• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RDX/BAMO推進劑結(jié)合能、力學(xué)性質(zhì)和能量性能的分子動力學(xué)模擬

    2011-11-30 10:49:04李苗苗沈瑞琪李鳳生
    物理化學(xué)學(xué)報 2011年6期
    關(guān)鍵詞:化工學(xué)院結(jié)合能苗苗

    李苗苗 沈瑞琪 李鳳生

    (南京理工大學(xué)化工學(xué)院,南京210094)

    RDX/BAMO推進劑結(jié)合能、力學(xué)性質(zhì)和能量性能的分子動力學(xué)模擬

    李苗苗*沈瑞琪 李鳳生

    (南京理工大學(xué)化工學(xué)院,南京210094)

    利用分子動力學(xué)方法研究了著名的含能材料環(huán)三亞甲基三硝胺(RDX)、3,3′-雙-(疊氮甲基)-氧雜環(huán)丁烷(BAMO)和RDX/BAMO推進劑.結(jié)果表明,BAMO與RDX(010)面之間分子相互作用最強,其次是(100)和(001)面.以對相關(guān)函數(shù)g(r)描述了RDX和BAMO之間的相互作用.計算了RDX/BAMO推進劑的彈性系數(shù)、模量、柯西壓、泊松比等性能.結(jié)果表明,BAMO的加入能夠改善RDX的彈性力學(xué)性能,相對改善效應(yīng)的順序為(100)>

    (001)>(010).RDX/BAMO推進劑的能量性能結(jié)果顯示,BAMO的加入降低了RDX的比沖,但仍高于著名的雙基推進劑的比沖.

    分子動力學(xué);RDX;BAMO;結(jié)合能;力學(xué)性能

    1 Introduction

    Fig.1 Molecular configurations of RDX(a)and crystal(b)

    Fig.2 Molecular configurations of BAMO

    Cyclotrimethylene trinitramine(RDX,Fig.1),an important modern molecular explosive,has been widely used as the propellant ingredients in applications such as gun and rocket motors.It offers many advantages for advanced propulsion,including high energy,high specific impulse,low sensitivity,and environment friendliness.In particular,RDX is also attractive because of its low cost.However,RDX has low burning rate (~1.19 cm·s-1at 6.08 MPa)coupled with a relatively high and undesirable burning rate exponent(~0.74).1In the search for new binder materials for the nitramine propellant,a great deal of interest has recently centered on azido compounds,which contain―N=N≡N bonds in their chemical structure,such as 3,3′-bis-azidomethyl-oxetane(BAMO,Fig.2).This nitramine/ azide combination propellant is characterized by high velocity of combustion,low vulnerability,and good thermal stability. These characteristics are especially useful as rocket propellants,since they provide high specific impulse while generating minimum smoke.Heretofore,a number of experimental measurements and theoretical studies2-12have paid attention to this kind of propellant.However,previous studies mainly focused on thermal decomposition and combustion characteristics of nitramine/azide propellant,and there are few reports on the structure performance for nitramine/azide using the MD simulation.In this paper,we chose RDX/BAMO propellant as an example to investigate the correlations between the structure and performance for propellants.It is hoped that our studies provide some information and guidance for composite propellant formulation design.

    2 Modeling and simulation

    2.1 Computational model

    The initial models were built by using materials studio(MS) package.13The initial RDX structure used in the condensed phase simulations was taken from the experimental result by Choi and Prince,14which crystallized in the orthorhombic space group of Pbca with four independent lattice parameters a=1.3182 nm,b=1.1574 nm,c=1.0709 nm and α=β=γ=90°. There are eight irreducible molecules in the unit cell,see Fig.1 (b).The RDX crystal was cut along three crystalline surfaces

    (100),(010),and(001),respectively,with the“cutting”method in MS 3.0.1 and put in the periodic cells with 3.0 nm vacuum layer along the z-axis(c direction),and the periodic MD simulation cells contain 96 RDX molecules,corresponding to (2×2×3)unit cells.BAMO involving six-chain segments was processed by amorphous cell module and simulated by 2.5×106fs using the MD method to get the equilibrium conformation, and the end groups of BAMO polymer were saturated with H and OH groups.According to the practical formulation of nitramine/binder propellant,we embed five equilibrium chains of BAMO into the supercell model in parallel with different RDX crystalline surfaces.A total of three different initial RDX/BAMO configurations with 2631 atoms,and with mass fractions of 80.6%RDX and 19.4%BAMO,respectively,were obtained.

    2.2 MD simulations

    The COMPASS force field was used to study the structures and properties of the RDX,BAMO,and RDX/BAMO.Its parameters were debugged and ascertained from the ab initio calculations,optimized according to the experimental values,and parameterized using extensive data for molecules in condensed phase.Its nonbonded parameters were further amended and validated by the thermal physical properties of the molecules in liquid and solid phases obtained using the MD method.Consequently,COMPASS is able to accurately predict the structural,conformational,vibrational,and thermophysical properties for a broad range of compounds in both isolation and condensed phases.15-18Moreover,the nitro(―NO2)functional groups required to model energetic materials have been specifically parameterized and included in the COMPASS force field.17Up to now,this force field has been successfully employed to investigate the nitramine.19-25It is therefore suitable for performing MD simulations on them.

    The molecular dynamics simulations of RDX,BAMO,and RDX/BAMO were performed using the COMPASS force field and periodic boundary conditions.Minimizations were initially carried out for 5000 iterations to equilibrate the RDX/BAMO models and then the simulation boxes were compressed slightly(0.3%)along the c direction.Afterward,another 5000 iterations of minimizations were carried out to reach the equilibrium state and the boxes were compressed further along the c direction.The above processes were repeated step by step until the density approached the theoretical maximum value,which can be predicted according to the mass fraction of each component in the propellant.Starting from the above-minimized structures,the MD simulations were conducted at constant volume and constant temperature(NVT)conditions.After an equilibrium run,the module allowed one to collect the results of the dynamics simulation in a trajectory file.Through analyzing trajectory files,the static elastic properties and pair correlation functions were obtained.Considering the condition of equilibrium and spend of CPU time,all the simulation time was added to 4×105fs.A fixed time step size of 1 fs was used in all the cases.In the above-mentioned MD simulations,the Andersen thermostat method26was employed to control the system at the temperature of 298 K.The Coulomb and van der Waals longrange,nonbond interactions were handled by using the standard Ewald and atom-based summation methods,respectively. Nonbonded interactions,spline width,and buffer width were truncated at 0.95,0.1,and 0.05 nm,respectively.All the calculations were implemented on a Pentium IV computer.

    3 Results and discussion

    3.1 Criteria of system equilibrium

    There are two criteria to judge the equilibrium:one is the equilibrium of temperature and the other is the equilibrium of energy.The fluctuations of temperature and energy are in the range of 5%-10%,that is to say,the fluctuation of temperature is within±15 K and the energy is invariable or small fluctuation around the average energy value.For instance,Fig.3 shows the fluctuation curves of temperature and energy in the MD simulation of BAMO on the molecule layers parallel to (100)crystalline surface of RDX.It can be found that both the fluctuation curves of temperature and energy trend to be smooth,and the temperature reaches equilibrium state indeed as it is fluctuating 10 K or so.

    3.2 Equilibrium configuration and interactions between constituents

    After the MD simulations,one can get the equilibrium configurations of the models.Fig.4 illustrates the equilibrium configurations of RDX/BAMO with BAMO on RDX crystalline surfaces of(100),(010),(001),respectively.As can be seen from Fig.4,BAMO polymer binder is closely contacted with the RDX crystalline surface and consequently extensive interactions exist between BAMO polymer and RDX.Binding energy(Ebinding)can well reflect the capacity of the two components blending with each other,which is defined as the negative value of the intermolecular interaction energy(Einter),Ebinding=-Einter. The intermolecular interaction energy can be evaluated by the total energies of the composite and each component in the equilibrium state.So the Ebindingbetween RDX and BAMO polymer can be determined as follows:

    where Etotalis the total energy of RDX/BAMO mixed system. ERDXand EBAMOare the total energies of RDX and BAMO polymer,respectively.

    For visualization,Etotal,ERDX,EBAMO,and Ebindingfor different crystalline surfaces are presented in Table 1.It can be found that the RDX(010)surface has a stronger capability to blend with BAMO than(001)and(100)surfaces due to the larger binding energies.In other words,when BAMO polymers are put into the RDX crystal,they tends to concentrate on the RDX(010)surface due to their stronger intermolecular interactions.

    Fig.3 Plots of temperature and energy vs simulation time for RDX/BAMO with BAMO on RDX(100)crystalline surface at the temperature of 298 K

    Fig.4 Equilibrium structures of RDX/BAMO with BAMO on different crystalline surfaces of RDX at 298 K

    Table 1 Binding energies for RDX/BAMO with BAMO on three different crystalline surfaces of RDX at 298 K

    The interactions between each constituent can be further analyzed by examining pair correlation function g(r).The pair correlation function gives a measure of the probability of finding another atom at a distance r from a specific atom.It has many applications in structural investigations of both solid and liquid packings(local structure),in studying specific interactions such as hydrogen bonding,and in statistical mechanical theories of liquids and mixtures.

    To be compact,only g(r)-r relations with important interaction of the crystalline surfaces(100)are described in Fig.5. The corresponding atoms are named as follows:(1)O,N,and H atoms in RDX are noted as O1,N1,and H1,respectively;(2) O(―OH),N,and H in BAMO are noted as O2H,N2,and H2,respectively.

    In general,intermolecular actions include hydrogen bonding action and van der Waals(vdw)force,in which the vdw force is composed of dipole-dipole,induction,and dispersion force. If the distance between atoms is 0.26-0.31 nm,0.31-0.50 nm, or above 0.50 nm,the interaction belongs to hydrogen bonding,strong vdw,or weak vdw force,respectively.Although the hydrogen bonding action is weaker than chemical bond,it is the strongest force among intermolecular actions and can strengthen them.

    From Fig.5(a),it is found that probability for N1in RDX and O2Hin BAMO to simultaneously arise in the distance of 0.29-0.39 nm is high to 2.5 or so,predicting the strong van der Waals interaction between them.In the region of 0.29-0.40 nm,a comparative high peak arises in the g(r)describing theatom pair(Fig.5(b)),predicting the strong van der Waals interaction.As seen from Fig.5(c),in the region of 0.25-0.29 nm,the high peak value arises in the g(r)curve ofindicating the strong hydrogen bond interaction between this atom pair;in the region of van der Waals,high peak arises again,predicting that certain van der Waals interaction exists between them.Fig.5(d)shows that mainly hydrogen bond and van der Waals interactions exist in O1-H2.In all,van der Waals and hydrogen bonds are the main interactions between RDX and BAMO,especially the van der Waals and hydrogen bond interactions exist in N1-O2Hand O1

    -H2.

    3.3 Mechanical properties

    The material stress and strain tensor are denoted by σ and ε, respectively.From the statistical mechanics of elasticity,27the generalized Hooke′s law is often written as

    [Cij]is symmetric,and hence a maximum of 21 constants is required to fully describe the stress-strain behavior of an arbitrary material.

    The effective isotropic compliances in terms of single-crystal compliances averaged over all orientations can be obtained by Reuss average.The effective bulk and shear moduli are given by:

    The subscript R denotes the Reuss average.The compliance matrix S is equal to the inverse matrix of elastic coefficient matrix C,i.e.,S=C?1.Note that for the most general crystal struc-ture(all 21 constants are independent)the Reuss modulus depends on only nine of the single-crystal compliances.From the rules of isotropic linear elasticity we have

    Fig.5 Pair correlation function of RDX(100)/BAMO propellant

    E=2G(1+n)=3K(1-2n) (5) where E is tensile modulus and n is the Poisson′s ratio,so that after the bulk and shear moduli are calculated,the tensile modulus and Poisson′s ratio can be obtained.

    Such plastic properties as hardness,tensile strength,fracture strength,and elongation in tension,can be related to the elastic modulus.28Hardness and tensile strength representing the resistance to plastic deformation are proportional to the shear modulus G.Fracture strength is proportional to the bulk modulus K. The quotient K/G indicates the extent of the plastic range(elongation in tension),so that a high value of K/G is associated with ductibility and a low value with brittleness.

    The predicted value of elastic constants and effective isotropic mechanical properties(tensile modulus,bulk modulus, shear modulus,and Poisson′s ratio)are summarized in Table 2 and Table 3,respectively.

    From the elastic coefficients matrices for RDX in Table 2,it can be found that the diagonal elements Ciiand C12,C13,C23(nine elements totally)are larger but the other coefficients are smaller,which indicate that the crystal has anisotropy to some extent.In addition,the larger C11,C22,and C33imply that,to reach the same strain,RDX needs a larger stress.This characteristic can also be further validated by the differences of elastic coefficients of the RDX/BAMO propellant with BAMO on different crystalline surfaces.Compared with the pure RDX, the smaller diagonal elements C22and C55increase for RDX/ BAMO,while other diagonal elements Ciiall decrease.Moreover,the off-diagonal elements C13and C23increase while C12, C15,C25,C35,and C46decrease or increase to some extent.This evolution tendency of elastic coefficients shows that adding some amounts of BAMO can reduce the anisotropy of the system.

    Cauchy pressure(C12-C44)can be used as a criterion to evaluate the ductibility or brittleness of a material.As a rule,the value of(C12

    -C44)for a ductile material is positive;on the contrary,that is negative for a brittle material.Meanwhile,the more positive the(C12-C44)value is,the more ductile the material is.According to this,the data in the last column of Table 2 indicate that the pure RDX and the obtained RDX/BAMO are all ductile due to their positive(C12-C44).But,the Cauchy pressures of the RDX/BAMO are all larger than that of the pure RDX crystal.This indicates that the ductibility of RDX is greatly improved by adding some quantities of BAMO polymer. Comparing the values of(C12-C44),we find that the ductibility of RDX/BAMO depends on different surfaces,and it changes in the following order:(010)>(100)>(001).

    As can be also seen from Table 3,all moduli of the obtained RDX/BAMO decrease in comparison with the pure crystal except K for(010).For example,the tensile modulus E decreases from 8.51 to 6.38 GPa as the system changes from the pure crystal to the RDX/BAMO mixture,the shear modulus G decreases from 3.29 to 2.37 GPa,and the bulk modulus K decreases or increases slightly as compared to the former two moduli.This further indicates that the rigidity and brittleness of RDX/BAMO propellant decrease,while its elasticity and plasticity strengthen.Meanwhile,these variations also suggest that the materials will deform more easily when they are subjected to an external force,because the resistance to plastic deformation is proportional to the elastic shear modulus G and the fracture strength for materials is proportional to the bulk modulus K.29As a whole,the effect of BAMO on improving the mechanical properties of different crystal surfaces is somewhat different and changes in the order of(100)>(001)>(010).

    In addition,the ratio(bulk modulus/shear modulus,K/G) can be used to evaluate the tenacity of a material.A higher value of K/G is associated with malleability and a lower value with brittleness.According to this,it can be deduced from the K/G values in Table 3 that RDX/BAMO has better malleability than the pure RDX.On the whole,the malleability of RDX/ BAMO propellant with BAMO on three different crystalline surfaces decreases as follows:(100)>(001)≈(010).

    3.4 Energetic properties

    Energetic properties are the much important factors to evaluate the propellant performances.The calculations of propellant energetic properties can be approximately divided into foursteps.Firstly,calculate the assumed chemical formula,oxygen balances(OB100)and initial total enthalpy of 1000 g propellant. For1000 g RDX,the assumed chemicalformula is C13.506H27.013O27.013N27.013,and for 1000 g RDX/BAMO(80.6/19.4) propellant,that is C16.659H31.011O22.927N28.701.Next,compute the thermochemical properties of propellant combustion process in the combustion chamber.Propellant isenthalpic combustion decomposes into high temperature working fluid,which is heat balance and chemical equilibrium(energy conservation and mass conservation).According to the principle of minimum free energy function of balance system,the equilibrium composition,chamber temperature(Tc)and other thermodynamic functions in the combustion chamber can be further calculated. Thirdly,calculate the thermochemical properties of combustion products expansion process(isentropic expansion)in the nozzle.Using the entropy difference inserting method,one can get the outlet temperature(Te),outlet species composition,etc. Lastly,calculate specific heat ratio,standard theoretical specific impulse(Isp),etc.

    Table 2 Elastic constants(GPa)of pure crystal RDX and RDX/BAMO propellant with BAMO on different crystalline surfaces at 298 K

    Table 3 Elastic properties of RDX crystal and RDX/BAMO mixture system with BAMO on different crystalline surfaces at 298 K

    Table 4 Energetic properties of RDX/BAMO propellant

    Among above parameters,standard theoretical specific impulse(Isp),equal to units of thrust per unit mass of propellant consumed per unit time,is the most important parameter to evaluate energy characteristics of propellants.Isphas great influence on the rocket range,the higher Isp,the farther rocket range.The calculation standard of Ispis as follows:(1)the combustion chamber pressure equals to 6.86 MPa;(2)environment pressure equals to 0.1 MPa;(3)nozzle expansion ratio is optimal,that exit pressure equals to environment pressure;(4)nozzle exit spread angle equals to 0°.The predicted energetic properties are listed in Table 4.

    From Table 4,it can be seen that Ispof RDX is relatively high(2608 N·s·kg-1)due to its high density(ρ),oxygen balances(OB100),and chamber temperature.Compared with RDX, BAMO has positive heat of formation(ΔHf,2460.0 kJ·kg-1), yet it also has large negative oxygen balances(OB100=-123.8), which will cause the incomplete combustion and reduce the chamber temperature,and so BAMO has lower Isp(2137 N·s· kg-1).When adding BAMO polymer to RDX crystal,the OB100, Tc,and Ispof RDX/BAMO propellant are smaller than those of the pure RDX crystal.But,compared with the famous double base(DB)propellant(Isp=2100-2270 N·s·kg-1)30,it is obvious that RDX/BAMO propellant has better energetic performances than DB propellant.

    4 Conclusions

    In this study,we have performed MD simulations to study the binding energies,mechanical properties,and energetic properties of RDX/BAMO propellant.The effects of BAMO on different crystalline surfaces of RDX were investigated,the major findings can be summarized as follows:

    (1)The binding energies between RDX and BAMO are obtained,and the order of binding energies is(010)>(100)>(001).

    (2)The pair correlation function g(r)analysis shows that hydrogen bond and van der Waals interactions exist between RDX and BAMO.

    (3)The mechanical properties of the pure RDX can be effectively improved by adding BAMO ploymer.On three different cyrstalline surfaces,the effect of BAMO on improving the mechanical properties is approximately(100)>(001)>(010). Whereas the improvement in the ductibility(C12-C44)made by BAMO polymers changes in the sequence of(010)>(100)>

    (001).

    (4)The calculations on energetic properties for RDX/ BAMO propellant show that its energetic properties can be lowered by blending some amount of BAMO polymer,but it is still superior to the double base propellant and can be used as advanced propellant.

    In a word,the MD simulations on the RDX and RDX/ BAMO propellant provide us much information about its mechanical properties,binding energies,and energetic properties. These may be useful for guiding composite propellant design.

    (1) Luca,L.D.;Cozzi,F.;Germiniasi,G.Combust.Flame 1999, 118,248.

    (2) Oyumi,Y.;Brill,T.B.Combust.Flame 1986,65,127.

    (3) Chen,J.K.;Brill,T.B.Combust.Flame 1991,87,157.

    (4) Miyazaki,T.;Kubota,N.Propell.Explos.Pyrotech.1992,17,5.

    (5)Oyumi,Y.;Inokami,K.;Yamazaki,K.;Matsumoto,K.Propell. Explos.Pyrotech.1993,18,62.

    (6)Shen,S.M.;Chiu,Y.S.;Wang,S.W.;Chen,S.I.Thermochim. Acta 1993,221,275.

    (7) Kimura,E.;Oyumi,Y.Propell.Explos.Pyrotech.1995,20,322.

    (8) Kubota,N.J.Propul.Power 1995,11,677.

    (9) Liu,Y.L.;Hsiue,G.H.;Chiu,Y.S.J.Appl.Polym.Sci.1995, 58,579.

    (10) Oyumi,Y.;Kimura,E.;Nagayama,K.Propell.Explos. Pyrotech.1998,23,123.

    (11) Pisharath,S.;Ang,H.G.Polym.Degrad.Stabil.2007,92,1365.

    (12) Zhai,J.;Yang,R.;Li,J.Combust.Flame 2008,154,473.

    (13) Material Studio 3.0 discover;Accelrys Inc.:San Diego,2004.

    (14) Choi,C.S.;Prince,E.Acta Crystallogr.B 1972,28,2857.

    (15) Sun,H.;Ren,P.;Fried,J.R.Comput.Theor.Polym.Sci.1998, 8,229.

    (16) Bunte,S.W.;Sun,H.J.Phys.Chem.B 2000,104,2477.

    (17)Yang,J.;Ren,Y.;Tian,A.M.;Sun,H.J.Phys.Chem.B 2000, 104,4951.

    (18)Mcquaid,M.J.;Sun,H.;Rigby,D.J.Comput.Chem.2004,25, 61.

    (19) Sun,H.J.Phys.Chem.B 1998,102,7338.

    (20) Zhu,W.;Xiao,J.;Zhu,W.;Xiao,H.J.Hazard.Mater.2009, 164,1082.

    (21) Xu,X.J.;Xiao,H.M.;Xiao,J.J.;Zhu,W.;Huang,H.;Li,J.S. J.Phys.Chem.B 2006,110,7203.

    (22)Qiu,L.;Zhu,W.H.;Xiao,J.J.;Zhu,W.;Xiao,H.M.;Huang, H.;Li,J.S.J.Phys.Chem.B 2007,111,1559.

    (23)Zhu,W.;Wang,X.;Xiao,J.;Zhu,W.;Sun,H.;Xiao,H. J.Hazard.Mater.2009,167,810.

    (24) Xiao,J.;Huang,H.;Li,J.;Zhang,H.;Zhu,W.;Xiao,H.J.Mol. Struct.-Theothem 2008,851,242.

    (25) Qiu,L.;Xiao,H.J.Hazard.Mater.2009,164,329.

    (26)Andersen,H.C.J.Chem.Phys.1980,72,2384.

    (27) Weiner,J.H.Statistical Mechanics of Elasticity;John Wiley: New York,2002.

    (28) Pugh,S.F.Philos.Mag.Series 7 1954,45,823.

    (29) Weiner,J.H.Statistical Mechanics of Elasticity;John Wiley: New York,1983.

    (30) Tian,D.Y.;Liu,J.H.Energetics Calculation of Chemical Propellants;Henan Scientific and Technical Publishers: Zhengzhou,1999.[田德余,劉劍洪.化學(xué)推進劑計算能量學(xué).鄭州:河南科學(xué)技術(shù)出版社,1999.]

    January 21,2011;Revised:March 28,2011;Published on Web:April 15,2011.

    Molecular Dynamics Simulation of Binding Energies,Mechanical Properties and Energetic Performance of the RDX/BAMO Propellant

    LI Miao-Miao*SHEN Rui-Qi LI Feng-Sheng
    (School of Chemical Engineering Nanjing University of Science and Technology,Nanjing 210094,P.R.China)

    Molecular dynamics(MD)simulations were performed to investigate the well-known energetic material cyclotrimethylene trinitramine(RDX)crystal,3,3′-bis-azidomethyl-oxetane(BAMO)and the RDX/ BAMO propellant.The results show that the binding energies of RDX with BAMO on different crystalline surfaces change as follows:(010)>(100)>(001).The interactions between RDX and BAMO were analyzed by pair correlation functions g(r).The mechanical properties of the RDX/BAMO propellant,such as the elastic coefficients,modulus,Cauchy pressure,and Poisson?s ratio,were obtained.We find that the mechanical properties are effectively improved by adding some BAMO polymer and the overall effect of BAMO on the three crystalline surfaces of RDX changes as follows:(100)>(001)>(010).The energetic performance of the RDX/BAMO propellant was also calculated and the results show that compared with the pure RDX crystal,the standard theoretical specific impulse(Isp)of the RDX/BAMO propellant decreases but it is still superior to that of the double base propellant.

    Molecular dynamics;RDX;BAMO;Binding energy;Mechanical property

    O641

    ?Corresponding author.Email:lmm406@126.com;Tel/Fax:+86-25-84315942.

    The project was supported by the Jiangsu Postdoctoral Sustentation Fund,China(0902018C).江蘇省博士后基金(0902018C)資助項目

    猜你喜歡
    化工學(xué)院結(jié)合能苗苗
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    晶體結(jié)合能對晶格動力學(xué)性質(zhì)的影響
    《重拾》
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    借鑒躍遷能級圖示助力比結(jié)合能理解*
    物理通報(2020年7期)2020-07-01 09:28:02
    愛幫忙的蠟燭
    My Dream
    出類拔萃
    《化工學(xué)報》贊助單位
    麻豆国产av国片精品| 久久久久久久久久成人| 久久草成人影院| 一级av片app| 午夜激情福利司机影院| 亚洲四区av| 天天躁日日操中文字幕| 亚洲性夜色夜夜综合| 丰满乱子伦码专区| 国产成人福利小说| 亚洲一级一片aⅴ在线观看| 日韩中字成人| 日韩制服骚丝袜av| 亚洲欧美成人综合另类久久久 | 99久国产av精品国产电影| 高清毛片免费观看视频网站| 精品欧美国产一区二区三| 日韩 亚洲 欧美在线| 麻豆乱淫一区二区| 51国产日韩欧美| 午夜激情福利司机影院| 中文字幕精品亚洲无线码一区| 欧美xxxx性猛交bbbb| 精品欧美国产一区二区三| 国内精品宾馆在线| 免费观看的影片在线观看| 午夜福利视频1000在线观看| 老司机影院成人| 欧美色视频一区免费| 美女cb高潮喷水在线观看| 日本欧美国产在线视频| 免费搜索国产男女视频| 嫩草影院入口| 亚洲欧美日韩高清专用| 可以在线观看的亚洲视频| 国产黄色视频一区二区在线观看 | 久久久久久伊人网av| 九色成人免费人妻av| 亚洲高清免费不卡视频| 禁无遮挡网站| 可以在线观看的亚洲视频| 国产成人影院久久av| 亚洲四区av| 三级毛片av免费| 成人亚洲精品av一区二区| 国产精品久久电影中文字幕| 国产在视频线在精品| 精品久久久噜噜| 亚洲在线观看片| 欧美最黄视频在线播放免费| 欧美高清成人免费视频www| 伊人久久精品亚洲午夜| 国语自产精品视频在线第100页| 伦理电影大哥的女人| 夜夜看夜夜爽夜夜摸| 色哟哟哟哟哟哟| av在线观看视频网站免费| 久久国产乱子免费精品| 热99在线观看视频| 国产成年人精品一区二区| 亚洲熟妇熟女久久| 女生性感内裤真人,穿戴方法视频| 亚洲av一区综合| 日日干狠狠操夜夜爽| 亚洲av一区综合| 卡戴珊不雅视频在线播放| 卡戴珊不雅视频在线播放| 国产精品嫩草影院av在线观看| 国产精品一区www在线观看| 99热这里只有是精品在线观看| 欧美中文日本在线观看视频| av黄色大香蕉| 中文字幕久久专区| 看片在线看免费视频| 日韩三级伦理在线观看| 丰满的人妻完整版| 国产成年人精品一区二区| 久久久久久久午夜电影| 亚洲七黄色美女视频| 好男人在线观看高清免费视频| 一级黄片播放器| 色av中文字幕| 美女被艹到高潮喷水动态| 中文资源天堂在线| 三级经典国产精品| 两个人的视频大全免费| 国产男靠女视频免费网站| 精品人妻视频免费看| 有码 亚洲区| 有码 亚洲区| 亚洲精品久久国产高清桃花| 好男人在线观看高清免费视频| 亚洲成a人片在线一区二区| 欧美高清性xxxxhd video| 日韩大尺度精品在线看网址| 中国美白少妇内射xxxbb| 亚洲精品一卡2卡三卡4卡5卡| 国产精品综合久久久久久久免费| 亚洲国产精品sss在线观看| 精品乱码久久久久久99久播| 日韩三级伦理在线观看| 99在线人妻在线中文字幕| 俄罗斯特黄特色一大片| 日韩高清综合在线| 99热6这里只有精品| 精品日产1卡2卡| 精品久久久噜噜| 内射极品少妇av片p| av.在线天堂| 国产三级在线视频| 亚洲18禁久久av| 久久久精品94久久精品| 成人无遮挡网站| 在线看三级毛片| 日本三级黄在线观看| 可以在线观看毛片的网站| 亚洲,欧美,日韩| 夜夜看夜夜爽夜夜摸| 蜜臀久久99精品久久宅男| 草草在线视频免费看| 国产av不卡久久| 超碰av人人做人人爽久久| 俺也久久电影网| 最新在线观看一区二区三区| 国产av一区在线观看免费| 午夜日韩欧美国产| 人人妻人人澡人人爽人人夜夜 | 波多野结衣巨乳人妻| 两性午夜刺激爽爽歪歪视频在线观看| 高清午夜精品一区二区三区 | 2021天堂中文幕一二区在线观| 久久99热这里只有精品18| 最近视频中文字幕2019在线8| 嫩草影院入口| 国产视频内射| 淫妇啪啪啪对白视频| 国产探花极品一区二区| 国产亚洲精品久久久久久毛片| 2021天堂中文幕一二区在线观| 亚洲综合色惰| 久久综合国产亚洲精品| 18禁裸乳无遮挡免费网站照片| 亚洲人与动物交配视频| 直男gayav资源| 亚洲欧美成人精品一区二区| 你懂的网址亚洲精品在线观看 | 国产高清三级在线| 欧美日韩国产亚洲二区| 日本-黄色视频高清免费观看| 亚洲乱码一区二区免费版| 国产精品免费一区二区三区在线| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| 蜜桃亚洲精品一区二区三区| 欧美潮喷喷水| 看十八女毛片水多多多| 亚洲美女黄片视频| 十八禁网站免费在线| 99久久无色码亚洲精品果冻| 能在线免费观看的黄片| 久久久久精品国产欧美久久久| 久久久久久久久中文| 女同久久另类99精品国产91| 亚洲国产精品sss在线观看| 久久人人爽人人爽人人片va| av视频在线观看入口| 麻豆精品久久久久久蜜桃| 久久久精品大字幕| 国产探花极品一区二区| 亚洲av中文av极速乱| 国产精品免费一区二区三区在线| av视频在线观看入口| 亚洲人与动物交配视频| 国产大屁股一区二区在线视频| 欧美绝顶高潮抽搐喷水| 日本黄大片高清| 男女下面进入的视频免费午夜| a级毛片免费高清观看在线播放| 亚洲五月天丁香| 欧美色欧美亚洲另类二区| 最近最新中文字幕大全电影3| 国产精品99久久久久久久久| 日本五十路高清| 日韩av不卡免费在线播放| 天堂动漫精品| 最近中文字幕高清免费大全6| 成人av在线播放网站| 国产综合懂色| 免费无遮挡裸体视频| av中文乱码字幕在线| 亚州av有码| 夜夜爽天天搞| 亚洲一区高清亚洲精品| 大又大粗又爽又黄少妇毛片口| 国产黄片美女视频| 亚洲欧美日韩无卡精品| 精品久久国产蜜桃| 毛片女人毛片| 内地一区二区视频在线| 亚洲欧美日韩东京热| 国产三级中文精品| a级毛片免费高清观看在线播放| 好男人在线观看高清免费视频| 免费黄网站久久成人精品| 中文资源天堂在线| 97碰自拍视频| 国产一区亚洲一区在线观看| 精品久久久久久久末码| 亚洲成a人片在线一区二区| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 精品久久久久久久久亚洲| 中国国产av一级| 精品无人区乱码1区二区| 又黄又爽又刺激的免费视频.| 亚洲精品一卡2卡三卡4卡5卡| 一a级毛片在线观看| 久久综合国产亚洲精品| 成人性生交大片免费视频hd| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 嫩草影视91久久| 丰满人妻一区二区三区视频av| 性插视频无遮挡在线免费观看| 免费看日本二区| 色5月婷婷丁香| 日日啪夜夜撸| 精品久久久久久久久av| 毛片女人毛片| 国产高清三级在线| 在线观看免费视频日本深夜| 在线免费观看的www视频| 俺也久久电影网| 国产综合懂色| 变态另类成人亚洲欧美熟女| 一a级毛片在线观看| 岛国在线免费视频观看| 女人被狂操c到高潮| 亚洲国产日韩欧美精品在线观看| 午夜福利高清视频| 哪里可以看免费的av片| 老司机影院成人| 久久久久久久亚洲中文字幕| 永久网站在线| 国产精品,欧美在线| 午夜福利在线观看吧| 日本在线视频免费播放| 亚洲av五月六月丁香网| 亚洲美女视频黄频| 毛片一级片免费看久久久久| 如何舔出高潮| 成人高潮视频无遮挡免费网站| 91av网一区二区| av视频在线观看入口| 晚上一个人看的免费电影| 日韩国内少妇激情av| 深夜a级毛片| 中文字幕熟女人妻在线| 秋霞在线观看毛片| 91在线观看av| 亚洲自拍偷在线| 我要搜黄色片| 麻豆精品久久久久久蜜桃| 日日摸夜夜添夜夜添av毛片| 日产精品乱码卡一卡2卡三| 一级毛片久久久久久久久女| 免费看av在线观看网站| 色5月婷婷丁香| 精品人妻视频免费看| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 日韩精品中文字幕看吧| 成人国产麻豆网| 日韩高清综合在线| 精品一区二区三区av网在线观看| 亚洲中文字幕一区二区三区有码在线看| 黑人高潮一二区| 亚洲国产色片| av在线老鸭窝| 亚洲第一区二区三区不卡| 黑人高潮一二区| 亚洲国产色片| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 美女cb高潮喷水在线观看| 女的被弄到高潮叫床怎么办| 欧美人与善性xxx| 亚洲国产精品sss在线观看| 岛国在线免费视频观看| 国产91av在线免费观看| 婷婷精品国产亚洲av| 日韩三级伦理在线观看| 1024手机看黄色片| 亚洲丝袜综合中文字幕| 日韩一本色道免费dvd| 中文字幕熟女人妻在线| 成年女人毛片免费观看观看9| 日韩国内少妇激情av| 国产不卡一卡二| 久久6这里有精品| 成年女人毛片免费观看观看9| 国产精品乱码一区二三区的特点| 国产精品无大码| 岛国在线免费视频观看| 亚洲第一电影网av| 日本黄色视频三级网站网址| 有码 亚洲区| 欧美一区二区亚洲| 一级黄片播放器| 特级一级黄色大片| 成人国产麻豆网| 国产淫片久久久久久久久| 麻豆一二三区av精品| 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| 欧美成人精品欧美一级黄| 小说图片视频综合网站| 免费不卡的大黄色大毛片视频在线观看 | 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 麻豆国产av国片精品| 国产精品不卡视频一区二区| 人人妻人人澡欧美一区二区| 亚洲七黄色美女视频| 最近最新中文字幕大全电影3| 麻豆久久精品国产亚洲av| 国产一区二区激情短视频| 久久人人爽人人片av| 又黄又爽又免费观看的视频| 美女黄网站色视频| 久久久国产成人免费| 在线国产一区二区在线| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看| 大又大粗又爽又黄少妇毛片口| av在线观看视频网站免费| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 久久久久国产精品人妻aⅴ院| 99热网站在线观看| 午夜精品在线福利| 波多野结衣巨乳人妻| 国内揄拍国产精品人妻在线| 亚洲国产精品成人久久小说 | 国产成人freesex在线 | av黄色大香蕉| av在线蜜桃| 观看美女的网站| 中文字幕人妻熟人妻熟丝袜美| 久久热精品热| 偷拍熟女少妇极品色| 国产91av在线免费观看| 亚洲电影在线观看av| 日韩强制内射视频| 日本三级黄在线观看| 色哟哟哟哟哟哟| 日本爱情动作片www.在线观看 | 国产伦精品一区二区三区四那| 精品午夜福利视频在线观看一区| 成人特级av手机在线观看| 男人舔奶头视频| 国产午夜精品论理片| 国产激情偷乱视频一区二区| 国语自产精品视频在线第100页| 在线a可以看的网站| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 黄色日韩在线| 亚洲精品色激情综合| 久久久国产成人精品二区| 三级经典国产精品| 黑人高潮一二区| 欧美3d第一页| 少妇高潮的动态图| 亚洲自偷自拍三级| 麻豆av噜噜一区二区三区| 黄色日韩在线| 床上黄色一级片| 亚洲欧美精品综合久久99| 亚洲成人av在线免费| 丰满乱子伦码专区| 欧美高清性xxxxhd video| 国产高清视频在线播放一区| 两个人视频免费观看高清| 99久久成人亚洲精品观看| 国内少妇人妻偷人精品xxx网站| 日本a在线网址| 欧美潮喷喷水| 91av网一区二区| 日本一二三区视频观看| 搡老熟女国产l中国老女人| 免费电影在线观看免费观看| 少妇熟女欧美另类| 看十八女毛片水多多多| 国产精品三级大全| 国产在视频线在精品| 日产精品乱码卡一卡2卡三| 久久久久九九精品影院| 久久久欧美国产精品| 搡老岳熟女国产| 久久久色成人| 搡老熟女国产l中国老女人| 99热网站在线观看| 色视频www国产| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站| 亚洲在线自拍视频| 日韩欧美精品v在线| 国产黄色视频一区二区在线观看 | 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 一进一出好大好爽视频| 一级黄片播放器| 在线天堂最新版资源| or卡值多少钱| 99久久成人亚洲精品观看| 最好的美女福利视频网| 午夜免费激情av| 精品少妇黑人巨大在线播放 | a级一级毛片免费在线观看| 久久这里只有精品中国| 一进一出抽搐动态| 国产黄片美女视频| a级毛片免费高清观看在线播放| 在线播放国产精品三级| 此物有八面人人有两片| 欧美成人一区二区免费高清观看| 亚洲中文日韩欧美视频| 久久精品国产清高在天天线| 国产日本99.免费观看| 在线a可以看的网站| 99九九线精品视频在线观看视频| 久久久久久久久久久丰满| 人人妻人人澡欧美一区二区| 亚洲精品久久国产高清桃花| 国产色婷婷99| 精品国产三级普通话版| 成年免费大片在线观看| 国内精品美女久久久久久| 国产成年人精品一区二区| 久久精品久久久久久噜噜老黄 | 五月伊人婷婷丁香| 三级毛片av免费| 寂寞人妻少妇视频99o| 久久6这里有精品| 国产高清三级在线| 国内揄拍国产精品人妻在线| aaaaa片日本免费| 国产午夜精品论理片| 国产成人福利小说| 日本一本二区三区精品| 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 亚洲色图av天堂| 欧美日韩乱码在线| 中文字幕久久专区| 深夜a级毛片| 美女 人体艺术 gogo| 亚洲电影在线观看av| 色播亚洲综合网| 日日摸夜夜添夜夜添av毛片| 亚洲熟妇熟女久久| 成人美女网站在线观看视频| 国产不卡一卡二| 国产69精品久久久久777片| 男女啪啪激烈高潮av片| 一本久久中文字幕| 精品福利观看| 女人十人毛片免费观看3o分钟| 亚洲国产日韩欧美精品在线观看| 亚洲自偷自拍三级| 亚洲不卡免费看| 国产精品无大码| 久久人人爽人人片av| 22中文网久久字幕| 国产成人影院久久av| 亚洲专区国产一区二区| 三级国产精品欧美在线观看| 久久国产乱子免费精品| 春色校园在线视频观看| 大香蕉久久网| 国产精品女同一区二区软件| 美女被艹到高潮喷水动态| 美女黄网站色视频| 午夜福利成人在线免费观看| 2021天堂中文幕一二区在线观| 精品人妻熟女av久视频| 欧美三级亚洲精品| 性插视频无遮挡在线免费观看| 内射极品少妇av片p| 国产一区二区三区在线臀色熟女| 中文字幕久久专区| 在线免费观看的www视频| 亚洲国产精品久久男人天堂| av国产免费在线观看| 亚洲一区高清亚洲精品| 99国产极品粉嫩在线观看| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 99在线人妻在线中文字幕| av在线老鸭窝| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 精品久久久久久久久亚洲| 日本撒尿小便嘘嘘汇集6| 22中文网久久字幕| 久久国内精品自在自线图片| 日本黄色视频三级网站网址| 最后的刺客免费高清国语| 99久久九九国产精品国产免费| 嫩草影院新地址| 国产精品99久久久久久久久| 听说在线观看完整版免费高清| 91在线观看av| 一级毛片电影观看 | 少妇人妻一区二区三区视频| 麻豆乱淫一区二区| 国产高潮美女av| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 给我免费播放毛片高清在线观看| 在线天堂最新版资源| 99riav亚洲国产免费| 在线观看免费视频日本深夜| 欧美成人a在线观看| 欧美激情久久久久久爽电影| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| 欧美zozozo另类| 精品少妇黑人巨大在线播放 | 伦理电影大哥的女人| 99久久无色码亚洲精品果冻| 亚洲av五月六月丁香网| 99国产精品一区二区蜜桃av| 黄色配什么色好看| av在线播放精品| 又黄又爽又免费观看的视频| 日本免费a在线| 亚洲国产精品合色在线| 搡老妇女老女人老熟妇| 中文资源天堂在线| 最近中文字幕高清免费大全6| 国产成人freesex在线 | 亚洲,欧美,日韩| 日本免费a在线| 黄色一级大片看看| 91久久精品国产一区二区成人| 国产黄片美女视频| 性色avwww在线观看| 成年女人看的毛片在线观看| 亚洲欧美中文字幕日韩二区| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 日韩av不卡免费在线播放| 一级黄片播放器| 国产午夜精品久久久久久一区二区三区 | 99久久精品国产国产毛片| 亚洲人成网站在线播放欧美日韩| 高清毛片免费观看视频网站| 午夜福利在线观看免费完整高清在 | 国产伦精品一区二区三区四那| 国产亚洲91精品色在线| 精品国内亚洲2022精品成人| 精品久久国产蜜桃| 97超碰精品成人国产| 99九九线精品视频在线观看视频| 亚洲性久久影院| 嫩草影院新地址| 欧美不卡视频在线免费观看| 亚洲精品影视一区二区三区av| 亚洲人成网站在线播放欧美日韩| 免费观看的影片在线观看| 色哟哟哟哟哟哟| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 免费看日本二区| 国内揄拍国产精品人妻在线| 久久久久久久久久久丰满| 久久中文看片网| 啦啦啦观看免费观看视频高清| 变态另类丝袜制服| 在线播放无遮挡| 日日干狠狠操夜夜爽| 亚洲av二区三区四区| 一本久久中文字幕| 国产高潮美女av| aaaaa片日本免费| 婷婷色综合大香蕉| 国内久久婷婷六月综合欲色啪| 国产精品人妻久久久影院| 亚洲av中文字字幕乱码综合| 搡老妇女老女人老熟妇| av福利片在线观看| 国产淫片久久久久久久久| 婷婷精品国产亚洲av在线| 国产精品久久久久久久久免| 在线观看一区二区三区| 老女人水多毛片| 亚洲内射少妇av| 久久亚洲国产成人精品v| 丝袜美腿在线中文| 中文亚洲av片在线观看爽| 亚洲最大成人手机在线| 男女啪啪激烈高潮av片| 男人狂女人下面高潮的视频| 久久亚洲精品不卡| 亚洲在线观看片| 中文字幕熟女人妻在线| 亚洲欧美日韩东京热| 日韩高清综合在线| 久久精品人妻少妇| 中出人妻视频一区二区|