• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器

    2011-12-11 09:08:08支澤勇劉鵬程黃巖誼趙新生
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:核酸酶混合器微流

    支澤勇 劉鵬程 黃巖誼 趙新生,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;2北京大學(xué)工學(xué)院,北京100871;3北京大學(xué)生物動(dòng)態(tài)光學(xué)成像中心,北京100871)

    用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器

    支澤勇1,3劉鵬程1,3黃巖誼2,3趙新生1,3,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院化學(xué)生物學(xué)系,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;2北京大學(xué)工學(xué)院,北京100871;3北京大學(xué)生物動(dòng)態(tài)光學(xué)成像中心,北京100871)

    設(shè)計(jì)制作了用于單分子動(dòng)力學(xué)實(shí)驗(yàn)的微流控混合器,該混合器用聚二甲基硅氧烷(PDMS)芯片和石英載玻片密封而成,具有低的熒光背景,廣泛的生物相容性,結(jié)合激光共聚焦顯微鏡能夠在非平衡態(tài)下進(jìn)行單分子熒光探測(cè).我們?cè)O(shè)計(jì)的壓力控制系統(tǒng)和進(jìn)樣流路方便而穩(wěn)定,保證了微流路中流形的長(zhǎng)時(shí)間穩(wěn)定,從而實(shí)現(xiàn)了樣品流速和流量的精準(zhǔn)控制.這些技術(shù)特點(diǎn)保證了單分子探測(cè)得到準(zhǔn)確和高信噪比的結(jié)果.利用蛋白質(zhì)的塌縮過(guò)程遠(yuǎn)快于混合過(guò)程的特點(diǎn),采用熒光標(biāo)記的金黃色葡萄球菌核酸酶作為指示物,分辨出蛋白質(zhì)變性態(tài)的特征峰,并利用變性態(tài)的熒光共振能量傳遞效率隨時(shí)間的變化表征出混合器在適合于單分子探測(cè)條件下的混合時(shí)間為150 ms.

    微流控混合;單分子探測(cè);熒光共振能量傳遞;蛋白質(zhì)折疊;金黃色葡萄球菌核酸酶

    1 Introduction

    The protein folding study involves structure,thermodynamics,and kinetics.The kinetics of protein folding concerns the folding pathway,the rate,and the energy landscape.1-3In order to characterize the protein folding,experiments needs to be performed both under equilibrium and nonequilibrium conditions.4,5Single-molecule fluorescence resonance energy transfer (smFRET)can separate the subpopulations of the protein molecules beyond the capacity of common ensemble experiments.6-8Equilibrium smFRET experiments have addressed a number of important issues in protein folding by resolving the thermodynamic states and the sizes of the protein molecules within a heterogeneous mixture.9-12

    Microfluidic laminar-flow mixers have been applied in many fields for kinetics measurements of biomolecular conformational changes with ultrafast mixing times.13-18Microfabricated mixers often utilize hydrodynamic focusing to squeeze the sample stream into submicron width to achieve extremely fast mixing through molecular diffusion.19Compared with traditional stopped flow method,the microfluidic mixer has advantages of submillisecond mixing time,greater uniformity,and low sample consumption.The mixing devices have the capacity of single-molecule fluorescence detection with the accessible window for high numerical aperture objectives.20-22Ensemble nonequilibrium experiments can only measure the kinetics of protein folding with the averaged and overall information, while the individual processes were indirectly resolved with kinetic modeling.23Single-molecule fluorescence detection under nonequilibrium conditions can be used to study the protein folding kinetics with the full distribution of conformations to separate the unfolded and folded states.24The combination of smFRET and a microfluidic mixer will generate novel insights into protein folding mechanism and is a powerful method to study biomolecular interactions and reactions.

    Here,we constructed a microfluidic mixing system suitable for single-molecule fluorescence detection,which requires high signal-to-noise ratio,low protein adhesion,and stable flow rate for a long time.The mixing device was made of a cast of poly(dimethylsiloxane)(PDMS)sealed by a microscopic coverglass.The mixer channel pattern was designed to achieve comprehensive mixing at a minimal dead time and the flow was then slowed down to provide sufficient dwell time for single-molecule detection,and the device possessed wide biological compatibility.The mixer was easy to fabricate with common apparatus and could be improved for faster mixing with finer design and fabrication.The device was optimized to reduce the protein adhesion to the channel walls by using a long period of cure time and by adding wild-type protein at micromolar concentration into the injected sample.Novel design was implemented on the pressure regulation and sample-inlet lines so as to achieve a stable hydrodynamic flow in the mixer for many hours,which was a key factor for the single-molecule fluorescence measurements.To our knowledge,for the first time the mixing process along the mixing channel using smFRET histograms and the accurate flow velocity profile using fluorescence correlation spectroscopy(FCS)were characterized simultaneously.Then,the mixing time was determined by monitoring the collapse of denatured staphylococcal nuclease(SNase).25Although the mixing system was designed for single-molecule experiments,the mixer can also be used in ensemble measurements with a submillisecond time resolution by applying higher pressures.

    2 Materials and methods

    2.1 Construction of microfluidic mixing device

    The channel drawing was created using computer-aided software.The patten was written by an electron beam on a chrome coated glass plate to generate the mask.The microfluidic mixer was made of a PDMS chip(RTV 615,GE Silicones)sealed to a No.1 coverglass(Fisher Scientific).The master was fabricated by contact photolithography.A 20 μm layer of SU-8 2010 (MicroChem,U.S.)was spin-coated onto a cleaned silicon wafer,after a soft bake the photoresist was exposed to UV light with 144 mJ·cm-2through the mask and the wafer was then baked on a hot-plate for 4.5 min at 95°C and developed.

    In order to prevent PDMS adhesion,the master was silanized by exposure to a vapor of chlorotrimethylsilane (TMCS)in a sealed box for 15 min.To make the PDMS chip, a~4 mm thick layer of PDMS mixture,five parts by weight of PDMS and one part of crosslinking agent,was poured onto the mold and cured at 80°C for 10 min.The PDMS chip was then peeled off from the master,trimmed to the individual chip size and cured at 80°C for another 8 h.Finally,the PDMS chips were punched to generate inlet and outlet ports and bonded to a coverglass permanently using an air plasma.

    2.2 Sample delivery system

    A pressure-driven pump was used because it is applicable in the situation of low flow rate.26The pressure-driven sample delivery creates stable flow rate about 0.1 nL·s-1in the centre inlet for many hours.The protein sample and buffer were delivered into the inlets from two reservoirs which were made of 0.6 mL centrifuge tubes and PDMS plugs with two punched holes for Gauge 18 needles.The two sample reservoirs were connected to compressed air,and the pressures were regulated by two accurate pressure regulators(8286,Porter Instruments, U.S.)and measured with two accurate digital pressure gauges (DPG4000,Omega,U.S.)respectively.Another high pressure regulator having a range of 0-250 kPa was built to drive the solutions into the mixer in a faster flow speed,which can also be used in rapid mixing ensemble experiments.

    In order to maintain the flow speed around 1 mm·s-1in the measurement channel for single-molecule detection,the side inlet pressure was regulated typically to 6.00 kPa and the centre inlet pressure was 7.80 kPa.The resolution of the regulators was about 0.01 kPa with a careful tuning.The pressures would change a little for individual mixers due to small deviation in the fabrication.The high pressure regulator was used to drive the solutions into the mixer at 150 kPa to focus the sample stream in a short time.If the solutions were pumped into the mixer by the precise but low pressure regulators,hours would be needed to obtain a stable focused sample stream.After the formation of the focused stream,the pressures of the reservoirs were switched to the precise and low pressure regulators for single-molecule experiments.

    2.3 Single-molecule confocal microscope

    Single-molecule fluorescence measurements were performed on a home-built dual-channel confocal fluorescence microscope27,28based on a TE2000 microscope(Nikon).The labeled protein sample was excited by a solid-state laser(MLLIII-532,CNI)at 532 nm with 100 μW for experiments on the coverglass and 130 μW in the mixer,focused through an oil immersion objective(100×,NA 1.3,Nikon,Japan).The donor and acceptor fluorescences,seperated from the excitation light by a dichroic mirror(Z532,Chroma,U.S.),were collected by the same objective and spatially filtered using a 30 μm pinhole. The passed fluorescence was separated into donor and acceptor components with a second dichroic mirror(FF650-Di01,Semrock,U.S.)and two final filters(FF01-593/40 and FF01-692/ 40,Semrock,U.S.)for the donor and acceptor channels,respectively.Each component was detected by a photon-counting Avalanche Photodiode(SPCM-AQRH-14,PerkinElmer Optoelectronics,U.S.).Fluorescence intensities were recorded with a photon counters card(PMS-400A,Becker&Hickl,Germany). Autocorrelation functions were simultaneously recorded using a multiple-digital hardware correlator device(Flex02-01D, www.correlator.com,U.S.).

    The raw single-molecule fluorescence data were corrected for several factors11,29to obtain the actual FRET efficiency,including background,differences in quantum yields,different collection efficiencies of the donor and acceptor channels, cross-talk,and direct excitation of the acceptor.

    2.4 Protein expression,purification and labeling

    Expression,purification,and labeling of the mutant of SNase,K28C-H124C,were carried out as described previously.30Briefly,The mutant proteins were reduced with excess of Dithiothreitol(DTT,Sigma,U.S.)followed by chromatography in labeling buffer to remove the excess DTT.Site-specific labeling was achieved by reaction with thiol-reactive fluorescence dyes Alexa Fluor 555 and Alexa Fluor 647(Invitrogen, U.S.).Free dyes were removed through a PD-10 Desalting Column(GE Healthcare,U.S.)and the labeled protein solution was stored at-80°C with 10%glycerol.

    Labeled SNase of 50-100 pmol·L-1was diluted in 1 μmol·L-1unlabeled SNase in Tris-HCl buffer(pH 7.8,50 mmol·L-1Tris-HCl with 100 mmol·L-1NaCl)at appropriate GdmCl concentration.The dwell time bin was 1 ms10and a threshold was set at 50 counts in the sum of photon counts from the two channels.

    3 Results and discussion

    3.1 Controbility of the mixer

    The microfluidic mixer shown in Fig.1 was designed with a resistance model using Ohm?s law.19The relationship of flow rate,pressure difference,and flow impedance in a rectangular pipe can be described with the following equation:31

    where Q is the flow rate,dp/dl is the pressure gradient,w is the channel width,h is the channel height,and η is the solution viscosity.The two side channels of an actual microfluidic mixer were connected to the same entry,reducing a set of pressure regulator system.The channel dimensions and the flow impedances are shown in Table 1.The impedance of the mixing neck is less than 1%of the other channels which can be ignored in the calculation.When the change of inlets pressure is 0.05 kPa, the maximum pressure fluctuation of the system,the change in flow ratio is about 2%,so that the mixer can maintain a stable flow rate for smFRET measurement.

    Fig.1 (A)Scheme of the microfluidic mixer,(B)a white light microscopy image of the microfluidic mixing region,(C)the impedance model for the designed mixerThe height of the channels in figure B is 20 μm.In figure C:Zcand Zmare the impedances of the centre and measurement channels,respectively;Zsis the impedance equivalent to the side flow impedance of a mixer with two parallel side channels.

    Table 1 Channel dimensions and impedances

    Fig.2 Flow stability in the microfluidic mixer(A)fluorescence images of focused dye solution stream over hours;The intensity profiles of the cross line(the white line)for all images are extracted. (B)The peak intensities of the cross lines are plotted as time,which is 11270±280,indicating that the flow rate fluctuation was about 2%.

    The robustness of the flow velocity was examined by fluorescence images over several hours.The pressure was set to maintain appropriate hydrodynamic focusing and a flow rate in the detection channel around 1 mm·s-1.A 0.1 μmol·L-1AF532 solution with 0.01%Tween 20(Pierce)to prevent dye adhesion was delivered into the centre inlet and water was injected into the side inlets.The focused dye solution stream was excited by mercury lamp and recorded by a CCD camera through an emission filter(Fig.2).The high stability of the flow rate guaranteed the fidelity of single-molecule measurements over a long time for a good signal-to-noise ratio.When a denatrued potein sample with 2 mol·L-1GdmCl was fed into the centre inlet,simulation reslults showed that the concentration deviation of the denatrurant was less than 0.05 mol·L-1.As a consequence,the protein concentration and conformation were stable at the focus of the optics.

    3.2 Flow velocity profile

    In order to convert the focus position into the corresponding time,the flow velocity in the channels was measured by FCS.32,33Advantage of this approach is the large measurable velocity range,from 0.1 mm·s-1to 10 m·s-1,and the simultaneous measurement of the flow rate with the collection of smFRET events.FCS measured the fluorescent molecule number fluctuations in a small focal volume15about 1 fL.In the mixing experiments,FCS curves(Fig.3A)were fit using a model of considering diffusion,flow,and singlet-triplet transition of the fluorescent molecule,27,33

    where N is the average number of molecules in the focus volume,τdiffis the characteristic diffusion time,τ/τflowis the characteristic flow time,K is the fraction of the triplet state,and τTis the characteristic triplet state time.τflowis obtained from the fitting for each FCS curve,which is related to the flow speed by

    where r0is the radius of the focus volume,which is determined using Rhodamine 6G34to be(270±7)nm.

    We measured the velocities along the central axis of the channels.In an smFRET experiment each fluorescent burst needs at least dozens of effective photons35and requires the flow rate to be about 1 mm·s-1so that each molecule can spend about 1 ms at the focus.Fig.3B shows the velocity distri-bution along the central axis adjusted at such a condition.

    Fig.3 (A)Autocorrelation curves at different positions in the device,(B)the velocity profile in the mixerIn figureA:the beginning point of the measurement channel is 0 μm(Fig.1B).-165 μm is located in the centre channel with the minimum flow rate, -50 μm is in the mixing neck with the maximum flow rate to achieve rapid mixing,and 500 μm is in the measurement channel with a flow rate of about 1 mm·s-1,suitable for smFRET experiments.

    Fig.4 Single-molecule fluorescence traces(A)single-molecule signal of a dye solution of 10 pmol·L-1AF546 on a coverglass and in the mixer,(B)raw smFRET data of 100 pmol·L-1AF555 and AF647 dual labeled SNase in the mixer channel,excited by a 532 nm laser

    3.3 Single-molecule detection

    To test the fluorescence collection efficiency and the background level in the mixer channel,the single-molecule fluorescence trace of a 10 pmol·L-1dye solution of Alexa Fluor(AF) 546 in water was collected both on a coverglass and in the mixer channel in static experiments(Fig.4A).The dye solution was excited by a 532 nm laser at a power of 100 μW,and the collected raw data were binned into 1 ms dwell time.The background was fitted by a Poisson distribution,and the average photon counting rates are 0.32 m·s-1on a coverglass and 0.81 m·s-1in the mixer channel.

    We also tested the data quality for a protein sample labeled with a dye pair in the mixer channel.A 100 pmol·L-1AF555 and AF647(Invitrogen)dual labeled SNase30mixed with 1 μmol·L-1wild-type SNase to prevent labeled protein adhesion was delivered into the microfluidic device.The sample was excited with a 130 μW laser beam to generate FRET events (Fig.4B).The background levels for the donor channel and acceptor channel were 1.5 and 1.2 m·s-1,respectively,which were higher than the pure dye solution due to impurities and higher concentration,but the signal levels were higher as well, resulting in even better signal-to-noise ratio of nearly 100 for the protein sample.

    3.4 Mixing time characterized using collapse of denatured SNase

    When unfolded protein is transferred from high denaturant concentration to low concentration,the size of the protein molecule will collapse which leads to higher intramolecular smFRET efficiency and the protein collapse time is about several hundred nanoseconds,36much faster than the mixing time. This property was used to measure the mixing time precisely. Fig.5A shows the smFRET histograms taken at different positions in the channels,fitted by lognormal and Gaussian distributions to obtain the apparent FRET efficiency of the unfolded state.The rectangular box in Fig.5B indicates the onset and completion of the mixing.The initial position was set to Eapp= 0.42,5%larger than the Eapp=0.40 before mixing,and the end point was set to the first accessible position for single-molecule detection.So doing,we found that the mixing time was 150 ms.The simplest way to enhance the mixing process is to minimize the width of mixing regions with better manufacture. Because the adequate dwell time for single-molecule detection is about 1 ms for fluorescent molecules flowing in the focus volume,the ultrafast mixing can be realized by a design of flow velocity deceleration.22The mixercombining with smFRET for kinetics study has been applied to the measurement of the folding rate of denatured SNase.We will report our results in a future publication.

    Fig.5 Mixing process elucidated by smFRET experiments(A)smFRET histograms along the central axis of the channels,(B)the fitted FRET efficiencies of the denatured SNase; The rectangular box indicates the mixing region with a mixing time tmixof 150 ms.

    4 Conclusions

    A microfluidic mixing system was constructed especially for single-molecule kinetic measurement,which has the advantages of high signal-to-noise ratio,stable flow rate over hours,accurate time determination by employing FCS,and easy fabrication.This technique has the capacity to study a wide variety of biological reactions requiring the combination of fast mixing, single-molecule detection,and small sample consumption.The construction of the mixer makes it possible for us to study the kinetics of various biochemical processes at a single-molecule level.

    (1) Wolynes,P.G.;Onuchic,J.N.;Thirumalai,D.Science 1995, 267,1619.

    (2) Oliveberg,M.;Wolynes,P.G.Q.Rev.Biophys.2005,38,245.

    (3) Ferreon,A.C.M.;Deniz,A.A.BBA-Proteins Proteomics 2011, in press.

    (4)Haas,E.ChemPhysChem 2005,6,858.

    (5) Bilsel,O.;Matthews,C.R.Curr.Opin.Struct.Biol.2006,16, 86.

    (6) Ha,T.;Enderle,T.;Ogletree,D.F.;Chemla,D.S.;Selvin,P.R.; Weiss,S.Proc.Natl.Acad.Sci.U.S.A.1996,93,6264.

    (7) Weiss,S.Science 1999,283,1676.

    (8)Deniz,A.A.;Mukhopadhyay,S.;Lemke,E.A.J.R.Soc. Interface 2008,5,15.

    (9) Deniz,A.A.;Laurence,T.A.;Beligere,G.S.;Dahan,M.; Martin,A.B.;Chemla,D.S.;Dawson,P.E.;Schultz,P.G.; Weiss,S.Proc.Natl.Acad.Sci.U.S.A.2000,97,5179.

    (10) Schuler,B.;Lipman,E.A.;Eaton,W.A.Nature 2002,419,743.

    (11) Hoffmann,A.;Kane,A.;Nettels,D.;Hertzog,D.E.; Baumgartel,P.;Lengefeld,J.;Reichardt,G.;Horsley,D.A.; Seckler,R.;Bakajin,O.;Schuler,B.Proc.Natl.Acad.Sci.U.S. A.2007,104,105.

    (12) Muller-Spath,S.;Soranno,A.;Hirschfeld,V.;Hofmann,H.; Ruegger,S.;Reymond,L.;Nettels,D.;Schuler,B.Proc.Natl. Acad.Sci.U.S.A.2010,107,14609.

    (13) Hertzog,D.E.;Michalet,X.;Jager,M.;Kong,X.X.;Santiago, J.G.;Weiss,S.;Bakajin,O.Anal.Chem.2004,76,7169.

    (14)Hertzog,D.E.;Ivorra,B.;Mohammadi,B.;Bakajin,O.; Santiago,J.G.Anal.Chem.2006,78,4299.

    (15) Park,H.Y.;Qiu,X.Y.;Rhoades,E.;Korlach,J.;Kwok,L.W.; Zipfel,W.R.;Webb,W.W.;Pollack,L.Anal.Chem.2006,78, 4465.

    (16) Lapidus,L.J.;Yao,S.H.;McGarrity,K.S.;Hertzog,D.E.; Tubman,E.;Bakajin,O.Biophys.J.2007,93,218.

    (17) Park,H.Y.;Kim,S.A.;Korlach,J.;Rhoades,E.;Kwok,L.W.; Zipfell,W.R.;Waxham,M.N.;Webb,W.W.;Pollack,L.Proc. Natl.Acad.Sci.U.S.A.2008,105,542.

    (18)Guo,S.;Xue,M.Q.;Qian,M.X.;Cao,T.B.;Zhao,X.S.Acta Phys.-Chim.Sin.2007,23,1827.[郭 素,薛面起,錢(qián)民協(xié),曹廷炳,趙新生.物理化學(xué)學(xué)報(bào),2007,23,1827.]

    (19) Knight,J.B.;Vishwanath,A.;Brody,J.P.;Austin,R.H.Phys. Rev.Lett.1998,80,3863.

    (20) Hamadani,K.M.;Weiss,S.Biophys.J.2008,95,352.

    (21)Pfeil,S.H.;Wickersham,C.E.;Hoffmann,A.;Lipman,E.A. Rev.Sci.Instrum.2009,80,055105.

    (22)Gambin,Y.;VanDelinder,V.;Ferreon,A.C.M.;Lemke,E.A.; Groisman,A.;Deniz,A.A.Nat.Methods 2011,8,239.

    (23) Maki,K.;Cheng,H.;Dolgikh,D.A.;Roder,H.J.Mol.Biol. 2007,368,244.

    (24) Lipman,E.A.;Schuler,B.;Bakajin,O.;Eaton,W.A.Science 2003,301,1233.

    (25) Ye,K.Q.;Wang,J.F.J.Mol.Biol.2001,307,309.

    (26) Kim,S.J.;Blainey,P.C.;Schroeder,C.M.;Xie,X.S.Nat. Methods 2007,4,397.

    (27) Krichevsky,O.;Bonnet,G.Rep.Prog.Phys.2002,65,251.

    (28)Chen,X.D.;Zhou,Y.;Qu,P.;Zhao,X.S.J.Am.Chem.Soc. 2008,130,16947.

    (29) Sherman,E.;Haran,G.Proc.Natl.Acad.Sci.U.S.A.2006, 103,11539.

    (30) Liu,P.C.;Meng,X.L.;Qu,P.;Zhao,X.S.;Wang,C.C. J.Phys.Chem.B 2009,113,12030.

    (31) White,F.Viscous Fluid Flow,2nd ed.;McGraw Hill:Boston, Massachusetts,1991.

    (32) Gosch,M.;Blom,H.;Holm,J.;Heino,T.;Rigler,R.Anal. Chem.2000,72,3260.

    (33) Kuricheti,K.K.;Buschmann,V.;Weston,K.D.Appl. Spectrosc.2004,58,1180.

    (34)Nie,S.M.;Chiu,D.T.;Zare,R.N.Anal.Chem.1995,67,2849.

    (35) Gell,C.;Brockwell,D.;Smith,A.Handbook of Single Molecule Fluorescence Spectroscopy;Oxford University:Oxford,2006.

    (36) Nettels,D.;Gopich,I.V.;Hoffmann,A.;Schuler,B.Proc.Natl. Acad.Sci.U.S.A.2007,104,2655.

    April 27,2011;Revised:June 1,2011;Published on Web:June 9,2011.

    A Microfluidic Mixer for Single-Molecule Kinetics Experiments

    ZHI Ze-Yong1,3LIU Peng-Cheng1,3HUANG Yan-Yi2,3ZHAO Xin-Sheng1,3,*
    (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Department of Chemical Biology,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871, P.R.China;2College of Engineering,Peking University,Beijing 100871,P.R.China;3Biodynamic Optical Imaging Center, Peking University,Beijing 100871,P.R.China)

    We designed and built a microfluidic mixer based on the principle of hydrodynamic focusing governed by Navier-Stokes equation for single-molecule kinetics experiments.The mixer is a cast of poly(dimethylsiloxane)(PDMS)sealed with transparent fused-silica coverglass,which results in low fluorescence background and broad biological compatibility and this enables single-molecule fluorescence detection under nonequilibrium conditions.The pressure regulated sample delivery system is convenient for loading a sample and allows for precise and stable flow velocity control.The combination of microfluidic mixer and single-molecule fluorescence resonance energy transfer(smFRET)allows us to measure the time course of the distribution of the smFRET efficiency in protein folding.We used the fact that denatured protein collapses much faster than the mixing process to characterize the mixing time using donor and acceptor dyes labeled staphylococcal nuclease(SNase)as an smFRET efficiency indicator.By monitoring the smFRET efficiency of denatured SNase during the course of mixing,we determined that the mixing time was 150 ms under conditions suitable for single-molecule detection.

    Microfluidic mixing;Single-molecule detection;Fluorescence resonance energy transfer; Protein folding;Staphylococcal nuclease

    ?Corresponding author.Email:zhaoxs@pku.edu.cn;Tel:+86-10-62751727.

    The project was supported by the National Natural Science Foundation of China(20733001,20973015)and National Key Basic Research Program of China(973)(2006CB910300,2010CB912302).

    國(guó)家自然科學(xué)基金(20733001,20973015)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2006CB910300,2010CB912302)資助

    O643

    猜你喜歡
    核酸酶混合器微流
    粘質(zhì)沙雷氏菌全能核酸酶的研究進(jìn)展
    船用發(fā)動(dòng)機(jī)SCR混合器優(yōu)化仿真分析
    含季銨鹽的芳酰腙配體的銅 (Ⅱ)配合物的合成和表征:體外DNA鍵合和核酸酶活性
    多種Cas12a蛋白變體能識(shí)別不同的PAM序列(2020.4.27 Plant Biotechnology Journal)
    微流控法制備P(NIPA-co-MAA)水凝膠微球及其性能表征
    用megaTAL 核酸酶對(duì)原代人T 細(xì)胞CCR5 基因座進(jìn)行有效修飾可建立HIV-1 抵抗力
    旋轉(zhuǎn)盤(pán)式混合器混合過(guò)程數(shù)值模擬
    微流控芯片在食品安全分析中的應(yīng)用進(jìn)展
    微流控SERS芯片的設(shè)計(jì)制備及其在細(xì)菌檢測(cè)中的應(yīng)用
    紙芯片微流控技術(shù)的發(fā)展及應(yīng)用
    最近视频中文字幕2019在线8| 在线观看午夜福利视频| 男人和女人高潮做爰伦理| a级毛色黄片| 高清在线视频一区二区三区 | 日本一本二区三区精品| 乱码一卡2卡4卡精品| 免费大片18禁| 夜夜看夜夜爽夜夜摸| 久久人妻av系列| 午夜激情福利司机影院| 国产精品一区www在线观看| 精品人妻熟女av久视频| 久久人人爽人人片av| 久99久视频精品免费| 激情 狠狠 欧美| 亚洲在线自拍视频| 99久久精品国产国产毛片| 99久久无色码亚洲精品果冻| 日本爱情动作片www.在线观看| 天堂√8在线中文| 国产 一区精品| 97人妻精品一区二区三区麻豆| 免费观看a级毛片全部| avwww免费| 久久精品国产清高在天天线| 日韩三级伦理在线观看| 日韩三级伦理在线观看| 久久人人爽人人爽人人片va| 少妇的逼好多水| 97在线视频观看| 听说在线观看完整版免费高清| 一区二区三区四区激情视频 | 亚洲在线观看片| 91狼人影院| 三级男女做爰猛烈吃奶摸视频| 人体艺术视频欧美日本| 亚洲欧美精品自产自拍| 91午夜精品亚洲一区二区三区| 国语自产精品视频在线第100页| .国产精品久久| 不卡一级毛片| 亚洲成人精品中文字幕电影| 久久欧美精品欧美久久欧美| www.色视频.com| 成人漫画全彩无遮挡| 成人无遮挡网站| 特级一级黄色大片| 老熟妇乱子伦视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日日摸夜夜添夜夜添av毛片| 国产伦在线观看视频一区| 亚洲丝袜综合中文字幕| 国产精品99久久久久久久久| av天堂中文字幕网| 天堂中文最新版在线下载 | 此物有八面人人有两片| 久久久久久久久大av| 久久久久久国产a免费观看| 狠狠狠狠99中文字幕| 一区二区三区免费毛片| 亚洲国产精品成人久久小说 | 三级国产精品欧美在线观看| 欧美一区二区精品小视频在线| 日本五十路高清| 少妇人妻一区二区三区视频| 91午夜精品亚洲一区二区三区| av免费在线看不卡| 波多野结衣高清作品| 免费电影在线观看免费观看| 五月玫瑰六月丁香| 国产高清视频在线观看网站| 亚洲欧美日韩卡通动漫| 最近中文字幕高清免费大全6| 久久国内精品自在自线图片| 美女cb高潮喷水在线观看| 免费大片18禁| 亚洲成人久久爱视频| 精品一区二区三区视频在线| 日本撒尿小便嘘嘘汇集6| a级毛色黄片| 好男人在线观看高清免费视频| 99在线视频只有这里精品首页| 国产精品伦人一区二区| 国产又黄又爽又无遮挡在线| 秋霞在线观看毛片| 亚洲欧美日韩高清在线视频| 国产成人精品一,二区 | 亚洲电影在线观看av| 免费观看a级毛片全部| 哪个播放器可以免费观看大片| av国产免费在线观看| 国产av不卡久久| 美女xxoo啪啪120秒动态图| 中国美女看黄片| 男人和女人高潮做爰伦理| 麻豆国产av国片精品| 中文字幕精品亚洲无线码一区| 美女 人体艺术 gogo| 午夜福利在线观看吧| 亚洲四区av| 国产精品美女特级片免费视频播放器| 能在线免费看毛片的网站| 国产黄色视频一区二区在线观看 | 99热这里只有精品一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲av不卡在线观看| 免费看av在线观看网站| 久久久国产成人精品二区| 精品国内亚洲2022精品成人| 久久久久久久久中文| 免费无遮挡裸体视频| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久久久毛片| 日韩中字成人| 精品久久国产蜜桃| 91在线精品国自产拍蜜月| 99在线视频只有这里精品首页| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 成人特级黄色片久久久久久久| 精品人妻偷拍中文字幕| 黄片无遮挡物在线观看| 国产蜜桃级精品一区二区三区| 我要搜黄色片| 日韩高清综合在线| 男人和女人高潮做爰伦理| 老司机福利观看| 成人欧美大片| h日本视频在线播放| 免费看a级黄色片| 欧美精品国产亚洲| 美女内射精品一级片tv| 久久久久性生活片| 免费人成在线观看视频色| 国产精品.久久久| 免费看a级黄色片| 国产一区二区亚洲精品在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲精品456在线播放app| 赤兔流量卡办理| 成年女人看的毛片在线观看| 久久亚洲精品不卡| 欧美日韩乱码在线| 亚洲精品久久国产高清桃花| 国产69精品久久久久777片| 国产男人的电影天堂91| 国产黄a三级三级三级人| 在线观看美女被高潮喷水网站| 精品免费久久久久久久清纯| 免费人成视频x8x8入口观看| 免费在线观看成人毛片| 亚洲在线自拍视频| 亚洲av熟女| 美女内射精品一级片tv| 最近的中文字幕免费完整| 麻豆精品久久久久久蜜桃| 国产久久久一区二区三区| 久久久欧美国产精品| 亚洲电影在线观看av| 亚洲成人中文字幕在线播放| 嫩草影院精品99| 男人的好看免费观看在线视频| 国产v大片淫在线免费观看| 亚洲av中文字字幕乱码综合| 熟女电影av网| eeuss影院久久| 97在线视频观看| 国产精华一区二区三区| 亚洲av电影不卡..在线观看| 高清在线视频一区二区三区 | 亚洲av中文av极速乱| 亚洲国产精品sss在线观看| 日韩三级伦理在线观看| 性色avwww在线观看| 欧美色欧美亚洲另类二区| 国产乱人偷精品视频| 在线播放无遮挡| 全区人妻精品视频| 男女做爰动态图高潮gif福利片| 亚洲欧洲日产国产| 欧美色视频一区免费| 如何舔出高潮| 国产精品99久久久久久久久| 亚洲精品久久久久久婷婷小说 | 免费观看在线日韩| 亚洲成人精品中文字幕电影| 亚洲无线在线观看| 国产麻豆成人av免费视频| 亚洲国产精品国产精品| 亚洲欧美成人精品一区二区| 又粗又爽又猛毛片免费看| 久久久成人免费电影| 精品久久国产蜜桃| 99在线视频只有这里精品首页| 午夜精品国产一区二区电影 | 欧美+日韩+精品| 少妇丰满av| 国产精品久久视频播放| 国产成人精品一,二区 | 成人亚洲精品av一区二区| 成年版毛片免费区| АⅤ资源中文在线天堂| 91精品国产九色| 国产毛片a区久久久久| 亚洲精品乱码久久久久久按摩| 国产日韩欧美在线精品| 三级毛片av免费| 欧美xxxx性猛交bbbb| 国产久久久一区二区三区| 亚洲av成人精品一区久久| 欧美潮喷喷水| 亚洲国产日韩欧美精品在线观看| av福利片在线观看| 亚洲精品久久久久久婷婷小说 | 亚洲不卡免费看| 国产伦一二天堂av在线观看| 不卡一级毛片| 免费av毛片视频| 亚洲av熟女| 国产精品一二三区在线看| 精品久久久噜噜| 国产精品.久久久| 亚洲欧美精品专区久久| 亚洲国产精品成人综合色| 国产精品永久免费网站| 成人毛片a级毛片在线播放| 嫩草影院精品99| 中文字幕制服av| 日本-黄色视频高清免费观看| 长腿黑丝高跟| 中文字幕免费在线视频6| 国产亚洲精品久久久久久毛片| 国产成人福利小说| 99热这里只有精品一区| 欧美一区二区精品小视频在线| 一级二级三级毛片免费看| 欧美极品一区二区三区四区| 人体艺术视频欧美日本| 欧美日韩乱码在线| 日韩大尺度精品在线看网址| 男女下面进入的视频免费午夜| 国产精华一区二区三区| 亚洲最大成人中文| 久久精品影院6| 啦啦啦啦在线视频资源| 成人特级黄色片久久久久久久| 久久久精品94久久精品| 直男gayav资源| 国产高潮美女av| 一级二级三级毛片免费看| 高清毛片免费看| 12—13女人毛片做爰片一| 我要看日韩黄色一级片| 亚洲人成网站高清观看| 亚洲精品日韩av片在线观看| 久久久色成人| 国语自产精品视频在线第100页| 哪里可以看免费的av片| 直男gayav资源| 精品人妻偷拍中文字幕| 午夜福利在线观看免费完整高清在 | 深夜a级毛片| 天堂√8在线中文| 日韩高清综合在线| 亚洲国产精品久久男人天堂| 色5月婷婷丁香| 一本一本综合久久| 成人性生交大片免费视频hd| 久久精品国产亚洲av天美| 少妇的逼水好多| av.在线天堂| 国产一区二区三区av在线 | 久久精品国产亚洲网站| 日韩视频在线欧美| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看 | 一级毛片aaaaaa免费看小| 变态另类成人亚洲欧美熟女| 美女国产视频在线观看| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 老师上课跳d突然被开到最大视频| 天堂网av新在线| 国产精品一区二区性色av| 麻豆国产97在线/欧美| 啦啦啦啦在线视频资源| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 久久鲁丝午夜福利片| 九九热线精品视视频播放| 级片在线观看| 男人舔女人下体高潮全视频| 久久精品国产亚洲网站| 国内少妇人妻偷人精品xxx网站| 成人无遮挡网站| 国产免费男女视频| 九九热线精品视视频播放| 十八禁国产超污无遮挡网站| 亚洲欧美成人综合另类久久久 | 亚洲欧美精品综合久久99| ponron亚洲| 性色avwww在线观看| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久国产a免费观看| 久久精品国产鲁丝片午夜精品| 国产精品无大码| 在线免费十八禁| 亚洲成人av在线免费| 最近中文字幕高清免费大全6| 赤兔流量卡办理| 亚洲自偷自拍三级| 精品久久久久久久久久久久久| 国产午夜精品久久久久久一区二区三区| 成人性生交大片免费视频hd| 亚洲中文字幕日韩| 六月丁香七月| 久久精品国产亚洲av涩爱 | 亚洲最大成人中文| 天美传媒精品一区二区| av在线亚洲专区| 男女边吃奶边做爰视频| 黄色欧美视频在线观看| 亚洲自偷自拍三级| 精品久久久久久久久久免费视频| 亚洲av.av天堂| 欧美极品一区二区三区四区| 国产一区二区三区av在线 | 国产不卡一卡二| 日本黄色片子视频| 欧美日本亚洲视频在线播放| 国产真实乱freesex| 亚洲中文字幕日韩| 18禁裸乳无遮挡免费网站照片| 少妇高潮的动态图| 亚洲av第一区精品v没综合| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 亚洲精品乱码久久久v下载方式| 精品人妻视频免费看| 国产美女午夜福利| 国产乱人视频| 日韩亚洲欧美综合| 国产一级毛片七仙女欲春2| 久久韩国三级中文字幕| 国产精品国产高清国产av| 18禁在线播放成人免费| 国产伦一二天堂av在线观看| 国产精品女同一区二区软件| 天堂av国产一区二区熟女人妻| 日韩三级伦理在线观看| 亚洲在线自拍视频| 国产精品一区二区三区四区久久| 99热这里只有是精品50| 我的女老师完整版在线观看| 国产亚洲av片在线观看秒播厂 | 国产毛片a区久久久久| 免费看美女性在线毛片视频| 国产午夜精品论理片| 亚洲欧洲日产国产| 亚洲人成网站在线观看播放| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 亚洲内射少妇av| 国产色爽女视频免费观看| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 国内精品久久久久精免费| 日本黄大片高清| 亚洲最大成人av| 欧美色欧美亚洲另类二区| 欧美+日韩+精品| 免费观看a级毛片全部| 一本久久中文字幕| 国产av麻豆久久久久久久| 国产极品天堂在线| 国产高清有码在线观看视频| av在线老鸭窝| 国产午夜精品久久久久久一区二区三区| 六月丁香七月| a级一级毛片免费在线观看| 成人三级黄色视频| 午夜精品在线福利| 国产午夜精品论理片| 免费电影在线观看免费观看| 成年免费大片在线观看| 在线观看免费视频日本深夜| 舔av片在线| 久久人妻av系列| 亚洲成人中文字幕在线播放| 亚洲av不卡在线观看| eeuss影院久久| 亚洲欧美精品综合久久99| 亚洲精品成人久久久久久| 日本黄色片子视频| www日本黄色视频网| 如何舔出高潮| 草草在线视频免费看| 亚洲图色成人| 色综合亚洲欧美另类图片| 亚洲久久久久久中文字幕| av在线观看视频网站免费| 非洲黑人性xxxx精品又粗又长| 亚洲精品亚洲一区二区| 国产精品一二三区在线看| av在线观看视频网站免费| 色视频www国产| 国产三级在线视频| 婷婷色av中文字幕| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| 国产熟女欧美一区二区| 国产精品女同一区二区软件| 十八禁国产超污无遮挡网站| 2022亚洲国产成人精品| 我要搜黄色片| 国产亚洲av片在线观看秒播厂 | 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 91av网一区二区| 久久久国产成人免费| 婷婷亚洲欧美| 亚洲无线在线观看| 乱码一卡2卡4卡精品| 亚洲成人中文字幕在线播放| 午夜爱爱视频在线播放| 日本成人三级电影网站| 国产精品爽爽va在线观看网站| 日本在线视频免费播放| 2021天堂中文幕一二区在线观| 一级毛片我不卡| 一个人看视频在线观看www免费| 亚洲av成人av| 国产亚洲av嫩草精品影院| 午夜福利视频1000在线观看| 亚洲av中文字字幕乱码综合| 天天躁夜夜躁狠狠久久av| 美女xxoo啪啪120秒动态图| 国产 一区 欧美 日韩| 免费看a级黄色片| 99久久精品国产国产毛片| 少妇高潮的动态图| 久久久久久久午夜电影| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| 亚洲国产精品国产精品| 亚洲18禁久久av| 国产欧美日韩精品一区二区| 成人漫画全彩无遮挡| 两性午夜刺激爽爽歪歪视频在线观看| 99久久无色码亚洲精品果冻| 日本-黄色视频高清免费观看| 久久午夜亚洲精品久久| 亚洲精品自拍成人| 国产一级毛片在线| 亚洲欧洲国产日韩| 午夜久久久久精精品| 国产亚洲91精品色在线| 看黄色毛片网站| 国产黄色小视频在线观看| 99久久九九国产精品国产免费| 性色avwww在线观看| 不卡一级毛片| 午夜激情福利司机影院| 亚洲精品成人久久久久久| 久久精品国产鲁丝片午夜精品| av又黄又爽大尺度在线免费看 | 高清在线视频一区二区三区 | 综合色av麻豆| 伊人久久精品亚洲午夜| 日韩高清综合在线| 男的添女的下面高潮视频| a级毛色黄片| 婷婷色综合大香蕉| 十八禁国产超污无遮挡网站| 久久久久久久午夜电影| 日韩,欧美,国产一区二区三区 | 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 看片在线看免费视频| 在线观看美女被高潮喷水网站| 网址你懂的国产日韩在线| 亚洲va在线va天堂va国产| 三级国产精品欧美在线观看| 久久精品久久久久久久性| 搡女人真爽免费视频火全软件| 又黄又爽又刺激的免费视频.| 少妇的逼好多水| 麻豆成人av视频| 最近视频中文字幕2019在线8| av专区在线播放| 美女国产视频在线观看| 成年av动漫网址| 亚洲欧美日韩无卡精品| 国产精品久久久久久精品电影小说 | 日韩强制内射视频| 亚洲在线自拍视频| 男女做爰动态图高潮gif福利片| 欧美色欧美亚洲另类二区| 男的添女的下面高潮视频| 禁无遮挡网站| 小说图片视频综合网站| 少妇猛男粗大的猛烈进出视频 | 久久久久久九九精品二区国产| 99久国产av精品国产电影| 变态另类成人亚洲欧美熟女| 亚洲精品影视一区二区三区av| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 亚洲成av人片在线播放无| 成年女人永久免费观看视频| 国产日韩欧美在线精品| 久久久久久久久久黄片| 天堂影院成人在线观看| 亚洲av男天堂| 色尼玛亚洲综合影院| 国产一区二区在线观看日韩| 99热这里只有是精品在线观看| 国产乱人视频| 午夜精品在线福利| 99视频精品全部免费 在线| 六月丁香七月| 黄色日韩在线| 两个人视频免费观看高清| 亚洲欧美日韩东京热| 精品免费久久久久久久清纯| 麻豆成人av视频| 久久综合国产亚洲精品| 搞女人的毛片| 校园人妻丝袜中文字幕| 欧美人与善性xxx| 青青草视频在线视频观看| 国产伦一二天堂av在线观看| 中国国产av一级| 亚洲国产日韩欧美精品在线观看| 色综合站精品国产| 小蜜桃在线观看免费完整版高清| 精品一区二区免费观看| 国产人妻一区二区三区在| 日韩精品青青久久久久久| 国产v大片淫在线免费观看| 观看免费一级毛片| 欧美不卡视频在线免费观看| а√天堂www在线а√下载| 精品少妇黑人巨大在线播放 | 国产一区二区激情短视频| 日韩大尺度精品在线看网址| 国产成人福利小说| 亚洲人成网站在线观看播放| 亚洲国产欧美人成| 成人欧美大片| 最近视频中文字幕2019在线8| 久久久久久久久久成人| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 国产黄片视频在线免费观看| 岛国毛片在线播放| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 三级国产精品欧美在线观看| 国产淫片久久久久久久久| 12—13女人毛片做爰片一| 亚洲国产精品成人久久小说 | 在现免费观看毛片| 一区二区三区高清视频在线| 国产美女午夜福利| 神马国产精品三级电影在线观看| 人妻系列 视频| 成人三级黄色视频| 性欧美人与动物交配| 日本色播在线视频| 国产精品蜜桃在线观看 | 欧美在线一区亚洲| 免费无遮挡裸体视频| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看| 男人狂女人下面高潮的视频| 亚洲熟妇中文字幕五十中出| 成人午夜精彩视频在线观看| 亚洲最大成人av| 91狼人影院| 91在线精品国自产拍蜜月| 三级经典国产精品| videossex国产| 永久网站在线| 国产精品一区www在线观看| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类| 日本色播在线视频| 国产乱人偷精品视频| 久久久久久国产a免费观看| 婷婷精品国产亚洲av| 国产视频内射| 久久久久久久久久黄片| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆成人午夜福利视频| 国内揄拍国产精品人妻在线| 97超碰精品成人国产| 一本久久中文字幕| 日本色播在线视频| 99精品在免费线老司机午夜| 18禁在线无遮挡免费观看视频| 国产极品天堂在线| 老女人水多毛片| 免费看美女性在线毛片视频| 精品一区二区三区人妻视频| 中文字幕制服av| a级毛片a级免费在线| 三级男女做爰猛烈吃奶摸视频|