• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium

    2011-12-12 02:43:56KABIRUDDINKHANAbbulBasharNAQVIAndleeb
    物理化學(xué)學(xué)報(bào) 2011年8期

    KABIR-UD-DIN KHANAbbul Bashar NAQVIAndleeb Z.

    (Department of Chemistry,Aligarh Muslim University,Aligarh-202002,India)

    1 Introduction

    Surfactant molecules,due to their amphiphilic nature,selfassociate in aqueous solution to form micelles above a certain concentration(known as critical micelle concentration,cmc). Below cmc,they accumulate at the air-solution interface.Both the cmc and the properties of aggregates(or micelles)are governed by several factors including temperature,type and concentration of additives,pH,etc.

    Mixed micelles formed by two or more amphiphiles are often used in industrial,pharmaceutical,and medicinal formulations.Ionic-ionic or ionic-nonionic mixed systems1-3are important from fundamental as well as application point of view as the mixtures show nonideal behavior.If synergistic interactions among the mixing amphiphiles are present,they could lower the cmc values of the mixed systems.4,5

    Nonionic surfactants are used in pharmaceuticals to increase their stability and to enhance the dissolution rate of active ingredients.6,7These are also used to facilitate solubilization and to increase the stability of drug-carrier emulsions.8-10Literature also reports the use of ionic surfactants in drug delivery.11,12

    Many drugs,particularly those with the local anesthetic,tranquillizing,antidepressant and antibiotic actions,are amphiphilic in nature,and exert their activity by interaction with biological membranes.13Phenothiazine drugs belong to the family of amphiphilic drugs which share a general structure of planar tricyclic ring system with a short hydrocarbon chain carrying a terminal,charged nitrogen atom.It has been established that these drugs form aggregates of approximately 6-12 monomers in aqueous solution.13,14

    Although these drugs are amphiphilic in nature,they are not hydrophilic enough to be used without a carrier.Among various compounds used as carrier,surfactants possess a number of unbeaten advantages.15,16Micelle size permits the extravasation and accumulation in a variety of pathological sites.Also, they are easy to be prepared on a large scale.

    With this viewpoint we studied association behavior of a phenothiazine drug,promethazine hydrochloride(PMT),in presence of cationic and nonionic surfactants at 303.15 K. PMT is an antihistamine used for the symptomatic relief of hypersensitivity reactions.The pKavalue of PMT is 9.117and at low pH values it exists in protonated form while at high pH values it becomes neutral.

    2 Experimental

    2.1 Chemicals

    The amphiphilic drug promethazine hydrochloride(PMT,≥ 98%,Sigma,USA),cationic and nonionic surfactants(decyltrimethyl ammonium bromide(DeTAB,≥98%,TCI,Japan),dodecyltrimethyl ammonium bromide(DTAB,≥98%,TCI,Japan),tetradecyltrimethyl ammonium bromide(TTAB,≥99%, Sigma,USA),cetyltrimethyl ammonium bromide(CTAB,≥99%,Merck,Germany),t-octyl phenoxypolyethoxyethanol(n= 9-10,TX-100,n=7-8,TX-114,Fluka,Switzerland),polyoxyethylenesorbitan monolaurate(Tween 20,LOBA Chemie,India),polyoxyethylenesorbitan monopalmitate(Tween 40,Koch-Light,England),polyoxyethylenesorbitan monostearate(Tween 60 LOBA Chemie,India),polyoxyethylenesorbitan monooleate (Tween 80,LOBAChemie,India))were used as received.Their aqueoussolutionswerepreparedindoubly-distilled water.

    2.2 Surface tension measurements

    The ring detachment method(Du Noüy Tensiometer)was used to measure surface tension(γ).The ring used in the measurement was cleaned by washing with doubly-distilled water followed by heating through alcohol flame.γ was measured after successive addition of concentrated stock solution in water at 303.15 K.The γ value decreased upto a certain value(i.e., cmc)with successive addition of solution of particular molarity in water,then it became constant.This break point corresponds to cmc value as shown in Fig.1.The accuracy on the individual surface tension reading is approximately±0.5 mN· m-1.

    3 Results and discussion

    For amphiphile mixtures,the two characteristic phenomena are the formation of mixed monolayers at the interface and mixed micelles in the bulk solution.

    Representative plots for surface tension(γ)vs lgC for pure components are shown in Fig.1.The values of cmc for pure components agree well with the literature values.13,18-21Fig.2 depicts the variation of cmc values of PMT-surfactant mixed systems with different mole fractions of surfactants(α1).Fig.2(a) contains data for cationic surfactants while Fig.2(b)for nonionic ones.

    Fig.1 Variation of surface tension(γ)with concentration(C)for pure amphiphiles

    For homologous series of surfactants,the cmc value increases with the increase of number of carbon atoms in the hydrophobic chain.In general,with the addition of one-CH2group the cmc value decreases to half.Increase in chain length increases the hydrophobic forces and micelle formation becomes easier.Among caionic and nonionic surfactants,nonionic ones have lower cmc values.This is due to the lack of electrical work.

    The hydrophobic part of the drug molecule is short and rigid.Therefore,drug forms micelles at high concentration.The cmc values for the drug-surfactant mixed systems decrease sharply with the increase of mole fraction of surfactants and then become almost constant except for drug-DeTAB system. This indicates that the drug forms mixed micelles with the surfactants.For PMT-DeTAB system,cmc values show a minimum.At α1=0.1,it decreases sharply and then starts increasing again.The decrease is more pronounced with nonionic ones (Fig.2(b))than with cationic ones(Fig.2(a)).Presence of similar charge on both the drug and surfactants causes repulsion among head groups.Hence mixed micelle formation becomes difficult as compared to that with nonionic ones.

    The ideal cmc,cmc*,is related to the mole fractions of mixing components and their cmc values in pure state by the following equation22:

    where α1is mole fraction of the first component(i.e.,pure surfactant),while cmc1and cmc2are critical micelle concentrations for the first(i.e.,pure surfactant)and second(i.e.,pure drug)components,respectively.

    Fig.2 Variation of the cmc values with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    Table 1 Surface properties(cmc,cmc*,Γmax,Amin,ΔG m,ΔG ads,Gmin)afor mixed PMT-surfactant systems at 303.15 K

    The values of cmc*along with other parameters for micellization are given in Table 1.For PMT-cationic surfactant systems,cmc*values are higher than the experimental cmc values.For PMT-CPB and PMT-CPC,cmc values are close to cmc*values,which means that these surfactants mix ideally with PMT.For PMT-nonionic surfactant systems,except for Tween 40&Tween 80,cmc*values are lower than the cmc values.The cmc*values give an idea about the mixing behavior of the two components.Negative deviation means synergism in mixing while positive deviation means antagonism.Nonionic surfactants contain large hydrophobic portion which creates steric repulsions in the mixed micelles and,inspite of a reduction in electrical repulsions in their presence,the cmc values come out to be higher than the cmc*values.

    In an amphiphile mixture,the mixing of hydrophobic chains can be considered as an ideal process while mixing of head groups is considered as a nonideal process.In order to have knowledge of nature and strength of interactions between two mixing components,Rubingh?s model based on Regular Solution Theory(RST)23was used to calculate different parameters. This model not only characterizes interaction parameter,βm,but also explains the deviation from ideality.Using this model,micellar mole fraction of surfactants,,can be calculated by solving the following equation iteratively:23

    The Xm1values so obtained are used to calculate βmby the following equation:

    Also,activity coefficients,fm1and fm2,can be calculated by these values:

    The programme for equation(2)was nonconvergent for PMT-nonionic surfactant systems.For PMT-cationic surfactant systems,the values of Xm1increase with the increase in α1as well as with the chain length of surfactants.As the surfactant changes from DeTAB to CTAB(or the number of methylene groups from 9 to 15),hydrophobicity of the surfactant molecules increases and its contribution in mixed micelles also increases. For all systems and at all mole fractions,Xm1(Table 2)values are greater than the stoichiometric mole fraction.This also indicates that almost all the added surfactants take part in mixed micelle formation.

    Mole fraction of surfactants in ideal mixing conditions is given by24

    Table 2 Various physicochemical parameters(X,X,βm,f,ΔGex,X,βσ,f)afor mixed PMT-surfactant systems at 303.15 K

    Table 2 Various physicochemical parameters(X,X,βm,f,ΔGex,X,βσ,f)afor mixed PMT-surfactant systems at 303.15 K

    micellar mole fraction of surfactants,ideal micellar mole fraction of surfactants,βm:interaction parameter in mixed micelle, activity coefficients in mixed micelle,ΔGex:excess free energy of mixing,:mole fraction of surfactants in mixed monolayer, βσ:interaction parameter in mixed monolayer,:activity coefficients in mixed monolayer

    System PMT-DeTAB α1X1m X1ideal βm f1m f2m X1σ βσf1σf2σ PMT-DTAB PMT-TTAB PMT-CTAB 0.2699 0.5067 0.6111 0.7792 0.4100 0.6282 0.8932 0.9437 0.5872 0.6568 0.7949 0.8339 0.6741 0.8507 0.8674 -2.52 -1.29 -1.98 -1.76 -2.14 -3.60 -0.22 -0.93 -4.00 -8.29 -4.64 -5.72 -4.49 -3.92 -4.71 0.26 0.73 0.74 0.92 0.47 0.61 0.99 0.99 0.51 0.38 0.82 0.85 0.62 0.91 0.92 0.83 0.72 0.48 0.34 0.69 0.24 0.83 0.44 0.25 0.03 0.05 0.02 0.13 0.06 0.03 PMT-CPB 0.8495-1.340.970.38 PMT-CPC 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.3639 0.4719 0.5739 0.7414 0.3913 0.6706 0.7982 0.8579 0.5661 0.7441 0.8041 0.8808 0.6367 0.8287 0.9079 0.9115 0.7506 0.8679 0.9209 0.987 0.7079 0.9217 0.9139 0.0768 0.4282 0.6361 0.8708 0.2558 0.7557 0.8783 0.9653 0.6373 0.9405 0.9736 0.9930 0.8450 0.9800 0.9913 0.9977 0.9012 0.9879 0.9948 0.9986 0.8961 0.9872 0.9945 0.9985 -7.08 -3.14 -1.77 -1.77 -2.88 -1.23 -1.01 -2.13 -2.25 -3.48 -3.61 -3.90 -4.16 -3.53 -3.00 -4.59 -2.22 -3.44 -3.33 -2.77 -3.05 -2.25 -3.44 0.06 0.42 0.73 0.89 0.34 0.87 0.96 0.96 0.65 0.79 0.87 0.95 0.58 0.90 0.97 0.96 0.87 0.94 0.98 0.99 0.77 0.98 0.97 0.39 0.49 0.56 0.38 0.64 0.57 0.52 0.21 0.48 0.15 0.097 0.049 0.185 0.088 0.084 0.022 0.286 0.075 0.059 0.067 0.216 0.148 0.057 ΔGex/(kJ·mol-1) -4.13 -1.97 -1.09 -0.86 -1.73 -0.68 -0.41 -0.65 -1.39 -1.67 -1.43 -1.03 -2.42 -1.26 -0.63 -0.93 -1.05 -0.99 -0.61 -0.09 -1.60 -0.41 -0.68

    The nature and strength of the interactions among mixed micelles can be evaluated with the interaction parameter,βm.The βm,according to RST,is zero for ideal mixing;negative for synergistically formed mixed micelles;positive for antagonism and is assumed to be constant for a particular system.But in actual conditions,βmvaries with the composition of mixed system.The βmvalues(Table 2)are negative indicating mixed micelle formation through attractive interactions.Barring βmvalues for DeTAB at α1=0.1,average taken for a particular system,shows slight decrease and then an increase with the increase in chain length from C10to C16.With the increase in chain length,surfactants?hydrophobicity increase and surfactants interact more strongly with the drug causing more stable mixed micelle formation.For CPB and CPC,values are almost same.

    The values of ΔGex(Table 2)are all negative and the average values for all the systems are in the range of 1-1.5 kJ·mol-1except PMT-CPB and PMT-CPC.The negative ΔGexvalues indicate that the process of mixing is favorable.

    Fig.3(a,b)show the variation of surface excess(Γmax)with the mole fraction of surfactants.Γmaxis a useful measure of the adsorption effectiveness of the amphiphiles at the air-solution interface,as it is the maximum value adsorption can attain.On the basis of adsorption isotherms,Γmax(in mol·m-2)at the air-solution interface was obtained from the Gibbs adsorption equation24:

    and minimum area per head group(Aminin nm2)at the interface was obtained by

    where NAis the Avogadro number.The Γmaxvalues(Table 1)for both cationic and nonionic surfactants decrease as the mole fraction of surfactants in the solution increases,(except for DeTAB).Cationic surfactants form mixed micelles with the drug molecules and because of the similar charge,the mixed micelles as well as the mixed monolayers will experience more repulsions.Hence,the molecules will try to be as far apart as possible and Γmaxdecreases.

    Nonionic surfactants also form mixed micelles with the drug.These surfactants reduce the repulsion among head groups and Γmaxshould increase in their presence.However,for PMT-nonionic surfactant systems Γmaxdecreases for TX-100 and TX-114,while it increases for Tweens,with the increase in concentration of surfactants.The hydrophobic part of both the drug and the nonionic surfactants are bulky and the drug?s part is rigid also.Therefore,the mixed micelles and mixed monolayers will experience more steric hindrance and the molecules will be far from each other.Therefore,Γmaxdecreases.

    The Aminvalues(Table 1,Fig.4(a,b)),calculated from equation(9),follow trend opposite to that of Γmax.The results are self-explanatory in the light of above discussion.As the molecules lie farther from each other,Aminvalues increase.

    Analogous to equations(2-5),Rosen?s theory24,25can be used to calculate mole fraction of surfactant at the interface,X,interaction parameters for monolayer,βσ,and activity coefficients,fand f(Table 2).Xvalue increases with the increase in mole fraction and chain length of surfactants.For CPB and CPC,the equation for Xwas nonconvergent.Xvalues in almost all cases were lower than Xvalues.This indicates that contribution of surfactants is more in mixed micelles than in the mixed monolayers.The rigid hydrophobic structure of the drug makes it easier for the drug to adsorb at the interface than to adjust in curved micellar interface.Hence,more drug and less surfactants are present at the air-solution interface.

    Fig.3 Variation of Γmaxvalues with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    Fig.4 Variation ofAminvalues with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    The βσvalues,although negative,are smaller in magnitude then βmvalues.For PMT-DeTAB and PMT-DTAB,the average βσvalues,β,are close to 2 whereas for CTAB and TTAB the values are close to 5.The fand fvalues are less than unity and are also less than fand fvalues(fvalues for DeTAB and DTAB are more than fvalues).These fractional values ofandindicate nonideality.

    The values of different parameters obtained are used to calculate the different types of energies,viz.standard Gibb?s free energy of micellization(ΔGm),standard energy change of adsorption at interface(ΔGads),and molar free energy of maximum adsorption attained at the cmc(Gmin).

    where Xcmcis the cmc in mole fraction units.

    All the values of ΔGm(Table 1)are negative which indicates that micelle formation is spontaneous.The magnitude of ΔGmfor pure drug is always less than that for the pure surfactants as well as for drug-surfactant mixtures.In the drug-surfactant systems,the spontaneity is in the order:PMT-DeTAB>PMT-TTAB>PMT-DTAB>PMT-Tween80>PMT-Tween 60>PMT-Tween40>PMT-Tween20>PMT-TX-114>PMT-TX-100>PMT-CPC>PMT-CPB>PMT-CTAB.

    where πcmcis the surface pressure at the cmc(=γ0-γcmc).

    We can see(Table 1)that the process of interfacial adsorption is the most spontaneous for Tween 20 and CPC and the least for DeTAB.DeTAB prefers to form aggregates than to adsorb at the surface.

    The Gminvalues are evaluated by the equation27

    Gminis the minimum energy of the given surface with fully adsorbed amphiphile molecules.The lower the value of the free energy,the more thermodynamically stable surface formed. Among pure components,TX-100 and TX-114 make the most stable surfaces while surface formed by PMT is the least stable (Table 1).For PMT-surfactant mixed systems the surface formed by PMT-TTAB is the most stable and PMT-Tween 80 mixed systems form the least stable surface.

    4 Conclusions

    The measurement of the surface tension and calculation of different parameters in the mixed micelles and mixed monolayers formed by an amphiphilic drug(PMT)and surfactants(nonionic and cationic)indicate the following:

    (1)cmc values of PMT-surfactant systems decrease sharply and then become almost constant as the mole fraction of surfactant increases in the system.This means that PMT forms mixed micelles with the surfactants.

    (2)Interaction parameters for mixed micelles and mixed monolayers,βmand βσ,are negative for all the systems,which indicate attractive interactions among mixing components.

    (3)In general,Γmaxdecreases and Aminincreases with the increase in mole fraction of surfactants.Rigid structure of drug makes adsorption easier.

    (4)ΔGmand ΔGadsvalues are negative and ΔGmis maximum for Tween 80 and minimum for DeTAB mixed systems whileis the highest for Tween 20 and lowest for DeTAB systems.

    (1) Zhu,D.;Zhao,G.Colloids Surf.1990,49,269.

    (2) Li,X.;Zhao,G.Colloids Surf.1992,64,185.

    (3)Yu,Z.;Zhang,X.;Xu,G.;Zhao,G.J.Phys.Chem.1990,94, 3675.

    (4) Hines,J.D.;Thomas,R.K.;Garrett,P.R.;Rennie,G.K.; Penfold,J.J.Phys.Chem.B 1997,101,9215.

    (5) Shilaoch,A.;Blankschtein,D.Langmuir 1998,14,7166.

    (6) Fontan,J.E.;Arnaud,P.;Chaumel,J.C.Int.J.Pharm.1991, 73,17.

    (7) Sjokvist,E.;Nystorm,C.;Alden,M.;Carram-Lelham,N.Int.J. Pharm.1992,79,123.

    (8) Florence,A.T.Techniques of Solubulization of Drugs; Yalkowsky,S.H.Ed.;Marcel Dekker Inc.:New York,1981.

    (9) Fahelebom,K.M.S.;Timoney,R.F.;Carrigan,O.I.Pharm. Res.1993,10,631.

    (10) Lundberg,B.J.Pharm.Sci.1994,83,72.

    (11) Paulsson,M.;Edsman,K.Pharm.Res.2001,18,1586.

    (12) Bhatt,P.A.;Dar,A.A.;Rather,G.M.J.Chem.Eng.Data 2008, 53,1271.

    (13)Attwood,D.;Florence,A.T.Surfactant Systems;Chapman and Hall:New York,1983.

    (14) Cheema,M.A.;Siddiq,M.;Barbosa,S.;Castro,E.;Egea,J.A.; Antelo,L.T.;Taboada,P.;Mosquera,V.Chemical Physics 2007,336,157.

    (15) Cid,E.Pharma.Acta Helv.1971,46,377.

    (16)Taboada,P.;Atwood,D.;Ruso,J.M.;Garcia,M.;Mosquera,V. Phys.Chem.Chem.Phys.2000,2,5175.

    (17) Katsung,B.G.Basic and Chemical Pharmacology,9th ed.; McGraw Hill:New York,2004.

    (18)Yeom,I.T.;Ghosh,M.M.;Cox,C.D.;Robinson,K.G. Environ.Sci.Technol.1995,29,3015.

    (19) Traguer,D.;Csordas,A.Biochem.J.,1987,244,605.

    (20)Acharya,K.R.;Bhattacharyya,S.C.;Moulik,S.P. J.Photochem.Photobiol.A:Chem.1999,122,47.

    (21) Mukherjee,P.;Mysels,K.J.Critical Micelle Concentration of Aqueous Surfactant Systems;NSRDS-NBS 36:Washington,D. C.,1971.

    (22) Mukherjee,P.Adv.Colloid Interface Sci.1967,1,242.

    (23) Rubingh,D.N.Solution Chemistry of Surfactants;Mittal,K. L.Ed.;Plenum:New York,1979.

    (24) Rosen,M.J.Surfactants and Interfacial Phenomena;Wiley-Interscience:New York,2004.

    (25) Hua,X.Y.;Rosen,M.J.J.Colloid Interface Sci.1982,87,469.

    (26) Rosen,M.J.;Aronson,S.Colloids Surf.1981,3,201.

    (27) Sugihara,G.;Miyazono,A.M.;Nagadome,S.;Oida,T.; Hayashi,Y.;Ko,J.S.J.Oleo Sci.2003,52,449.

    高清在线国产一区| 免费在线观看日本一区| 99久久精品热视频| 欧美+亚洲+日韩+国产| 神马国产精品三级电影在线观看| 国产伦精品一区二区三区视频9 | 在线视频色国产色| 人人妻,人人澡人人爽秒播| 中文字幕人成人乱码亚洲影| 国产亚洲欧美在线一区二区| 午夜亚洲福利在线播放| 后天国语完整版免费观看| 女人被狂操c到高潮| 国内久久婷婷六月综合欲色啪| 看黄色毛片网站| 网址你懂的国产日韩在线| 999精品在线视频| www.自偷自拍.com| 国产av不卡久久| cao死你这个sao货| 久久久久性生活片| 精品国产乱子伦一区二区三区| 9191精品国产免费久久| 午夜视频精品福利| 免费电影在线观看免费观看| 一夜夜www| 国产淫片久久久久久久久 | 丰满的人妻完整版| 日韩av在线大香蕉| 欧美3d第一页| 亚洲av片天天在线观看| 欧美三级亚洲精品| 国产又色又爽无遮挡免费看| 观看美女的网站| tocl精华| 国产aⅴ精品一区二区三区波| 国产伦一二天堂av在线观看| 久久欧美精品欧美久久欧美| 久久香蕉国产精品| 久久天堂一区二区三区四区| 精品一区二区三区视频在线 | 床上黄色一级片| 亚洲欧美日韩东京热| 最近最新中文字幕大全免费视频| 一个人看的www免费观看视频| 99久久国产精品久久久| 亚洲国产精品999在线| 午夜久久久久精精品| 搡老妇女老女人老熟妇| 亚洲成人久久性| 熟女人妻精品中文字幕| 好男人电影高清在线观看| 久久九九热精品免费| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 不卡av一区二区三区| 性色av乱码一区二区三区2| 久久香蕉精品热| 成人鲁丝片一二三区免费| 麻豆成人av在线观看| 国产精品自产拍在线观看55亚洲| 亚洲精品在线美女| 精品久久久久久久人妻蜜臀av| 天堂动漫精品| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 亚洲av片天天在线观看| 黄色视频,在线免费观看| 99久久精品一区二区三区| 午夜亚洲福利在线播放| 最新中文字幕久久久久 | 搞女人的毛片| 99久国产av精品| 叶爱在线成人免费视频播放| 美女午夜性视频免费| 欧美+亚洲+日韩+国产| 精品国产亚洲在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品合色在线| 国产精品国产高清国产av| 久久久久国产精品人妻aⅴ院| 在线观看舔阴道视频| 香蕉久久夜色| 国产午夜精品论理片| 亚洲自偷自拍图片 自拍| 欧美一级a爱片免费观看看| 亚洲中文字幕日韩| 日韩国内少妇激情av| 激情在线观看视频在线高清| 亚洲精品一区av在线观看| 国产高清视频在线观看网站| 黄色片一级片一级黄色片| 国产精品野战在线观看| 婷婷精品国产亚洲av在线| 久久久久久久午夜电影| 在线免费观看不下载黄p国产 | 亚洲,欧美精品.| 丝袜人妻中文字幕| 啦啦啦观看免费观看视频高清| 国产亚洲精品久久久久久毛片| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 国产高清三级在线| 老熟妇仑乱视频hdxx| 久久精品影院6| 麻豆成人午夜福利视频| 小蜜桃在线观看免费完整版高清| 最好的美女福利视频网| 亚洲欧美日韩卡通动漫| svipshipincom国产片| 免费无遮挡裸体视频| 一区福利在线观看| 十八禁人妻一区二区| 午夜久久久久精精品| 久久香蕉精品热| 欧美午夜高清在线| 国产精品美女特级片免费视频播放器 | 日日摸夜夜添夜夜添小说| 日本黄色视频三级网站网址| 欧美一区二区国产精品久久精品| 又爽又黄无遮挡网站| 亚洲无线观看免费| 国产又色又爽无遮挡免费看| 最近最新免费中文字幕在线| 啦啦啦韩国在线观看视频| 黄色 视频免费看| 亚洲av成人av| 国产成人av教育| 少妇的逼水好多| 国产三级中文精品| 国产精品女同一区二区软件 | 国产又色又爽无遮挡免费看| 禁无遮挡网站| 真人做人爱边吃奶动态| 成人三级黄色视频| 欧美成人一区二区免费高清观看 | 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 免费在线观看日本一区| 亚洲国产精品sss在线观看| 18禁美女被吸乳视频| 色综合欧美亚洲国产小说| 亚洲va日本ⅴa欧美va伊人久久| 国产一区在线观看成人免费| 一本久久中文字幕| 一级毛片高清免费大全| 少妇丰满av| 丝袜人妻中文字幕| 一级毛片高清免费大全| 在线a可以看的网站| 黄色日韩在线| 在线永久观看黄色视频| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 亚洲av五月六月丁香网| 国产91精品成人一区二区三区| 久久久久国内视频| 一级毛片高清免费大全| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 国产av一区在线观看免费| 黑人巨大精品欧美一区二区mp4| 亚洲激情在线av| 日本一二三区视频观看| 亚洲av中文字字幕乱码综合| av欧美777| 日本 欧美在线| 亚洲第一电影网av| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 欧洲精品卡2卡3卡4卡5卡区| 麻豆久久精品国产亚洲av| 午夜精品一区二区三区免费看| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av | 中文字幕精品亚洲无线码一区| 国产精品99久久久久久久久| 国产精品一及| 国产亚洲欧美98| 国产精品一区二区三区四区免费观看 | 97超视频在线观看视频| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 国产精品日韩av在线免费观看| 97超级碰碰碰精品色视频在线观看| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 久久久国产精品麻豆| 婷婷丁香在线五月| 国内精品美女久久久久久| 精品久久久久久久毛片微露脸| 午夜福利成人在线免费观看| 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清| 成人18禁在线播放| 日本五十路高清| 色播亚洲综合网| 中文在线观看免费www的网站| 999久久久国产精品视频| 精品久久久久久久毛片微露脸| 99久久综合精品五月天人人| 黄色 视频免费看| 国产一区二区三区在线臀色熟女| 国产aⅴ精品一区二区三区波| 欧美av亚洲av综合av国产av| 亚洲成av人片免费观看| 曰老女人黄片| or卡值多少钱| 亚洲人成电影免费在线| 国产aⅴ精品一区二区三区波| 国产亚洲精品综合一区在线观看| 婷婷精品国产亚洲av| 女警被强在线播放| 欧美色欧美亚洲另类二区| 国产精品永久免费网站| 超碰成人久久| 不卡av一区二区三区| 97人妻精品一区二区三区麻豆| 天天添夜夜摸| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 欧美三级亚洲精品| 在线永久观看黄色视频| 久久这里只有精品中国| 黄色女人牲交| 男女视频在线观看网站免费| 黄色丝袜av网址大全| 变态另类成人亚洲欧美熟女| 国产精品香港三级国产av潘金莲| 99国产精品一区二区蜜桃av| 老司机午夜福利在线观看视频| 可以在线观看毛片的网站| 国产一区二区三区视频了| 18禁国产床啪视频网站| 综合色av麻豆| 成人av在线播放网站| 看黄色毛片网站| 欧美av亚洲av综合av国产av| 性色av乱码一区二区三区2| 国内精品久久久久久久电影| 国产精品野战在线观看| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 久久久久国产一级毛片高清牌| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站 | 国产97色在线日韩免费| 曰老女人黄片| 美女黄网站色视频| 国产精华一区二区三区| 久久久久久久久免费视频了| 日本黄大片高清| 五月玫瑰六月丁香| 香蕉国产在线看| 制服人妻中文乱码| 亚洲成人免费电影在线观看| 丰满的人妻完整版| 成人av在线播放网站| 香蕉久久夜色| 国产一区在线观看成人免费| 夜夜爽天天搞| 国产人伦9x9x在线观看| 99视频精品全部免费 在线 | 午夜成年电影在线免费观看| 麻豆成人av在线观看| 黄色女人牲交| 欧美日韩福利视频一区二区| 99国产精品99久久久久| 99国产极品粉嫩在线观看| 少妇裸体淫交视频免费看高清| 精品久久蜜臀av无| 国产精品一区二区精品视频观看| 亚洲国产精品999在线| а√天堂www在线а√下载| 两人在一起打扑克的视频| 看片在线看免费视频| 亚洲av成人不卡在线观看播放网| 午夜福利免费观看在线| 99久久精品国产亚洲精品| 国产亚洲精品综合一区在线观看| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 亚洲一区高清亚洲精品| 在线观看66精品国产| 色吧在线观看| 女警被强在线播放| 婷婷精品国产亚洲av| 亚洲激情在线av| 男人的好看免费观看在线视频| 黄色丝袜av网址大全| 一级黄色大片毛片| 在线永久观看黄色视频| 噜噜噜噜噜久久久久久91| 少妇的丰满在线观看| 网址你懂的国产日韩在线| 免费电影在线观看免费观看| 丝袜人妻中文字幕| 脱女人内裤的视频| 亚洲专区中文字幕在线| 国产午夜精品久久久久久| 男插女下体视频免费在线播放| 亚洲在线自拍视频| 男人舔女人的私密视频| 欧美性猛交╳xxx乱大交人| 亚洲欧美激情综合另类| 黑人操中国人逼视频| 久久国产乱子伦精品免费另类| 欧美zozozo另类| 国产久久久一区二区三区| 久久精品91蜜桃| 综合色av麻豆| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 国产精品一区二区三区四区久久| 在线免费观看不下载黄p国产 | 国产激情欧美一区二区| 国产高清视频在线播放一区| 99国产综合亚洲精品| 好男人在线观看高清免费视频| 怎么达到女性高潮| 岛国在线观看网站| 精品电影一区二区在线| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 婷婷亚洲欧美| 中文字幕人妻丝袜一区二区| 日本黄色片子视频| 动漫黄色视频在线观看| 久久久久久久午夜电影| 人妻久久中文字幕网| 动漫黄色视频在线观看| 在线观看美女被高潮喷水网站 | 国产精品香港三级国产av潘金莲| 91麻豆精品激情在线观看国产| 这个男人来自地球电影免费观看| 免费在线观看日本一区| 亚洲精品一区av在线观看| 高清毛片免费观看视频网站| 久久久久久久久中文| 99久久精品热视频| 非洲黑人性xxxx精品又粗又长| 在线a可以看的网站| 淫秽高清视频在线观看| 久久伊人香网站| 午夜福利在线在线| 嫩草影院入口| 一区二区三区国产精品乱码| 国产成人系列免费观看| 性色avwww在线观看| 啦啦啦观看免费观看视频高清| 欧美av亚洲av综合av国产av| 99久久无色码亚洲精品果冻| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 久久中文字幕一级| 亚洲av电影不卡..在线观看| 午夜福利在线观看免费完整高清在 | 99久久精品一区二区三区| 亚洲专区中文字幕在线| 亚洲九九香蕉| 法律面前人人平等表现在哪些方面| 国产精品一区二区精品视频观看| 国产精品久久久久久精品电影| 国产精品美女特级片免费视频播放器 | 亚洲色图av天堂| 亚洲国产看品久久| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 人妻丰满熟妇av一区二区三区| 色哟哟哟哟哟哟| 成人特级av手机在线观看| 18禁黄网站禁片午夜丰满| 看免费av毛片| 999久久久精品免费观看国产| 国产91精品成人一区二区三区| 久久性视频一级片| 久久热在线av| 色哟哟哟哟哟哟| 天堂√8在线中文| av女优亚洲男人天堂 | 香蕉av资源在线| 精品熟女少妇八av免费久了| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区三| 国产成人精品无人区| 很黄的视频免费| 在线a可以看的网站| 免费电影在线观看免费观看| 日韩高清综合在线| 精品国内亚洲2022精品成人| av天堂在线播放| 一个人免费在线观看电影 | 亚洲熟女毛片儿| 丰满的人妻完整版| 欧美日韩福利视频一区二区| 亚洲欧美日韩东京热| 丰满人妻一区二区三区视频av | 久久久水蜜桃国产精品网| 国产成人一区二区三区免费视频网站| 国产伦精品一区二区三区四那| 欧美日本亚洲视频在线播放| 国模一区二区三区四区视频 | 精品乱码久久久久久99久播| 亚洲国产色片| 熟妇人妻久久中文字幕3abv| 丰满人妻一区二区三区视频av | 成人18禁在线播放| 变态另类成人亚洲欧美熟女| 国产精品自产拍在线观看55亚洲| 伦理电影免费视频| 午夜视频精品福利| 男女视频在线观看网站免费| 国产精品野战在线观看| 精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o| 成人一区二区视频在线观看| 美女午夜性视频免费| 国产亚洲精品久久久com| 在线国产一区二区在线| 国内揄拍国产精品人妻在线| 精品一区二区三区视频在线 | 中文字幕av在线有码专区| 久久婷婷人人爽人人干人人爱| 热99re8久久精品国产| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 欧美成人免费av一区二区三区| 一a级毛片在线观看| 亚洲五月婷婷丁香| 国产99白浆流出| 男插女下体视频免费在线播放| 身体一侧抽搐| 亚洲人成伊人成综合网2020| 美女大奶头视频| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三| 国产精品一区二区免费欧美| 琪琪午夜伦伦电影理论片6080| 99久久99久久久精品蜜桃| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| 男插女下体视频免费在线播放| 12—13女人毛片做爰片一| 国产成人一区二区三区免费视频网站| 国产成人系列免费观看| 色尼玛亚洲综合影院| 97超视频在线观看视频| 中文字幕av在线有码专区| 亚洲狠狠婷婷综合久久图片| 亚洲午夜精品一区,二区,三区| 啪啪无遮挡十八禁网站| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕av在线有码专区| 香蕉丝袜av| h日本视频在线播放| a在线观看视频网站| 欧美三级亚洲精品| 一级作爱视频免费观看| 亚洲欧美日韩无卡精品| 99久久成人亚洲精品观看| АⅤ资源中文在线天堂| 欧美乱码精品一区二区三区| 黄色视频,在线免费观看| 99久久精品一区二区三区| 午夜日韩欧美国产| 99久久精品热视频| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 真人一进一出gif抽搐免费| 99视频精品全部免费 在线 | 最新美女视频免费是黄的| 巨乳人妻的诱惑在线观看| 久久这里只有精品19| 亚洲一区二区三区色噜噜| 久久精品91无色码中文字幕| 一个人看视频在线观看www免费 | 观看美女的网站| 国产亚洲精品一区二区www| 国产午夜精品久久久久久| 天堂网av新在线| 亚洲精品色激情综合| 欧美一级a爱片免费观看看| 精品久久久久久久毛片微露脸| 日本熟妇午夜| 两性夫妻黄色片| 久久久久亚洲av毛片大全| 成熟少妇高潮喷水视频| 亚洲精品色激情综合| 亚洲av成人一区二区三| 亚洲五月天丁香| 亚洲成人久久性| 欧美中文日本在线观看视频| 18禁国产床啪视频网站| 在线国产一区二区在线| 亚洲五月天丁香| 日韩欧美 国产精品| 日本黄色片子视频| 1024香蕉在线观看| 看黄色毛片网站| 亚洲国产精品成人综合色| 亚洲中文字幕一区二区三区有码在线看 | 黄色成人免费大全| 可以在线观看的亚洲视频| 免费看a级黄色片| 国产精品永久免费网站| 欧美一区二区国产精品久久精品| 91在线观看av| 免费大片18禁| 757午夜福利合集在线观看| 91在线精品国自产拍蜜月 | 九九在线视频观看精品| 嫁个100分男人电影在线观看| av天堂中文字幕网| 久久久久国内视频| 欧美三级亚洲精品| 久9热在线精品视频| 亚洲成人久久性| 日本 欧美在线| 亚洲一区二区三区不卡视频| 色综合亚洲欧美另类图片| 一级作爱视频免费观看| 老司机午夜福利在线观看视频| 性欧美人与动物交配| 国产av一区在线观看免费| 国产精品电影一区二区三区| 亚洲欧美日韩东京热| 久久久精品欧美日韩精品| 精品久久久久久久末码| 在线播放国产精品三级| 757午夜福利合集在线观看| 一区二区三区激情视频| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 国产视频内射| 久久久久久久久中文| 欧美av亚洲av综合av国产av| 听说在线观看完整版免费高清| 精品欧美国产一区二区三| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品啪啪一区二区三区| 亚洲国产精品999在线| 精品国产乱码久久久久久男人| 亚洲国产精品成人综合色| 欧洲精品卡2卡3卡4卡5卡区| av福利片在线观看| av欧美777| 1024手机看黄色片| 欧美最黄视频在线播放免费| 日本免费一区二区三区高清不卡| 国产高清视频在线观看网站| 久久午夜亚洲精品久久| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 2021天堂中文幕一二区在线观| 狠狠狠狠99中文字幕| 少妇的丰满在线观看| 久久精品国产综合久久久| av中文乱码字幕在线| 国产精品自产拍在线观看55亚洲| 亚洲五月婷婷丁香| 欧美乱码精品一区二区三区| 欧美三级亚洲精品| 18禁国产床啪视频网站| 99在线视频只有这里精品首页| 亚洲av成人精品一区久久| 亚洲国产高清在线一区二区三| a级毛片a级免费在线| 国产激情久久老熟女| 波多野结衣高清无吗| 亚洲精品中文字幕一二三四区| 精品久久久久久成人av| 色老头精品视频在线观看| 免费电影在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲精品一区二区精品久久久| av中文乱码字幕在线| 视频区欧美日本亚洲| 一进一出抽搐动态| 精品国产亚洲在线| 亚洲精品国产精品久久久不卡| 91麻豆av在线| 精品福利观看| 亚洲18禁久久av| 久9热在线精品视频| 日韩中文字幕欧美一区二区| 美女高潮喷水抽搐中文字幕| 桃色一区二区三区在线观看| 99国产精品一区二区三区| 国产精品久久久久久精品电影| 成年人黄色毛片网站| 一个人看视频在线观看www免费 | 成人欧美大片| 日韩欧美 国产精品| 麻豆av在线久日| 怎么达到女性高潮| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院入口| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 俄罗斯特黄特色一大片| 又爽又黄无遮挡网站| 国产精品综合久久久久久久免费|