• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium

    2011-12-12 02:43:56KABIRUDDINKHANAbbulBasharNAQVIAndleeb
    物理化學(xué)學(xué)報(bào) 2011年8期

    KABIR-UD-DIN KHANAbbul Bashar NAQVIAndleeb Z.

    (Department of Chemistry,Aligarh Muslim University,Aligarh-202002,India)

    1 Introduction

    Surfactant molecules,due to their amphiphilic nature,selfassociate in aqueous solution to form micelles above a certain concentration(known as critical micelle concentration,cmc). Below cmc,they accumulate at the air-solution interface.Both the cmc and the properties of aggregates(or micelles)are governed by several factors including temperature,type and concentration of additives,pH,etc.

    Mixed micelles formed by two or more amphiphiles are often used in industrial,pharmaceutical,and medicinal formulations.Ionic-ionic or ionic-nonionic mixed systems1-3are important from fundamental as well as application point of view as the mixtures show nonideal behavior.If synergistic interactions among the mixing amphiphiles are present,they could lower the cmc values of the mixed systems.4,5

    Nonionic surfactants are used in pharmaceuticals to increase their stability and to enhance the dissolution rate of active ingredients.6,7These are also used to facilitate solubilization and to increase the stability of drug-carrier emulsions.8-10Literature also reports the use of ionic surfactants in drug delivery.11,12

    Many drugs,particularly those with the local anesthetic,tranquillizing,antidepressant and antibiotic actions,are amphiphilic in nature,and exert their activity by interaction with biological membranes.13Phenothiazine drugs belong to the family of amphiphilic drugs which share a general structure of planar tricyclic ring system with a short hydrocarbon chain carrying a terminal,charged nitrogen atom.It has been established that these drugs form aggregates of approximately 6-12 monomers in aqueous solution.13,14

    Although these drugs are amphiphilic in nature,they are not hydrophilic enough to be used without a carrier.Among various compounds used as carrier,surfactants possess a number of unbeaten advantages.15,16Micelle size permits the extravasation and accumulation in a variety of pathological sites.Also, they are easy to be prepared on a large scale.

    With this viewpoint we studied association behavior of a phenothiazine drug,promethazine hydrochloride(PMT),in presence of cationic and nonionic surfactants at 303.15 K. PMT is an antihistamine used for the symptomatic relief of hypersensitivity reactions.The pKavalue of PMT is 9.117and at low pH values it exists in protonated form while at high pH values it becomes neutral.

    2 Experimental

    2.1 Chemicals

    The amphiphilic drug promethazine hydrochloride(PMT,≥ 98%,Sigma,USA),cationic and nonionic surfactants(decyltrimethyl ammonium bromide(DeTAB,≥98%,TCI,Japan),dodecyltrimethyl ammonium bromide(DTAB,≥98%,TCI,Japan),tetradecyltrimethyl ammonium bromide(TTAB,≥99%, Sigma,USA),cetyltrimethyl ammonium bromide(CTAB,≥99%,Merck,Germany),t-octyl phenoxypolyethoxyethanol(n= 9-10,TX-100,n=7-8,TX-114,Fluka,Switzerland),polyoxyethylenesorbitan monolaurate(Tween 20,LOBA Chemie,India),polyoxyethylenesorbitan monopalmitate(Tween 40,Koch-Light,England),polyoxyethylenesorbitan monostearate(Tween 60 LOBA Chemie,India),polyoxyethylenesorbitan monooleate (Tween 80,LOBAChemie,India))were used as received.Their aqueoussolutionswerepreparedindoubly-distilled water.

    2.2 Surface tension measurements

    The ring detachment method(Du Noüy Tensiometer)was used to measure surface tension(γ).The ring used in the measurement was cleaned by washing with doubly-distilled water followed by heating through alcohol flame.γ was measured after successive addition of concentrated stock solution in water at 303.15 K.The γ value decreased upto a certain value(i.e., cmc)with successive addition of solution of particular molarity in water,then it became constant.This break point corresponds to cmc value as shown in Fig.1.The accuracy on the individual surface tension reading is approximately±0.5 mN· m-1.

    3 Results and discussion

    For amphiphile mixtures,the two characteristic phenomena are the formation of mixed monolayers at the interface and mixed micelles in the bulk solution.

    Representative plots for surface tension(γ)vs lgC for pure components are shown in Fig.1.The values of cmc for pure components agree well with the literature values.13,18-21Fig.2 depicts the variation of cmc values of PMT-surfactant mixed systems with different mole fractions of surfactants(α1).Fig.2(a) contains data for cationic surfactants while Fig.2(b)for nonionic ones.

    Fig.1 Variation of surface tension(γ)with concentration(C)for pure amphiphiles

    For homologous series of surfactants,the cmc value increases with the increase of number of carbon atoms in the hydrophobic chain.In general,with the addition of one-CH2group the cmc value decreases to half.Increase in chain length increases the hydrophobic forces and micelle formation becomes easier.Among caionic and nonionic surfactants,nonionic ones have lower cmc values.This is due to the lack of electrical work.

    The hydrophobic part of the drug molecule is short and rigid.Therefore,drug forms micelles at high concentration.The cmc values for the drug-surfactant mixed systems decrease sharply with the increase of mole fraction of surfactants and then become almost constant except for drug-DeTAB system. This indicates that the drug forms mixed micelles with the surfactants.For PMT-DeTAB system,cmc values show a minimum.At α1=0.1,it decreases sharply and then starts increasing again.The decrease is more pronounced with nonionic ones (Fig.2(b))than with cationic ones(Fig.2(a)).Presence of similar charge on both the drug and surfactants causes repulsion among head groups.Hence mixed micelle formation becomes difficult as compared to that with nonionic ones.

    The ideal cmc,cmc*,is related to the mole fractions of mixing components and their cmc values in pure state by the following equation22:

    where α1is mole fraction of the first component(i.e.,pure surfactant),while cmc1and cmc2are critical micelle concentrations for the first(i.e.,pure surfactant)and second(i.e.,pure drug)components,respectively.

    Fig.2 Variation of the cmc values with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    Table 1 Surface properties(cmc,cmc*,Γmax,Amin,ΔG m,ΔG ads,Gmin)afor mixed PMT-surfactant systems at 303.15 K

    The values of cmc*along with other parameters for micellization are given in Table 1.For PMT-cationic surfactant systems,cmc*values are higher than the experimental cmc values.For PMT-CPB and PMT-CPC,cmc values are close to cmc*values,which means that these surfactants mix ideally with PMT.For PMT-nonionic surfactant systems,except for Tween 40&Tween 80,cmc*values are lower than the cmc values.The cmc*values give an idea about the mixing behavior of the two components.Negative deviation means synergism in mixing while positive deviation means antagonism.Nonionic surfactants contain large hydrophobic portion which creates steric repulsions in the mixed micelles and,inspite of a reduction in electrical repulsions in their presence,the cmc values come out to be higher than the cmc*values.

    In an amphiphile mixture,the mixing of hydrophobic chains can be considered as an ideal process while mixing of head groups is considered as a nonideal process.In order to have knowledge of nature and strength of interactions between two mixing components,Rubingh?s model based on Regular Solution Theory(RST)23was used to calculate different parameters. This model not only characterizes interaction parameter,βm,but also explains the deviation from ideality.Using this model,micellar mole fraction of surfactants,,can be calculated by solving the following equation iteratively:23

    The Xm1values so obtained are used to calculate βmby the following equation:

    Also,activity coefficients,fm1and fm2,can be calculated by these values:

    The programme for equation(2)was nonconvergent for PMT-nonionic surfactant systems.For PMT-cationic surfactant systems,the values of Xm1increase with the increase in α1as well as with the chain length of surfactants.As the surfactant changes from DeTAB to CTAB(or the number of methylene groups from 9 to 15),hydrophobicity of the surfactant molecules increases and its contribution in mixed micelles also increases. For all systems and at all mole fractions,Xm1(Table 2)values are greater than the stoichiometric mole fraction.This also indicates that almost all the added surfactants take part in mixed micelle formation.

    Mole fraction of surfactants in ideal mixing conditions is given by24

    Table 2 Various physicochemical parameters(X,X,βm,f,ΔGex,X,βσ,f)afor mixed PMT-surfactant systems at 303.15 K

    Table 2 Various physicochemical parameters(X,X,βm,f,ΔGex,X,βσ,f)afor mixed PMT-surfactant systems at 303.15 K

    micellar mole fraction of surfactants,ideal micellar mole fraction of surfactants,βm:interaction parameter in mixed micelle, activity coefficients in mixed micelle,ΔGex:excess free energy of mixing,:mole fraction of surfactants in mixed monolayer, βσ:interaction parameter in mixed monolayer,:activity coefficients in mixed monolayer

    System PMT-DeTAB α1X1m X1ideal βm f1m f2m X1σ βσf1σf2σ PMT-DTAB PMT-TTAB PMT-CTAB 0.2699 0.5067 0.6111 0.7792 0.4100 0.6282 0.8932 0.9437 0.5872 0.6568 0.7949 0.8339 0.6741 0.8507 0.8674 -2.52 -1.29 -1.98 -1.76 -2.14 -3.60 -0.22 -0.93 -4.00 -8.29 -4.64 -5.72 -4.49 -3.92 -4.71 0.26 0.73 0.74 0.92 0.47 0.61 0.99 0.99 0.51 0.38 0.82 0.85 0.62 0.91 0.92 0.83 0.72 0.48 0.34 0.69 0.24 0.83 0.44 0.25 0.03 0.05 0.02 0.13 0.06 0.03 PMT-CPB 0.8495-1.340.970.38 PMT-CPC 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.3639 0.4719 0.5739 0.7414 0.3913 0.6706 0.7982 0.8579 0.5661 0.7441 0.8041 0.8808 0.6367 0.8287 0.9079 0.9115 0.7506 0.8679 0.9209 0.987 0.7079 0.9217 0.9139 0.0768 0.4282 0.6361 0.8708 0.2558 0.7557 0.8783 0.9653 0.6373 0.9405 0.9736 0.9930 0.8450 0.9800 0.9913 0.9977 0.9012 0.9879 0.9948 0.9986 0.8961 0.9872 0.9945 0.9985 -7.08 -3.14 -1.77 -1.77 -2.88 -1.23 -1.01 -2.13 -2.25 -3.48 -3.61 -3.90 -4.16 -3.53 -3.00 -4.59 -2.22 -3.44 -3.33 -2.77 -3.05 -2.25 -3.44 0.06 0.42 0.73 0.89 0.34 0.87 0.96 0.96 0.65 0.79 0.87 0.95 0.58 0.90 0.97 0.96 0.87 0.94 0.98 0.99 0.77 0.98 0.97 0.39 0.49 0.56 0.38 0.64 0.57 0.52 0.21 0.48 0.15 0.097 0.049 0.185 0.088 0.084 0.022 0.286 0.075 0.059 0.067 0.216 0.148 0.057 ΔGex/(kJ·mol-1) -4.13 -1.97 -1.09 -0.86 -1.73 -0.68 -0.41 -0.65 -1.39 -1.67 -1.43 -1.03 -2.42 -1.26 -0.63 -0.93 -1.05 -0.99 -0.61 -0.09 -1.60 -0.41 -0.68

    The nature and strength of the interactions among mixed micelles can be evaluated with the interaction parameter,βm.The βm,according to RST,is zero for ideal mixing;negative for synergistically formed mixed micelles;positive for antagonism and is assumed to be constant for a particular system.But in actual conditions,βmvaries with the composition of mixed system.The βmvalues(Table 2)are negative indicating mixed micelle formation through attractive interactions.Barring βmvalues for DeTAB at α1=0.1,average taken for a particular system,shows slight decrease and then an increase with the increase in chain length from C10to C16.With the increase in chain length,surfactants?hydrophobicity increase and surfactants interact more strongly with the drug causing more stable mixed micelle formation.For CPB and CPC,values are almost same.

    The values of ΔGex(Table 2)are all negative and the average values for all the systems are in the range of 1-1.5 kJ·mol-1except PMT-CPB and PMT-CPC.The negative ΔGexvalues indicate that the process of mixing is favorable.

    Fig.3(a,b)show the variation of surface excess(Γmax)with the mole fraction of surfactants.Γmaxis a useful measure of the adsorption effectiveness of the amphiphiles at the air-solution interface,as it is the maximum value adsorption can attain.On the basis of adsorption isotherms,Γmax(in mol·m-2)at the air-solution interface was obtained from the Gibbs adsorption equation24:

    and minimum area per head group(Aminin nm2)at the interface was obtained by

    where NAis the Avogadro number.The Γmaxvalues(Table 1)for both cationic and nonionic surfactants decrease as the mole fraction of surfactants in the solution increases,(except for DeTAB).Cationic surfactants form mixed micelles with the drug molecules and because of the similar charge,the mixed micelles as well as the mixed monolayers will experience more repulsions.Hence,the molecules will try to be as far apart as possible and Γmaxdecreases.

    Nonionic surfactants also form mixed micelles with the drug.These surfactants reduce the repulsion among head groups and Γmaxshould increase in their presence.However,for PMT-nonionic surfactant systems Γmaxdecreases for TX-100 and TX-114,while it increases for Tweens,with the increase in concentration of surfactants.The hydrophobic part of both the drug and the nonionic surfactants are bulky and the drug?s part is rigid also.Therefore,the mixed micelles and mixed monolayers will experience more steric hindrance and the molecules will be far from each other.Therefore,Γmaxdecreases.

    The Aminvalues(Table 1,Fig.4(a,b)),calculated from equation(9),follow trend opposite to that of Γmax.The results are self-explanatory in the light of above discussion.As the molecules lie farther from each other,Aminvalues increase.

    Analogous to equations(2-5),Rosen?s theory24,25can be used to calculate mole fraction of surfactant at the interface,X,interaction parameters for monolayer,βσ,and activity coefficients,fand f(Table 2).Xvalue increases with the increase in mole fraction and chain length of surfactants.For CPB and CPC,the equation for Xwas nonconvergent.Xvalues in almost all cases were lower than Xvalues.This indicates that contribution of surfactants is more in mixed micelles than in the mixed monolayers.The rigid hydrophobic structure of the drug makes it easier for the drug to adsorb at the interface than to adjust in curved micellar interface.Hence,more drug and less surfactants are present at the air-solution interface.

    Fig.3 Variation of Γmaxvalues with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    Fig.4 Variation ofAminvalues with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    The βσvalues,although negative,are smaller in magnitude then βmvalues.For PMT-DeTAB and PMT-DTAB,the average βσvalues,β,are close to 2 whereas for CTAB and TTAB the values are close to 5.The fand fvalues are less than unity and are also less than fand fvalues(fvalues for DeTAB and DTAB are more than fvalues).These fractional values ofandindicate nonideality.

    The values of different parameters obtained are used to calculate the different types of energies,viz.standard Gibb?s free energy of micellization(ΔGm),standard energy change of adsorption at interface(ΔGads),and molar free energy of maximum adsorption attained at the cmc(Gmin).

    where Xcmcis the cmc in mole fraction units.

    All the values of ΔGm(Table 1)are negative which indicates that micelle formation is spontaneous.The magnitude of ΔGmfor pure drug is always less than that for the pure surfactants as well as for drug-surfactant mixtures.In the drug-surfactant systems,the spontaneity is in the order:PMT-DeTAB>PMT-TTAB>PMT-DTAB>PMT-Tween80>PMT-Tween 60>PMT-Tween40>PMT-Tween20>PMT-TX-114>PMT-TX-100>PMT-CPC>PMT-CPB>PMT-CTAB.

    where πcmcis the surface pressure at the cmc(=γ0-γcmc).

    We can see(Table 1)that the process of interfacial adsorption is the most spontaneous for Tween 20 and CPC and the least for DeTAB.DeTAB prefers to form aggregates than to adsorb at the surface.

    The Gminvalues are evaluated by the equation27

    Gminis the minimum energy of the given surface with fully adsorbed amphiphile molecules.The lower the value of the free energy,the more thermodynamically stable surface formed. Among pure components,TX-100 and TX-114 make the most stable surfaces while surface formed by PMT is the least stable (Table 1).For PMT-surfactant mixed systems the surface formed by PMT-TTAB is the most stable and PMT-Tween 80 mixed systems form the least stable surface.

    4 Conclusions

    The measurement of the surface tension and calculation of different parameters in the mixed micelles and mixed monolayers formed by an amphiphilic drug(PMT)and surfactants(nonionic and cationic)indicate the following:

    (1)cmc values of PMT-surfactant systems decrease sharply and then become almost constant as the mole fraction of surfactant increases in the system.This means that PMT forms mixed micelles with the surfactants.

    (2)Interaction parameters for mixed micelles and mixed monolayers,βmand βσ,are negative for all the systems,which indicate attractive interactions among mixing components.

    (3)In general,Γmaxdecreases and Aminincreases with the increase in mole fraction of surfactants.Rigid structure of drug makes adsorption easier.

    (4)ΔGmand ΔGadsvalues are negative and ΔGmis maximum for Tween 80 and minimum for DeTAB mixed systems whileis the highest for Tween 20 and lowest for DeTAB systems.

    (1) Zhu,D.;Zhao,G.Colloids Surf.1990,49,269.

    (2) Li,X.;Zhao,G.Colloids Surf.1992,64,185.

    (3)Yu,Z.;Zhang,X.;Xu,G.;Zhao,G.J.Phys.Chem.1990,94, 3675.

    (4) Hines,J.D.;Thomas,R.K.;Garrett,P.R.;Rennie,G.K.; Penfold,J.J.Phys.Chem.B 1997,101,9215.

    (5) Shilaoch,A.;Blankschtein,D.Langmuir 1998,14,7166.

    (6) Fontan,J.E.;Arnaud,P.;Chaumel,J.C.Int.J.Pharm.1991, 73,17.

    (7) Sjokvist,E.;Nystorm,C.;Alden,M.;Carram-Lelham,N.Int.J. Pharm.1992,79,123.

    (8) Florence,A.T.Techniques of Solubulization of Drugs; Yalkowsky,S.H.Ed.;Marcel Dekker Inc.:New York,1981.

    (9) Fahelebom,K.M.S.;Timoney,R.F.;Carrigan,O.I.Pharm. Res.1993,10,631.

    (10) Lundberg,B.J.Pharm.Sci.1994,83,72.

    (11) Paulsson,M.;Edsman,K.Pharm.Res.2001,18,1586.

    (12) Bhatt,P.A.;Dar,A.A.;Rather,G.M.J.Chem.Eng.Data 2008, 53,1271.

    (13)Attwood,D.;Florence,A.T.Surfactant Systems;Chapman and Hall:New York,1983.

    (14) Cheema,M.A.;Siddiq,M.;Barbosa,S.;Castro,E.;Egea,J.A.; Antelo,L.T.;Taboada,P.;Mosquera,V.Chemical Physics 2007,336,157.

    (15) Cid,E.Pharma.Acta Helv.1971,46,377.

    (16)Taboada,P.;Atwood,D.;Ruso,J.M.;Garcia,M.;Mosquera,V. Phys.Chem.Chem.Phys.2000,2,5175.

    (17) Katsung,B.G.Basic and Chemical Pharmacology,9th ed.; McGraw Hill:New York,2004.

    (18)Yeom,I.T.;Ghosh,M.M.;Cox,C.D.;Robinson,K.G. Environ.Sci.Technol.1995,29,3015.

    (19) Traguer,D.;Csordas,A.Biochem.J.,1987,244,605.

    (20)Acharya,K.R.;Bhattacharyya,S.C.;Moulik,S.P. J.Photochem.Photobiol.A:Chem.1999,122,47.

    (21) Mukherjee,P.;Mysels,K.J.Critical Micelle Concentration of Aqueous Surfactant Systems;NSRDS-NBS 36:Washington,D. C.,1971.

    (22) Mukherjee,P.Adv.Colloid Interface Sci.1967,1,242.

    (23) Rubingh,D.N.Solution Chemistry of Surfactants;Mittal,K. L.Ed.;Plenum:New York,1979.

    (24) Rosen,M.J.Surfactants and Interfacial Phenomena;Wiley-Interscience:New York,2004.

    (25) Hua,X.Y.;Rosen,M.J.J.Colloid Interface Sci.1982,87,469.

    (26) Rosen,M.J.;Aronson,S.Colloids Surf.1981,3,201.

    (27) Sugihara,G.;Miyazono,A.M.;Nagadome,S.;Oida,T.; Hayashi,Y.;Ko,J.S.J.Oleo Sci.2003,52,449.

    婷婷色综合大香蕉| 男女免费视频国产| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 99re6热这里在线精品视频| 欧美日韩亚洲综合一区二区三区_| 日韩一本色道免费dvd| 亚洲欧洲国产日韩| 国产日韩一区二区三区精品不卡| 五月天丁香电影| 男人舔女人的私密视频| 亚洲图色成人| 最近2019中文字幕mv第一页| 免费女性裸体啪啪无遮挡网站| 男人添女人高潮全过程视频| 久久久久久免费高清国产稀缺| 国产老妇伦熟女老妇高清| 日本黄色日本黄色录像| 成年动漫av网址| 国产免费又黄又爽又色| 男女午夜视频在线观看| 婷婷色av中文字幕| 九色亚洲精品在线播放| 亚洲国产最新在线播放| 大片电影免费在线观看免费| 欧美亚洲 丝袜 人妻 在线| 亚洲第一区二区三区不卡| kizo精华| 男人舔女人的私密视频| 欧美精品亚洲一区二区| 午夜日韩欧美国产| 日韩一卡2卡3卡4卡2021年| 久久久精品区二区三区| 天堂8中文在线网| 久久 成人 亚洲| 久久青草综合色| 青春草亚洲视频在线观看| 日韩av免费高清视频| 日韩制服骚丝袜av| 国产精品偷伦视频观看了| 午夜福利乱码中文字幕| 午夜福利视频在线观看免费| 婷婷色av中文字幕| 天天躁夜夜躁狠狠躁躁| 狂野欧美激情性bbbbbb| 日本欧美国产在线视频| 国语对白做爰xxxⅹ性视频网站| 99久久99久久久精品蜜桃| 丝袜美足系列| 国产片特级美女逼逼视频| 悠悠久久av| 亚洲精品一二三| 欧美精品人与动牲交sv欧美| √禁漫天堂资源中文www| 国产精品熟女久久久久浪| 亚洲av在线观看美女高潮| 亚洲精品美女久久av网站| 纵有疾风起免费观看全集完整版| 久久精品亚洲av国产电影网| 亚洲av中文av极速乱| 精品国产露脸久久av麻豆| 久久精品人人爽人人爽视色| 亚洲精品美女久久久久99蜜臀 | 这个男人来自地球电影免费观看 | 亚洲欧洲日产国产| 可以免费在线观看a视频的电影网站 | 男的添女的下面高潮视频| 成人亚洲欧美一区二区av| 亚洲av电影在线进入| 免费高清在线观看日韩| 一级毛片黄色毛片免费观看视频| 夫妻性生交免费视频一级片| 美女脱内裤让男人舔精品视频| 男的添女的下面高潮视频| 亚洲综合色网址| 中文字幕精品免费在线观看视频| 搡老岳熟女国产| 国产av码专区亚洲av| 日韩伦理黄色片| 亚洲精品av麻豆狂野| 国产成人欧美| 伦理电影大哥的女人| 亚洲欧洲国产日韩| 一级毛片我不卡| 乱人伦中国视频| 国产免费现黄频在线看| 国产精品亚洲av一区麻豆 | 大话2 男鬼变身卡| 黑人猛操日本美女一级片| 九色亚洲精品在线播放| 一本一本久久a久久精品综合妖精| 成年美女黄网站色视频大全免费| 日韩大码丰满熟妇| 亚洲av日韩精品久久久久久密 | 亚洲av综合色区一区| 水蜜桃什么品种好| 最近的中文字幕免费完整| 亚洲图色成人| 不卡视频在线观看欧美| 叶爱在线成人免费视频播放| 日韩av在线免费看完整版不卡| 夜夜骑夜夜射夜夜干| svipshipincom国产片| 黄片播放在线免费| 午夜91福利影院| 最近的中文字幕免费完整| tube8黄色片| 精品少妇黑人巨大在线播放| 国产高清不卡午夜福利| 免费观看av网站的网址| 日韩精品有码人妻一区| 免费av中文字幕在线| 欧美乱码精品一区二区三区| 秋霞在线观看毛片| 精品亚洲成国产av| 久久久欧美国产精品| 中文字幕另类日韩欧美亚洲嫩草| 18在线观看网站| 国产精品三级大全| 亚洲国产最新在线播放| 一边摸一边抽搐一进一出视频| 国产亚洲一区二区精品| 国产又爽黄色视频| 色94色欧美一区二区| 国产成人精品无人区| 美女主播在线视频| √禁漫天堂资源中文www| 亚洲,一卡二卡三卡| 国产精品久久久久成人av| 18禁动态无遮挡网站| 日韩视频在线欧美| 亚洲,欧美,日韩| 亚洲av国产av综合av卡| 少妇的丰满在线观看| 一级毛片电影观看| av电影中文网址| 一级黄片播放器| 男人添女人高潮全过程视频| 看十八女毛片水多多多| 交换朋友夫妻互换小说| 性少妇av在线| 国产精品久久久久久精品电影小说| 两个人免费观看高清视频| 视频在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 日韩制服丝袜自拍偷拍| 国产精品久久久久久人妻精品电影 | 国产精品欧美亚洲77777| 国产亚洲av高清不卡| 在线精品无人区一区二区三| 亚洲av男天堂| 侵犯人妻中文字幕一二三四区| 亚洲国产看品久久| 满18在线观看网站| 中文精品一卡2卡3卡4更新| 中国国产av一级| 亚洲国产精品成人久久小说| 国产野战对白在线观看| 久久久精品免费免费高清| 啦啦啦 在线观看视频| 大话2 男鬼变身卡| 99热国产这里只有精品6| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美清纯卡通| 国产精品三级大全| netflix在线观看网站| 亚洲精品中文字幕在线视频| 国产又爽黄色视频| 人人妻人人澡人人爽人人夜夜| 欧美激情高清一区二区三区 | 久久韩国三级中文字幕| 亚洲精品第二区| 欧美av亚洲av综合av国产av | 国产乱人偷精品视频| 国产日韩欧美亚洲二区| 青春草视频在线免费观看| 十八禁网站网址无遮挡| 纵有疾风起免费观看全集完整版| av片东京热男人的天堂| 色视频在线一区二区三区| 久久精品国产a三级三级三级| 久久99一区二区三区| 激情五月婷婷亚洲| 亚洲精品国产区一区二| 男女之事视频高清在线观看 | xxxhd国产人妻xxx| 欧美97在线视频| 久久99精品国语久久久| 日韩免费高清中文字幕av| 赤兔流量卡办理| 欧美日韩福利视频一区二区| 水蜜桃什么品种好| 成人亚洲欧美一区二区av| 免费久久久久久久精品成人欧美视频| 婷婷色av中文字幕| 精品国产一区二区三区久久久樱花| 成人三级做爰电影| 亚洲精品国产区一区二| 精品福利永久在线观看| 91精品伊人久久大香线蕉| tube8黄色片| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 国产xxxxx性猛交| 中文欧美无线码| 亚洲国产欧美网| 日韩精品免费视频一区二区三区| 国产极品粉嫩免费观看在线| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 一级毛片电影观看| 一个人免费看片子| 日本午夜av视频| 2021少妇久久久久久久久久久| 国产精品国产av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| a 毛片基地| 国产在线视频一区二区| av一本久久久久| 午夜精品国产一区二区电影| 精品一区二区三区四区五区乱码 | 韩国高清视频一区二区三区| 亚洲一码二码三码区别大吗| 丝袜美足系列| 国产成人一区二区在线| 亚洲av福利一区| 超碰97精品在线观看| 亚洲成人av在线免费| 国产视频首页在线观看| tube8黄色片| 黄片无遮挡物在线观看| 男人爽女人下面视频在线观看| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 男人舔女人的私密视频| 又大又爽又粗| 天天躁日日躁夜夜躁夜夜| 国产成人午夜福利电影在线观看| 在线观看三级黄色| 日日啪夜夜爽| 成人黄色视频免费在线看| 2021少妇久久久久久久久久久| 亚洲久久久国产精品| 可以免费在线观看a视频的电影网站 | 亚洲精品aⅴ在线观看| 看免费av毛片| 1024香蕉在线观看| 各种免费的搞黄视频| 999精品在线视频| 亚洲一码二码三码区别大吗| 一级毛片我不卡| 欧美黄色片欧美黄色片| 久久久久视频综合| 另类精品久久| 男女边摸边吃奶| av在线播放精品| 欧美97在线视频| 日本一区二区免费在线视频| 婷婷色av中文字幕| 日韩大码丰满熟妇| 午夜激情av网站| 波野结衣二区三区在线| 一区二区三区四区激情视频| 免费看不卡的av| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产区一区二| 欧美日韩综合久久久久久| 国产成人91sexporn| 日韩欧美精品免费久久| 亚洲自偷自拍图片 自拍| 女人高潮潮喷娇喘18禁视频| 99国产综合亚洲精品| 国产97色在线日韩免费| 一区二区三区乱码不卡18| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人| 高清av免费在线| 国产欧美日韩一区二区三区在线| 久久精品亚洲av国产电影网| 少妇 在线观看| 一级毛片黄色毛片免费观看视频| 中文字幕高清在线视频| 国产一卡二卡三卡精品 | 国产成人欧美| 欧美日韩成人在线一区二区| 国产精品99久久99久久久不卡 | 一区二区三区激情视频| 黄色视频不卡| 人人妻人人添人人爽欧美一区卜| 久久毛片免费看一区二区三区| 中国三级夫妇交换| 免费黄网站久久成人精品| 亚洲一区二区三区欧美精品| a级毛片黄视频| av有码第一页| 久久97久久精品| 亚洲精华国产精华液的使用体验| 亚洲国产中文字幕在线视频| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 亚洲熟女毛片儿| 男女免费视频国产| 国产精品久久久久成人av| 亚洲中文av在线| 中国国产av一级| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 亚洲图色成人| 精品国产一区二区久久| 欧美日韩亚洲高清精品| 国产熟女午夜一区二区三区| 一区二区三区激情视频| 汤姆久久久久久久影院中文字幕| 一边摸一边抽搐一进一出视频| 两个人免费观看高清视频| 香蕉丝袜av| 一本色道久久久久久精品综合| 久久99热这里只频精品6学生| 亚洲伊人色综图| 亚洲七黄色美女视频| av一本久久久久| 国产精品女同一区二区软件| 黄色毛片三级朝国网站| 高清在线视频一区二区三区| 久久久久久久久久久久大奶| 黄片播放在线免费| 亚洲精品国产区一区二| 女性生殖器流出的白浆| 亚洲欧洲日产国产| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 极品人妻少妇av视频| 亚洲欧美一区二区三区国产| av视频免费观看在线观看| 免费观看a级毛片全部| 久久久久久久精品精品| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 成人国产麻豆网| 下体分泌物呈黄色| 久久精品国产亚洲av涩爱| 视频区图区小说| 婷婷色综合www| 亚洲第一青青草原| 精品国产乱码久久久久久小说| 免费观看性生交大片5| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| www.精华液| 飞空精品影院首页| 国产精品一区二区在线观看99| 国产精品欧美亚洲77777| 欧美亚洲日本最大视频资源| 国产精品国产av在线观看| 青草久久国产| 一区二区三区乱码不卡18| 精品一区二区三卡| 日本色播在线视频| 久久精品久久精品一区二区三区| 欧美亚洲日本最大视频资源| 国产精品av久久久久免费| 欧美国产精品一级二级三级| 黄网站色视频无遮挡免费观看| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| a 毛片基地| 大香蕉久久网| 又粗又硬又长又爽又黄的视频| 国产午夜精品一二区理论片| 两性夫妻黄色片| 久久韩国三级中文字幕| 欧美黑人精品巨大| 色吧在线观看| 一个人免费看片子| xxx大片免费视频| 搡老岳熟女国产| 爱豆传媒免费全集在线观看| 国产野战对白在线观看| 爱豆传媒免费全集在线观看| 美女午夜性视频免费| 在线观看三级黄色| 午夜福利乱码中文字幕| 男女高潮啪啪啪动态图| 亚洲第一青青草原| 久久久久久久精品精品| 五月开心婷婷网| 国产1区2区3区精品| 国产一区二区三区综合在线观看| 久久青草综合色| 亚洲国产日韩一区二区| 中文字幕av电影在线播放| 不卡视频在线观看欧美| 亚洲 欧美一区二区三区| 欧美人与善性xxx| 人人妻人人添人人爽欧美一区卜| 国产在线免费精品| 国产成人a∨麻豆精品| 日韩熟女老妇一区二区性免费视频| 两个人看的免费小视频| 欧美97在线视频| 午夜日本视频在线| 男女无遮挡免费网站观看| 日韩伦理黄色片| 日韩 亚洲 欧美在线| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 久久久久国产精品人妻一区二区| 国产av码专区亚洲av| 卡戴珊不雅视频在线播放| 国产av一区二区精品久久| 日本色播在线视频| 国产精品久久久久成人av| 欧美黑人欧美精品刺激| 精品一区二区免费观看| 亚洲精品成人av观看孕妇| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 天天躁狠狠躁夜夜躁狠狠躁| 91国产中文字幕| 欧美国产精品va在线观看不卡| 蜜桃在线观看..| 欧美日韩一级在线毛片| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 久久综合国产亚洲精品| 欧美精品高潮呻吟av久久| 国产熟女午夜一区二区三区| av不卡在线播放| 国产精品二区激情视频| 精品一区二区免费观看| 亚洲精品日本国产第一区| 美女高潮到喷水免费观看| 少妇的丰满在线观看| 亚洲专区中文字幕在线 | 国产精品三级大全| 新久久久久国产一级毛片| 香蕉国产在线看| 婷婷色综合www| 你懂的网址亚洲精品在线观看| av不卡在线播放| 亚洲国产欧美一区二区综合| 亚洲欧美激情在线| 精品国产乱码久久久久久小说| 亚洲图色成人| 在线观看三级黄色| 1024香蕉在线观看| 国产精品三级大全| 精品人妻在线不人妻| 国产日韩一区二区三区精品不卡| 成年人免费黄色播放视频| 嫩草影院入口| 男女下面插进去视频免费观看| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 亚洲欧美激情在线| 国产极品粉嫩免费观看在线| 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 久久久欧美国产精品| 午夜免费鲁丝| 精品国产一区二区三区久久久樱花| 国产在视频线精品| 男女边摸边吃奶| 婷婷成人精品国产| 亚洲欧洲国产日韩| 波多野结衣av一区二区av| 亚洲av福利一区| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 国产av一区二区精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣一区麻豆| 亚洲精品日本国产第一区| 色网站视频免费| 国精品久久久久久国模美| 人人妻人人爽人人添夜夜欢视频| 亚洲综合色网址| 男女午夜视频在线观看| 男人操女人黄网站| 在线免费观看不下载黄p国产| 制服丝袜香蕉在线| 亚洲婷婷狠狠爱综合网| 精品人妻熟女毛片av久久网站| av一本久久久久| 精品一品国产午夜福利视频| 人人妻人人添人人爽欧美一区卜| 国产av精品麻豆| 久久久久网色| 国产精品偷伦视频观看了| 日韩制服丝袜自拍偷拍| 亚洲精品国产一区二区精华液| 人妻一区二区av| 大片免费播放器 马上看| 国产免费福利视频在线观看| 激情视频va一区二区三区| 亚洲国产av影院在线观看| 国产精品久久久av美女十八| 在线观看国产h片| 久久久国产精品麻豆| 国产老妇伦熟女老妇高清| 久久99精品国语久久久| 乱人伦中国视频| 午夜久久久在线观看| 亚洲,欧美,日韩| 欧美日韩国产mv在线观看视频| 电影成人av| 欧美日韩亚洲高清精品| 亚洲av福利一区| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 日韩一本色道免费dvd| 欧美日韩亚洲高清精品| 色综合欧美亚洲国产小说| 欧美激情 高清一区二区三区| 亚洲成人手机| 日韩一本色道免费dvd| 中文字幕制服av| 日本vs欧美在线观看视频| 日韩欧美一区视频在线观看| av在线播放精品| 大话2 男鬼变身卡| 美女视频免费永久观看网站| av又黄又爽大尺度在线免费看| 一本一本久久a久久精品综合妖精| 久久精品国产综合久久久| 久久久亚洲精品成人影院| 999久久久国产精品视频| 一级片'在线观看视频| 精品人妻熟女毛片av久久网站| 又黄又粗又硬又大视频| av在线观看视频网站免费| 精品亚洲乱码少妇综合久久| 多毛熟女@视频| 亚洲中文av在线| 亚洲欧美中文字幕日韩二区| 精品国产乱码久久久久久小说| 青春草视频在线免费观看| 久久青草综合色| 亚洲av电影在线进入| 天天躁日日躁夜夜躁夜夜| 亚洲精品一二三| 满18在线观看网站| 国产1区2区3区精品| 五月开心婷婷网| 国产亚洲一区二区精品| 91国产中文字幕| 欧美成人午夜精品| 麻豆av在线久日| 欧美成人午夜精品| 国产黄频视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲av国产av综合av卡| 一级a爱视频在线免费观看| 久久免费观看电影| 国产黄色视频一区二区在线观看| 满18在线观看网站| www日本在线高清视频| 久久人妻熟女aⅴ| 最近手机中文字幕大全| 免费观看av网站的网址| 久久精品亚洲熟妇少妇任你| 叶爱在线成人免费视频播放| 一本久久精品| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 国产成人精品久久二区二区91 | 午夜激情av网站| 男的添女的下面高潮视频| 在现免费观看毛片| 亚洲欧美精品自产自拍| 亚洲一区中文字幕在线| 亚洲av中文av极速乱| 另类精品久久| 一区在线观看完整版| 自线自在国产av| 国产97色在线日韩免费| 日韩视频在线欧美| 天美传媒精品一区二区| 亚洲一码二码三码区别大吗| 成年av动漫网址| 亚洲精品国产色婷婷电影| 丝袜美腿诱惑在线| 丰满饥渴人妻一区二区三| 亚洲国产av影院在线观看| 久久亚洲国产成人精品v| av不卡在线播放| 看非洲黑人一级黄片| 少妇被粗大的猛进出69影院| 国语对白做爰xxxⅹ性视频网站| 国产精品无大码| 国产又爽黄色视频| 丁香六月欧美| 久久久久久久久久久久大奶| 女人高潮潮喷娇喘18禁视频| 观看美女的网站| 亚洲av欧美aⅴ国产| 伊人久久大香线蕉亚洲五| av天堂久久9| 免费观看av网站的网址| 飞空精品影院首页| 免费av中文字幕在线| 精品国产露脸久久av麻豆| 美女视频免费永久观看网站| 国产精品欧美亚洲77777| 国产av码专区亚洲av| 悠悠久久av| 男女高潮啪啪啪动态图| 你懂的网址亚洲精品在线观看| 如何舔出高潮| 亚洲欧洲日产国产| 大陆偷拍与自拍| 亚洲精品在线美女| 日日撸夜夜添| 人妻一区二区av| a 毛片基地|