• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micellization Behavior of an Amphiphilic Drug Promethazine Hydrochloride-Surfactant System in an Aqueous Medium

    2011-12-12 02:43:56KABIRUDDINKHANAbbulBasharNAQVIAndleeb
    物理化學(xué)學(xué)報(bào) 2011年8期

    KABIR-UD-DIN KHANAbbul Bashar NAQVIAndleeb Z.

    (Department of Chemistry,Aligarh Muslim University,Aligarh-202002,India)

    1 Introduction

    Surfactant molecules,due to their amphiphilic nature,selfassociate in aqueous solution to form micelles above a certain concentration(known as critical micelle concentration,cmc). Below cmc,they accumulate at the air-solution interface.Both the cmc and the properties of aggregates(or micelles)are governed by several factors including temperature,type and concentration of additives,pH,etc.

    Mixed micelles formed by two or more amphiphiles are often used in industrial,pharmaceutical,and medicinal formulations.Ionic-ionic or ionic-nonionic mixed systems1-3are important from fundamental as well as application point of view as the mixtures show nonideal behavior.If synergistic interactions among the mixing amphiphiles are present,they could lower the cmc values of the mixed systems.4,5

    Nonionic surfactants are used in pharmaceuticals to increase their stability and to enhance the dissolution rate of active ingredients.6,7These are also used to facilitate solubilization and to increase the stability of drug-carrier emulsions.8-10Literature also reports the use of ionic surfactants in drug delivery.11,12

    Many drugs,particularly those with the local anesthetic,tranquillizing,antidepressant and antibiotic actions,are amphiphilic in nature,and exert their activity by interaction with biological membranes.13Phenothiazine drugs belong to the family of amphiphilic drugs which share a general structure of planar tricyclic ring system with a short hydrocarbon chain carrying a terminal,charged nitrogen atom.It has been established that these drugs form aggregates of approximately 6-12 monomers in aqueous solution.13,14

    Although these drugs are amphiphilic in nature,they are not hydrophilic enough to be used without a carrier.Among various compounds used as carrier,surfactants possess a number of unbeaten advantages.15,16Micelle size permits the extravasation and accumulation in a variety of pathological sites.Also, they are easy to be prepared on a large scale.

    With this viewpoint we studied association behavior of a phenothiazine drug,promethazine hydrochloride(PMT),in presence of cationic and nonionic surfactants at 303.15 K. PMT is an antihistamine used for the symptomatic relief of hypersensitivity reactions.The pKavalue of PMT is 9.117and at low pH values it exists in protonated form while at high pH values it becomes neutral.

    2 Experimental

    2.1 Chemicals

    The amphiphilic drug promethazine hydrochloride(PMT,≥ 98%,Sigma,USA),cationic and nonionic surfactants(decyltrimethyl ammonium bromide(DeTAB,≥98%,TCI,Japan),dodecyltrimethyl ammonium bromide(DTAB,≥98%,TCI,Japan),tetradecyltrimethyl ammonium bromide(TTAB,≥99%, Sigma,USA),cetyltrimethyl ammonium bromide(CTAB,≥99%,Merck,Germany),t-octyl phenoxypolyethoxyethanol(n= 9-10,TX-100,n=7-8,TX-114,Fluka,Switzerland),polyoxyethylenesorbitan monolaurate(Tween 20,LOBA Chemie,India),polyoxyethylenesorbitan monopalmitate(Tween 40,Koch-Light,England),polyoxyethylenesorbitan monostearate(Tween 60 LOBA Chemie,India),polyoxyethylenesorbitan monooleate (Tween 80,LOBAChemie,India))were used as received.Their aqueoussolutionswerepreparedindoubly-distilled water.

    2.2 Surface tension measurements

    The ring detachment method(Du Noüy Tensiometer)was used to measure surface tension(γ).The ring used in the measurement was cleaned by washing with doubly-distilled water followed by heating through alcohol flame.γ was measured after successive addition of concentrated stock solution in water at 303.15 K.The γ value decreased upto a certain value(i.e., cmc)with successive addition of solution of particular molarity in water,then it became constant.This break point corresponds to cmc value as shown in Fig.1.The accuracy on the individual surface tension reading is approximately±0.5 mN· m-1.

    3 Results and discussion

    For amphiphile mixtures,the two characteristic phenomena are the formation of mixed monolayers at the interface and mixed micelles in the bulk solution.

    Representative plots for surface tension(γ)vs lgC for pure components are shown in Fig.1.The values of cmc for pure components agree well with the literature values.13,18-21Fig.2 depicts the variation of cmc values of PMT-surfactant mixed systems with different mole fractions of surfactants(α1).Fig.2(a) contains data for cationic surfactants while Fig.2(b)for nonionic ones.

    Fig.1 Variation of surface tension(γ)with concentration(C)for pure amphiphiles

    For homologous series of surfactants,the cmc value increases with the increase of number of carbon atoms in the hydrophobic chain.In general,with the addition of one-CH2group the cmc value decreases to half.Increase in chain length increases the hydrophobic forces and micelle formation becomes easier.Among caionic and nonionic surfactants,nonionic ones have lower cmc values.This is due to the lack of electrical work.

    The hydrophobic part of the drug molecule is short and rigid.Therefore,drug forms micelles at high concentration.The cmc values for the drug-surfactant mixed systems decrease sharply with the increase of mole fraction of surfactants and then become almost constant except for drug-DeTAB system. This indicates that the drug forms mixed micelles with the surfactants.For PMT-DeTAB system,cmc values show a minimum.At α1=0.1,it decreases sharply and then starts increasing again.The decrease is more pronounced with nonionic ones (Fig.2(b))than with cationic ones(Fig.2(a)).Presence of similar charge on both the drug and surfactants causes repulsion among head groups.Hence mixed micelle formation becomes difficult as compared to that with nonionic ones.

    The ideal cmc,cmc*,is related to the mole fractions of mixing components and their cmc values in pure state by the following equation22:

    where α1is mole fraction of the first component(i.e.,pure surfactant),while cmc1and cmc2are critical micelle concentrations for the first(i.e.,pure surfactant)and second(i.e.,pure drug)components,respectively.

    Fig.2 Variation of the cmc values with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    Table 1 Surface properties(cmc,cmc*,Γmax,Amin,ΔG m,ΔG ads,Gmin)afor mixed PMT-surfactant systems at 303.15 K

    The values of cmc*along with other parameters for micellization are given in Table 1.For PMT-cationic surfactant systems,cmc*values are higher than the experimental cmc values.For PMT-CPB and PMT-CPC,cmc values are close to cmc*values,which means that these surfactants mix ideally with PMT.For PMT-nonionic surfactant systems,except for Tween 40&Tween 80,cmc*values are lower than the cmc values.The cmc*values give an idea about the mixing behavior of the two components.Negative deviation means synergism in mixing while positive deviation means antagonism.Nonionic surfactants contain large hydrophobic portion which creates steric repulsions in the mixed micelles and,inspite of a reduction in electrical repulsions in their presence,the cmc values come out to be higher than the cmc*values.

    In an amphiphile mixture,the mixing of hydrophobic chains can be considered as an ideal process while mixing of head groups is considered as a nonideal process.In order to have knowledge of nature and strength of interactions between two mixing components,Rubingh?s model based on Regular Solution Theory(RST)23was used to calculate different parameters. This model not only characterizes interaction parameter,βm,but also explains the deviation from ideality.Using this model,micellar mole fraction of surfactants,,can be calculated by solving the following equation iteratively:23

    The Xm1values so obtained are used to calculate βmby the following equation:

    Also,activity coefficients,fm1and fm2,can be calculated by these values:

    The programme for equation(2)was nonconvergent for PMT-nonionic surfactant systems.For PMT-cationic surfactant systems,the values of Xm1increase with the increase in α1as well as with the chain length of surfactants.As the surfactant changes from DeTAB to CTAB(or the number of methylene groups from 9 to 15),hydrophobicity of the surfactant molecules increases and its contribution in mixed micelles also increases. For all systems and at all mole fractions,Xm1(Table 2)values are greater than the stoichiometric mole fraction.This also indicates that almost all the added surfactants take part in mixed micelle formation.

    Mole fraction of surfactants in ideal mixing conditions is given by24

    Table 2 Various physicochemical parameters(X,X,βm,f,ΔGex,X,βσ,f)afor mixed PMT-surfactant systems at 303.15 K

    Table 2 Various physicochemical parameters(X,X,βm,f,ΔGex,X,βσ,f)afor mixed PMT-surfactant systems at 303.15 K

    micellar mole fraction of surfactants,ideal micellar mole fraction of surfactants,βm:interaction parameter in mixed micelle, activity coefficients in mixed micelle,ΔGex:excess free energy of mixing,:mole fraction of surfactants in mixed monolayer, βσ:interaction parameter in mixed monolayer,:activity coefficients in mixed monolayer

    System PMT-DeTAB α1X1m X1ideal βm f1m f2m X1σ βσf1σf2σ PMT-DTAB PMT-TTAB PMT-CTAB 0.2699 0.5067 0.6111 0.7792 0.4100 0.6282 0.8932 0.9437 0.5872 0.6568 0.7949 0.8339 0.6741 0.8507 0.8674 -2.52 -1.29 -1.98 -1.76 -2.14 -3.60 -0.22 -0.93 -4.00 -8.29 -4.64 -5.72 -4.49 -3.92 -4.71 0.26 0.73 0.74 0.92 0.47 0.61 0.99 0.99 0.51 0.38 0.82 0.85 0.62 0.91 0.92 0.83 0.72 0.48 0.34 0.69 0.24 0.83 0.44 0.25 0.03 0.05 0.02 0.13 0.06 0.03 PMT-CPB 0.8495-1.340.970.38 PMT-CPC 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.1 0.5 0.7 0.9 0.3639 0.4719 0.5739 0.7414 0.3913 0.6706 0.7982 0.8579 0.5661 0.7441 0.8041 0.8808 0.6367 0.8287 0.9079 0.9115 0.7506 0.8679 0.9209 0.987 0.7079 0.9217 0.9139 0.0768 0.4282 0.6361 0.8708 0.2558 0.7557 0.8783 0.9653 0.6373 0.9405 0.9736 0.9930 0.8450 0.9800 0.9913 0.9977 0.9012 0.9879 0.9948 0.9986 0.8961 0.9872 0.9945 0.9985 -7.08 -3.14 -1.77 -1.77 -2.88 -1.23 -1.01 -2.13 -2.25 -3.48 -3.61 -3.90 -4.16 -3.53 -3.00 -4.59 -2.22 -3.44 -3.33 -2.77 -3.05 -2.25 -3.44 0.06 0.42 0.73 0.89 0.34 0.87 0.96 0.96 0.65 0.79 0.87 0.95 0.58 0.90 0.97 0.96 0.87 0.94 0.98 0.99 0.77 0.98 0.97 0.39 0.49 0.56 0.38 0.64 0.57 0.52 0.21 0.48 0.15 0.097 0.049 0.185 0.088 0.084 0.022 0.286 0.075 0.059 0.067 0.216 0.148 0.057 ΔGex/(kJ·mol-1) -4.13 -1.97 -1.09 -0.86 -1.73 -0.68 -0.41 -0.65 -1.39 -1.67 -1.43 -1.03 -2.42 -1.26 -0.63 -0.93 -1.05 -0.99 -0.61 -0.09 -1.60 -0.41 -0.68

    The nature and strength of the interactions among mixed micelles can be evaluated with the interaction parameter,βm.The βm,according to RST,is zero for ideal mixing;negative for synergistically formed mixed micelles;positive for antagonism and is assumed to be constant for a particular system.But in actual conditions,βmvaries with the composition of mixed system.The βmvalues(Table 2)are negative indicating mixed micelle formation through attractive interactions.Barring βmvalues for DeTAB at α1=0.1,average taken for a particular system,shows slight decrease and then an increase with the increase in chain length from C10to C16.With the increase in chain length,surfactants?hydrophobicity increase and surfactants interact more strongly with the drug causing more stable mixed micelle formation.For CPB and CPC,values are almost same.

    The values of ΔGex(Table 2)are all negative and the average values for all the systems are in the range of 1-1.5 kJ·mol-1except PMT-CPB and PMT-CPC.The negative ΔGexvalues indicate that the process of mixing is favorable.

    Fig.3(a,b)show the variation of surface excess(Γmax)with the mole fraction of surfactants.Γmaxis a useful measure of the adsorption effectiveness of the amphiphiles at the air-solution interface,as it is the maximum value adsorption can attain.On the basis of adsorption isotherms,Γmax(in mol·m-2)at the air-solution interface was obtained from the Gibbs adsorption equation24:

    and minimum area per head group(Aminin nm2)at the interface was obtained by

    where NAis the Avogadro number.The Γmaxvalues(Table 1)for both cationic and nonionic surfactants decrease as the mole fraction of surfactants in the solution increases,(except for DeTAB).Cationic surfactants form mixed micelles with the drug molecules and because of the similar charge,the mixed micelles as well as the mixed monolayers will experience more repulsions.Hence,the molecules will try to be as far apart as possible and Γmaxdecreases.

    Nonionic surfactants also form mixed micelles with the drug.These surfactants reduce the repulsion among head groups and Γmaxshould increase in their presence.However,for PMT-nonionic surfactant systems Γmaxdecreases for TX-100 and TX-114,while it increases for Tweens,with the increase in concentration of surfactants.The hydrophobic part of both the drug and the nonionic surfactants are bulky and the drug?s part is rigid also.Therefore,the mixed micelles and mixed monolayers will experience more steric hindrance and the molecules will be far from each other.Therefore,Γmaxdecreases.

    The Aminvalues(Table 1,Fig.4(a,b)),calculated from equation(9),follow trend opposite to that of Γmax.The results are self-explanatory in the light of above discussion.As the molecules lie farther from each other,Aminvalues increase.

    Analogous to equations(2-5),Rosen?s theory24,25can be used to calculate mole fraction of surfactant at the interface,X,interaction parameters for monolayer,βσ,and activity coefficients,fand f(Table 2).Xvalue increases with the increase in mole fraction and chain length of surfactants.For CPB and CPC,the equation for Xwas nonconvergent.Xvalues in almost all cases were lower than Xvalues.This indicates that contribution of surfactants is more in mixed micelles than in the mixed monolayers.The rigid hydrophobic structure of the drug makes it easier for the drug to adsorb at the interface than to adjust in curved micellar interface.Hence,more drug and less surfactants are present at the air-solution interface.

    Fig.3 Variation of Γmaxvalues with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    Fig.4 Variation ofAminvalues with the mole fraction(α1)of cationic(a)and nonionic(b)surfactants

    The βσvalues,although negative,are smaller in magnitude then βmvalues.For PMT-DeTAB and PMT-DTAB,the average βσvalues,β,are close to 2 whereas for CTAB and TTAB the values are close to 5.The fand fvalues are less than unity and are also less than fand fvalues(fvalues for DeTAB and DTAB are more than fvalues).These fractional values ofandindicate nonideality.

    The values of different parameters obtained are used to calculate the different types of energies,viz.standard Gibb?s free energy of micellization(ΔGm),standard energy change of adsorption at interface(ΔGads),and molar free energy of maximum adsorption attained at the cmc(Gmin).

    where Xcmcis the cmc in mole fraction units.

    All the values of ΔGm(Table 1)are negative which indicates that micelle formation is spontaneous.The magnitude of ΔGmfor pure drug is always less than that for the pure surfactants as well as for drug-surfactant mixtures.In the drug-surfactant systems,the spontaneity is in the order:PMT-DeTAB>PMT-TTAB>PMT-DTAB>PMT-Tween80>PMT-Tween 60>PMT-Tween40>PMT-Tween20>PMT-TX-114>PMT-TX-100>PMT-CPC>PMT-CPB>PMT-CTAB.

    where πcmcis the surface pressure at the cmc(=γ0-γcmc).

    We can see(Table 1)that the process of interfacial adsorption is the most spontaneous for Tween 20 and CPC and the least for DeTAB.DeTAB prefers to form aggregates than to adsorb at the surface.

    The Gminvalues are evaluated by the equation27

    Gminis the minimum energy of the given surface with fully adsorbed amphiphile molecules.The lower the value of the free energy,the more thermodynamically stable surface formed. Among pure components,TX-100 and TX-114 make the most stable surfaces while surface formed by PMT is the least stable (Table 1).For PMT-surfactant mixed systems the surface formed by PMT-TTAB is the most stable and PMT-Tween 80 mixed systems form the least stable surface.

    4 Conclusions

    The measurement of the surface tension and calculation of different parameters in the mixed micelles and mixed monolayers formed by an amphiphilic drug(PMT)and surfactants(nonionic and cationic)indicate the following:

    (1)cmc values of PMT-surfactant systems decrease sharply and then become almost constant as the mole fraction of surfactant increases in the system.This means that PMT forms mixed micelles with the surfactants.

    (2)Interaction parameters for mixed micelles and mixed monolayers,βmand βσ,are negative for all the systems,which indicate attractive interactions among mixing components.

    (3)In general,Γmaxdecreases and Aminincreases with the increase in mole fraction of surfactants.Rigid structure of drug makes adsorption easier.

    (4)ΔGmand ΔGadsvalues are negative and ΔGmis maximum for Tween 80 and minimum for DeTAB mixed systems whileis the highest for Tween 20 and lowest for DeTAB systems.

    (1) Zhu,D.;Zhao,G.Colloids Surf.1990,49,269.

    (2) Li,X.;Zhao,G.Colloids Surf.1992,64,185.

    (3)Yu,Z.;Zhang,X.;Xu,G.;Zhao,G.J.Phys.Chem.1990,94, 3675.

    (4) Hines,J.D.;Thomas,R.K.;Garrett,P.R.;Rennie,G.K.; Penfold,J.J.Phys.Chem.B 1997,101,9215.

    (5) Shilaoch,A.;Blankschtein,D.Langmuir 1998,14,7166.

    (6) Fontan,J.E.;Arnaud,P.;Chaumel,J.C.Int.J.Pharm.1991, 73,17.

    (7) Sjokvist,E.;Nystorm,C.;Alden,M.;Carram-Lelham,N.Int.J. Pharm.1992,79,123.

    (8) Florence,A.T.Techniques of Solubulization of Drugs; Yalkowsky,S.H.Ed.;Marcel Dekker Inc.:New York,1981.

    (9) Fahelebom,K.M.S.;Timoney,R.F.;Carrigan,O.I.Pharm. Res.1993,10,631.

    (10) Lundberg,B.J.Pharm.Sci.1994,83,72.

    (11) Paulsson,M.;Edsman,K.Pharm.Res.2001,18,1586.

    (12) Bhatt,P.A.;Dar,A.A.;Rather,G.M.J.Chem.Eng.Data 2008, 53,1271.

    (13)Attwood,D.;Florence,A.T.Surfactant Systems;Chapman and Hall:New York,1983.

    (14) Cheema,M.A.;Siddiq,M.;Barbosa,S.;Castro,E.;Egea,J.A.; Antelo,L.T.;Taboada,P.;Mosquera,V.Chemical Physics 2007,336,157.

    (15) Cid,E.Pharma.Acta Helv.1971,46,377.

    (16)Taboada,P.;Atwood,D.;Ruso,J.M.;Garcia,M.;Mosquera,V. Phys.Chem.Chem.Phys.2000,2,5175.

    (17) Katsung,B.G.Basic and Chemical Pharmacology,9th ed.; McGraw Hill:New York,2004.

    (18)Yeom,I.T.;Ghosh,M.M.;Cox,C.D.;Robinson,K.G. Environ.Sci.Technol.1995,29,3015.

    (19) Traguer,D.;Csordas,A.Biochem.J.,1987,244,605.

    (20)Acharya,K.R.;Bhattacharyya,S.C.;Moulik,S.P. J.Photochem.Photobiol.A:Chem.1999,122,47.

    (21) Mukherjee,P.;Mysels,K.J.Critical Micelle Concentration of Aqueous Surfactant Systems;NSRDS-NBS 36:Washington,D. C.,1971.

    (22) Mukherjee,P.Adv.Colloid Interface Sci.1967,1,242.

    (23) Rubingh,D.N.Solution Chemistry of Surfactants;Mittal,K. L.Ed.;Plenum:New York,1979.

    (24) Rosen,M.J.Surfactants and Interfacial Phenomena;Wiley-Interscience:New York,2004.

    (25) Hua,X.Y.;Rosen,M.J.J.Colloid Interface Sci.1982,87,469.

    (26) Rosen,M.J.;Aronson,S.Colloids Surf.1981,3,201.

    (27) Sugihara,G.;Miyazono,A.M.;Nagadome,S.;Oida,T.; Hayashi,Y.;Ko,J.S.J.Oleo Sci.2003,52,449.

    国产亚洲精品久久久久久毛片| 男人的好看免费观看在线视频 | 午夜视频精品福利| 国产精品免费一区二区三区在线| 免费人成视频x8x8入口观看| 免费久久久久久久精品成人欧美视频| 亚洲一区二区三区不卡视频| 人人妻,人人澡人人爽秒播| 深夜精品福利| 久9热在线精品视频| 男女高潮啪啪啪动态图| 一级黄色大片毛片| 国产又色又爽无遮挡免费看| 男女下面插进去视频免费观看| 国产麻豆69| 久久青草综合色| 久久精品91蜜桃| 国产高清激情床上av| 国产成人精品久久二区二区91| 嫁个100分男人电影在线观看| 日本撒尿小便嘘嘘汇集6| 免费av中文字幕在线| 午夜免费鲁丝| 中文字幕精品免费在线观看视频| 女同久久另类99精品国产91| 丝袜在线中文字幕| 亚洲国产精品999在线| 12—13女人毛片做爰片一| 欧美av亚洲av综合av国产av| 美女午夜性视频免费| 亚洲精品一二三| 久久久国产精品麻豆| 久久精品国产亚洲av高清一级| 91国产中文字幕| 午夜精品久久久久久毛片777| 狂野欧美激情性xxxx| 精品一区二区三区av网在线观看| 中文字幕av电影在线播放| 久久精品国产综合久久久| 午夜两性在线视频| 老熟妇仑乱视频hdxx| 男女做爰动态图高潮gif福利片 | ponron亚洲| 国产在线观看jvid| 午夜福利一区二区在线看| 十八禁网站免费在线| 女性生殖器流出的白浆| 国产亚洲精品久久久久5区| 免费看十八禁软件| bbb黄色大片| 色综合欧美亚洲国产小说| 国产aⅴ精品一区二区三区波| 精品国内亚洲2022精品成人| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区精品视频观看| 18禁观看日本| 免费少妇av软件| 亚洲成av片中文字幕在线观看| 久久久精品欧美日韩精品| av网站免费在线观看视频| 无人区码免费观看不卡| 黑人欧美特级aaaaaa片| 女人被躁到高潮嗷嗷叫费观| 亚洲狠狠婷婷综合久久图片| 欧美成人免费av一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲国产毛片av蜜桃av| 母亲3免费完整高清在线观看| 熟女少妇亚洲综合色aaa.| 色老头精品视频在线观看| 男女下面进入的视频免费午夜 | 日韩大码丰满熟妇| 可以在线观看毛片的网站| 纯流量卡能插随身wifi吗| 19禁男女啪啪无遮挡网站| 在线观看免费午夜福利视频| 99久久99久久久精品蜜桃| 国产av在哪里看| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| 777久久人妻少妇嫩草av网站| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 脱女人内裤的视频| 午夜精品国产一区二区电影| 日韩欧美免费精品| 熟女少妇亚洲综合色aaa.| av免费在线观看网站| 国产欧美日韩一区二区三| 黄片大片在线免费观看| 久久人妻av系列| 国产99白浆流出| 国产精品一区二区三区四区久久 | 欧美激情极品国产一区二区三区| 欧美黄色淫秽网站| 九色亚洲精品在线播放| 精品乱码久久久久久99久播| 国产欧美日韩综合在线一区二区| 国产亚洲精品一区二区www| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| xxx96com| 99国产极品粉嫩在线观看| 欧美激情高清一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品成人av观看孕妇| 欧美黄色片欧美黄色片| 很黄的视频免费| 欧美乱色亚洲激情| 日韩欧美一区视频在线观看| 午夜免费激情av| 精品国产乱子伦一区二区三区| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 国产成人啪精品午夜网站| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 曰老女人黄片| 99国产精品免费福利视频| 女警被强在线播放| 超碰成人久久| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站 | 1024香蕉在线观看| 国产极品粉嫩免费观看在线| 免费日韩欧美在线观看| 人人妻人人爽人人添夜夜欢视频| 免费不卡黄色视频| 亚洲成人免费电影在线观看| 午夜福利在线免费观看网站| 色尼玛亚洲综合影院| 日本黄色视频三级网站网址| 久久久国产精品麻豆| 久久精品国产99精品国产亚洲性色 | 性欧美人与动物交配| 欧美不卡视频在线免费观看 | 美女福利国产在线| 久久亚洲精品不卡| 波多野结衣一区麻豆| 日日摸夜夜添夜夜添小说| 91成人精品电影| 亚洲av第一区精品v没综合| 国内久久婷婷六月综合欲色啪| 一级a爱视频在线免费观看| 岛国视频午夜一区免费看| 在线观看免费午夜福利视频| 国产免费男女视频| 国产亚洲精品第一综合不卡| 久久久久久大精品| 欧美色视频一区免费| 国产精品 欧美亚洲| 看黄色毛片网站| 亚洲专区国产一区二区| 色在线成人网| 亚洲精品美女久久av网站| 亚洲一区二区三区欧美精品| 国产精品亚洲av一区麻豆| 99精品在免费线老司机午夜| 久久香蕉精品热| 国产真人三级小视频在线观看| 极品教师在线免费播放| 女警被强在线播放| 国产成人av激情在线播放| 国产精品免费视频内射| 久热这里只有精品99| 国产一区二区三区在线臀色熟女 | 国产97色在线日韩免费| 很黄的视频免费| 精品卡一卡二卡四卡免费| 国产三级在线视频| 欧美成人性av电影在线观看| 亚洲欧美精品综合久久99| 国产亚洲精品一区二区www| 免费看a级黄色片| av有码第一页| 久99久视频精品免费| 亚洲欧美一区二区三区久久| 在线视频色国产色| 久久久久久久久久久久大奶| 精品无人区乱码1区二区| 色综合婷婷激情| 大型黄色视频在线免费观看| 老汉色av国产亚洲站长工具| 久久天躁狠狠躁夜夜2o2o| 狂野欧美激情性xxxx| 精品久久久精品久久久| 大型黄色视频在线免费观看| 国产一区二区激情短视频| 国产色视频综合| av天堂久久9| 国产精品一区二区精品视频观看| 国产主播在线观看一区二区| 黄色视频,在线免费观看| 操出白浆在线播放| 亚洲精品av麻豆狂野| 国产成人欧美| 亚洲成av片中文字幕在线观看| 中文字幕色久视频| 久久香蕉精品热| 午夜福利一区二区在线看| 亚洲黑人精品在线| 亚洲第一欧美日韩一区二区三区| 超碰成人久久| 精品一区二区三卡| 淫秽高清视频在线观看| 欧美日韩福利视频一区二区| 在线观看免费高清a一片| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩精品亚洲av| 91国产中文字幕| 日韩大尺度精品在线看网址 | 女人被躁到高潮嗷嗷叫费观| 久久欧美精品欧美久久欧美| av视频免费观看在线观看| 色综合站精品国产| 欧美人与性动交α欧美精品济南到| 高清av免费在线| 国产熟女xx| 波多野结衣av一区二区av| 男女之事视频高清在线观看| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| 日韩免费av在线播放| 国产亚洲欧美在线一区二区| 免费在线观看黄色视频的| 99国产精品99久久久久| 悠悠久久av| 免费在线观看完整版高清| 中文字幕高清在线视频| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| 又紧又爽又黄一区二区| 18禁美女被吸乳视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品久久成人aⅴ小说| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费 | 亚洲黑人精品在线| 无限看片的www在线观看| 国产精品二区激情视频| 欧美成人免费av一区二区三区| 久久久久久人人人人人| 十八禁人妻一区二区| 国产精品久久久久成人av| 国产精品二区激情视频| 中文字幕最新亚洲高清| 午夜a级毛片| 久久久精品国产亚洲av高清涩受| 成人av一区二区三区在线看| 久久精品亚洲av国产电影网| 一级a爱视频在线免费观看| 亚洲性夜色夜夜综合| 久久午夜综合久久蜜桃| 80岁老熟妇乱子伦牲交| 高清av免费在线| 神马国产精品三级电影在线观看 | 自线自在国产av| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 成在线人永久免费视频| 精品高清国产在线一区| 中文字幕人妻丝袜一区二区| 国产精品一区二区在线不卡| 精品人妻在线不人妻| e午夜精品久久久久久久| 欧美日韩黄片免| 男女下面插进去视频免费观看| 中文字幕高清在线视频| 国产午夜精品久久久久久| 成人18禁在线播放| 亚洲片人在线观看| 高清av免费在线| av天堂在线播放| 久久午夜亚洲精品久久| 黄色成人免费大全| 夜夜爽天天搞| 久久久久国产精品人妻aⅴ院| 亚洲中文av在线| 国产aⅴ精品一区二区三区波| 在线观看一区二区三区激情| e午夜精品久久久久久久| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| 动漫黄色视频在线观看| 99riav亚洲国产免费| www日本在线高清视频| 久久久久久大精品| 午夜免费鲁丝| 岛国视频午夜一区免费看| 午夜久久久在线观看| 亚洲精品一区av在线观看| 欧美色视频一区免费| 又紧又爽又黄一区二区| 1024视频免费在线观看| x7x7x7水蜜桃| 日韩精品青青久久久久久| 男人的好看免费观看在线视频 | 久久香蕉激情| 不卡一级毛片| 在线观看免费日韩欧美大片| 黄网站色视频无遮挡免费观看| 99国产精品一区二区蜜桃av| 女性被躁到高潮视频| 黑丝袜美女国产一区| 欧美久久黑人一区二区| 日韩欧美一区视频在线观看| 日韩欧美在线二视频| 波多野结衣av一区二区av| 精品国产一区二区久久| ponron亚洲| 国产av又大| 亚洲三区欧美一区| 十八禁人妻一区二区| 水蜜桃什么品种好| 久久亚洲真实| 水蜜桃什么品种好| 日韩av在线大香蕉| 啦啦啦在线免费观看视频4| 欧美在线黄色| 淫秽高清视频在线观看| 亚洲激情在线av| 在线观看日韩欧美| 超碰成人久久| 91麻豆精品激情在线观看国产 | 亚洲精品久久午夜乱码| 波多野结衣高清无吗| 高清黄色对白视频在线免费看| 夜夜躁狠狠躁天天躁| 亚洲全国av大片| 欧美日韩乱码在线| 欧美久久黑人一区二区| 亚洲一区二区三区色噜噜 | 操美女的视频在线观看| 极品人妻少妇av视频| 久久精品亚洲精品国产色婷小说| 久久狼人影院| 在线观看午夜福利视频| 99国产精品99久久久久| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全免费视频| av天堂久久9| av天堂在线播放| 亚洲五月天丁香| 国产激情欧美一区二区| 国产亚洲精品第一综合不卡| 久久精品成人免费网站| 色综合婷婷激情| av中文乱码字幕在线| 亚洲 国产 在线| 欧美日韩亚洲综合一区二区三区_| 中出人妻视频一区二区| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 日韩大尺度精品在线看网址 | 国产无遮挡羞羞视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | av天堂在线播放| 高清毛片免费观看视频网站 | 国产又爽黄色视频| 一区在线观看完整版| 亚洲av片天天在线观看| 欧美黑人精品巨大| 99热国产这里只有精品6| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 精品久久久久久成人av| 国产精品综合久久久久久久免费 | 亚洲成av片中文字幕在线观看| 女人精品久久久久毛片| 亚洲欧美日韩另类电影网站| av有码第一页| 国产成人啪精品午夜网站| 大型黄色视频在线免费观看| 电影成人av| 国产精品一区二区免费欧美| 亚洲五月色婷婷综合| 视频区欧美日本亚洲| 丰满人妻熟妇乱又伦精品不卡| 天天影视国产精品| 桃红色精品国产亚洲av| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美三级三区| 午夜成年电影在线免费观看| 在线观看一区二区三区| 国产av一区在线观看免费| 亚洲视频免费观看视频| 人人澡人人妻人| 国产精品二区激情视频| 看片在线看免费视频| 国产一区二区激情短视频| 一区二区三区国产精品乱码| av在线天堂中文字幕 | 国产一区二区在线av高清观看| 精品国内亚洲2022精品成人| 久久久久久久午夜电影 | 99国产精品一区二区蜜桃av| 侵犯人妻中文字幕一二三四区| 国产成人影院久久av| 亚洲中文字幕日韩| 69精品国产乱码久久久| 亚洲精品在线观看二区| 99久久综合精品五月天人人| 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久| 欧美午夜高清在线| 高潮久久久久久久久久久不卡| 亚洲男人天堂网一区| 国产人伦9x9x在线观看| 国产成人系列免费观看| 日韩三级视频一区二区三区| 成人黄色视频免费在线看| 手机成人av网站| av在线天堂中文字幕 | 国产一区二区三区视频了| 色精品久久人妻99蜜桃| 欧美乱色亚洲激情| 欧美激情极品国产一区二区三区| 久久久久精品国产欧美久久久| 神马国产精品三级电影在线观看 | 免费一级毛片在线播放高清视频 | 免费在线观看完整版高清| 一级作爱视频免费观看| 欧美不卡视频在线免费观看 | 欧洲精品卡2卡3卡4卡5卡区| 天天影视国产精品| 首页视频小说图片口味搜索| 久久精品91蜜桃| 交换朋友夫妻互换小说| 亚洲男人的天堂狠狠| 日韩成人在线观看一区二区三区| 国产极品粉嫩免费观看在线| 怎么达到女性高潮| 成人三级黄色视频| 国产精品秋霞免费鲁丝片| 国产成人欧美| 91九色精品人成在线观看| 精品一区二区三区视频在线观看免费 | 免费在线观看完整版高清| 欧美中文综合在线视频| 亚洲国产精品sss在线观看 | 一本综合久久免费| 国产免费现黄频在线看| 亚洲精品av麻豆狂野| 日本精品一区二区三区蜜桃| 国产精品久久电影中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 操美女的视频在线观看| 亚洲专区中文字幕在线| 午夜免费激情av| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 成人永久免费在线观看视频| 视频区欧美日本亚洲| 看免费av毛片| 国产精品免费一区二区三区在线| 免费久久久久久久精品成人欧美视频| 99久久人妻综合| 一区二区三区精品91| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 久久青草综合色| 他把我摸到了高潮在线观看| 亚洲欧美精品综合久久99| 国产三级在线视频| 国产极品粉嫩免费观看在线| 亚洲精品国产区一区二| 又大又爽又粗| a级毛片黄视频| 一夜夜www| 好看av亚洲va欧美ⅴa在| 欧美激情极品国产一区二区三区| 欧美久久黑人一区二区| 他把我摸到了高潮在线观看| 欧美另类亚洲清纯唯美| 国产野战对白在线观看| 视频区图区小说| 国产欧美日韩一区二区三区在线| 国产色视频综合| 亚洲三区欧美一区| 色精品久久人妻99蜜桃| 国产精品1区2区在线观看.| 男女下面插进去视频免费观看| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 91在线观看av| 免费看a级黄色片| 露出奶头的视频| 免费观看精品视频网站| 久久久水蜜桃国产精品网| 亚洲 欧美一区二区三区| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 国产男靠女视频免费网站| 首页视频小说图片口味搜索| 精品久久久久久,| www国产在线视频色| 亚洲成人免费av在线播放| 久99久视频精品免费| 好男人电影高清在线观看| 三级毛片av免费| 国产av在哪里看| 亚洲一卡2卡3卡4卡5卡精品中文| 激情在线观看视频在线高清| cao死你这个sao货| 国产精品一区二区三区四区久久 | 国产无遮挡羞羞视频在线观看| 久久精品亚洲av国产电影网| 国产亚洲av高清不卡| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 成人黄色视频免费在线看| 色在线成人网| 久久久久久久久免费视频了| 俄罗斯特黄特色一大片| 亚洲五月色婷婷综合| 美女 人体艺术 gogo| 在线观看一区二区三区| 丁香六月欧美| 母亲3免费完整高清在线观看| 国产精品综合久久久久久久免费 | 91老司机精品| 免费观看人在逋| 亚洲三区欧美一区| 欧美丝袜亚洲另类 | 1024视频免费在线观看| 亚洲av成人不卡在线观看播放网| 亚洲国产中文字幕在线视频| 黄色视频不卡| 9热在线视频观看99| 久9热在线精品视频| 日本欧美视频一区| 亚洲 欧美一区二区三区| 亚洲一码二码三码区别大吗| 悠悠久久av| 成熟少妇高潮喷水视频| 久久香蕉国产精品| 九色亚洲精品在线播放| 精品一区二区三区四区五区乱码| 男女做爰动态图高潮gif福利片 | 手机成人av网站| 欧美日韩福利视频一区二区| 亚洲国产精品999在线| 人人妻人人添人人爽欧美一区卜| 日本免费a在线| 在线观看www视频免费| 十分钟在线观看高清视频www| a级片在线免费高清观看视频| 91九色精品人成在线观看| 大香蕉久久成人网| 欧美av亚洲av综合av国产av| 精品国产乱子伦一区二区三区| 天堂中文最新版在线下载| 免费在线观看影片大全网站| 国产亚洲欧美精品永久| 成年人免费黄色播放视频| 色婷婷久久久亚洲欧美| 久久香蕉激情| 男女下面进入的视频免费午夜 | 精品无人区乱码1区二区| 欧美午夜高清在线| 亚洲一区二区三区不卡视频| 国产精品成人在线| 国产一区在线观看成人免费| 亚洲色图综合在线观看| 亚洲国产欧美一区二区综合| 成人国产一区最新在线观看| 天堂影院成人在线观看| 欧美日韩乱码在线| 亚洲国产欧美日韩在线播放| 美女扒开内裤让男人捅视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产1区2区3区精品| 国产精品久久视频播放| 新久久久久国产一级毛片| 91老司机精品| 交换朋友夫妻互换小说| 人人妻,人人澡人人爽秒播| 久久国产精品人妻蜜桃| 欧美成人性av电影在线观看| 男人舔女人的私密视频| 91大片在线观看| 亚洲av第一区精品v没综合| 日本免费一区二区三区高清不卡 | 黄网站色视频无遮挡免费观看| 成年女人毛片免费观看观看9| 国产午夜精品久久久久久| 久久国产精品影院| 欧美丝袜亚洲另类 | 三级毛片av免费| 宅男免费午夜| 欧美性长视频在线观看| 视频区图区小说| a级片在线免费高清观看视频| 久久精品亚洲熟妇少妇任你| 在线观看免费午夜福利视频| 99久久人妻综合| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| 丝袜人妻中文字幕| 黑人操中国人逼视频| 嫩草影院精品99| 一级a爱视频在线免费观看| 麻豆国产av国片精品| 最好的美女福利视频网| 国产精品久久电影中文字幕| 男女床上黄色一级片免费看| 色综合婷婷激情| 一夜夜www| 欧美精品亚洲一区二区| 一进一出好大好爽视频| 日本三级黄在线观看| 19禁男女啪啪无遮挡网站| 美女国产高潮福利片在线看| 成年人黄色毛片网站|