• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米碳纖維載鉑作為質(zhì)子交換膜燃料電池陽極催化劑

    2011-12-11 09:09:56王喜照鄭俊生馬建新
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:魚骨管式同濟(jì)大學(xué)

    王喜照 符 蓉 鄭俊生 馬建新

    (1同濟(jì)大學(xué)新能源汽車工程中心,上海201804; 2同濟(jì)大學(xué)汽車學(xué)院,上海201804; 3聯(lián)合汽車電子有限公司技術(shù)中心,上海201206;4華東理工大學(xué)資源與環(huán)境工程學(xué)院,上海200237)

    納米碳纖維載鉑作為質(zhì)子交換膜燃料電池陽極催化劑

    王喜照1,3符 蓉1,4鄭俊生1,2,*馬建新1,2

    (1同濟(jì)大學(xué)新能源汽車工程中心,上海201804;2同濟(jì)大學(xué)汽車學(xué)院,上海201804;3聯(lián)合汽車電子有限公司技術(shù)中心,上海201206;4華東理工大學(xué)資源與環(huán)境工程學(xué)院,上海200237)

    采用化學(xué)還原法合成了微結(jié)構(gòu)不同的納米碳纖維(板式、魚骨式、管式)載鉑催化劑(分別記為Pt/p-CNF、Pt/f-CNF、Pt/t-CNF).通過高分辨透射電鏡(HRTEM)和X射線衍射(XRD)等分析技術(shù)對催化劑的微觀結(jié)構(gòu)進(jìn)行了表征,并利用循環(huán)伏安(CV)法分析了催化劑的電化學(xué)比表面積(ESA).在此基礎(chǔ)上,制備了膜電極(MEA),通過單電池測試了催化劑的電催化性能.結(jié)果表明:鉑納米粒子在不同的納米碳載體上表現(xiàn)出不同的粒徑,在板式、魚骨式和管式納米碳纖維上的鉑納米粒子平均粒徑分別為2.4、2.7和2.8 nm.板式納米碳纖維載鉑催化劑作單電池陽極時(shí)表現(xiàn)出良好的電催化性能,其對應(yīng)的最高功率密度可達(dá)0.569 W·cm-2,高于魚骨式納米碳纖維載鉑催化劑和管式納米碳纖維載鉑催化劑對應(yīng)的最高功率密度(分別為0.550和0.496 W·cm-2).同時(shí),也制備了碳黑(Pt/XC-72)載鉑催化劑.相比于Pt/XC-72,納米碳纖維載體上的鉑納米顆粒有較小的粒徑、較好的分散和較高的催化活性,說明納米碳纖維是質(zhì)子交換膜燃料電池(PEMFCs)催化劑的良好載體.

    催化劑;納米碳纖維;鉑納米粒子;催化活性;燃料電池

    1 Introduction

    Proton exchange membrane fuel cells(PEMFCs)are considered to be one of the most ideal options for energy conservation and environment protection due to their high efficiency and zero emission.However,one of the significant obstacles for the development of PEMFCs is the high cost of noble metals used as electrode catalysts such as Pt.At a low temperature, Pt is an excellent catalyst for hydrogen oxidation reaction (HOR),1but Pt is at a very low level of abundance,resulting in prohibitive cost for the usage of Pt catalyst.In order to improve the efficiency of Pt usage,Pt supported on carbon material provides a practical solution.2-4It is well known that the electrocatalytic activity of Pt particles is associated with the carbon support.5,6Although the underlying mechanisms of the effect on activity are still not well understood,it is suspected that the microstructure and electronic properties of carbon support may be well responsible.

    Due to the unique microstructure properties and high electric conductivity,7,8carbon nanofibers(CNFs)have been considered to be promising catalyst support materials.9-12According to the different arrangement of grapheme layers,CNFs can be divided into platelet CNF(p-CNF),tubular CNF(t-CNF),and fish-bone CNF(f-CNF).13The graphene layers of p-CNF are vertical to the fiber axis,and the exposed surface is mainly occupied by edge atoms,while the grapheme layers of t-CNF are parallel to the fiber axis and many basal atoms are exposed. The graphene layers of f-CNF are inclining to the fiber axis, and the ratio of edge atoms to basal atoms can be adjusted by controlling the angle of graphene layers to the fiber axis.It was reported that the microstructure of CNFs can be tailored by controlling the reaction conditions,which made possible to adjust the deposition of and interaction with the metal nanoparticles.14-17Gangeri et al18deposited Pt nanoparticles by incipient wetness impregnation on CNF surface and found that Pt/CNF gave a better performance than that of Pt/XC-72 as anode catalyst.Yuan and Ryu19demonstrated that catalyst supported on CNF showed an improved activity compared to that on carbon nanotubes(CNTs).They believed the improvement in performance was resulted from the specific crystallographic orientations of metal nanoparticles when metal nanoparticles dispersed onthehighlytailoredgraphitenanofibermicrostructures.

    In this study,Pt nanoparticles supported on the p-CNF, t-CNF,and f-CNF were synthesized by a chemical reduction method,and their catalytic activities were investigated.Furthermore,Pt nanoparticles supported on carbon black(Pt/XC-72) were also prepared and investigated.In order to evaluate catalysts,membrane electrode assembly(MEA)with an apparent area of 50 cm2was fabricated and tested in a single cell testing platform.

    2 Experimental

    2.1 Catalyst preparation

    CNFs with different structures,i.e.,p-CNF,f-CNF,and t-CNF,were synthesized by catalytic chemical vapor deposition(CCVD)method.Details of CNFs synthesis procedure were described.20Pt nanoparticles supported on the p-CNF, t-CNF,or f-CNF were prepared via an ethylene glycol(EG) chemical reduction method.21In brief,30 mL ethylene glycol, 0.25 g CNF,and 4.2 mL H2PtCl6ethylene glycol solution(with H2PtCl6concentration of 0.077 mol·L-1)were mixed in a 100 mL quartz beaker.The mixture was ultrasonicated and stirred for 4 h.Then,2 mL NaOH ethylene glycol solution(with NaOH concentration of 0.5 mol·L-1)was added.The mixture was stirred and refluxed at a temperature of 120°C for 3 h.After that,the pH value of the mixture adjusted to 3 by adding 5 mol· L-1HCl.The resultant was washed and dried in a vacuum oven at 70°C for 24 h.Finally,the required catalyst with a nominal Pt loading of 40%(w)on CNF was obtained.Pt/XC-72 was also prepared in the same way.The as-prepared catalysts were markedas Pt/p-CNF,Pt/f-CNF,andPt/t-CNF,respectively.

    2.2 Physical characterization

    The mass fraction of Pt in Pt/C catalyst was detected by inductively coupled plasma(ICP,7500A,Agilent,USA).The morphologies of catalyst were characterized by high resolution transmissionelectronmicroscope(HRTEM,JEOL TEM 2010),which was operated at 200 kV.The X-ray diffraction (XRD)patterns of crystalline phase were collected on a D/max 2550 powder diffractometer using Cu Kαradiation.The working voltage was 40 kV,and the current was 40 mA.The intensity data were collected in a 2θ range of 10°to 100°with a scan rate of 0.02(°)·min-1.

    2.3 Preparation and modification of electrode

    Electrochemical measurements were performed in a CHI 730C electrochemical workstation (CHI Instrument,Inc., USA)in a 0.5 mol·L-1HClO4solution.The electrochemical surface area(ESA)was measured by cyclic voltammetry(CV) method.The working electrode was glassy carbon(GC,5 mm in diameter)coated with as-prepared catalyst.A saturated calomel reference electrode(SCE)was used for all electrochemical measurements.A Pt clump was used as the counter electrode. The working electrode was prepared according to the following procedures.The as-prepared catalyst was dispersed ultrasonically in a solution of Nafion(Dupont)and methanol to obtain a homogenous black suspension with a concentration of 2 g·L-1.Then 10 μL of the mixture was pipetted onto the surface of glassy carbon(GC)electrode which was polished to a mirror finish with 0.05 μm of alumina pastes.After drying,the working electrode with a Pt content of 0.04 mg·cm-2on the surface of GC was ready.Before testing,the electrolyte was bubbled with nitrogen for 30 min,and the current-potential curve was recorded in the presence of nitrogen.The scan rate was 0.1 V·s-1with the scanning potential range of 1.0 to-0.2 V(vs SCE).

    2.4 Fabrication of MEA and single cell test

    MEA fabricated by catalyst coated in membrane(CCM) method.Appropriate amounts of catalyst powder were mixed with a solution of Nafion(the mass ratio was 5%)and isopropyl alcohol,then the mixture was dispersed ultrasonically to form a homogeneous ink(the mass ratio of catalyst to Nafion was 3:1).After that,the catalyst ink was sprayed onto a 50 cm2of Nafion membrane(NR212).The other side of membrane was sprayed in the same way.Nafion membrane with catalyst on both sides was then sandwiched between two gas diffusion layers(Toray TGP-H-090).Four pieces of MEA were fabricated with prepared Pt/p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72 as anode catalyst and commercial Pt/C(Johnson Matthey,HiSPEC 4000)as cathode catalyst.Both sides of the Pt loading were 0.4 mg·cm-2for each MEA.

    The measurement was carried out in a single cell testing platform.The single cell was fed by pure hydrogen and compressed air with the pressure of 80 kPa in both inlets.The stechiometry coefficients of hydrogen and air were 1.3 and 2.5, and the flow rate was adjusted according to the current by a mass flow controller automatically.Before entering the cell,hydrogen and air were humidified in a bubbling humidifier.The cell was operated at 80°C,which was controlled by a thermostatic water bath.After a break-in period,polarization curve was recorded.

    3 Results and discussion

    3.1 Textural properties of CNFs and XC-72

    Table 1 Textural properties of CNFs and XC-72

    Table 1 shows the textural properties of CNFs and XC-72. The specific surface areas(S)of CNFs are in the range of 86.6-204.7 m2·g-1.The specific surface area of p-CNF is larger than that of f-CNF and t-CNF because the graphene layers of p-CNF are vertical to the fiber axis and some rough surfaces are formed.The surface area of XC-72 is 193.5 m2·g-1,larger than those of t-CNF and f-CNF.Table 1 also shows that the pore volumes of the four supports are close,but the micropore volumes are much different.The micropores are very small and can be neglected and the mesopores are the dominant pore structure for all CNFs.But for XC-72,the micropore volume is 0.12 cm3·g-1.The mesopores can promote the diffusion,and this is a CNF?s distinctive advantage for their application in electrocatalysis because the mass transportation is expedited.

    3.2 Physico-chemical properties of catalysts

    The ICP result demonstrates that the mass fractions of Pt for all the prepared catalyst are close to the theoretical values with the mass ratio of 40%.HRTEM micrographs of CNFs are displayed in Fig.1.It is found that the graphene layers of p-CNF are vertical to the fiber axis,while those of t-CNF are parallel to the fiber axis,and the graphene layers of f-CNF are inclining to the fiber axis.HRTEM micrographs of Pt/CNFs and Pt/ XC-72 are displayed in Fig.2.Generally,metal nanoparticles show no tendency to aggregate and are good dispersed on the surface of CNFs and XC-72.The Pt particle sizes are obtained by measuring the nanoparticles on HRTEM images.Nearly 300 nanoparticles in random regions are measured to ensure statistically significant representation of the nanoparticles sizes.The corresponding histograms of size distribution are shown in Fig.3,which reveals that the particle size distribution for each catalyst is rather narrow and exhibits the features of Gaussian distribution.The average size for each catalyst is calculated.It can be found that Pt particle size changes with the changing of support.The average sizes of Pt nanoparticles on p-CNF,f-CNF,and t-CNF are 2.4,2.7,and 2.8 nm,respective-ly.All of the sizes are smaller than that of Pt nanoparticles on XC-72(3.1 nm).CNFs have highly tailored graphite nanofiber structures,while XC-72 is made of amorphous carbon.This may be a reason that most of Pt nanoparticles on CNFs are smaller than those on XC-72.22,23CNFs expose many edge atoms,and these edge atoms contain large quantity ruptured chemical bonds,which may influence the Pt particle size.24Compared with f-CNF and t-CNF,p-CNF has a higher ratio of edge atoms to basal atoms,13and this may contribute to the smaller particle size on p-CNF than those on f-CNF and t-CNF.

    Fig.1 TEM images of p-CNF(a),f-CNF(b),and t-CNF(c)

    Fig.2 HRTEM images of Pt/p-CNF(a),Pt/f-CNF(b),Pt/t-CNF(c),and Pt/XC-72(d)

    XRD patterns of Pt/CNFs and Pt/XC-72 are presented in Fig.4.The first peak at 2θ near 26.4°can be attributed to the graphite structure of supports.The major peaks locate at 2θ of 39.7°,46.2°,67.4°,and 81.2°are ascribed to Pt(111),Pt(200),Pt(220),and Pt(311)characteristic diffraction peaks,respectively.These characteristic diffraction peaks agree well with the report.25The fitted Pt(220)plane is isolated from the diffraction peaks of carbon support and is used to calculate the metal particle size according to the Scherrer formula.26The calculation results are listed in Table 2.It can be found that the XRD results are consistent with those obtained from Fig.2.

    Fig.3 Histograms of Pt particle size distribution for Pt/p-CNF(a),Pt/f-CNF(b),Pt/t-CNF(c),and Pt/XC-72(d)d:average size

    Fig.4 XRD patterns of Pt/p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72

    Fig.5 presents the CV curves of Pt/CNFs and Pt/XC-72.The results exhibit the typical behavior regarding the hydrogen and oxide regions for Pt.27,28As shown in Fig.5,well-defined hydrogen adsorption/desorption characteristics are observed for the four kinds of as-prepared catalyst.A weak adsorption peak in the potential range from 0.05 to-0.1 V and a strong adsorption peak located between-0.1 and-0.2 V are observed during the negative-going potential scan,assigned to weakly andstrongly bonded hydrogen adatoms,respectively.The corresponding desorption peaks are observed in the reverse potential scan.The integrated charge in the hydrogen absorption region of CV curve is used to calculate the electrochemical surface area(ESA),which representing the intrinsic electrocatalytic activity of a catalyst.Based on a monolayer hydrogen adsorption charge of 0.21 mC·cm-2on polycrystalline Pt and the integrated charge in the hydrogen absorption region of CV curve,29the ESA can be calculated.Furthermore,Based on that Pt nanoparticle is spherical structure,the chemical surface area (CSA)and the Pt utilization efficiency are also calculated using the following equations:

    Table 2 Comparison of particle size,electrochemical surface area(ESA),chemical surface area(CSA),and Pt utilization of Pt/ p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72

    where v is the linear potential scan rate(V·s-1),i is the current (A),E is the electrode potential(V),mcatalystis the mass of cata-lyst deposited on the electrode(8 μg),and Qois the charge involved during the adsorption of a monolayer of atomic hydrogen on a polyoriented platinum surface(0.21 mC·cm-2).ρ represents Pt density(21.4 g·cm-3),and d is the average size of Pt obtained from XRD analysis.The corresponding ESA,CSA, and Pt utilization efficiency are summarized in Table 2.It can be seen that the ESA increases with the decreases of Pt particle size.The ESA for Pt/p-CNF is 53.3 m2·g-1,which is much larger than those for Pt/f-CNF(43.7 m2·g-1)and Pt/t-CNF(39.4 m2·g-1),mainly resulting from the small Pt particle size.The Pt utilization for Pt/p-CNF is 45.6%,which is higher than that for Pt/f-CNF(42.1%)and Pt/t-CNF(39.3%),this may contribute to a better PEMFC performance.

    Fig.5 Cyclic voltammetric analysis of Pt/p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72 in 0.5 mol·L-1HClO4solution saturated by nitrogen at a scan rate of 0.1 V·s-1

    3.3 Performance of PEMFC

    Fig.6 shows the polarization curves of single cell with the as-prepared catalysts as anode catalysts.It can be observed from Fig.6 that the open-circuit potentials,for all the catalysts samples,are almost kept at high level of 0.96 V regardless of the difference of support.All the current densities decrease with the increasing of the potential over the whole current density region.Pt/p-CNF gives the best performance in the high current density region,indicating the highest electrocatalytic activity.The maximum power density for Pt/p-CNF is 0.569 W·cm-2,which is higher than those for Pt/f-CNF(0.550 W· cm-2)and Pt/t-CNF(0.496 W·cm-2).This may be the reason that the special mesopore structure of p-CNF,a larger ESA and a higher Pt utilization efficiency of Pt/p-CNF.

    4 Conclusions

    Pt/p-CNF,Pt/f-CNF,and Pt/t-CNF were synthesized by a chemical reduction method.The structure of support is demonstrated to be the crucial factors influencing the Pt particle size and the catalytic activity for HOR.The maximum power density is 0.569 W·cm-2for Pt/p-CNF,which is higher than those observed for Pt/f-CNF(0.550 W·cm-2)and Pt/t-CNF(0.496 W·cm-2).Furthermore,it is found that Pt nanoparticles supported on CNFs has been proven to possess smaller particle size than those on XC-72,and this proved that CNFs could be an efficient electrocatalyst support for PEMFCs.

    1 Arico,A.S.;Srinivasan,S.;Antonucci,V.Fuel Cells 2001,1,133.

    2 Yu,J.S.;Kang,S.;Yoon,S.B.;Chai,G.S.J.Am.Chem.Soc. 2002,124,9382.

    3 Chai,G.S.;Shin,I.S.;Yu,J.S.Adv.Mater.2004,16,2057.

    4 Fang,B.;Kim,M.S.;Yu,J.S.Appl.Catal.B-Environ.2008,84, 100.

    5 Dicks,A.J.Power Sources 2006,156,128.

    6 Kong,K.;Choi,Y.;Ryu,B.;Lee,J.;Chang,H.Mater.Sci.Eng.C 2006,26,1207.

    7 Park,C.;Baker,R.J.Phys.Chem.B 1999,103,2453.

    8 Steigerwalt,E.S.;Deluga,G.A.;Cliffel,D.E.;Lukehart,C.M. J.Phys.Chem.B 2001,105,8097.

    9 Rodriguez,N.M.;Chambers,A.;Baker,R.Langmuir 1995,11, 3862.

    10 Sun,X.;Li,R.;Villers,D.;Dodelet,J.P.;Desilets,S.Chem. Phys.Lett.2003,379,99.

    11 Salgado,J.R.C.;Antolini,E.;Gonzalez,E.R.J.Power Sources 2004,138,56.

    12 Francisco,A.;Oscar,M.;María,J.;Rafael,M.;Ana,L.;José,S.; Enrique,H.;Antonio,A.Electrochem.Commun.2009,11,1081.

    13 Zheng,J.S.;Zhang,X.S.;Li,P.;Zhou,X.G.;Yuan,W.K. Catal.Today 2008,131,270.

    14 Calvillo,L.;Lázaro,M.J.;Suelves,I.;Echegoyen,Y.;Bordejé, E.G.;Moliner,R.;Nanosci,J.Nanotechnology 2009,20,1.

    15 Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Phys.Chem. B 2002,106,760.

    16 Antolini,E.Appl.Catal.B 2009,88,1.

    17 Zheng,J.S.;Wang,X.Z.;Qiao,J.L.;Yang,D.J.;Li,B.;Li,P.; Lv,H.;Ma,J.X.Electrochem.Commun.2010,12,27.

    18 Gangeri,M.;Centi,G.;La Malfa,A.;Perathoner,S.;Vieira,R.; Pham-Huu,C.;Ledoux,M.J.Catal.Today 2005,102,50.

    19 Yuan,F.;Ryu,H.Nanotechnology 2004,15,596.

    20 Zheng,J.S.;Zhang,X.S.;Li,P.;Zhu,J.;Zhou,X.G.;Yuan,W. K.Electrochem.Commun.2007,9,895.

    21 Li,B.;Qiao,J.L.;Zheng,J.S.;Yang,D.J.;Ma,J.X.Int.J. Hydrog.Energy 2009,34,5144.

    22 Zheng,J.S.Microstructure Effect of Carbon Nanofibers on Electrocatalysis:Oxygen Reduction Properties on Cathode.Ph. D.Dissertation,East China University of Science and Technology,Shanghai,2008.

    23 He.Z.B.;Chen,J.H.;Liu,D.Y.;Zhou,H.H.;Kuang,Y.F. Diamond Relat.Mater.2004,13,1764.

    24 Augustine,R.L.Heterogeneous Catalysis for the Synthetic Chemist;Marcel Dekker:New York,1996;p 170.

    25 Li,W.Z.;Liang,H.H.;Zhou,W.J.;Qiu,J.H.;Zhou,Z.H.;Sun, G.Q.;Xin,Q.J.Phys.Chem.B 2003,107,6292.

    26 Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995,154, 98.

    27 Perez,J.;Gonzalez,E.R.;Ticianelli,E.A.Electrochim.Acta 1998,44,1329.

    28 Lima,F.H.B.;Ticianelli,E.A.Electrochim.Acta 2004,49,4091.

    29 Liu,Z.L.;Lee,J.Y.;Han,M.;Chen,W.X.;Gan,L.M.J.Mater. Chem.2002,12,2453.

    March 4,2011;Revised:May 12,2011;Published on Web:June 16,2011.

    Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells

    WANG Xi-Zhao1,3FU Rong1,4ZHENG Jun-Sheng1,2,*Ma Jian-Xin1,2
    (1Clean Energy Automotive Engineering Center,Tongji University,Shanghai,201804,P.R.China;2School of Automotive Studies, Tongji University,Shanghai,201804,P.R.China;3Technical Center,United Automotive Electronic Systems Co.,Ltd.,Shanghai, 201206,P.R.China;4School of Resource and Environment Engineering,East China University of Science and Technology, Shanghai,200237,P.R.China)

    Pt nanoparticles supported on carbon nanofibers(Pt/CNFs)with different microstructure,i.e., platelet CNF(Pt/p-CNF),fish-bone CNF(Pt/f-CNF),and tubular CNF(Pt/t-CNF)were synthesized by a chemical reduction method.X-ray diffraction(XRD)and high resolution transmission electron microscope (HRTEM)were applied to characterize the structure of the as-prepared catalysts.The electrochemical surface area(ESA)was studied by cyclic voltammetry(CV).Membrane electrode assemblies(MEAs)with the as-prepared catalysts were fabricated and tested.We found that Pt nanoparticles showed different particle size and dispersion on the three kinds of CNF supports and the mean size of the Pt nanoparticles on p-CNF,f-CNF,and t-CNF was 2.4,2.7,and 2.8 nm,respectively.Single cell testing indicated that the cell with Pt/p-CNF as the anode catalyst gave better performance compared to Pt/f-CNF and Pt/t-CNF. The maximum power density was 0.569 W·cm-2for Pt/p-CNF,which was higher than that for Pt/f-CNF (0.550 W·cm-2)and Pt/t-CNF(0.496 W·cm-2).Furthermore,Pt nanoparticles supported on carbon black (Pt/XC-72)were also prepared.Pt nanoparticles supported on CNFs have been shown to have a smaller particle size and better dispersion than those on XC-72,and this proves that CNFs can be an efficient electrocatalyst support for proton exchange membrane fuel cells(PEMFCs).

    Catalyst;Carbon nanofiber;Pt nanoparticles;Catalytic activity;Fuel cell

    ?Corresponding author.Email:jszheng@#edu.cn;Tel:+86-21-69583891;Fax:+86-21-69589121.

    The project was supported by the National Natural Science Foundation of China(21006073),Shanghai Rising-Star Program,China(11QA1407200), Shanghai LeadingAcademic Discipline Project,China(B303)and Open-Project Program of the State Key Laboratory of Chemical Engineering, China(SKL-ChE-08C07).

    國家自然科學(xué)基金(21006073)、上海市青年科技啟明星計(jì)劃(11QA1407200)、上海市重點(diǎn)學(xué)科(B303)和化學(xué)工程聯(lián)合國家重點(diǎn)實(shí)驗(yàn)室開放基金(SKL-ChE-08C07)資助項(xiàng)目

    O643

    猜你喜歡
    魚骨管式同濟(jì)大學(xué)
    管式太陽能集熱器的顆粒換熱模擬
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    奶奶愛拼魚骨畫
    一星期沒換水的夢境
    詩潮(2018年3期)2018-03-26 12:29:30
    魚骨千萬別丟 它能幫你增壽
    工友(2016年4期)2016-09-18 05:57:49
    管式空氣空預(yù)器泄漏分析及改進(jìn)
    平推流管式連續(xù)反應(yīng)器合成耐熱ABS樹脂的研究
    中國塑料(2015年7期)2015-10-14 01:02:39
    国产国语露脸激情在线看| 999久久久精品免费观看国产| 欧美精品高潮呻吟av久久| 亚洲精品国产精品久久久不卡| 国产黄色免费在线视频| 欧美少妇被猛烈插入视频| 热99国产精品久久久久久7| 伊人久久大香线蕉亚洲五| 亚洲久久久国产精品| 电影成人av| 精品国产一区二区久久| 黄色毛片三级朝国网站| 欧美 日韩 精品 国产| 欧美老熟妇乱子伦牲交| 黄片大片在线免费观看| 青青草视频在线视频观看| 亚洲欧美精品综合一区二区三区| 巨乳人妻的诱惑在线观看| 久久精品人人爽人人爽视色| 午夜精品久久久久久毛片777| 两个人看的免费小视频| 亚洲精品第二区| 精品一品国产午夜福利视频| 满18在线观看网站| 国产成人欧美在线观看 | 午夜老司机福利片| 大片免费播放器 马上看| 欧美日韩亚洲高清精品| 久久精品人人爽人人爽视色| 在线观看免费午夜福利视频| 久久99热这里只频精品6学生| 亚洲精品在线美女| 国产欧美亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久免费视频了| 国产视频一区二区在线看| 两个人免费观看高清视频| 亚洲一码二码三码区别大吗| 狂野欧美激情性xxxx| 精品久久久精品久久久| 69av精品久久久久久 | 青春草亚洲视频在线观看| 国产精品1区2区在线观看. | 亚洲国产精品成人久久小说| 巨乳人妻的诱惑在线观看| 欧美xxⅹ黑人| 国产成人啪精品午夜网站| 我的亚洲天堂| av不卡在线播放| 久久人人爽人人片av| 欧美+亚洲+日韩+国产| av有码第一页| 操美女的视频在线观看| 亚洲精品国产av成人精品| 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 99热国产这里只有精品6| 午夜免费鲁丝| www.自偷自拍.com| 99国产综合亚洲精品| 亚洲av男天堂| 午夜激情av网站| 一区二区日韩欧美中文字幕| 欧美精品人与动牲交sv欧美| √禁漫天堂资源中文www| 狂野欧美激情性bbbbbb| 高清视频免费观看一区二区| tocl精华| 午夜日韩欧美国产| 免费少妇av软件| 大型av网站在线播放| 亚洲综合色网址| 欧美精品啪啪一区二区三区 | 亚洲精品日韩在线中文字幕| 成人三级做爰电影| 国产亚洲av高清不卡| 国产伦理片在线播放av一区| 国产精品成人在线| 日日夜夜操网爽| 好男人电影高清在线观看| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 亚洲色图综合在线观看| 午夜免费成人在线视频| 男女下面插进去视频免费观看| 久久久国产一区二区| a 毛片基地| 80岁老熟妇乱子伦牲交| 亚洲五月婷婷丁香| 精品少妇内射三级| 巨乳人妻的诱惑在线观看| 久久久久久久久久久久大奶| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| av视频免费观看在线观看| 国产成人影院久久av| 黄片播放在线免费| 国产在线一区二区三区精| 丝袜美腿诱惑在线| 国产精品 欧美亚洲| 黄网站色视频无遮挡免费观看| 亚洲成av片中文字幕在线观看| 男人操女人黄网站| 一本久久精品| 91国产中文字幕| 桃花免费在线播放| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三 | 在线看a的网站| 国产精品 欧美亚洲| 国产视频一区二区在线看| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 啦啦啦在线免费观看视频4| 嫩草影视91久久| 亚洲九九香蕉| 国产片内射在线| 少妇 在线观看| 亚洲av美国av| 亚洲免费av在线视频| 久久精品亚洲熟妇少妇任你| 两个人免费观看高清视频| 青草久久国产| 国产亚洲精品一区二区www | 国产野战对白在线观看| 久久天躁狠狠躁夜夜2o2o| 两个人看的免费小视频| 免费黄频网站在线观看国产| 69av精品久久久久久 | 动漫黄色视频在线观看| 国产男女超爽视频在线观看| 老司机福利观看| 国产精品免费视频内射| 国产精品二区激情视频| 99久久精品国产亚洲精品| 99国产精品一区二区三区| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 99久久综合免费| 国产野战对白在线观看| 黄片大片在线免费观看| 一级毛片精品| 搡老岳熟女国产| 交换朋友夫妻互换小说| 国产99久久九九免费精品| 精品人妻一区二区三区麻豆| 男女下面插进去视频免费观看| 久久国产精品人妻蜜桃| 国产亚洲av片在线观看秒播厂| 99国产精品一区二区蜜桃av | 亚洲国产欧美在线一区| 秋霞在线观看毛片| 一个人免费在线观看的高清视频 | 亚洲 国产 在线| 国产一区二区三区在线臀色熟女 | 在线永久观看黄色视频| 国产欧美日韩一区二区精品| 日日爽夜夜爽网站| 男人添女人高潮全过程视频| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 日本91视频免费播放| 交换朋友夫妻互换小说| 精品少妇内射三级| 精品一品国产午夜福利视频| 如日韩欧美国产精品一区二区三区| 中文字幕高清在线视频| 国产一卡二卡三卡精品| 久久精品久久久久久噜噜老黄| 超碰成人久久| 亚洲,欧美精品.| 亚洲欧美成人综合另类久久久| 免费在线观看视频国产中文字幕亚洲 | 后天国语完整版免费观看| 午夜日韩欧美国产| 久久av网站| 亚洲国产av影院在线观看| a 毛片基地| 亚洲国产日韩一区二区| 欧美中文综合在线视频| 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 久久久精品免费免费高清| tocl精华| 国产精品99久久99久久久不卡| 成年人免费黄色播放视频| 18禁裸乳无遮挡动漫免费视频| 午夜两性在线视频| 男女之事视频高清在线观看| 欧美大码av| 十八禁高潮呻吟视频| 一级,二级,三级黄色视频| 久久 成人 亚洲| 亚洲第一av免费看| 热99re8久久精品国产| 丝袜脚勾引网站| 岛国毛片在线播放| 国产高清国产精品国产三级| 嫩草影视91久久| 中亚洲国语对白在线视频| 亚洲 欧美一区二区三区| 亚洲欧美色中文字幕在线| 青草久久国产| 狂野欧美激情性bbbbbb| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 精品国产一区二区三区四区第35| 成人黄色视频免费在线看| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 亚洲第一欧美日韩一区二区三区 | 人人妻,人人澡人人爽秒播| 亚洲激情五月婷婷啪啪| 欧美 亚洲 国产 日韩一| 欧美激情 高清一区二区三区| 日本vs欧美在线观看视频| 国产日韩欧美视频二区| 精品福利永久在线观看| 午夜免费鲁丝| 国产精品国产av在线观看| 热99re8久久精品国产| 亚洲精品一卡2卡三卡4卡5卡 | 两个人看的免费小视频| 午夜福利乱码中文字幕| 视频区图区小说| 亚洲专区国产一区二区| 男女免费视频国产| 在线观看舔阴道视频| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区av网在线观看 | 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| av在线app专区| 嫁个100分男人电影在线观看| 又黄又粗又硬又大视频| 精品福利观看| 国产一区二区激情短视频 | 午夜福利,免费看| 老司机午夜福利在线观看视频 | 在线观看一区二区三区激情| 免费观看a级毛片全部| 一边摸一边抽搐一进一出视频| 亚洲精品国产精品久久久不卡| 国产精品 欧美亚洲| 日本五十路高清| 91国产中文字幕| 五月天丁香电影| 国产精品九九99| 久久久精品94久久精品| 日本欧美视频一区| 女人精品久久久久毛片| 老熟女久久久| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 免费女性裸体啪啪无遮挡网站| 国产99久久九九免费精品| 两个人免费观看高清视频| 少妇人妻久久综合中文| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 国产免费一区二区三区四区乱码| 深夜精品福利| 高清在线国产一区| 久久亚洲精品不卡| 少妇的丰满在线观看| 不卡一级毛片| 亚洲一码二码三码区别大吗| 国产免费一区二区三区四区乱码| 十八禁网站网址无遮挡| 淫妇啪啪啪对白视频 | 三级毛片av免费| 亚洲精品成人av观看孕妇| 日韩欧美免费精品| 91九色精品人成在线观看| 日本精品一区二区三区蜜桃| 高清av免费在线| 亚洲伊人色综图| 亚洲美女黄色视频免费看| 9热在线视频观看99| 亚洲性夜色夜夜综合| 久久青草综合色| 热99久久久久精品小说推荐| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三区在线| 亚洲精品久久久久久婷婷小说| 五月天丁香电影| 大陆偷拍与自拍| 我的亚洲天堂| 国产精品二区激情视频| 久久综合国产亚洲精品| 午夜福利,免费看| 日本猛色少妇xxxxx猛交久久| av在线app专区| 国产精品成人在线| 日韩中文字幕欧美一区二区| 久久久久久久久久久久大奶| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 久久 成人 亚洲| 欧美黑人欧美精品刺激| 久久久久久久久免费视频了| 亚洲视频免费观看视频| 国产片内射在线| 亚洲第一av免费看| 久久久久视频综合| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 久久天躁狠狠躁夜夜2o2o| 女性被躁到高潮视频| 精品国产一区二区三区久久久樱花| 窝窝影院91人妻| 黄片小视频在线播放| 亚洲欧洲日产国产| 久久久精品免费免费高清| 老司机午夜福利在线观看视频 | 国产av一区二区精品久久| 18禁裸乳无遮挡动漫免费视频| 好男人电影高清在线观看| 成年人黄色毛片网站| 亚洲精品一卡2卡三卡4卡5卡 | 咕卡用的链子| 国内毛片毛片毛片毛片毛片| 99九九在线精品视频| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 宅男免费午夜| 久久久久久久久免费视频了| 欧美老熟妇乱子伦牲交| 两个人看的免费小视频| 国产精品二区激情视频| 脱女人内裤的视频| 成年人免费黄色播放视频| 我的亚洲天堂| 精品人妻熟女毛片av久久网站| 91大片在线观看| 久久亚洲精品不卡| svipshipincom国产片| 精品一区二区三卡| 色综合欧美亚洲国产小说| 亚洲少妇的诱惑av| 视频区图区小说| 久久久久久久国产电影| 国产精品秋霞免费鲁丝片| 好男人电影高清在线观看| 在线观看免费午夜福利视频| 中文字幕制服av| 成年人黄色毛片网站| 亚洲中文字幕日韩| 如日韩欧美国产精品一区二区三区| 日韩中文字幕欧美一区二区| 在线观看免费日韩欧美大片| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 侵犯人妻中文字幕一二三四区| 黑丝袜美女国产一区| 99国产精品99久久久久| 天天添夜夜摸| 一区二区三区乱码不卡18| 99精国产麻豆久久婷婷| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 美国免费a级毛片| 黄色视频,在线免费观看| 精品高清国产在线一区| 午夜福利在线免费观看网站| 丝袜美足系列| 99国产综合亚洲精品| 精品久久久精品久久久| 国产免费福利视频在线观看| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女 | 最近最新免费中文字幕在线| 日韩 亚洲 欧美在线| 电影成人av| 亚洲精品一卡2卡三卡4卡5卡 | 在线十欧美十亚洲十日本专区| 亚洲欧美精品自产自拍| 欧美精品亚洲一区二区| 一区二区三区精品91| 黑人巨大精品欧美一区二区mp4| 国产黄色免费在线视频| 欧美日韩黄片免| 男人操女人黄网站| 三上悠亚av全集在线观看| bbb黄色大片| 成年av动漫网址| 亚洲国产av新网站| 亚洲欧美色中文字幕在线| 中文精品一卡2卡3卡4更新| 亚洲国产看品久久| 正在播放国产对白刺激| 国产伦理片在线播放av一区| 午夜免费鲁丝| 国产成人精品在线电影| 日韩免费高清中文字幕av| 亚洲精品中文字幕一二三四区 | 另类亚洲欧美激情| 9色porny在线观看| 国产精品.久久久| 9191精品国产免费久久| 亚洲欧美一区二区三区黑人| 丝袜脚勾引网站| 丝袜人妻中文字幕| 美女视频免费永久观看网站| 精品熟女少妇八av免费久了| 亚洲伊人色综图| 亚洲精品乱久久久久久| 国产主播在线观看一区二区| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 9191精品国产免费久久| 亚洲一码二码三码区别大吗| 秋霞在线观看毛片| av福利片在线| 国产精品影院久久| av网站在线播放免费| 久久精品国产亚洲av香蕉五月 | 成人国产av品久久久| 久久中文看片网| 天堂8中文在线网| 欧美日本中文国产一区发布| 窝窝影院91人妻| 久久精品人人爽人人爽视色| 我要看黄色一级片免费的| 国产福利在线免费观看视频| 国产视频一区二区在线看| 青草久久国产| 日韩欧美国产一区二区入口| av又黄又爽大尺度在线免费看| avwww免费| 国产人伦9x9x在线观看| 国产欧美日韩精品亚洲av| 丁香六月欧美| 久久人妻熟女aⅴ| 老熟妇乱子伦视频在线观看 | a级毛片黄视频| 国产精品 国内视频| 亚洲三区欧美一区| 波多野结衣一区麻豆| 久久久久久久国产电影| 成人国语在线视频| 80岁老熟妇乱子伦牲交| 午夜免费鲁丝| 久久中文字幕一级| 亚洲国产精品成人久久小说| 亚洲精品久久久久久婷婷小说| 丝袜在线中文字幕| av片东京热男人的天堂| 两个人免费观看高清视频| 黑人欧美特级aaaaaa片| 老司机影院毛片| 夜夜骑夜夜射夜夜干| 电影成人av| 天堂俺去俺来也www色官网| 69精品国产乱码久久久| 久久精品成人免费网站| 国产精品99久久99久久久不卡| 成人手机av| 中文字幕制服av| 首页视频小说图片口味搜索| 两个人免费观看高清视频| 久久人人爽av亚洲精品天堂| 午夜福利在线免费观看网站| 老司机亚洲免费影院| 亚洲精品日韩在线中文字幕| 少妇粗大呻吟视频| 久久久久久亚洲精品国产蜜桃av| 成年动漫av网址| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 中文字幕精品免费在线观看视频| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 可以免费在线观看a视频的电影网站| 久久精品aⅴ一区二区三区四区| 丰满迷人的少妇在线观看| 成人亚洲精品一区在线观看| 色婷婷久久久亚洲欧美| 亚洲美女黄色视频免费看| 好男人电影高清在线观看| 亚洲第一欧美日韩一区二区三区 | 成人亚洲精品一区在线观看| 色婷婷久久久亚洲欧美| 制服诱惑二区| 国产深夜福利视频在线观看| 亚洲精品国产一区二区精华液| kizo精华| 在线观看免费高清a一片| 黄色视频不卡| 精品国产乱子伦一区二区三区 | 在线 av 中文字幕| 久久99一区二区三区| 老司机深夜福利视频在线观看 | 久久久久久免费高清国产稀缺| 日本一区二区免费在线视频| 亚洲第一av免费看| 久久综合国产亚洲精品| 最近中文字幕2019免费版| 下体分泌物呈黄色| 精品国产乱码久久久久久小说| 亚洲少妇的诱惑av| av天堂久久9| 亚洲中文av在线| 超碰成人久久| 亚洲色图 男人天堂 中文字幕| av天堂在线播放| 多毛熟女@视频| 亚洲精品美女久久av网站| 国产成+人综合+亚洲专区| 啪啪无遮挡十八禁网站| 飞空精品影院首页| 爱豆传媒免费全集在线观看| 欧美老熟妇乱子伦牲交| 91九色精品人成在线观看| 老鸭窝网址在线观看| 午夜精品国产一区二区电影| 国产男人的电影天堂91| 亚洲国产日韩一区二区| 不卡av一区二区三区| 制服诱惑二区| 国产精品麻豆人妻色哟哟久久| 搡老乐熟女国产| 女人久久www免费人成看片| 岛国在线观看网站| 成人黄色视频免费在线看| 丁香六月天网| 中国国产av一级| 午夜福利在线免费观看网站| 黑人巨大精品欧美一区二区mp4| 国产极品粉嫩免费观看在线| 日韩电影二区| 啦啦啦在线免费观看视频4| 永久免费av网站大全| 999久久久精品免费观看国产| 亚洲免费av在线视频| 国产91精品成人一区二区三区 | av在线app专区| 欧美精品av麻豆av| 亚洲av电影在线进入| 精品少妇一区二区三区视频日本电影| 99久久国产精品久久久| 久久久欧美国产精品| 国产成人精品久久二区二区免费| 满18在线观看网站| 国产高清视频在线播放一区 | 国产伦理片在线播放av一区| 欧美日韩国产mv在线观看视频| a在线观看视频网站| 人人妻,人人澡人人爽秒播| 国产高清国产精品国产三级| 黄色视频,在线免费观看| 黄网站色视频无遮挡免费观看| 两人在一起打扑克的视频| 国产一卡二卡三卡精品| 夜夜骑夜夜射夜夜干| 国产色视频综合| 久久国产精品男人的天堂亚洲| 国产成人av激情在线播放| 51午夜福利影视在线观看| 欧美少妇被猛烈插入视频| 日韩视频一区二区在线观看| 日韩中文字幕欧美一区二区| 成人国语在线视频| 日本黄色日本黄色录像| 国产老妇伦熟女老妇高清| 中文字幕人妻熟女乱码| 亚洲国产看品久久| 丝袜美足系列| 最新的欧美精品一区二区| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| 成年美女黄网站色视频大全免费| 亚洲精品中文字幕在线视频| 一级片'在线观看视频| 人人妻人人爽人人添夜夜欢视频| av不卡在线播放| 操出白浆在线播放| 一区二区日韩欧美中文字幕| 欧美日韩国产mv在线观看视频| 免费高清在线观看视频在线观看| av在线老鸭窝| 亚洲欧美日韩高清在线视频 | 亚洲国产中文字幕在线视频| 国产亚洲欧美在线一区二区| 一边摸一边做爽爽视频免费| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩精品亚洲av| 成年人午夜在线观看视频| 麻豆国产av国片精品| 精品国产一区二区三区四区第35| 国产成人精品久久二区二区免费| 亚洲精品日韩在线中文字幕| 国产精品久久久av美女十八| 亚洲精品久久午夜乱码| cao死你这个sao货| 国产精品影院久久| 久久热在线av| 欧美在线一区亚洲| 亚洲专区中文字幕在线| 精品一区在线观看国产| 精品国产乱码久久久久久男人| 少妇粗大呻吟视频| 欧美另类一区| 91av网站免费观看| 少妇粗大呻吟视频| 搡老乐熟女国产| 亚洲一码二码三码区别大吗| www.自偷自拍.com| 青青草视频在线视频观看| 高清黄色对白视频在线免费看|