• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米碳纖維載鉑作為質(zhì)子交換膜燃料電池陽極催化劑

    2011-12-11 09:09:56王喜照鄭俊生馬建新
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:魚骨管式同濟(jì)大學(xué)

    王喜照 符 蓉 鄭俊生 馬建新

    (1同濟(jì)大學(xué)新能源汽車工程中心,上海201804; 2同濟(jì)大學(xué)汽車學(xué)院,上海201804; 3聯(lián)合汽車電子有限公司技術(shù)中心,上海201206;4華東理工大學(xué)資源與環(huán)境工程學(xué)院,上海200237)

    納米碳纖維載鉑作為質(zhì)子交換膜燃料電池陽極催化劑

    王喜照1,3符 蓉1,4鄭俊生1,2,*馬建新1,2

    (1同濟(jì)大學(xué)新能源汽車工程中心,上海201804;2同濟(jì)大學(xué)汽車學(xué)院,上海201804;3聯(lián)合汽車電子有限公司技術(shù)中心,上海201206;4華東理工大學(xué)資源與環(huán)境工程學(xué)院,上海200237)

    采用化學(xué)還原法合成了微結(jié)構(gòu)不同的納米碳纖維(板式、魚骨式、管式)載鉑催化劑(分別記為Pt/p-CNF、Pt/f-CNF、Pt/t-CNF).通過高分辨透射電鏡(HRTEM)和X射線衍射(XRD)等分析技術(shù)對催化劑的微觀結(jié)構(gòu)進(jìn)行了表征,并利用循環(huán)伏安(CV)法分析了催化劑的電化學(xué)比表面積(ESA).在此基礎(chǔ)上,制備了膜電極(MEA),通過單電池測試了催化劑的電催化性能.結(jié)果表明:鉑納米粒子在不同的納米碳載體上表現(xiàn)出不同的粒徑,在板式、魚骨式和管式納米碳纖維上的鉑納米粒子平均粒徑分別為2.4、2.7和2.8 nm.板式納米碳纖維載鉑催化劑作單電池陽極時(shí)表現(xiàn)出良好的電催化性能,其對應(yīng)的最高功率密度可達(dá)0.569 W·cm-2,高于魚骨式納米碳纖維載鉑催化劑和管式納米碳纖維載鉑催化劑對應(yīng)的最高功率密度(分別為0.550和0.496 W·cm-2).同時(shí),也制備了碳黑(Pt/XC-72)載鉑催化劑.相比于Pt/XC-72,納米碳纖維載體上的鉑納米顆粒有較小的粒徑、較好的分散和較高的催化活性,說明納米碳纖維是質(zhì)子交換膜燃料電池(PEMFCs)催化劑的良好載體.

    催化劑;納米碳纖維;鉑納米粒子;催化活性;燃料電池

    1 Introduction

    Proton exchange membrane fuel cells(PEMFCs)are considered to be one of the most ideal options for energy conservation and environment protection due to their high efficiency and zero emission.However,one of the significant obstacles for the development of PEMFCs is the high cost of noble metals used as electrode catalysts such as Pt.At a low temperature, Pt is an excellent catalyst for hydrogen oxidation reaction (HOR),1but Pt is at a very low level of abundance,resulting in prohibitive cost for the usage of Pt catalyst.In order to improve the efficiency of Pt usage,Pt supported on carbon material provides a practical solution.2-4It is well known that the electrocatalytic activity of Pt particles is associated with the carbon support.5,6Although the underlying mechanisms of the effect on activity are still not well understood,it is suspected that the microstructure and electronic properties of carbon support may be well responsible.

    Due to the unique microstructure properties and high electric conductivity,7,8carbon nanofibers(CNFs)have been considered to be promising catalyst support materials.9-12According to the different arrangement of grapheme layers,CNFs can be divided into platelet CNF(p-CNF),tubular CNF(t-CNF),and fish-bone CNF(f-CNF).13The graphene layers of p-CNF are vertical to the fiber axis,and the exposed surface is mainly occupied by edge atoms,while the grapheme layers of t-CNF are parallel to the fiber axis and many basal atoms are exposed. The graphene layers of f-CNF are inclining to the fiber axis, and the ratio of edge atoms to basal atoms can be adjusted by controlling the angle of graphene layers to the fiber axis.It was reported that the microstructure of CNFs can be tailored by controlling the reaction conditions,which made possible to adjust the deposition of and interaction with the metal nanoparticles.14-17Gangeri et al18deposited Pt nanoparticles by incipient wetness impregnation on CNF surface and found that Pt/CNF gave a better performance than that of Pt/XC-72 as anode catalyst.Yuan and Ryu19demonstrated that catalyst supported on CNF showed an improved activity compared to that on carbon nanotubes(CNTs).They believed the improvement in performance was resulted from the specific crystallographic orientations of metal nanoparticles when metal nanoparticles dispersed onthehighlytailoredgraphitenanofibermicrostructures.

    In this study,Pt nanoparticles supported on the p-CNF, t-CNF,and f-CNF were synthesized by a chemical reduction method,and their catalytic activities were investigated.Furthermore,Pt nanoparticles supported on carbon black(Pt/XC-72) were also prepared and investigated.In order to evaluate catalysts,membrane electrode assembly(MEA)with an apparent area of 50 cm2was fabricated and tested in a single cell testing platform.

    2 Experimental

    2.1 Catalyst preparation

    CNFs with different structures,i.e.,p-CNF,f-CNF,and t-CNF,were synthesized by catalytic chemical vapor deposition(CCVD)method.Details of CNFs synthesis procedure were described.20Pt nanoparticles supported on the p-CNF, t-CNF,or f-CNF were prepared via an ethylene glycol(EG) chemical reduction method.21In brief,30 mL ethylene glycol, 0.25 g CNF,and 4.2 mL H2PtCl6ethylene glycol solution(with H2PtCl6concentration of 0.077 mol·L-1)were mixed in a 100 mL quartz beaker.The mixture was ultrasonicated and stirred for 4 h.Then,2 mL NaOH ethylene glycol solution(with NaOH concentration of 0.5 mol·L-1)was added.The mixture was stirred and refluxed at a temperature of 120°C for 3 h.After that,the pH value of the mixture adjusted to 3 by adding 5 mol· L-1HCl.The resultant was washed and dried in a vacuum oven at 70°C for 24 h.Finally,the required catalyst with a nominal Pt loading of 40%(w)on CNF was obtained.Pt/XC-72 was also prepared in the same way.The as-prepared catalysts were markedas Pt/p-CNF,Pt/f-CNF,andPt/t-CNF,respectively.

    2.2 Physical characterization

    The mass fraction of Pt in Pt/C catalyst was detected by inductively coupled plasma(ICP,7500A,Agilent,USA).The morphologies of catalyst were characterized by high resolution transmissionelectronmicroscope(HRTEM,JEOL TEM 2010),which was operated at 200 kV.The X-ray diffraction (XRD)patterns of crystalline phase were collected on a D/max 2550 powder diffractometer using Cu Kαradiation.The working voltage was 40 kV,and the current was 40 mA.The intensity data were collected in a 2θ range of 10°to 100°with a scan rate of 0.02(°)·min-1.

    2.3 Preparation and modification of electrode

    Electrochemical measurements were performed in a CHI 730C electrochemical workstation (CHI Instrument,Inc., USA)in a 0.5 mol·L-1HClO4solution.The electrochemical surface area(ESA)was measured by cyclic voltammetry(CV) method.The working electrode was glassy carbon(GC,5 mm in diameter)coated with as-prepared catalyst.A saturated calomel reference electrode(SCE)was used for all electrochemical measurements.A Pt clump was used as the counter electrode. The working electrode was prepared according to the following procedures.The as-prepared catalyst was dispersed ultrasonically in a solution of Nafion(Dupont)and methanol to obtain a homogenous black suspension with a concentration of 2 g·L-1.Then 10 μL of the mixture was pipetted onto the surface of glassy carbon(GC)electrode which was polished to a mirror finish with 0.05 μm of alumina pastes.After drying,the working electrode with a Pt content of 0.04 mg·cm-2on the surface of GC was ready.Before testing,the electrolyte was bubbled with nitrogen for 30 min,and the current-potential curve was recorded in the presence of nitrogen.The scan rate was 0.1 V·s-1with the scanning potential range of 1.0 to-0.2 V(vs SCE).

    2.4 Fabrication of MEA and single cell test

    MEA fabricated by catalyst coated in membrane(CCM) method.Appropriate amounts of catalyst powder were mixed with a solution of Nafion(the mass ratio was 5%)and isopropyl alcohol,then the mixture was dispersed ultrasonically to form a homogeneous ink(the mass ratio of catalyst to Nafion was 3:1).After that,the catalyst ink was sprayed onto a 50 cm2of Nafion membrane(NR212).The other side of membrane was sprayed in the same way.Nafion membrane with catalyst on both sides was then sandwiched between two gas diffusion layers(Toray TGP-H-090).Four pieces of MEA were fabricated with prepared Pt/p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72 as anode catalyst and commercial Pt/C(Johnson Matthey,HiSPEC 4000)as cathode catalyst.Both sides of the Pt loading were 0.4 mg·cm-2for each MEA.

    The measurement was carried out in a single cell testing platform.The single cell was fed by pure hydrogen and compressed air with the pressure of 80 kPa in both inlets.The stechiometry coefficients of hydrogen and air were 1.3 and 2.5, and the flow rate was adjusted according to the current by a mass flow controller automatically.Before entering the cell,hydrogen and air were humidified in a bubbling humidifier.The cell was operated at 80°C,which was controlled by a thermostatic water bath.After a break-in period,polarization curve was recorded.

    3 Results and discussion

    3.1 Textural properties of CNFs and XC-72

    Table 1 Textural properties of CNFs and XC-72

    Table 1 shows the textural properties of CNFs and XC-72. The specific surface areas(S)of CNFs are in the range of 86.6-204.7 m2·g-1.The specific surface area of p-CNF is larger than that of f-CNF and t-CNF because the graphene layers of p-CNF are vertical to the fiber axis and some rough surfaces are formed.The surface area of XC-72 is 193.5 m2·g-1,larger than those of t-CNF and f-CNF.Table 1 also shows that the pore volumes of the four supports are close,but the micropore volumes are much different.The micropores are very small and can be neglected and the mesopores are the dominant pore structure for all CNFs.But for XC-72,the micropore volume is 0.12 cm3·g-1.The mesopores can promote the diffusion,and this is a CNF?s distinctive advantage for their application in electrocatalysis because the mass transportation is expedited.

    3.2 Physico-chemical properties of catalysts

    The ICP result demonstrates that the mass fractions of Pt for all the prepared catalyst are close to the theoretical values with the mass ratio of 40%.HRTEM micrographs of CNFs are displayed in Fig.1.It is found that the graphene layers of p-CNF are vertical to the fiber axis,while those of t-CNF are parallel to the fiber axis,and the graphene layers of f-CNF are inclining to the fiber axis.HRTEM micrographs of Pt/CNFs and Pt/ XC-72 are displayed in Fig.2.Generally,metal nanoparticles show no tendency to aggregate and are good dispersed on the surface of CNFs and XC-72.The Pt particle sizes are obtained by measuring the nanoparticles on HRTEM images.Nearly 300 nanoparticles in random regions are measured to ensure statistically significant representation of the nanoparticles sizes.The corresponding histograms of size distribution are shown in Fig.3,which reveals that the particle size distribution for each catalyst is rather narrow and exhibits the features of Gaussian distribution.The average size for each catalyst is calculated.It can be found that Pt particle size changes with the changing of support.The average sizes of Pt nanoparticles on p-CNF,f-CNF,and t-CNF are 2.4,2.7,and 2.8 nm,respective-ly.All of the sizes are smaller than that of Pt nanoparticles on XC-72(3.1 nm).CNFs have highly tailored graphite nanofiber structures,while XC-72 is made of amorphous carbon.This may be a reason that most of Pt nanoparticles on CNFs are smaller than those on XC-72.22,23CNFs expose many edge atoms,and these edge atoms contain large quantity ruptured chemical bonds,which may influence the Pt particle size.24Compared with f-CNF and t-CNF,p-CNF has a higher ratio of edge atoms to basal atoms,13and this may contribute to the smaller particle size on p-CNF than those on f-CNF and t-CNF.

    Fig.1 TEM images of p-CNF(a),f-CNF(b),and t-CNF(c)

    Fig.2 HRTEM images of Pt/p-CNF(a),Pt/f-CNF(b),Pt/t-CNF(c),and Pt/XC-72(d)

    XRD patterns of Pt/CNFs and Pt/XC-72 are presented in Fig.4.The first peak at 2θ near 26.4°can be attributed to the graphite structure of supports.The major peaks locate at 2θ of 39.7°,46.2°,67.4°,and 81.2°are ascribed to Pt(111),Pt(200),Pt(220),and Pt(311)characteristic diffraction peaks,respectively.These characteristic diffraction peaks agree well with the report.25The fitted Pt(220)plane is isolated from the diffraction peaks of carbon support and is used to calculate the metal particle size according to the Scherrer formula.26The calculation results are listed in Table 2.It can be found that the XRD results are consistent with those obtained from Fig.2.

    Fig.3 Histograms of Pt particle size distribution for Pt/p-CNF(a),Pt/f-CNF(b),Pt/t-CNF(c),and Pt/XC-72(d)d:average size

    Fig.4 XRD patterns of Pt/p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72

    Fig.5 presents the CV curves of Pt/CNFs and Pt/XC-72.The results exhibit the typical behavior regarding the hydrogen and oxide regions for Pt.27,28As shown in Fig.5,well-defined hydrogen adsorption/desorption characteristics are observed for the four kinds of as-prepared catalyst.A weak adsorption peak in the potential range from 0.05 to-0.1 V and a strong adsorption peak located between-0.1 and-0.2 V are observed during the negative-going potential scan,assigned to weakly andstrongly bonded hydrogen adatoms,respectively.The corresponding desorption peaks are observed in the reverse potential scan.The integrated charge in the hydrogen absorption region of CV curve is used to calculate the electrochemical surface area(ESA),which representing the intrinsic electrocatalytic activity of a catalyst.Based on a monolayer hydrogen adsorption charge of 0.21 mC·cm-2on polycrystalline Pt and the integrated charge in the hydrogen absorption region of CV curve,29the ESA can be calculated.Furthermore,Based on that Pt nanoparticle is spherical structure,the chemical surface area (CSA)and the Pt utilization efficiency are also calculated using the following equations:

    Table 2 Comparison of particle size,electrochemical surface area(ESA),chemical surface area(CSA),and Pt utilization of Pt/ p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72

    where v is the linear potential scan rate(V·s-1),i is the current (A),E is the electrode potential(V),mcatalystis the mass of cata-lyst deposited on the electrode(8 μg),and Qois the charge involved during the adsorption of a monolayer of atomic hydrogen on a polyoriented platinum surface(0.21 mC·cm-2).ρ represents Pt density(21.4 g·cm-3),and d is the average size of Pt obtained from XRD analysis.The corresponding ESA,CSA, and Pt utilization efficiency are summarized in Table 2.It can be seen that the ESA increases with the decreases of Pt particle size.The ESA for Pt/p-CNF is 53.3 m2·g-1,which is much larger than those for Pt/f-CNF(43.7 m2·g-1)and Pt/t-CNF(39.4 m2·g-1),mainly resulting from the small Pt particle size.The Pt utilization for Pt/p-CNF is 45.6%,which is higher than that for Pt/f-CNF(42.1%)and Pt/t-CNF(39.3%),this may contribute to a better PEMFC performance.

    Fig.5 Cyclic voltammetric analysis of Pt/p-CNF,Pt/f-CNF,Pt/t-CNF,and Pt/XC-72 in 0.5 mol·L-1HClO4solution saturated by nitrogen at a scan rate of 0.1 V·s-1

    3.3 Performance of PEMFC

    Fig.6 shows the polarization curves of single cell with the as-prepared catalysts as anode catalysts.It can be observed from Fig.6 that the open-circuit potentials,for all the catalysts samples,are almost kept at high level of 0.96 V regardless of the difference of support.All the current densities decrease with the increasing of the potential over the whole current density region.Pt/p-CNF gives the best performance in the high current density region,indicating the highest electrocatalytic activity.The maximum power density for Pt/p-CNF is 0.569 W·cm-2,which is higher than those for Pt/f-CNF(0.550 W· cm-2)and Pt/t-CNF(0.496 W·cm-2).This may be the reason that the special mesopore structure of p-CNF,a larger ESA and a higher Pt utilization efficiency of Pt/p-CNF.

    4 Conclusions

    Pt/p-CNF,Pt/f-CNF,and Pt/t-CNF were synthesized by a chemical reduction method.The structure of support is demonstrated to be the crucial factors influencing the Pt particle size and the catalytic activity for HOR.The maximum power density is 0.569 W·cm-2for Pt/p-CNF,which is higher than those observed for Pt/f-CNF(0.550 W·cm-2)and Pt/t-CNF(0.496 W·cm-2).Furthermore,it is found that Pt nanoparticles supported on CNFs has been proven to possess smaller particle size than those on XC-72,and this proved that CNFs could be an efficient electrocatalyst support for PEMFCs.

    1 Arico,A.S.;Srinivasan,S.;Antonucci,V.Fuel Cells 2001,1,133.

    2 Yu,J.S.;Kang,S.;Yoon,S.B.;Chai,G.S.J.Am.Chem.Soc. 2002,124,9382.

    3 Chai,G.S.;Shin,I.S.;Yu,J.S.Adv.Mater.2004,16,2057.

    4 Fang,B.;Kim,M.S.;Yu,J.S.Appl.Catal.B-Environ.2008,84, 100.

    5 Dicks,A.J.Power Sources 2006,156,128.

    6 Kong,K.;Choi,Y.;Ryu,B.;Lee,J.;Chang,H.Mater.Sci.Eng.C 2006,26,1207.

    7 Park,C.;Baker,R.J.Phys.Chem.B 1999,103,2453.

    8 Steigerwalt,E.S.;Deluga,G.A.;Cliffel,D.E.;Lukehart,C.M. J.Phys.Chem.B 2001,105,8097.

    9 Rodriguez,N.M.;Chambers,A.;Baker,R.Langmuir 1995,11, 3862.

    10 Sun,X.;Li,R.;Villers,D.;Dodelet,J.P.;Desilets,S.Chem. Phys.Lett.2003,379,99.

    11 Salgado,J.R.C.;Antolini,E.;Gonzalez,E.R.J.Power Sources 2004,138,56.

    12 Francisco,A.;Oscar,M.;María,J.;Rafael,M.;Ana,L.;José,S.; Enrique,H.;Antonio,A.Electrochem.Commun.2009,11,1081.

    13 Zheng,J.S.;Zhang,X.S.;Li,P.;Zhou,X.G.;Yuan,W.K. Catal.Today 2008,131,270.

    14 Calvillo,L.;Lázaro,M.J.;Suelves,I.;Echegoyen,Y.;Bordejé, E.G.;Moliner,R.;Nanosci,J.Nanotechnology 2009,20,1.

    15 Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Phys.Chem. B 2002,106,760.

    16 Antolini,E.Appl.Catal.B 2009,88,1.

    17 Zheng,J.S.;Wang,X.Z.;Qiao,J.L.;Yang,D.J.;Li,B.;Li,P.; Lv,H.;Ma,J.X.Electrochem.Commun.2010,12,27.

    18 Gangeri,M.;Centi,G.;La Malfa,A.;Perathoner,S.;Vieira,R.; Pham-Huu,C.;Ledoux,M.J.Catal.Today 2005,102,50.

    19 Yuan,F.;Ryu,H.Nanotechnology 2004,15,596.

    20 Zheng,J.S.;Zhang,X.S.;Li,P.;Zhu,J.;Zhou,X.G.;Yuan,W. K.Electrochem.Commun.2007,9,895.

    21 Li,B.;Qiao,J.L.;Zheng,J.S.;Yang,D.J.;Ma,J.X.Int.J. Hydrog.Energy 2009,34,5144.

    22 Zheng,J.S.Microstructure Effect of Carbon Nanofibers on Electrocatalysis:Oxygen Reduction Properties on Cathode.Ph. D.Dissertation,East China University of Science and Technology,Shanghai,2008.

    23 He.Z.B.;Chen,J.H.;Liu,D.Y.;Zhou,H.H.;Kuang,Y.F. Diamond Relat.Mater.2004,13,1764.

    24 Augustine,R.L.Heterogeneous Catalysis for the Synthetic Chemist;Marcel Dekker:New York,1996;p 170.

    25 Li,W.Z.;Liang,H.H.;Zhou,W.J.;Qiu,J.H.;Zhou,Z.H.;Sun, G.Q.;Xin,Q.J.Phys.Chem.B 2003,107,6292.

    26 Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995,154, 98.

    27 Perez,J.;Gonzalez,E.R.;Ticianelli,E.A.Electrochim.Acta 1998,44,1329.

    28 Lima,F.H.B.;Ticianelli,E.A.Electrochim.Acta 2004,49,4091.

    29 Liu,Z.L.;Lee,J.Y.;Han,M.;Chen,W.X.;Gan,L.M.J.Mater. Chem.2002,12,2453.

    March 4,2011;Revised:May 12,2011;Published on Web:June 16,2011.

    Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells

    WANG Xi-Zhao1,3FU Rong1,4ZHENG Jun-Sheng1,2,*Ma Jian-Xin1,2
    (1Clean Energy Automotive Engineering Center,Tongji University,Shanghai,201804,P.R.China;2School of Automotive Studies, Tongji University,Shanghai,201804,P.R.China;3Technical Center,United Automotive Electronic Systems Co.,Ltd.,Shanghai, 201206,P.R.China;4School of Resource and Environment Engineering,East China University of Science and Technology, Shanghai,200237,P.R.China)

    Pt nanoparticles supported on carbon nanofibers(Pt/CNFs)with different microstructure,i.e., platelet CNF(Pt/p-CNF),fish-bone CNF(Pt/f-CNF),and tubular CNF(Pt/t-CNF)were synthesized by a chemical reduction method.X-ray diffraction(XRD)and high resolution transmission electron microscope (HRTEM)were applied to characterize the structure of the as-prepared catalysts.The electrochemical surface area(ESA)was studied by cyclic voltammetry(CV).Membrane electrode assemblies(MEAs)with the as-prepared catalysts were fabricated and tested.We found that Pt nanoparticles showed different particle size and dispersion on the three kinds of CNF supports and the mean size of the Pt nanoparticles on p-CNF,f-CNF,and t-CNF was 2.4,2.7,and 2.8 nm,respectively.Single cell testing indicated that the cell with Pt/p-CNF as the anode catalyst gave better performance compared to Pt/f-CNF and Pt/t-CNF. The maximum power density was 0.569 W·cm-2for Pt/p-CNF,which was higher than that for Pt/f-CNF (0.550 W·cm-2)and Pt/t-CNF(0.496 W·cm-2).Furthermore,Pt nanoparticles supported on carbon black (Pt/XC-72)were also prepared.Pt nanoparticles supported on CNFs have been shown to have a smaller particle size and better dispersion than those on XC-72,and this proves that CNFs can be an efficient electrocatalyst support for proton exchange membrane fuel cells(PEMFCs).

    Catalyst;Carbon nanofiber;Pt nanoparticles;Catalytic activity;Fuel cell

    ?Corresponding author.Email:jszheng@#edu.cn;Tel:+86-21-69583891;Fax:+86-21-69589121.

    The project was supported by the National Natural Science Foundation of China(21006073),Shanghai Rising-Star Program,China(11QA1407200), Shanghai LeadingAcademic Discipline Project,China(B303)and Open-Project Program of the State Key Laboratory of Chemical Engineering, China(SKL-ChE-08C07).

    國家自然科學(xué)基金(21006073)、上海市青年科技啟明星計(jì)劃(11QA1407200)、上海市重點(diǎn)學(xué)科(B303)和化學(xué)工程聯(lián)合國家重點(diǎn)實(shí)驗(yàn)室開放基金(SKL-ChE-08C07)資助項(xiàng)目

    O643

    猜你喜歡
    魚骨管式同濟(jì)大學(xué)
    管式太陽能集熱器的顆粒換熱模擬
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    奶奶愛拼魚骨畫
    一星期沒換水的夢境
    詩潮(2018年3期)2018-03-26 12:29:30
    魚骨千萬別丟 它能幫你增壽
    工友(2016年4期)2016-09-18 05:57:49
    管式空氣空預(yù)器泄漏分析及改進(jìn)
    平推流管式連續(xù)反應(yīng)器合成耐熱ABS樹脂的研究
    中國塑料(2015年7期)2015-10-14 01:02:39
    老汉色av国产亚洲站长工具| 国产午夜精品久久久久久| 18禁黄网站禁片免费观看直播| 婷婷精品国产亚洲av在线| 日本黄大片高清| 亚洲熟女毛片儿| 12—13女人毛片做爰片一| 最新中文字幕久久久久 | 亚洲欧美日韩高清专用| 国产高清三级在线| 国产乱人伦免费视频| 神马国产精品三级电影在线观看| 亚洲av免费在线观看| 男女视频在线观看网站免费| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区免费观看 | 99久久99久久久精品蜜桃| 一级黄色大片毛片| 五月伊人婷婷丁香| 亚洲欧美日韩卡通动漫| 99久久综合精品五月天人人| 又黄又爽又免费观看的视频| 美女免费视频网站| 欧美激情在线99| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 噜噜噜噜噜久久久久久91| 真人一进一出gif抽搐免费| 99久久成人亚洲精品观看| 又黄又爽又免费观看的视频| 国产主播在线观看一区二区| 男女视频在线观看网站免费| 一本精品99久久精品77| 动漫黄色视频在线观看| 亚洲熟妇中文字幕五十中出| 成人性生交大片免费视频hd| 中文字幕高清在线视频| av天堂在线播放| 长腿黑丝高跟| 一进一出抽搐动态| 国产亚洲精品综合一区在线观看| 国产野战对白在线观看| 噜噜噜噜噜久久久久久91| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩高清在线视频| 精品国产亚洲在线| 国产成年人精品一区二区| 欧美成人一区二区免费高清观看 | 美女高潮喷水抽搐中文字幕| 男插女下体视频免费在线播放| 欧美中文综合在线视频| 国产精品98久久久久久宅男小说| 宅男免费午夜| av女优亚洲男人天堂 | 叶爱在线成人免费视频播放| 成人三级做爰电影| 国产精品1区2区在线观看.| 一区福利在线观看| 俺也久久电影网| 高清在线国产一区| 亚洲中文字幕日韩| 亚洲av免费在线观看| 午夜福利在线观看吧| 熟女少妇亚洲综合色aaa.| 日韩国内少妇激情av| 久久人人精品亚洲av| 宅男免费午夜| 狠狠狠狠99中文字幕| 国内精品久久久久久久电影| 老司机深夜福利视频在线观看| 三级国产精品欧美在线观看 | 欧美黄色淫秽网站| 日本在线视频免费播放| 国内精品一区二区在线观看| 一级a爱片免费观看的视频| 一个人免费在线观看电影 | 久久天堂一区二区三区四区| 国产成人影院久久av| 亚洲欧洲精品一区二区精品久久久| h日本视频在线播放| 午夜a级毛片| 一个人观看的视频www高清免费观看 | 国产精品一区二区三区四区免费观看 | 男人舔女人下体高潮全视频| 欧美zozozo另类| 精品午夜福利视频在线观看一区| 在线a可以看的网站| 欧美午夜高清在线| 好男人在线观看高清免费视频| 啦啦啦观看免费观看视频高清| 三级国产精品欧美在线观看 | 无限看片的www在线观看| 人人妻人人澡欧美一区二区| 国产精品久久久久久人妻精品电影| 成人亚洲精品av一区二区| 色老头精品视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av熟女| 亚洲av电影不卡..在线观看| 全区人妻精品视频| 长腿黑丝高跟| 亚洲一区高清亚洲精品| 成人国产综合亚洲| 97超视频在线观看视频| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 一区二区三区高清视频在线| 叶爱在线成人免费视频播放| 成人18禁在线播放| 老熟妇仑乱视频hdxx| 成年女人永久免费观看视频| 亚洲第一欧美日韩一区二区三区| 观看美女的网站| 美女高潮的动态| 国产伦在线观看视频一区| 日韩欧美精品v在线| 午夜亚洲福利在线播放| 校园春色视频在线观看| 成年女人看的毛片在线观看| 变态另类丝袜制服| 亚洲欧美激情综合另类| 国产精品一区二区三区四区免费观看 | 男女做爰动态图高潮gif福利片| 亚洲国产精品成人综合色| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区mp4| 国产精品免费一区二区三区在线| 精品无人区乱码1区二区| 亚洲午夜理论影院| 久久久成人免费电影| a在线观看视频网站| 高潮久久久久久久久久久不卡| 老汉色∧v一级毛片| 一区福利在线观看| 最新中文字幕久久久久 | 国内久久婷婷六月综合欲色啪| 久久热在线av| 国产精品99久久久久久久久| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 亚洲精品美女久久av网站| 日韩欧美免费精品| 99久久精品国产亚洲精品| 国产精品一区二区免费欧美| 成年版毛片免费区| 亚洲国产精品999在线| 嫩草影院精品99| cao死你这个sao货| 亚洲国产欧美一区二区综合| 久久久久国内视频| 免费观看的影片在线观看| 久久九九热精品免费| 中亚洲国语对白在线视频| 最近最新免费中文字幕在线| 久久香蕉国产精品| 日韩欧美三级三区| 国内揄拍国产精品人妻在线| 欧美日韩黄片免| 久久久久久久久中文| 婷婷丁香在线五月| 亚洲成av人片免费观看| 狠狠狠狠99中文字幕| 香蕉丝袜av| 亚洲无线在线观看| 床上黄色一级片| 19禁男女啪啪无遮挡网站| 夜夜爽天天搞| 日本撒尿小便嘘嘘汇集6| 两个人看的免费小视频| 757午夜福利合集在线观看| 97碰自拍视频| 免费av毛片视频| 国产精品久久视频播放| 亚洲中文日韩欧美视频| 黄色女人牲交| xxxwww97欧美| 亚洲专区国产一区二区| 天天添夜夜摸| 男女那种视频在线观看| 大型黄色视频在线免费观看| 免费看十八禁软件| 国产熟女xx| 婷婷六月久久综合丁香| 夜夜夜夜夜久久久久| 岛国在线观看网站| 亚洲精品美女久久久久99蜜臀| 黄色片一级片一级黄色片| 99久久99久久久精品蜜桃| 色噜噜av男人的天堂激情| a级毛片在线看网站| 中文字幕久久专区| 精品国产三级普通话版| 后天国语完整版免费观看| 在线观看舔阴道视频| 黄色女人牲交| 欧美中文日本在线观看视频| 日韩欧美 国产精品| 日本免费a在线| 精品久久久久久久久久久久久| 国产午夜福利久久久久久| 极品教师在线免费播放| 淫妇啪啪啪对白视频| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 亚洲av成人精品一区久久| 波多野结衣高清无吗| 99国产精品一区二区蜜桃av| 99热精品在线国产| 国产免费av片在线观看野外av| 国产美女午夜福利| 夜夜看夜夜爽夜夜摸| 一二三四社区在线视频社区8| 无人区码免费观看不卡| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 精品人妻1区二区| 欧美xxxx黑人xx丫x性爽| 免费一级毛片在线播放高清视频| 国产不卡一卡二| 久9热在线精品视频| 99国产精品一区二区三区| 91麻豆精品激情在线观看国产| x7x7x7水蜜桃| 精品不卡国产一区二区三区| 国内毛片毛片毛片毛片毛片| 国产1区2区3区精品| 色噜噜av男人的天堂激情| 一级作爱视频免费观看| 成人国产综合亚洲| 亚洲九九香蕉| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久com| 国产伦在线观看视频一区| 欧美黑人欧美精品刺激| 99久国产av精品| 最近最新中文字幕大全免费视频| 桃色一区二区三区在线观看| 午夜两性在线视频| 亚洲欧美日韩卡通动漫| 国产精品亚洲美女久久久| 久久精品夜夜夜夜夜久久蜜豆| 日韩有码中文字幕| 九九在线视频观看精品| 最近最新中文字幕大全免费视频| 免费观看精品视频网站| 香蕉av资源在线| 欧美3d第一页| 老汉色∧v一级毛片| 免费人成视频x8x8入口观看| 成人精品一区二区免费| 男女床上黄色一级片免费看| 久久这里只有精品19| 国产人伦9x9x在线观看| 黑人操中国人逼视频| 精品99又大又爽又粗少妇毛片 | 成人鲁丝片一二三区免费| 亚洲av五月六月丁香网| 中文字幕人妻丝袜一区二区| 免费在线观看成人毛片| 欧美乱色亚洲激情| av中文乱码字幕在线| www.999成人在线观看| 精品熟女少妇八av免费久了| 色综合欧美亚洲国产小说| 不卡av一区二区三区| 国产不卡一卡二| 日韩高清综合在线| 日本一本二区三区精品| 国产精品99久久99久久久不卡| 国产私拍福利视频在线观看| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 日韩免费av在线播放| 99国产综合亚洲精品| 精品99又大又爽又粗少妇毛片 | 最新中文字幕久久久久 | 午夜成年电影在线免费观看| 国产精品亚洲一级av第二区| 99精品欧美一区二区三区四区| 男人和女人高潮做爰伦理| 国产成人av激情在线播放| 1000部很黄的大片| 中文字幕人妻丝袜一区二区| 日韩有码中文字幕| 小蜜桃在线观看免费完整版高清| 久久国产乱子伦精品免费另类| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 精品福利观看| 最好的美女福利视频网| 男女床上黄色一级片免费看| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人一区二区三| 丁香欧美五月| 日本 欧美在线| 国产高清三级在线| 亚洲一区二区三区色噜噜| 国产精品爽爽va在线观看网站| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧洲综合997久久,| 国产欧美日韩一区二区精品| 色综合婷婷激情| 少妇人妻一区二区三区视频| 免费人成视频x8x8入口观看| 日韩欧美在线二视频| 国产99白浆流出| a级毛片a级免费在线| 狂野欧美激情性xxxx| 国产精品98久久久久久宅男小说| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 免费看光身美女| 99re在线观看精品视频| 色精品久久人妻99蜜桃| 男女那种视频在线观看| 麻豆久久精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 精品99又大又爽又粗少妇毛片 | 男女做爰动态图高潮gif福利片| 久久亚洲真实| 亚洲在线观看片| 欧美+亚洲+日韩+国产| 九色成人免费人妻av| 最新在线观看一区二区三区| 黄色成人免费大全| 亚洲av成人av| 亚洲人与动物交配视频| 国产精品永久免费网站| 日韩中文字幕欧美一区二区| 国产精品日韩av在线免费观看| 香蕉国产在线看| 中文字幕最新亚洲高清| 国产爱豆传媒在线观看| 久久中文字幕一级| 成人亚洲精品av一区二区| 亚洲中文字幕一区二区三区有码在线看 | 免费看美女性在线毛片视频| 人妻久久中文字幕网| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 午夜福利18| a在线观看视频网站| 99精品在免费线老司机午夜| 精品人妻1区二区| 黄片大片在线免费观看| 一级毛片高清免费大全| 搡老岳熟女国产| 久久久久九九精品影院| 怎么达到女性高潮| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 国产精品久久久久久人妻精品电影| 淫妇啪啪啪对白视频| 精品电影一区二区在线| 在线观看美女被高潮喷水网站 | 999久久久国产精品视频| 制服丝袜大香蕉在线| а√天堂www在线а√下载| svipshipincom国产片| 男人舔奶头视频| 欧美成人性av电影在线观看| 精品久久久久久久久久免费视频| 看片在线看免费视频| 欧美日韩黄片免| 精品国产乱码久久久久久男人| www.熟女人妻精品国产| 亚洲国产高清在线一区二区三| 亚洲av成人av| 99久久综合精品五月天人人| 中文亚洲av片在线观看爽| 国产一区二区三区在线臀色熟女| 观看免费一级毛片| 老汉色∧v一级毛片| 亚洲性夜色夜夜综合| 伦理电影免费视频| 99久久久亚洲精品蜜臀av| 精品国产乱码久久久久久男人| 特大巨黑吊av在线直播| 亚洲色图av天堂| 长腿黑丝高跟| 国产精品亚洲av一区麻豆| 小说图片视频综合网站| 国产精品av久久久久免费| 亚洲avbb在线观看| 日本黄大片高清| 国产精品av久久久久免费| 伦理电影免费视频| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 99精品在免费线老司机午夜| 国产不卡一卡二| 国产美女午夜福利| 欧美激情久久久久久爽电影| 天堂√8在线中文| 特大巨黑吊av在线直播| 九九在线视频观看精品| 亚洲av电影在线进入| 高清在线国产一区| 精品电影一区二区在线| 欧美激情在线99| 国产探花在线观看一区二区| 午夜福利欧美成人| 可以在线观看的亚洲视频| 国产精品一区二区三区四区免费观看 | 舔av片在线| 熟女少妇亚洲综合色aaa.| 国产99白浆流出| 97超视频在线观看视频| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区mp4| 精品久久久久久久毛片微露脸| 日本三级黄在线观看| 亚洲成人久久性| 久久久久久久精品吃奶| 真人做人爱边吃奶动态| 成人三级黄色视频| 日韩精品中文字幕看吧| 亚洲精品456在线播放app | 亚洲色图av天堂| 久久香蕉国产精品| 成人三级做爰电影| 国产三级中文精品| 国模一区二区三区四区视频 | 男女做爰动态图高潮gif福利片| 免费在线观看亚洲国产| 午夜福利在线观看免费完整高清在 | 嫩草影院入口| 国产免费男女视频| 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| 久久久国产欧美日韩av| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| АⅤ资源中文在线天堂| 国产aⅴ精品一区二区三区波| 婷婷六月久久综合丁香| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 欧美在线一区亚洲| 一本综合久久免费| 少妇裸体淫交视频免费看高清| 亚洲av片天天在线观看| 十八禁网站免费在线| 亚洲第一电影网av| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 我要搜黄色片| 亚洲av中文字字幕乱码综合| 久久久久久久久久黄片| 日本三级黄在线观看| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器 | 美女午夜性视频免费| 欧美3d第一页| www.自偷自拍.com| 欧美日韩一级在线毛片| 国产精品久久久久久久电影 | 久久性视频一级片| 老司机在亚洲福利影院| 免费看美女性在线毛片视频| 精品久久久久久久人妻蜜臀av| 亚洲精品色激情综合| 亚洲第一电影网av| 国产精品av视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久国产欧美日韩av| 午夜激情欧美在线| 999久久久国产精品视频| 麻豆成人午夜福利视频| 夜夜看夜夜爽夜夜摸| 性色avwww在线观看| av福利片在线观看| 国产高清有码在线观看视频| 日韩国内少妇激情av| 久久久久久久午夜电影| 中文字幕久久专区| 亚洲18禁久久av| 男女那种视频在线观看| 国产伦精品一区二区三区视频9 | 欧美色视频一区免费| av天堂中文字幕网| 免费看十八禁软件| 欧美日韩精品网址| 日韩欧美免费精品| 国产av麻豆久久久久久久| 国内揄拍国产精品人妻在线| 日本黄色片子视频| 女同久久另类99精品国产91| 久久中文字幕人妻熟女| 久久精品国产综合久久久| 色综合站精品国产| 一级毛片精品| 床上黄色一级片| 亚洲在线自拍视频| 久久中文看片网| 男女那种视频在线观看| 国产精品,欧美在线| 黄色丝袜av网址大全| 欧美午夜高清在线| 国产综合懂色| 免费电影在线观看免费观看| 久久伊人香网站| 国产高清激情床上av| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 久久这里只有精品19| 亚洲av成人不卡在线观看播放网| 国产真实乱freesex| 亚洲电影在线观看av| 青草久久国产| 国产极品精品免费视频能看的| 一本一本综合久久| 一区二区三区高清视频在线| 在线观看免费午夜福利视频| 国产乱人视频| 久99久视频精品免费| 日韩人妻高清精品专区| 在线免费观看不下载黄p国产 | 美女免费视频网站| 亚洲成a人片在线一区二区| 国产精品影院久久| 亚洲欧美激情综合另类| 精品人妻1区二区| 久久久久性生活片| 男人舔奶头视频| 欧美色欧美亚洲另类二区| 日韩欧美国产一区二区入口| 99热6这里只有精品| 1000部很黄的大片| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 欧美日韩综合久久久久久 | 色精品久久人妻99蜜桃| 曰老女人黄片| 男女视频在线观看网站免费| 变态另类成人亚洲欧美熟女| 99国产精品一区二区蜜桃av| 欧美激情久久久久久爽电影| 亚洲黑人精品在线| 久久国产精品影院| 美女cb高潮喷水在线观看 | 亚洲五月婷婷丁香| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 久久久久久九九精品二区国产| 免费在线观看成人毛片| 精品人妻1区二区| 夜夜夜夜夜久久久久| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9| 日本与韩国留学比较| 亚洲一区高清亚洲精品| 精华霜和精华液先用哪个| 成人三级做爰电影| 黄色女人牲交| 久久国产精品人妻蜜桃| 天堂√8在线中文| 色综合婷婷激情| 日韩欧美免费精品| 成年版毛片免费区| 国产成人影院久久av| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| www.自偷自拍.com| 国产成人欧美在线观看| 精品国产三级普通话版| 国产av一区在线观看免费| 88av欧美| 国产激情偷乱视频一区二区| 国产精品自产拍在线观看55亚洲| 欧美日韩国产亚洲二区| 欧美成人性av电影在线观看| 亚洲av五月六月丁香网| 免费看十八禁软件| 两个人的视频大全免费| 一级作爱视频免费观看| 嫩草影视91久久| 亚洲一区高清亚洲精品| 午夜a级毛片| 日本在线视频免费播放| 亚洲精品色激情综合| 看黄色毛片网站| 一个人免费在线观看电影 | 亚洲av第一区精品v没综合| 国产精品1区2区在线观看.| 午夜免费激情av| 午夜福利高清视频| 久久久久性生活片| 色噜噜av男人的天堂激情| 中文字幕最新亚洲高清| 国产av不卡久久| 久久精品国产综合久久久| 欧美zozozo另类| 久久精品91蜜桃| 欧美日韩福利视频一区二区| av天堂在线播放| 国产精品久久电影中文字幕| 黄色丝袜av网址大全| 美女黄网站色视频| 亚洲成av人片在线播放无| 老鸭窝网址在线观看| 国产极品精品免费视频能看的| 免费在线观看成人毛片| 男女做爰动态图高潮gif福利片| xxx96com| 视频区欧美日本亚洲| 国产免费男女视频| 免费人成视频x8x8入口观看|