• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同pH值制備的TiO2和TiO2/SiO2催化劑結(jié)構(gòu)、表面性質(zhì)及光催化活性

    2011-12-12 02:41:32任成軍龔茂初侯云澤陳耀強(qiáng)
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:無機(jī)學(xué)報(bào)化學(xué)

    仇 偉 任成軍 龔茂初 侯云澤 陳耀強(qiáng)

    (四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)重點(diǎn)實(shí)驗(yàn)室,成都610064)

    1 Introduction

    TiO2photocatalyst has drawn great attention due to its stability,lower cost,and nontoxicity.1However,its applications were restricted heavily by its limited photocatalytic activity.There is a desired need to improve the photocatalytic activity of TiO2from industrial point of view.Many efforts have been devoted in the past to inhibit crystal growth,to increase surface area and to retard phase transformation by incorporating another inorganic oxide,such as SiO2,2-6ZrO2,7,8and Al2O3,9into TiO2photocatalysts.Silica is selected as a dopant in our study for following reasons:(1)TiO2/SiO2is acting as a better catalyst; (2)SiO2aqueous sol precursor is cheap and non-toxic.

    It is well known that the photocatalytic activity mainly relies on its physicochemical properties,such as the phase composition,the crystallite size,the specific surface area,the pore size distribution,the surface acidity,and the particle morphology. Given here are a few reports relating to the effect of media acidity on the microstructure of photocatalysts.Huang et al.10pointed out that the crystallization and particle sizes of titania were dependent upon the precursor used,the reaction temperature,and the media acidity.Pottier et al.11suggested that the Cl/ Ti molar ratio,the aging conditions,and the acidity were the key factors determining the crystalline phases,the particle size,and morphologies of particles.Zhang et al.12revealed that the H2O2/Ti molar ratio and the pH values of the precursor played a key role in phase formation.Yu et al.13studied the effect of pH on the microstructures and the photoactivity of titania,which was prepared by hydrothermal method using tetrabutyl titanate.

    In our work TiO2and TiO2/SiO2catalysts were prepared at different pH values by a precipitation method with TiOSO4and/ or SiO2sol as precursors,respectively.The effect of pH on the formation and properties of TiO2and TiO2/SiO2are different from above studies due to the differences in the preparation procedures and the precursor used.14The phase structure,surface area,surface morphology of particles,surface acidity,and surface hydroxys of the as-prepared photocatalysts will be discussed.

    2 Experimental

    2.1 Catalyst preparation

    SiO2-doped 5%(mass fraction)TiO2was prepared from the aqueous solutions containing TiOSO4and SiO2sol.The solutions were precipitated using ammonium hydroxide to adjust the pH values(such as 7,9,and 11,respectively).The precipitates were filtered,rinsed with distilled water until sulfate ions were removed completely,then dried at 100°C and calcined at 650°C for 3 h.The samples obtained from pH 7,9,and 11 media are denoted as TS7,TS9,and TS11,respectively.The pure TiOcatalyst was prepared by the same method.The TiOsamples labeled with T7,T9,and T11 mean that they were prepared from the media of pH 7,9,and 11,respectively.

    2.2 Catalyst characterization

    The XRD analysis was conducted on a DX-1000 X-ray diffractometer,using Cu Kαradiation(λ=0.15406 nm),with a scanning rate of 0.05(°)·s-1.The tube voltage and current were 35 kV and 25 mA,respectively.XRD patterns were measured from 20°to 80°.The average crystallite size of anatase can be estimated by the Scherrer equation:D=0.89λ/(βcosθ).Lattice aberrance was calculated from ε=β/tgθ.Herein,β is the halfheight width of the(101)diffraction peak and θ is the Bragg angle of the(101)diffraction peak.The SEM images of the particles were measured on a Hitachi S-4800 scanning electron microscope.Fourier transform infrared(FT-IR)spectra were taken on Thermo Nicolet NEXUS-670 from 4000 to 400 cm-1.

    N2adsorption-desorption isotherms were collected on QUADRASORB SI,an Automated Surface Area&Pore Size Analyzer(Uuantachrome Instruments)at-196°C.All samples were degassed at 300°C for 3 h before conducting the analyses.The BET specific surface areas were calculated from adsorption data at a relative pressure ranged from 0.05 to 0.35. The total pore volumes were calculated at a relative pressure of 0.981.Mesopore size distributions were calculated from adsorption bands using the Barrett-Joyner-Halenda(BJH)method.

    The diffuse reflectance UV-Vis spectra were recorded on Pgeneral TU-1901 spectrometer,operated in the diffuse reflectance mode,for the wavelength within the range of 200-800 nm.The band gap energy(Eg)was calculated using the equation,Eg=hc/λint.Where,h is Plank′s constant(4.135×10-15eV· s),c the velocity of light(3×108m·s-1),and λintthe wavelength corresponding to the intersection of the extension of linear part of the spectrum and the x-axis.

    The NH3-TPD spectra were obtained in a quartz tubular micro-reactor.80 mg of the sample was heat-treated in a flowing Ar at 400°C for 60 min,and cooled to 80°C before taking the measurement.A mixture of 2%NH3-98%Ar was used to flow through the sample and adsorption took place at 80°C for 60 min.Then,the sample was heated from 80 to 800°C at 10°C·min-1in the flowing Ar carrier gas.The amount of desorbed NH3was monitored by a thermal conductivity detector.

    Degradation of benzene was carried out in a 165 L of selfdesigned batch reactor equipped with 3 germicidal lamps(3×8 W,λ=253.7 nm).Athin layer of powder sample(0.3 g)was distributed evenly onto an aluminum foil(12 cm×24 cm).Benzene,without further purification,was used to evaluate photocatalytic activity of samples.The required quantity of liquid benzene was injected into the reactor.Once dark-adsorption equilibrium has been reached,photocatalysis gets started by turning on the UV light source.The initial concentration of benzene was 80 mg·m-3and its concentration was monitored every 30 min by GC 2000-II gas-phase chromatogram equipped with a flame ionization detector(FID)and GDX101 column. The determination of CO2concentration in the reactor was performed with a gas chromatograph(GC 2000-II)equipped with a FID and a methane converter.

    3 Results and discussion

    3.1 XRD analysis

    Fig.1 shows that a mixture of anatase-TiO2and rutile-TiO2is obtained from pure TiO2prepared at pH 7,9,and 11,respectively.The peaks and the crystal planes were identified with the help of JCPDS-‘International Centre for Diffraction Data’. Crystal planes(101),(004),(200),(105),(211),(204),(220), (215)match well with those of the anatase phase of TiO2(Card No.73-1764).And crystal planes(110),(101),(301)match well with those of the rutile phase of TiO2(Card No.21-1276). It is also noticed that the diffraction peaks of rutile phase become more evident with increasing the pH values.This observation is different from the investigation by Yu13and Jin15et al. Yu and Jin reported that the intensities of anatase diffraction peaks became stronger with increasing pH values,but the intensities of brookite diffraction peaks decreased gradually.It is well known that the basic unit is octahedral TiO6in titania.Octahedra in anatase are arranged in zigzag chains along(221) plane,while rutile octahedra form linear chains parallel to (001).16,17Based on the experiment results obtained,it is supposed that the orientation of the third octahedron becomes more favorable to the formation of a rutile nucleus at the presence of high concentration of OH-.The TiO2clusters grow further on the nucleus and then form the rutile phase.The formation mechanism of rutile in our work is not in agreement with that proposed by Yanagisawa and Ovenstone.18Perhaps,the phase formation has correlation with the preparation procedure and the precursors used.The mechanism of phase formation for the reaction of TiOSO4and NH3·H2O under the basic conditions will be studied in the future.

    Only anatase-TiO2is observed from TiO2/SiO2.Crystal planes(101),(004),(200),(105),(211),(204),(220),(215) match well with those of the anatase phase of TiO2(Card No. 73-1764).No SiO2diffraction peaks appear,which indicates that the silica exists in an amorphous phase.The results suggest the Si dopant retard the phase transformation from anatase to rutile,which is coincident with other′s observations.19-22XRD patterns of TiO2/SiO2show the broad diffraction peaks of anatase phase compared to pure TiO2,moreover,the peaks become broader with increasing the pH values,indicating that a TiO2nanocrystallite is formed.22

    Fig.1 XRD patterns of pure TiO2and TiO2/SiO2catalysts prepared at different pH values

    The content of phase and the crystallite size of materials are listed in Table 1.It can be seen that crystallite size of anatase-TiO2reduces slightly for all the samples when pH values rise. This result is quite different from the results reported by Yu et al.13The crystallite size of the samples decreases considerably when SiO2is doped into TiO2photocatalyst.The reason for this could be the existence of SiO2,which limits the growth of TiO2grains.Lattice aberrances of anatase-TiO2become big when either the pH values increase or the SiO2is incorporated into TiO2from Table 1.

    3.2 SEM image analysis

    Fig.2 shows the SEM images of TiO2and TiO2/SiO2catalysts prepared at pH 7 and pH 11.It can be seen that the surface morphologies of the as-prepared particles are quasi-spherical and most of them partially overlap to each other.The size of particles is mainly within the range from 10 to 25 nm.The diameters of titania particles observed in SEM images are a bit larger than the average crystal sizes estimated by XRD.The size of TiO2/SiO2particles is slightly smaller than pure TiO2,indicating that the SiO2used may limit the aggregation of TiO2particles.

    3.3 Textural properties

    The textural properties of the as-synthesized materials are summarized in Table 1.It can be seen that the BET surface ar-eas of these materials increase as the pH values arise,which is in agreement with the result reported by Li et al.2However, this is inconsistent with the observation of Yu13and Jin15et al. Yu and Jin reported that the BET specific surface areas decreased slightly with increasing the pH values.The surface area of TiO2/SiO2catalysts is drastically larger than that of pure TiO2,although they were prepared at the same pH value.The result confirms that the SiO2doping restrains the growth of TiO2crystal.This is again,in agreement with the observations reported in other literature.2-6,20,22The pore volumes grow slightly as the pH increases for all of the as-synthesized samples. The pore volume of TiO2/SiO2catalysts increases considerably compared to pure TiO2catalyst prepared at the same pH.This implies that more pollutants are likely adsorbed in the mesopores of TiO2/SiO2.

    Table 1 Microstructure characteristics and rate constants of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.2 SEM images of TiO2(a,b)and TiO2/SiO2(c,d)catalysts prepared at pH 7(a,c)and pH 11(b,d)

    The pore size distributions of TiO2and TiO2/SiO2are shown in Fig.3.The TiO2samples have an open distribution of pore size ranging from 3 to 25 nm.The TiO2/SiO2samples,however,have a relatively narrow pore size distribution,mostly ranging from 3 to 10 nm,except the sample prepared at pH 7.The pore size of the samples is reduced when the SiO2is added onto TiO2at pH 9 or pH 11.A narrow pore size distribution likely affords enough residual time for the reactions between the molecules of the pollutant adsorbed and the photo-generated oxidizing radicals.

    Fig.3 Pore size distribution of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.4 Diffuse reflectance UV-Vis spectra of TiO2and TiO2/SiO2 catalysts prepared at different pH values

    3.4 Diffuse reflectance UV-Vis spectra

    Fig.4 gives the diffuse reflectance UV-Vis spectra of both pure TiO2and TiO2/SiO2catalysts.The absorption edges of the TiO2appear to have a little red shift at the high pH value.This may be attributed to the increase of the rutile content.Compared to pure TiO2,Si-doped TiO2results in slight blue shift for the absorption edge owing to the broad band gap of SiO2.23As shown in Table 1,the plot of transformed Kubelka-Munch function versus the energy of light affords a series of band gap energy for all the samples studied.But the difference of band gap energy is small for all the samples.A small portion of rutile phase in mixed phase merely causes a little variation in band gap among the TiO2samples prepared at different pH values.A low content of SiO2(only 5%)results in no significant effect on the band gap of the TiO2/SiO2materials.

    3.5 NH3-TPD analysis

    Fig.5 NH3-TPD profiles of TiO2and TiO2/SiO2catalysts prepared at different pH values

    The results of the NH3-TPD measurement are illustrated in Fig.5.The NH3desorption peaks of the six samples are clearly observed from 200 to 220°C,and their acid strengths are very similar to each other.They are all classified as mid-strong acid. The peak area of the samples increases gradually with increasing the pH for both TiO2and TiO2/SiO2.The result demon-strates that the acid amount of the samples gets higher as the pH value increases.This can be explained that the higher pH, the larger surface area,the more acid sites are exposed on the large surface of samples.The peak area of SiO2-doped TiO2samples greatly increases,compared to pure TiO2prepared at the same pH.The incorporation of SiO2enhances the surface acidity of catalysts due to the strong acidity of SiO2.24Thereinto,TiO2/SiO2sample prepared at pH 11 has the highest amount of surface mid-strong acid.

    3.6 FT-IR spectrum analysis

    Fig.6 depicts the FT-IR spectra of pure titania and the as-synthesized TiO2/SiO2at different pH values.The absorption bands in the range of 400-600 cm-1are attributed to Ti-OTi vibrations,25while the sharp peak about 1610 cm-1is assigned to the bending vibrations of O-H in chemisorbed water.The broad absorption peak appearing near 3410 cm-1relates to a stretching vibration of the surface adsorbed water and hydroxyl groups.26,27The broad absorption peak increases considerably with increasing the pH value.In addition,these bands become stronger in SiO2-doped samples than in pure TiO2samples.This suggests that the addition of silica and the high pH environment bring more surface hydroxyl groups to the photocatalysts.

    3.7 Photocatalytic activity

    Fig.7 shows that the photocatalytic activity is enhanced considerably with increasing the pH values for both TiO2and TiO2/ SiO2photocatalysts.The photocatalytic activity of TiO2/SiO2catalysts is improved markedly compared to pure TiO2catalysts prepared at the same pH environment.The rate constants calculated are listed in Table 1.As shown in Fig.7,the degradation of benzene carried out easily,however,the mineralization of benzene was relatively difficult.Probably,the intermediates in the photocatalytic process were adsorbed strongly on the active sites of catalysts.Therefore,these intermediates were more difficult to be degradated.The photoactivity of the samples is much interrelated to their surface properties,for example,surface area,surface acidity,and surface OH-,etc.Surface area,surface acidity,and surface hydroxy groups of the as-synthesized photocatalysts increase significantly either when the pH values go up or when the SiO2is doped into TiO2.Therefore,more active sites may participate in the photocatalytic reaction of benzene.The benefit of higher acidity is also observed in different catalytic reactions.28-30More surface hydroxyl groups may be trapped in photoinduced holes,and then form hydroxyl radicals(·OH)with high oxidation capability.25

    Fig.6 FT-IR spectra of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.7 Degradation and mineralization of benzene on TiO2(a) and TiO2/SiO2(b)catalysts prepared at different pH values

    3.8 Durability of catalyst

    Fig.8 demonstrates the durability of TiO2/SiO2catalyst via 5 h reaction every cycling.It can be seen that the photocatalytic activity of the catalyst declines slightly with use times when the reaction runs from cycling 1 to 6.Photocatalytic oxidation over TiO2/SiO2can be kinetically retarded due to the accumula-tion of partially oxidized intermediate species on the catalyst surface.Whereas,the activity of the catalyst becomes steady from cycling times 6 to 10,and the catalyst has better activity. Perhaps,the intermediates continue to be degraded under ultraviolet irradiation.

    Fig.8 Changes of photocatalytic activity of TiO2/SiO2catalyst with cycling times

    4 Conclusions

    Low cost and better activity TiO2and SiO2-doped TiO2photocatalysts have been prepared by a precipitation method. Their structure,surface properties,and photocatalytic activity are strongly dependent on the pH values in the preparation process.

    (1) Kim,D.S.;Kwak,S.Y.Appl.Catal.A:Gen.2007,323,110.

    (2) Hu,Y.F.;Li,Y.X.;Peng,S.Q,;Lü,G.X.;Li,S.B.Acta Phys.-Chim.Sin.2008,24(11),2071.[胡元方,李越湘,彭紹琴,呂功煊,李樹本.物理化學(xué)學(xué)報(bào),2008,24(11),2071.]

    (3) Bao,N.;Zhang,F.;Ma,Z.H.;Wei,Z.T.;Sun,J.;Liu,F.Acta Chim.Sin.2007,65(23),2786. [包 南,張 鋒,馬志會(huì),魏振濤,孫 劍,劉 峰.化學(xué)學(xué)報(bào),2007,65(23),2786.]

    (4) Chen,Y.H.;Shen,J.;Zhang,Z.Chin.J.Catal.2008,29(4), 356. [陳垚翰,沈 俊,張 昭.催化學(xué)報(bào),2008,29(4),356.]

    (5) Kang,C.H.;Guo,T.;Jing,L.Q.;Cui,H.C.;Zhou,J.;Fu,H.G. J.Inorg.Mater.2009,24(2),229.[康傳紅,郭 桐,井立強(qiáng),崔虎成,周 佳,付宏剛,無機(jī)材料學(xué)報(bào),2009,24(2),229.]

    (6) Liu,Z.H.;Su,X.J.;Hou,G.L.J.Inorg.Mater.2010,25(9), 911.[劉朝輝,蘇勛家,侯根良.無機(jī)材料學(xué)報(bào),2010,25(9), 911.]

    (7)Wang,G.P.;Qiu,W.;Ren,C.J.;Chai,J.J.;Dong,W.;Chen,Y. Q.;Gong,M.C.Chin.J.Catal.2009,30(9),913.[王光平,仇 偉,任成軍,柴軍軍,董 偉,陳耀強(qiáng),龔茂初.催化學(xué)報(bào), 2009,30(9),913.]

    (8)Wang,E.J.;Yang,Y.H.;Cao,Y.A.Acta Chim.Sin.2009,67 (24),2759.[王恩君,楊輝云,曹亞安.化學(xué)學(xué)報(bào),2009,67 (24),2759.]

    (9)Yang,C.S.;Wang,Y.J.;Shih,M.S.;Chang,Y.T.;Hon,C.C. Appl.Catal.A:Gen.2009,364,182.

    (10)Huang,W.P.;Tang,X.H.;Wang,Y.Q.;Koltypin,Y.;Gedanken, A.Chem.Commun.2000,1415.

    (11) Pottier,A.;Chanéac,C.;Tronc,E.;Mazerolles,L.;Jolivet,J.P. J.Mater.Chem.2001,11,1116.

    (12) Zhang,Y.;Wu,L.Z.;Zeng,Q.H.;Zhi,J.F.J.Phys.Chem.C 2008,112,16457.

    (13)Yu,J.G.;Su,Y.R.;Cheng,B.;Zhou,M.H.J.Mol.Catal.A: Chem.2006,258,104.

    (14)Aguado,J.;van Grieken,R.;López-Mu?oz,M.J.;Marugán,J. Appl.Catal.A:Gen.2006,312,202.

    (15) Bai,Y.;Sun,H.Q.;Jin,W.Q.J.Inorg.Mater.2008,23(2),387. [柏 源,孫紅旗,金萬勤,無機(jī)材料學(xué)報(bào),2008,23(2),387.]

    (16) Li,Y.;White,T.J.;Lim,S.H.J.Solid State Chem.2004,177, 1372.

    (17) Li,Y.Z.;Kim,S.J.J.Phys.Chem.B 2005,109,12309.

    (18) Yanagisawa,K.;Ovenstone,J.J.Phys.Chem.B 1999,103, 7781.

    (19) Lim,S.H.;Phonthammachai,N.;Pramana,S.S.;White,T.J. Langmuir 2008,24,6226.

    (20) He,C.X.;Tian,B.Z.;Zhang,J.L.J.Colloid Interface Sci. 2010,344,382.

    (21) Tobaldi,D.M.;Tucci,A.;Skapin,A.S.;Esposito,L.J.Eur. Ceram.Soc.2010,30,2481.

    (22)Dong,W.Y.;Sun,Y.J.;Lee,C.W.;Hua,W.M.;Lu,X.C.;Shi, Y.F.;Zhang,S.C.;Chen,J.M.;Zhao,D.Y.J.Am.Chem.Soc. 2007,129,13894.

    (23) Cho,K.;Chang,H.;Park,J.H.;Kim,B.G.;Jang,H.D.J.Ind. Eng.Chem.2008,14,860.

    (24) Bonelli,B.;Cozzolino,M.;Tesser,R.;Di,Serio M.;Piumetti, M.;Garrone,E.;Santacesaria,E.J.Catal.2007,246,293.

    (25)Hou,Y.D.;Wang,X.C.;Wu,L.;Chen,X.F.;Ding,Z.X.; Wang,X.X.;Fu,X.Z.Chemosphere 2008,72,414.

    (26) Prinetto,F.;Ghiotti,G.;Occhhiuzzi,M.;Indovia,V.J.Phys. Chem.B 1998,102,10316.

    (27) Marc?,G.;Augugliaro,V.;Rives,V.;Tilley,R.D.;Venezia,A. M.J.Phys.Chem.B 2001,105,1033.

    (28)Akurati,K.K.;Vital,A.;Dellemann,J.P.;Michalow,K.; Graule,T.;Ferri,D.;Baiker,A.Appl.Catal.B:Environ.2008, 79,53.

    (29) Onfroy,T.;Clet,G.;Houalla,M.J.Phys.Chem.B 2005,109, 14588.

    (30)Wang,X.C.;Yu,J.C.;Liu P.;Wang,X.X.;Su,W.Y.;Fu,X.Z. J.Photochem.Photobiol.A:Chem.2006,179,339.

    猜你喜歡
    無機(jī)學(xué)報(bào)化學(xué)
    無機(jī)滲透和促凝劑在石材防水中的應(yīng)用
    石材(2020年9期)2021-01-07 09:30:04
    致敬學(xué)報(bào)40年
    加快無機(jī)原料藥產(chǎn)品開發(fā)的必要性和途徑
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    有機(jī)心不如無機(jī)心
    山東青年(2016年2期)2016-02-28 14:25:31
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    亚洲国产欧美日韩在线播放| 国产国拍精品亚洲av在线观看| 日本vs欧美在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 一级a做视频免费观看| 黑人欧美特级aaaaaa片| 三级国产精品片| 久久狼人影院| 三级国产精品欧美在线观看| 欧美精品国产亚洲| 高清欧美精品videossex| 丝瓜视频免费看黄片| 欧美激情 高清一区二区三区| 寂寞人妻少妇视频99o| 久久久久久伊人网av| 免费观看无遮挡的男女| 99热这里只有精品一区| 久久国产精品大桥未久av| 69精品国产乱码久久久| 久久国产亚洲av麻豆专区| 国产69精品久久久久777片| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 国产亚洲欧美精品永久| 亚洲国产色片| 另类亚洲欧美激情| 大香蕉久久成人网| 91在线精品国自产拍蜜月| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 纵有疾风起免费观看全集完整版| 男女高潮啪啪啪动态图| 99热6这里只有精品| av专区在线播放| 免费观看在线日韩| 亚洲内射少妇av| 亚洲av免费高清在线观看| 精品亚洲成国产av| 满18在线观看网站| 伦理电影免费视频| 亚洲精品456在线播放app| 亚洲人成网站在线观看播放| 男女边摸边吃奶| 国产精品欧美亚洲77777| 下体分泌物呈黄色| 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 黄片播放在线免费| 三上悠亚av全集在线观看| 岛国毛片在线播放| 成人国语在线视频| 国产精品99久久99久久久不卡 | 免费观看a级毛片全部| 国产成人av激情在线播放 | 天天操日日干夜夜撸| av又黄又爽大尺度在线免费看| 最近手机中文字幕大全| 国产淫语在线视频| 大香蕉久久成人网| 国精品久久久久久国模美| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| www.色视频.com| 国产免费视频播放在线视频| 在线观看人妻少妇| 中文天堂在线官网| 欧美性感艳星| 欧美成人午夜免费资源| 免费av不卡在线播放| 国产一区二区在线观看av| videossex国产| 97在线人人人人妻| 成年美女黄网站色视频大全免费 | 国产精品人妻久久久久久| 国产极品天堂在线| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 99国产综合亚洲精品| 国产极品粉嫩免费观看在线 | 国产毛片在线视频| 成人国产麻豆网| av国产久精品久网站免费入址| 伊人久久国产一区二区| 男的添女的下面高潮视频| 国产精品欧美亚洲77777| 午夜激情福利司机影院| 国产在线视频一区二区| 国产欧美日韩综合在线一区二区| 春色校园在线视频观看| 成人综合一区亚洲| 如日韩欧美国产精品一区二区三区 | 国产片特级美女逼逼视频| 日韩一区二区视频免费看| 日韩一本色道免费dvd| 国产片内射在线| 麻豆精品久久久久久蜜桃| 免费看不卡的av| 大香蕉久久成人网| 99九九在线精品视频| 中文字幕人妻熟人妻熟丝袜美| 免费观看在线日韩| 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 国产成人精品福利久久| 亚洲精品色激情综合| 下体分泌物呈黄色| 成年人免费黄色播放视频| 又大又黄又爽视频免费| 国产老妇伦熟女老妇高清| 亚洲精品久久成人aⅴ小说 | 欧美xxxx性猛交bbbb| 午夜福利,免费看| 一区在线观看完整版| 男男h啪啪无遮挡| 亚洲少妇的诱惑av| 日韩人妻高清精品专区| 久久青草综合色| 亚洲美女搞黄在线观看| 22中文网久久字幕| 国产黄片视频在线免费观看| 国产色爽女视频免费观看| 边亲边吃奶的免费视频| 日韩成人av中文字幕在线观看| 免费黄网站久久成人精品| 日本免费在线观看一区| 丰满迷人的少妇在线观看| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| a级毛片免费高清观看在线播放| 韩国高清视频一区二区三区| 99精国产麻豆久久婷婷| 久久ye,这里只有精品| 亚洲成人一二三区av| 亚洲av二区三区四区| 国产一区亚洲一区在线观看| 青春草国产在线视频| 不卡视频在线观看欧美| 777米奇影视久久| 少妇 在线观看| 国产探花极品一区二区| 成人国语在线视频| 另类精品久久| 国产av码专区亚洲av| 国产国拍精品亚洲av在线观看| 国产精品国产三级国产专区5o| 久久鲁丝午夜福利片| 久久久久久久久大av| 日韩亚洲欧美综合| 热99久久久久精品小说推荐| 国产伦精品一区二区三区视频9| 国产精品久久久久成人av| 一级爰片在线观看| 制服诱惑二区| 免费观看的影片在线观看| 久热这里只有精品99| 黄片无遮挡物在线观看| 久久韩国三级中文字幕| 日韩精品免费视频一区二区三区 | 最近最新中文字幕免费大全7| 欧美精品亚洲一区二区| 国产成人精品福利久久| 精品午夜福利在线看| 丝袜脚勾引网站| 国产探花极品一区二区| 又粗又硬又长又爽又黄的视频| a级毛色黄片| 久久久国产精品麻豆| 亚洲综合色网址| 人妻系列 视频| 亚洲中文av在线| 日韩三级伦理在线观看| 亚洲av不卡在线观看| 插逼视频在线观看| 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 纵有疾风起免费观看全集完整版| 亚洲高清免费不卡视频| 91精品一卡2卡3卡4卡| 视频区图区小说| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区 | 精品久久久久久久久av| 国产一级毛片在线| 欧美精品一区二区大全| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄| 久久久久网色| 亚洲成色77777| 国产精品欧美亚洲77777| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 日韩免费高清中文字幕av| 亚洲人成网站在线观看播放| 七月丁香在线播放| 如何舔出高潮| 黄色一级大片看看| 99热国产这里只有精品6| 高清午夜精品一区二区三区| 黑丝袜美女国产一区| 日本色播在线视频| 午夜免费鲁丝| 特大巨黑吊av在线直播| www.av在线官网国产| 一级,二级,三级黄色视频| 国产成人精品婷婷| 老司机影院成人| 国产亚洲av片在线观看秒播厂| 人妻制服诱惑在线中文字幕| 观看av在线不卡| 777米奇影视久久| 人妻制服诱惑在线中文字幕| 精品国产露脸久久av麻豆| freevideosex欧美| 91久久精品国产一区二区三区| 三级国产精品片| 久久久久久久久久成人| 3wmmmm亚洲av在线观看| 国产免费视频播放在线视频| av线在线观看网站| 免费高清在线观看日韩| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 国产日韩欧美亚洲二区| 精品熟女少妇av免费看| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 国产毛片在线视频| 久久久久精品久久久久真实原创| 午夜久久久在线观看| 精品国产国语对白av| 99久久人妻综合| 亚洲中文av在线| 观看av在线不卡| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 人妻制服诱惑在线中文字幕| 国产国语露脸激情在线看| 久久99热这里只频精品6学生| 飞空精品影院首页| 不卡视频在线观看欧美| 日韩伦理黄色片| 91精品国产国语对白视频| 国产欧美日韩一区二区三区在线 | 一级a做视频免费观看| 麻豆精品久久久久久蜜桃| 高清视频免费观看一区二区| 午夜av观看不卡| 91在线精品国自产拍蜜月| 高清毛片免费看| 精品国产露脸久久av麻豆| 中文精品一卡2卡3卡4更新| 国产黄色视频一区二区在线观看| 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 欧美精品一区二区免费开放| 免费日韩欧美在线观看| 黑丝袜美女国产一区| 视频中文字幕在线观看| 亚洲精华国产精华液的使用体验| 一级片'在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 色视频在线一区二区三区| 午夜福利视频在线观看免费| 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 纵有疾风起免费观看全集完整版| 青春草亚洲视频在线观看| 中文乱码字字幕精品一区二区三区| 亚洲情色 制服丝袜| 欧美精品亚洲一区二区| 久久久久国产网址| 日韩中文字幕视频在线看片| 在线免费观看不下载黄p国产| 国产日韩欧美亚洲二区| 国产精品 国内视频| 日日爽夜夜爽网站| av线在线观看网站| 人成视频在线观看免费观看| 黑人欧美特级aaaaaa片| 精品亚洲成a人片在线观看| 伊人亚洲综合成人网| 欧美日韩视频精品一区| 亚洲精品日本国产第一区| 伊人久久精品亚洲午夜| 国产精品国产三级国产av玫瑰| 天堂俺去俺来也www色官网| 老司机影院毛片| 国产国拍精品亚洲av在线观看| 欧美成人精品欧美一级黄| 男女免费视频国产| 美女xxoo啪啪120秒动态图| 国产亚洲精品第一综合不卡 | 国产不卡av网站在线观看| 汤姆久久久久久久影院中文字幕| 色视频在线一区二区三区| 97在线人人人人妻| 午夜福利网站1000一区二区三区| 日韩中文字幕视频在线看片| 九色亚洲精品在线播放| 免费大片黄手机在线观看| 亚洲av男天堂| 水蜜桃什么品种好| 看免费成人av毛片| 最近最新中文字幕免费大全7| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| xxx大片免费视频| 久久久精品区二区三区| 久久久国产精品麻豆| 一边亲一边摸免费视频| 国产精品一二三区在线看| 色网站视频免费| 91久久精品国产一区二区三区| 丝瓜视频免费看黄片| 美女大奶头黄色视频| 欧美精品一区二区免费开放| 天美传媒精品一区二区| 熟女av电影| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| 久久人人爽人人爽人人片va| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 午夜激情久久久久久久| 亚洲丝袜综合中文字幕| 有码 亚洲区| 欧美一级a爱片免费观看看| 色吧在线观看| 老女人水多毛片| 国产成人91sexporn| 丝瓜视频免费看黄片| 少妇丰满av| 啦啦啦啦在线视频资源| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 国产极品粉嫩免费观看在线 | freevideosex欧美| 青春草国产在线视频| 亚洲av中文av极速乱| 亚洲国产色片| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站| 国内精品宾馆在线| 两个人的视频大全免费| 亚洲欧美中文字幕日韩二区| 伊人亚洲综合成人网| av女优亚洲男人天堂| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 成人亚洲欧美一区二区av| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| av国产久精品久网站免费入址| 久久久国产精品麻豆| 久久韩国三级中文字幕| 色网站视频免费| 日韩欧美精品免费久久| 你懂的网址亚洲精品在线观看| 午夜91福利影院| 亚洲成色77777| 好男人视频免费观看在线| 欧美最新免费一区二区三区| 日韩欧美精品免费久久| 永久网站在线| 热99国产精品久久久久久7| 全区人妻精品视频| 一本一本综合久久| 日韩人妻高清精品专区| 青春草国产在线视频| 91国产中文字幕| 免费看av在线观看网站| 国产欧美日韩综合在线一区二区| 亚洲国产精品国产精品| 久久久久久久久大av| 丁香六月天网| 国产男人的电影天堂91| 赤兔流量卡办理| 国产视频首页在线观看| 人妻一区二区av| av天堂久久9| 男女无遮挡免费网站观看| 亚洲美女视频黄频| 黄片播放在线免费| 美女cb高潮喷水在线观看| 亚洲无线观看免费| 最新中文字幕久久久久| 狂野欧美激情性bbbbbb| 久久精品人人爽人人爽视色| 日韩强制内射视频| 又黄又爽又刺激的免费视频.| 日韩精品有码人妻一区| 亚洲av综合色区一区| 夜夜看夜夜爽夜夜摸| av一本久久久久| 久久精品国产a三级三级三级| 中文天堂在线官网| 大片免费播放器 马上看| 久久久欧美国产精品| www.色视频.com| 欧美亚洲日本最大视频资源| 欧美精品人与动牲交sv欧美| 99九九在线精品视频| 99国产精品免费福利视频| 国产国拍精品亚洲av在线观看| 久久久久久人妻| 视频在线观看一区二区三区| 一本久久精品| 国产伦理片在线播放av一区| 亚洲国产欧美在线一区| 中文字幕亚洲精品专区| freevideosex欧美| 中文字幕精品免费在线观看视频 | 蜜桃在线观看..| 2018国产大陆天天弄谢| av视频免费观看在线观看| 成人影院久久| 岛国毛片在线播放| 亚洲精品国产av成人精品| 久久人妻熟女aⅴ| 亚洲精品国产av成人精品| 日本免费在线观看一区| 女性被躁到高潮视频| 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 亚洲激情五月婷婷啪啪| 99热这里只有是精品在线观看| 亚洲精品,欧美精品| 在线观看www视频免费| 亚洲美女黄色视频免费看| 国产69精品久久久久777片| 亚洲美女黄色视频免费看| 婷婷成人精品国产| 日本午夜av视频| 晚上一个人看的免费电影| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 亚洲美女视频黄频| 在线观看人妻少妇| 国产精品免费大片| av视频免费观看在线观看| 亚洲欧洲精品一区二区精品久久久 | 97精品久久久久久久久久精品| 日韩av不卡免费在线播放| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 天堂俺去俺来也www色官网| 国产精品成人在线| 成人二区视频| 又大又黄又爽视频免费| 亚洲欧美色中文字幕在线| 亚洲av福利一区| 久久狼人影院| 18禁在线播放成人免费| 黄色一级大片看看| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| 少妇熟女欧美另类| av免费观看日本| 亚洲av在线观看美女高潮| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 日本色播在线视频| av在线老鸭窝| 国产高清国产精品国产三级| 国产探花极品一区二区| 婷婷色综合www| 国产精品 国内视频| 国产一级毛片在线| 一本色道久久久久久精品综合| 久久久精品免费免费高清| 日本爱情动作片www.在线观看| 国产av精品麻豆| 丝袜脚勾引网站| 国产精品一国产av| 国产乱人偷精品视频| 一级片'在线观看视频| 亚洲性久久影院| 一区二区三区免费毛片| 欧美精品人与动牲交sv欧美| 飞空精品影院首页| 国产一区亚洲一区在线观看| 亚洲国产精品999| 一区二区三区免费毛片| a级毛片在线看网站| 特大巨黑吊av在线直播| 亚洲av福利一区| 久久av网站| 99九九在线精品视频| 久久热精品热| 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 久久国产精品男人的天堂亚洲 | 久热久热在线精品观看| 亚洲精品乱久久久久久| 午夜福利,免费看| 国模一区二区三区四区视频| 亚洲av中文av极速乱| 蜜桃久久精品国产亚洲av| av女优亚洲男人天堂| 亚洲美女黄色视频免费看| videos熟女内射| 中文字幕最新亚洲高清| 夫妻性生交免费视频一级片| 九色亚洲精品在线播放| 免费播放大片免费观看视频在线观看| 一级毛片aaaaaa免费看小| 啦啦啦中文免费视频观看日本| 日本免费在线观看一区| 久久精品久久久久久久性| 我的女老师完整版在线观看| 免费看不卡的av| 亚洲高清免费不卡视频| 亚洲精品视频女| 国产爽快片一区二区三区| 中文精品一卡2卡3卡4更新| 99re6热这里在线精品视频| 一本大道久久a久久精品| 欧美日韩成人在线一区二区| 91成人精品电影| 青春草亚洲视频在线观看| 欧美日韩综合久久久久久| 最近2019中文字幕mv第一页| 日本wwww免费看| 国产av一区二区精品久久| 久久国产亚洲av麻豆专区| 人成视频在线观看免费观看| 久久久久久久国产电影| 夫妻午夜视频| 免费av不卡在线播放| 亚洲精品第二区| 亚洲伊人久久精品综合| 久久亚洲国产成人精品v| 人妻人人澡人人爽人人| 成人手机av| 亚洲国产毛片av蜜桃av| 国产精品女同一区二区软件| 天堂中文最新版在线下载| 婷婷成人精品国产| 午夜激情久久久久久久| 精品酒店卫生间| 国产 精品1| 国产国语露脸激情在线看| 国产av一区二区精品久久| 亚洲婷婷狠狠爱综合网| 超色免费av| tube8黄色片| 黄色怎么调成土黄色| av.在线天堂| 男女边吃奶边做爰视频| 久久久久视频综合| 一个人看视频在线观看www免费| 五月天丁香电影| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕 | 九色亚洲精品在线播放| 亚洲国产av新网站| 亚洲精华国产精华液的使用体验| 最近手机中文字幕大全| 日本色播在线视频| av专区在线播放| 亚洲婷婷狠狠爱综合网| av在线观看视频网站免费| 丁香六月天网| 精品少妇久久久久久888优播| 国产免费一级a男人的天堂| 18禁观看日本| 日韩强制内射视频| 狠狠婷婷综合久久久久久88av| 国产一级毛片在线| 日本猛色少妇xxxxx猛交久久| 伦理电影大哥的女人| 亚洲精品日本国产第一区| 免费播放大片免费观看视频在线观看| 国产午夜精品一二区理论片| 国产在视频线精品| 观看av在线不卡| 精品人妻在线不人妻| 午夜老司机福利剧场| 国产精品成人在线| 日韩视频在线欧美| 91久久精品国产一区二区成人| 亚洲精品日韩在线中文字幕| 一个人免费看片子| 久久精品久久精品一区二区三区| 久久久亚洲精品成人影院| 丁香六月天网| 国产高清有码在线观看视频| 天天躁夜夜躁狠狠久久av| 精品亚洲乱码少妇综合久久| 国产成人av激情在线播放 | 一区二区三区乱码不卡18| 亚洲天堂av无毛| 人妻 亚洲 视频| 国产在视频线精品| av福利片在线| 亚洲精华国产精华液的使用体验| 久久国内精品自在自线图片| 国产极品粉嫩免费观看在线 | 国产精品三级大全| 九九在线视频观看精品| 婷婷色av中文字幕| 欧美另类一区| 国产有黄有色有爽视频| 纯流量卡能插随身wifi吗| 日本猛色少妇xxxxx猛交久久| 99国产综合亚洲精品| 欧美日韩亚洲高清精品| 国产高清国产精品国产三级| 亚洲欧美一区二区三区黑人 | 国产一级毛片在线| av一本久久久久| 男女免费视频国产|