-10-62751727.

    The project was supported by the National Natural Science Foundation of China(20733001,20973015)and National Key Basic Research Program of China(973)(2006CB910300,2010CB912302).

    國(guó)家自然科學(xué)基金(20733001,20973015)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2006CB910300,2010CB912302)資助

    O643

    猜你喜歡
    核酸酶混合器微流
    粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
    船用發(fā)動(dòng)機(jī)SCR混合器優(yōu)化仿真分析
    含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性
    多種Cas12a蛋白變體能識(shí)別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
    微流控法制備P(NIPA-co-MAA)水凝膠微球及其性能表征
    用megaTAL 核酸酶對(duì)原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
    旋轉(zhuǎn)盤(pán)式混合器混合過(guò)程數(shù)值模擬
    微流控芯片在食品安全分析中的應(yīng)用進(jìn)展
    微流控SERS芯片的設(shè)計(jì)制備及其在細(xì)菌檢測(cè)中的應(yīng)用
    紙芯片微流控技術(shù)的發(fā)展及應(yīng)用
    亚洲国产最新在线播放| 一级黄色大片毛片| 26uuu在线亚洲综合色| 国产成人精品一,二区| 亚洲国产最新在线播放| 国产精品一二三区在线看| 色噜噜av男人的天堂激情| 国产三级中文精品| 一级黄片播放器| 久久这里只有精品中国| 精品熟女少妇av免费看| 亚洲三级黄色毛片| 久99久视频精品免费| 床上黄色一级片| 全区人妻精品视频| 国产精品人妻久久久久久| 亚洲国产精品久久男人天堂| 日韩欧美精品免费久久| 日日撸夜夜添| 天天躁夜夜躁狠狠久久av| 搞女人的毛片| 成人av在线播放网站| 欧美zozozo另类| 在线免费观看的www视频| 亚洲精品日韩在线中文字幕| www.av在线官网国产| av线在线观看网站| av女优亚洲男人天堂| 久久久成人免费电影| 最近最新中文字幕大全电影3| 中国国产av一级| 久久久午夜欧美精品| 中文字幕人妻熟人妻熟丝袜美| 一级毛片电影观看 | 日韩 亚洲 欧美在线| 精品人妻偷拍中文字幕| 亚洲在线自拍视频| 亚洲va在线va天堂va国产| 色综合亚洲欧美另类图片| 亚洲电影在线观看av| 在线播放无遮挡| 一级黄片播放器| 午夜亚洲福利在线播放| 午夜a级毛片| 美女脱内裤让男人舔精品视频| 精品人妻熟女av久视频| 国产不卡一卡二| 国产免费男女视频| 亚洲美女搞黄在线观看| 男人和女人高潮做爰伦理| 国产亚洲午夜精品一区二区久久 | 最新中文字幕久久久久| 久久久久免费精品人妻一区二区| 亚洲av不卡在线观看| 国产片特级美女逼逼视频| 狠狠狠狠99中文字幕| 亚洲最大成人av| 免费av不卡在线播放| 夜夜爽夜夜爽视频| 啦啦啦啦在线视频资源| 观看美女的网站| 亚洲av免费在线观看| 亚洲中文字幕日韩| 午夜视频国产福利| 久热久热在线精品观看| 国内精品宾馆在线| 听说在线观看完整版免费高清| 五月伊人婷婷丁香| 边亲边吃奶的免费视频| 日韩,欧美,国产一区二区三区 | 91av网一区二区| 国产熟女欧美一区二区| 人妻夜夜爽99麻豆av| 亚洲欧美日韩东京热| 十八禁国产超污无遮挡网站| 热99re8久久精品国产| 观看美女的网站| 久久久久久久午夜电影| 哪个播放器可以免费观看大片| 国产精品一区二区在线观看99 | 免费看美女性在线毛片视频| 一边摸一边抽搐一进一小说| 18+在线观看网站| 狂野欧美白嫩少妇大欣赏| 丝袜美腿在线中文| 国产成人精品婷婷| 国产午夜精品久久久久久一区二区三区| 麻豆久久精品国产亚洲av| 国产精品1区2区在线观看.| 国产午夜精品一二区理论片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产色片| 久久午夜福利片| 青青草视频在线视频观看| 国产一区亚洲一区在线观看| 五月伊人婷婷丁香| 久久久久久九九精品二区国产| 亚洲在久久综合| 日韩欧美在线乱码| 尤物成人国产欧美一区二区三区| 免费黄网站久久成人精品| 欧美xxxx性猛交bbbb| 亚洲国产最新在线播放| 国产免费视频播放在线视频 | 国产成人91sexporn| 国产精品av视频在线免费观看| 亚洲成人中文字幕在线播放| 久久久午夜欧美精品| 国产成人精品久久久久久| 精品少妇黑人巨大在线播放 | 国内揄拍国产精品人妻在线| 国产三级中文精品| 免费播放大片免费观看视频在线观看 | 日韩一区二区视频免费看| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影小说 | 午夜福利在线观看免费完整高清在| 伊人久久精品亚洲午夜| 99久久精品一区二区三区| 直男gayav资源| 一级av片app| 又爽又黄a免费视频| 联通29元200g的流量卡| 亚洲久久久久久中文字幕| 一级av片app| 国产乱来视频区| 韩国av在线不卡| 超碰97精品在线观看| 六月丁香七月| 搡老妇女老女人老熟妇| 亚洲av一区综合| 国产黄片视频在线免费观看| 国产片特级美女逼逼视频| 国产精品国产三级国产专区5o | 久久这里有精品视频免费| 亚洲国产精品久久男人天堂| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲网站| 少妇人妻精品综合一区二区| 男人和女人高潮做爰伦理| 国产精华一区二区三区| 国产精华一区二区三区| 99国产精品一区二区蜜桃av| 99九九线精品视频在线观看视频| 欧美bdsm另类| eeuss影院久久| 色噜噜av男人的天堂激情| 亚洲精品成人久久久久久| 亚洲欧洲国产日韩| www日本黄色视频网| 男女下面进入的视频免费午夜| 日本色播在线视频| 亚洲乱码一区二区免费版| 精华霜和精华液先用哪个| www日本黄色视频网| 亚洲欧洲国产日韩| 亚洲欧美日韩无卡精品| 91午夜精品亚洲一区二区三区| 国产乱人视频| 一区二区三区高清视频在线| av在线蜜桃| 亚洲国产高清在线一区二区三| 日本免费在线观看一区| 在线a可以看的网站| 成年版毛片免费区| 熟女电影av网| 亚洲电影在线观看av| 国产免费福利视频在线观看| 国产精品久久久久久久电影| 插逼视频在线观看| av视频在线观看入口| 青青草视频在线视频观看| 国产精品美女特级片免费视频播放器| 国产69精品久久久久777片| av专区在线播放| 三级国产精品欧美在线观看| 美女黄网站色视频| 男插女下体视频免费在线播放| 成年av动漫网址| 日韩国内少妇激情av| 91aial.com中文字幕在线观看| 国产亚洲最大av| 亚洲欧美一区二区三区国产| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站 | 日本免费在线观看一区| 成人特级av手机在线观看| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 丝袜美腿在线中文| 国产亚洲精品av在线| 99久久精品热视频| 超碰97精品在线观看| 中文亚洲av片在线观看爽| 激情 狠狠 欧美| 免费黄网站久久成人精品| 国产高潮美女av| av视频在线观看入口| 大又大粗又爽又黄少妇毛片口| 美女大奶头视频| 最后的刺客免费高清国语| 亚洲成av人片在线播放无| 精品一区二区免费观看| 一级av片app| 寂寞人妻少妇视频99o| 日本av手机在线免费观看| 最近最新中文字幕大全电影3| 国产极品天堂在线| 一本久久精品| 成年版毛片免费区| 综合色丁香网| 日韩欧美在线乱码| 国产男人的电影天堂91| 在线播放国产精品三级| 亚洲精品自拍成人| 久久久久九九精品影院| 精品酒店卫生间| 一级毛片电影观看 | 村上凉子中文字幕在线| 大香蕉97超碰在线| 国产白丝娇喘喷水9色精品| 国产精品日韩av在线免费观看| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 精品人妻熟女av久视频| 精品国产露脸久久av麻豆 | 丝袜美腿在线中文| 麻豆成人av视频| 亚州av有码| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说 | 日韩,欧美,国产一区二区三区 | 久久鲁丝午夜福利片| 又粗又硬又长又爽又黄的视频| 成人亚洲精品av一区二区| 日韩人妻高清精品专区| 男人和女人高潮做爰伦理| 亚洲国产精品合色在线| 免费大片18禁| 内地一区二区视频在线| 大话2 男鬼变身卡| av视频在线观看入口| 中文字幕人妻熟人妻熟丝袜美| 中文天堂在线官网| 最近手机中文字幕大全| 免费av不卡在线播放| 成人漫画全彩无遮挡| 亚洲av成人精品一区久久| 久久国产乱子免费精品| 免费黄色在线免费观看| 91久久精品电影网| 禁无遮挡网站| 亚洲成人av在线免费| 我要搜黄色片| 国产亚洲精品av在线| 亚洲自偷自拍三级| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 一本久久精品| 国产精品一区二区三区四区免费观看| 欧美精品国产亚洲| 亚洲久久久久久中文字幕| 国产极品天堂在线| 热99re8久久精品国产| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 成人欧美大片| 午夜福利高清视频| 一级毛片电影观看 | 欧美最新免费一区二区三区| 深爱激情五月婷婷| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 免费观看精品视频网站| 国产精品人妻久久久影院| 久久久久久久国产电影| 亚洲欧美日韩无卡精品| 麻豆av噜噜一区二区三区| 永久免费av网站大全| 嫩草影院入口| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 亚洲性久久影院| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 亚洲成人中文字幕在线播放| 婷婷色av中文字幕| 久久欧美精品欧美久久欧美| 在线免费十八禁| 人体艺术视频欧美日本| av在线播放精品| 国产在线男女| 日本猛色少妇xxxxx猛交久久| 中文在线观看免费www的网站| 欧美bdsm另类| 欧美极品一区二区三区四区| 欧美日韩精品成人综合77777| 久久久久性生活片| 三级国产精品欧美在线观看| 午夜精品在线福利| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 免费看光身美女| 久久久久久大精品| 午夜视频国产福利| 九九热线精品视视频播放| 国产成人a区在线观看| 久久久成人免费电影| 欧美成人精品欧美一级黄| 日本五十路高清| 久99久视频精品免费| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 日韩国内少妇激情av| 青春草亚洲视频在线观看| 日韩视频在线欧美| 久久精品影院6| 午夜久久久久精精品| 国内揄拍国产精品人妻在线| 高清毛片免费看| av免费观看日本| 麻豆av噜噜一区二区三区| 日韩av在线免费看完整版不卡| 久久国内精品自在自线图片| 国产av码专区亚洲av| av卡一久久| 黄色配什么色好看| 亚洲国产精品成人综合色| 日韩成人伦理影院| 最近视频中文字幕2019在线8| 联通29元200g的流量卡| 少妇的逼好多水| 国产又黄又爽又无遮挡在线| 亚洲欧洲国产日韩| 国产精品永久免费网站| 美女国产视频在线观看| 精品人妻一区二区三区麻豆| 丰满人妻一区二区三区视频av| 男人狂女人下面高潮的视频| 五月伊人婷婷丁香| 99热这里只有精品一区| 九九久久精品国产亚洲av麻豆| 亚洲人成网站在线播| 久久国产乱子免费精品| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 国产精品美女特级片免费视频播放器| 日本免费一区二区三区高清不卡| 最近的中文字幕免费完整| 国产午夜福利久久久久久| 18禁在线播放成人免费| 日韩视频在线欧美| 一边摸一边抽搐一进一小说| 国产精品一区www在线观看| 成人综合一区亚洲| av免费观看日本| 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| 99热网站在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲不卡免费看| 插逼视频在线观看| 免费播放大片免费观看视频在线观看 | 亚洲一级一片aⅴ在线观看| 亚洲一区高清亚洲精品| 免费观看在线日韩| 免费观看性生交大片5| 亚洲三级黄色毛片| 黄片wwwwww| 亚洲欧美一区二区三区国产| 色综合色国产| 亚洲最大成人av| 乱码一卡2卡4卡精品| 黄片无遮挡物在线观看| 欧美xxxx黑人xx丫x性爽| 日韩成人伦理影院| 国产精品人妻久久久影院| 欧美成人精品欧美一级黄| 国产乱人视频| 亚洲欧美清纯卡通| 免费看光身美女| 国产亚洲最大av| 国产高清三级在线| 成人国产麻豆网| 亚洲图色成人| 爱豆传媒免费全集在线观看| 欧美97在线视频| 国产黄a三级三级三级人| 久久这里有精品视频免费| 丰满乱子伦码专区| 欧美人与善性xxx| 久久99热这里只频精品6学生 | 淫秽高清视频在线观看| 亚洲性久久影院| 亚洲最大成人av| 99热精品在线国产| 精品国产三级普通话版| 欧美xxxx性猛交bbbb| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频| 毛片一级片免费看久久久久| 内地一区二区视频在线| 久久99精品国语久久久| 亚洲国产精品成人久久小说| 你懂的网址亚洲精品在线观看 | 麻豆精品久久久久久蜜桃| 国产精品一区二区在线观看99 | 日本wwww免费看| 能在线免费看毛片的网站| 国产乱人偷精品视频| 国产午夜福利久久久久久| 一边亲一边摸免费视频| 亚洲av免费高清在线观看| 国产毛片a区久久久久| 亚洲精品国产成人久久av| 天堂影院成人在线观看| 美女大奶头视频| 51国产日韩欧美| 日本免费在线观看一区| 欧美激情在线99| 尾随美女入室| 久久久久久国产a免费观看| 午夜久久久久精精品| 久久久久精品久久久久真实原创| 韩国高清视频一区二区三区| 国产精品综合久久久久久久免费| 亚洲欧美清纯卡通| 一个人看的www免费观看视频| 国产黄色小视频在线观看| 少妇的逼水好多| 天堂√8在线中文| 成年av动漫网址| 亚洲av.av天堂| 夜夜爽夜夜爽视频| 国产精品精品国产色婷婷| 亚洲在久久综合| 性插视频无遮挡在线免费观看| 高清午夜精品一区二区三区| 国产精品美女特级片免费视频播放器| 国产精品无大码| 亚洲av不卡在线观看| 久久久久久伊人网av| 青春草视频在线免费观看| 久久久精品94久久精品| 成人高潮视频无遮挡免费网站| 一区二区三区免费毛片| 国产高潮美女av| 桃色一区二区三区在线观看| 日本wwww免费看| 午夜精品一区二区三区免费看| 91久久精品国产一区二区三区| 国产免费男女视频| 日韩高清综合在线| 一区二区三区高清视频在线| 99热这里只有是精品在线观看| 精华霜和精华液先用哪个| 级片在线观看| 精品久久国产蜜桃| 日韩,欧美,国产一区二区三区 | 两个人的视频大全免费| a级毛色黄片| 免费播放大片免费观看视频在线观看 | 大香蕉久久网| 春色校园在线视频观看| 午夜福利在线在线| 欧美极品一区二区三区四区| 亚洲av免费在线观看| 看黄色毛片网站| 国产精品女同一区二区软件| 亚洲成色77777| 中文乱码字字幕精品一区二区三区 | 天堂中文最新版在线下载 | 久久久精品欧美日韩精品| 亚洲欧美日韩东京热| 欧美成人一区二区免费高清观看| 人妻夜夜爽99麻豆av| 麻豆乱淫一区二区| 国产伦精品一区二区三区视频9| 日本一本二区三区精品| 男女国产视频网站| 国内精品一区二区在线观看| 亚洲av免费高清在线观看| 日产精品乱码卡一卡2卡三| 18禁动态无遮挡网站| 亚州av有码| 午夜免费男女啪啪视频观看| 久久6这里有精品| 在线天堂最新版资源| 中文字幕精品亚洲无线码一区| 国产高清不卡午夜福利| 国产美女午夜福利| 色噜噜av男人的天堂激情| 丝袜喷水一区| 丰满乱子伦码专区| 亚洲色图av天堂| 在现免费观看毛片| 亚洲国产精品sss在线观看| 国产乱人偷精品视频| 久久久久久国产a免费观看| 精品少妇黑人巨大在线播放 | 久久久亚洲精品成人影院| 免费看日本二区| 亚洲精品乱久久久久久| 在线播放无遮挡| 国产精品久久久久久av不卡| 日韩欧美 国产精品| 一级黄片播放器| 在线观看一区二区三区| 免费人成在线观看视频色| 超碰av人人做人人爽久久| 老司机影院毛片| 国产精品一区www在线观看| 少妇人妻一区二区三区视频| 国产成人a区在线观看| 欧美性猛交╳xxx乱大交人| 在线a可以看的网站| 能在线免费观看的黄片| av在线观看视频网站免费| 久久精品久久久久久久性| 亚洲精品久久久久久婷婷小说 | 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 两个人的视频大全免费| 18禁在线播放成人免费| 国产又色又爽无遮挡免| 97超视频在线观看视频| 乱码一卡2卡4卡精品| 精品久久久久久电影网 | 在线观看66精品国产| 国产成人a∨麻豆精品| 天天一区二区日本电影三级| 嫩草影院精品99| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 直男gayav资源| 少妇人妻一区二区三区视频| 最近的中文字幕免费完整| 日韩欧美 国产精品| 国语对白做爰xxxⅹ性视频网站| 国语自产精品视频在线第100页| 岛国在线免费视频观看| 久久精品国产亚洲av天美| 国语自产精品视频在线第100页| 丝袜美腿在线中文| 国产精品1区2区在线观看.| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 一级二级三级毛片免费看| 国产在线男女| 国产精品精品国产色婷婷| 国产午夜精品论理片| 日本免费a在线| 欧美人与善性xxx| 天美传媒精品一区二区| 欧美日本视频| 色综合站精品国产| 国产激情偷乱视频一区二区| 一级毛片电影观看 | 亚洲国产精品合色在线| 深爱激情五月婷婷| 特级一级黄色大片| 久久久久久大精品| 中文资源天堂在线| 18禁在线播放成人免费| 麻豆成人av视频| 视频中文字幕在线观看| 国产成人一区二区在线| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 亚洲av电影在线观看一区二区三区 | 国产男人的电影天堂91| 国产毛片a区久久久久| 欧美xxxx性猛交bbbb| 国产成人免费观看mmmm| 免费av观看视频| 国产亚洲精品久久久com| 欧美日韩精品成人综合77777| 国产精品野战在线观看| 18禁在线无遮挡免费观看视频| 只有这里有精品99| 中文字幕久久专区| 嫩草影院入口| av播播在线观看一区| 青春草视频在线免费观看| 国产精品久久久久久av不卡| av在线观看视频网站免费| 天堂网av新在线| 免费搜索国产男女视频| av在线观看视频网站免费| 亚洲在线自拍视频| 亚洲aⅴ乱码一区二区在线播放| 欧美又色又爽又黄视频| 久久久精品大字幕| 男女视频在线观看网站免费| 只有这里有精品99| 青春草视频在线免费观看| 亚洲精品影视一区二区三区av| 人人妻人人澡欧美一区二区| 国产综合懂色| 日本爱情动作片www.在线观看| 国产乱人视频| 久久久a久久爽久久v久久| 欧美zozozo另类| 国产高潮美女av| 精品久久久久久久久久久久久| 在线观看美女被高潮喷水网站| 我的老师免费观看完整版| 亚洲美女搞黄在线观看| 欧美性感艳星| 久久久久国产网址| 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 色尼玛亚洲综合影院| 日本av手机在线免费观看| 亚洲精品亚洲一区二区|