• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同pH值制備的TiO2和TiO2/SiO2催化劑結(jié)構(gòu)、表面性質(zhì)及光催化活性

    2011-12-12 02:41:32任成軍龔茂初侯云澤陳耀強(qiáng)
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:無機(jī)學(xué)報(bào)化學(xué)

    仇 偉 任成軍 龔茂初 侯云澤 陳耀強(qiáng)

    (四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)重點(diǎn)實(shí)驗(yàn)室,成都610064)

    1 Introduction

    TiO2photocatalyst has drawn great attention due to its stability,lower cost,and nontoxicity.1However,its applications were restricted heavily by its limited photocatalytic activity.There is a desired need to improve the photocatalytic activity of TiO2from industrial point of view.Many efforts have been devoted in the past to inhibit crystal growth,to increase surface area and to retard phase transformation by incorporating another inorganic oxide,such as SiO2,2-6ZrO2,7,8and Al2O3,9into TiO2photocatalysts.Silica is selected as a dopant in our study for following reasons:(1)TiO2/SiO2is acting as a better catalyst; (2)SiO2aqueous sol precursor is cheap and non-toxic.

    It is well known that the photocatalytic activity mainly relies on its physicochemical properties,such as the phase composition,the crystallite size,the specific surface area,the pore size distribution,the surface acidity,and the particle morphology. Given here are a few reports relating to the effect of media acidity on the microstructure of photocatalysts.Huang et al.10pointed out that the crystallization and particle sizes of titania were dependent upon the precursor used,the reaction temperature,and the media acidity.Pottier et al.11suggested that the Cl/ Ti molar ratio,the aging conditions,and the acidity were the key factors determining the crystalline phases,the particle size,and morphologies of particles.Zhang et al.12revealed that the H2O2/Ti molar ratio and the pH values of the precursor played a key role in phase formation.Yu et al.13studied the effect of pH on the microstructures and the photoactivity of titania,which was prepared by hydrothermal method using tetrabutyl titanate.

    In our work TiO2and TiO2/SiO2catalysts were prepared at different pH values by a precipitation method with TiOSO4and/ or SiO2sol as precursors,respectively.The effect of pH on the formation and properties of TiO2and TiO2/SiO2are different from above studies due to the differences in the preparation procedures and the precursor used.14The phase structure,surface area,surface morphology of particles,surface acidity,and surface hydroxys of the as-prepared photocatalysts will be discussed.

    2 Experimental

    2.1 Catalyst preparation

    SiO2-doped 5%(mass fraction)TiO2was prepared from the aqueous solutions containing TiOSO4and SiO2sol.The solutions were precipitated using ammonium hydroxide to adjust the pH values(such as 7,9,and 11,respectively).The precipitates were filtered,rinsed with distilled water until sulfate ions were removed completely,then dried at 100°C and calcined at 650°C for 3 h.The samples obtained from pH 7,9,and 11 media are denoted as TS7,TS9,and TS11,respectively.The pure TiOcatalyst was prepared by the same method.The TiOsamples labeled with T7,T9,and T11 mean that they were prepared from the media of pH 7,9,and 11,respectively.

    2.2 Catalyst characterization

    The XRD analysis was conducted on a DX-1000 X-ray diffractometer,using Cu Kαradiation(λ=0.15406 nm),with a scanning rate of 0.05(°)·s-1.The tube voltage and current were 35 kV and 25 mA,respectively.XRD patterns were measured from 20°to 80°.The average crystallite size of anatase can be estimated by the Scherrer equation:D=0.89λ/(βcosθ).Lattice aberrance was calculated from ε=β/tgθ.Herein,β is the halfheight width of the(101)diffraction peak and θ is the Bragg angle of the(101)diffraction peak.The SEM images of the particles were measured on a Hitachi S-4800 scanning electron microscope.Fourier transform infrared(FT-IR)spectra were taken on Thermo Nicolet NEXUS-670 from 4000 to 400 cm-1.

    N2adsorption-desorption isotherms were collected on QUADRASORB SI,an Automated Surface Area&Pore Size Analyzer(Uuantachrome Instruments)at-196°C.All samples were degassed at 300°C for 3 h before conducting the analyses.The BET specific surface areas were calculated from adsorption data at a relative pressure ranged from 0.05 to 0.35. The total pore volumes were calculated at a relative pressure of 0.981.Mesopore size distributions were calculated from adsorption bands using the Barrett-Joyner-Halenda(BJH)method.

    The diffuse reflectance UV-Vis spectra were recorded on Pgeneral TU-1901 spectrometer,operated in the diffuse reflectance mode,for the wavelength within the range of 200-800 nm.The band gap energy(Eg)was calculated using the equation,Eg=hc/λint.Where,h is Plank′s constant(4.135×10-15eV· s),c the velocity of light(3×108m·s-1),and λintthe wavelength corresponding to the intersection of the extension of linear part of the spectrum and the x-axis.

    The NH3-TPD spectra were obtained in a quartz tubular micro-reactor.80 mg of the sample was heat-treated in a flowing Ar at 400°C for 60 min,and cooled to 80°C before taking the measurement.A mixture of 2%NH3-98%Ar was used to flow through the sample and adsorption took place at 80°C for 60 min.Then,the sample was heated from 80 to 800°C at 10°C·min-1in the flowing Ar carrier gas.The amount of desorbed NH3was monitored by a thermal conductivity detector.

    Degradation of benzene was carried out in a 165 L of selfdesigned batch reactor equipped with 3 germicidal lamps(3×8 W,λ=253.7 nm).Athin layer of powder sample(0.3 g)was distributed evenly onto an aluminum foil(12 cm×24 cm).Benzene,without further purification,was used to evaluate photocatalytic activity of samples.The required quantity of liquid benzene was injected into the reactor.Once dark-adsorption equilibrium has been reached,photocatalysis gets started by turning on the UV light source.The initial concentration of benzene was 80 mg·m-3and its concentration was monitored every 30 min by GC 2000-II gas-phase chromatogram equipped with a flame ionization detector(FID)and GDX101 column. The determination of CO2concentration in the reactor was performed with a gas chromatograph(GC 2000-II)equipped with a FID and a methane converter.

    3 Results and discussion

    3.1 XRD analysis

    Fig.1 shows that a mixture of anatase-TiO2and rutile-TiO2is obtained from pure TiO2prepared at pH 7,9,and 11,respectively.The peaks and the crystal planes were identified with the help of JCPDS-‘International Centre for Diffraction Data’. Crystal planes(101),(004),(200),(105),(211),(204),(220), (215)match well with those of the anatase phase of TiO2(Card No.73-1764).And crystal planes(110),(101),(301)match well with those of the rutile phase of TiO2(Card No.21-1276). It is also noticed that the diffraction peaks of rutile phase become more evident with increasing the pH values.This observation is different from the investigation by Yu13and Jin15et al. Yu and Jin reported that the intensities of anatase diffraction peaks became stronger with increasing pH values,but the intensities of brookite diffraction peaks decreased gradually.It is well known that the basic unit is octahedral TiO6in titania.Octahedra in anatase are arranged in zigzag chains along(221) plane,while rutile octahedra form linear chains parallel to (001).16,17Based on the experiment results obtained,it is supposed that the orientation of the third octahedron becomes more favorable to the formation of a rutile nucleus at the presence of high concentration of OH-.The TiO2clusters grow further on the nucleus and then form the rutile phase.The formation mechanism of rutile in our work is not in agreement with that proposed by Yanagisawa and Ovenstone.18Perhaps,the phase formation has correlation with the preparation procedure and the precursors used.The mechanism of phase formation for the reaction of TiOSO4and NH3·H2O under the basic conditions will be studied in the future.

    Only anatase-TiO2is observed from TiO2/SiO2.Crystal planes(101),(004),(200),(105),(211),(204),(220),(215) match well with those of the anatase phase of TiO2(Card No. 73-1764).No SiO2diffraction peaks appear,which indicates that the silica exists in an amorphous phase.The results suggest the Si dopant retard the phase transformation from anatase to rutile,which is coincident with other′s observations.19-22XRD patterns of TiO2/SiO2show the broad diffraction peaks of anatase phase compared to pure TiO2,moreover,the peaks become broader with increasing the pH values,indicating that a TiO2nanocrystallite is formed.22

    Fig.1 XRD patterns of pure TiO2and TiO2/SiO2catalysts prepared at different pH values

    The content of phase and the crystallite size of materials are listed in Table 1.It can be seen that crystallite size of anatase-TiO2reduces slightly for all the samples when pH values rise. This result is quite different from the results reported by Yu et al.13The crystallite size of the samples decreases considerably when SiO2is doped into TiO2photocatalyst.The reason for this could be the existence of SiO2,which limits the growth of TiO2grains.Lattice aberrances of anatase-TiO2become big when either the pH values increase or the SiO2is incorporated into TiO2from Table 1.

    3.2 SEM image analysis

    Fig.2 shows the SEM images of TiO2and TiO2/SiO2catalysts prepared at pH 7 and pH 11.It can be seen that the surface morphologies of the as-prepared particles are quasi-spherical and most of them partially overlap to each other.The size of particles is mainly within the range from 10 to 25 nm.The diameters of titania particles observed in SEM images are a bit larger than the average crystal sizes estimated by XRD.The size of TiO2/SiO2particles is slightly smaller than pure TiO2,indicating that the SiO2used may limit the aggregation of TiO2particles.

    3.3 Textural properties

    The textural properties of the as-synthesized materials are summarized in Table 1.It can be seen that the BET surface ar-eas of these materials increase as the pH values arise,which is in agreement with the result reported by Li et al.2However, this is inconsistent with the observation of Yu13and Jin15et al. Yu and Jin reported that the BET specific surface areas decreased slightly with increasing the pH values.The surface area of TiO2/SiO2catalysts is drastically larger than that of pure TiO2,although they were prepared at the same pH value.The result confirms that the SiO2doping restrains the growth of TiO2crystal.This is again,in agreement with the observations reported in other literature.2-6,20,22The pore volumes grow slightly as the pH increases for all of the as-synthesized samples. The pore volume of TiO2/SiO2catalysts increases considerably compared to pure TiO2catalyst prepared at the same pH.This implies that more pollutants are likely adsorbed in the mesopores of TiO2/SiO2.

    Table 1 Microstructure characteristics and rate constants of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.2 SEM images of TiO2(a,b)and TiO2/SiO2(c,d)catalysts prepared at pH 7(a,c)and pH 11(b,d)

    The pore size distributions of TiO2and TiO2/SiO2are shown in Fig.3.The TiO2samples have an open distribution of pore size ranging from 3 to 25 nm.The TiO2/SiO2samples,however,have a relatively narrow pore size distribution,mostly ranging from 3 to 10 nm,except the sample prepared at pH 7.The pore size of the samples is reduced when the SiO2is added onto TiO2at pH 9 or pH 11.A narrow pore size distribution likely affords enough residual time for the reactions between the molecules of the pollutant adsorbed and the photo-generated oxidizing radicals.

    Fig.3 Pore size distribution of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.4 Diffuse reflectance UV-Vis spectra of TiO2and TiO2/SiO2 catalysts prepared at different pH values

    3.4 Diffuse reflectance UV-Vis spectra

    Fig.4 gives the diffuse reflectance UV-Vis spectra of both pure TiO2and TiO2/SiO2catalysts.The absorption edges of the TiO2appear to have a little red shift at the high pH value.This may be attributed to the increase of the rutile content.Compared to pure TiO2,Si-doped TiO2results in slight blue shift for the absorption edge owing to the broad band gap of SiO2.23As shown in Table 1,the plot of transformed Kubelka-Munch function versus the energy of light affords a series of band gap energy for all the samples studied.But the difference of band gap energy is small for all the samples.A small portion of rutile phase in mixed phase merely causes a little variation in band gap among the TiO2samples prepared at different pH values.A low content of SiO2(only 5%)results in no significant effect on the band gap of the TiO2/SiO2materials.

    3.5 NH3-TPD analysis

    Fig.5 NH3-TPD profiles of TiO2and TiO2/SiO2catalysts prepared at different pH values

    The results of the NH3-TPD measurement are illustrated in Fig.5.The NH3desorption peaks of the six samples are clearly observed from 200 to 220°C,and their acid strengths are very similar to each other.They are all classified as mid-strong acid. The peak area of the samples increases gradually with increasing the pH for both TiO2and TiO2/SiO2.The result demon-strates that the acid amount of the samples gets higher as the pH value increases.This can be explained that the higher pH, the larger surface area,the more acid sites are exposed on the large surface of samples.The peak area of SiO2-doped TiO2samples greatly increases,compared to pure TiO2prepared at the same pH.The incorporation of SiO2enhances the surface acidity of catalysts due to the strong acidity of SiO2.24Thereinto,TiO2/SiO2sample prepared at pH 11 has the highest amount of surface mid-strong acid.

    3.6 FT-IR spectrum analysis

    Fig.6 depicts the FT-IR spectra of pure titania and the as-synthesized TiO2/SiO2at different pH values.The absorption bands in the range of 400-600 cm-1are attributed to Ti-OTi vibrations,25while the sharp peak about 1610 cm-1is assigned to the bending vibrations of O-H in chemisorbed water.The broad absorption peak appearing near 3410 cm-1relates to a stretching vibration of the surface adsorbed water and hydroxyl groups.26,27The broad absorption peak increases considerably with increasing the pH value.In addition,these bands become stronger in SiO2-doped samples than in pure TiO2samples.This suggests that the addition of silica and the high pH environment bring more surface hydroxyl groups to the photocatalysts.

    3.7 Photocatalytic activity

    Fig.7 shows that the photocatalytic activity is enhanced considerably with increasing the pH values for both TiO2and TiO2/ SiO2photocatalysts.The photocatalytic activity of TiO2/SiO2catalysts is improved markedly compared to pure TiO2catalysts prepared at the same pH environment.The rate constants calculated are listed in Table 1.As shown in Fig.7,the degradation of benzene carried out easily,however,the mineralization of benzene was relatively difficult.Probably,the intermediates in the photocatalytic process were adsorbed strongly on the active sites of catalysts.Therefore,these intermediates were more difficult to be degradated.The photoactivity of the samples is much interrelated to their surface properties,for example,surface area,surface acidity,and surface OH-,etc.Surface area,surface acidity,and surface hydroxy groups of the as-synthesized photocatalysts increase significantly either when the pH values go up or when the SiO2is doped into TiO2.Therefore,more active sites may participate in the photocatalytic reaction of benzene.The benefit of higher acidity is also observed in different catalytic reactions.28-30More surface hydroxyl groups may be trapped in photoinduced holes,and then form hydroxyl radicals(·OH)with high oxidation capability.25

    Fig.6 FT-IR spectra of TiO2and TiO2/SiO2catalysts prepared at different pH values

    Fig.7 Degradation and mineralization of benzene on TiO2(a) and TiO2/SiO2(b)catalysts prepared at different pH values

    3.8 Durability of catalyst

    Fig.8 demonstrates the durability of TiO2/SiO2catalyst via 5 h reaction every cycling.It can be seen that the photocatalytic activity of the catalyst declines slightly with use times when the reaction runs from cycling 1 to 6.Photocatalytic oxidation over TiO2/SiO2can be kinetically retarded due to the accumula-tion of partially oxidized intermediate species on the catalyst surface.Whereas,the activity of the catalyst becomes steady from cycling times 6 to 10,and the catalyst has better activity. Perhaps,the intermediates continue to be degraded under ultraviolet irradiation.

    Fig.8 Changes of photocatalytic activity of TiO2/SiO2catalyst with cycling times

    4 Conclusions

    Low cost and better activity TiO2and SiO2-doped TiO2photocatalysts have been prepared by a precipitation method. Their structure,surface properties,and photocatalytic activity are strongly dependent on the pH values in the preparation process.

    (1) Kim,D.S.;Kwak,S.Y.Appl.Catal.A:Gen.2007,323,110.

    (2) Hu,Y.F.;Li,Y.X.;Peng,S.Q,;Lü,G.X.;Li,S.B.Acta Phys.-Chim.Sin.2008,24(11),2071.[胡元方,李越湘,彭紹琴,呂功煊,李樹本.物理化學(xué)學(xué)報(bào),2008,24(11),2071.]

    (3) Bao,N.;Zhang,F.;Ma,Z.H.;Wei,Z.T.;Sun,J.;Liu,F.Acta Chim.Sin.2007,65(23),2786. [包 南,張 鋒,馬志會(huì),魏振濤,孫 劍,劉 峰.化學(xué)學(xué)報(bào),2007,65(23),2786.]

    (4) Chen,Y.H.;Shen,J.;Zhang,Z.Chin.J.Catal.2008,29(4), 356. [陳垚翰,沈 俊,張 昭.催化學(xué)報(bào),2008,29(4),356.]

    (5) Kang,C.H.;Guo,T.;Jing,L.Q.;Cui,H.C.;Zhou,J.;Fu,H.G. J.Inorg.Mater.2009,24(2),229.[康傳紅,郭 桐,井立強(qiáng),崔虎成,周 佳,付宏剛,無機(jī)材料學(xué)報(bào),2009,24(2),229.]

    (6) Liu,Z.H.;Su,X.J.;Hou,G.L.J.Inorg.Mater.2010,25(9), 911.[劉朝輝,蘇勛家,侯根良.無機(jī)材料學(xué)報(bào),2010,25(9), 911.]

    (7)Wang,G.P.;Qiu,W.;Ren,C.J.;Chai,J.J.;Dong,W.;Chen,Y. Q.;Gong,M.C.Chin.J.Catal.2009,30(9),913.[王光平,仇 偉,任成軍,柴軍軍,董 偉,陳耀強(qiáng),龔茂初.催化學(xué)報(bào), 2009,30(9),913.]

    (8)Wang,E.J.;Yang,Y.H.;Cao,Y.A.Acta Chim.Sin.2009,67 (24),2759.[王恩君,楊輝云,曹亞安.化學(xué)學(xué)報(bào),2009,67 (24),2759.]

    (9)Yang,C.S.;Wang,Y.J.;Shih,M.S.;Chang,Y.T.;Hon,C.C. Appl.Catal.A:Gen.2009,364,182.

    (10)Huang,W.P.;Tang,X.H.;Wang,Y.Q.;Koltypin,Y.;Gedanken, A.Chem.Commun.2000,1415.

    (11) Pottier,A.;Chanéac,C.;Tronc,E.;Mazerolles,L.;Jolivet,J.P. J.Mater.Chem.2001,11,1116.

    (12) Zhang,Y.;Wu,L.Z.;Zeng,Q.H.;Zhi,J.F.J.Phys.Chem.C 2008,112,16457.

    (13)Yu,J.G.;Su,Y.R.;Cheng,B.;Zhou,M.H.J.Mol.Catal.A: Chem.2006,258,104.

    (14)Aguado,J.;van Grieken,R.;López-Mu?oz,M.J.;Marugán,J. Appl.Catal.A:Gen.2006,312,202.

    (15) Bai,Y.;Sun,H.Q.;Jin,W.Q.J.Inorg.Mater.2008,23(2),387. [柏 源,孫紅旗,金萬勤,無機(jī)材料學(xué)報(bào),2008,23(2),387.]

    (16) Li,Y.;White,T.J.;Lim,S.H.J.Solid State Chem.2004,177, 1372.

    (17) Li,Y.Z.;Kim,S.J.J.Phys.Chem.B 2005,109,12309.

    (18) Yanagisawa,K.;Ovenstone,J.J.Phys.Chem.B 1999,103, 7781.

    (19) Lim,S.H.;Phonthammachai,N.;Pramana,S.S.;White,T.J. Langmuir 2008,24,6226.

    (20) He,C.X.;Tian,B.Z.;Zhang,J.L.J.Colloid Interface Sci. 2010,344,382.

    (21) Tobaldi,D.M.;Tucci,A.;Skapin,A.S.;Esposito,L.J.Eur. Ceram.Soc.2010,30,2481.

    (22)Dong,W.Y.;Sun,Y.J.;Lee,C.W.;Hua,W.M.;Lu,X.C.;Shi, Y.F.;Zhang,S.C.;Chen,J.M.;Zhao,D.Y.J.Am.Chem.Soc. 2007,129,13894.

    (23) Cho,K.;Chang,H.;Park,J.H.;Kim,B.G.;Jang,H.D.J.Ind. Eng.Chem.2008,14,860.

    (24) Bonelli,B.;Cozzolino,M.;Tesser,R.;Di,Serio M.;Piumetti, M.;Garrone,E.;Santacesaria,E.J.Catal.2007,246,293.

    (25)Hou,Y.D.;Wang,X.C.;Wu,L.;Chen,X.F.;Ding,Z.X.; Wang,X.X.;Fu,X.Z.Chemosphere 2008,72,414.

    (26) Prinetto,F.;Ghiotti,G.;Occhhiuzzi,M.;Indovia,V.J.Phys. Chem.B 1998,102,10316.

    (27) Marc?,G.;Augugliaro,V.;Rives,V.;Tilley,R.D.;Venezia,A. M.J.Phys.Chem.B 2001,105,1033.

    (28)Akurati,K.K.;Vital,A.;Dellemann,J.P.;Michalow,K.; Graule,T.;Ferri,D.;Baiker,A.Appl.Catal.B:Environ.2008, 79,53.

    (29) Onfroy,T.;Clet,G.;Houalla,M.J.Phys.Chem.B 2005,109, 14588.

    (30)Wang,X.C.;Yu,J.C.;Liu P.;Wang,X.X.;Su,W.Y.;Fu,X.Z. J.Photochem.Photobiol.A:Chem.2006,179,339.

    猜你喜歡
    無機(jī)學(xué)報(bào)化學(xué)
    無機(jī)滲透和促凝劑在石材防水中的應(yīng)用
    石材(2020年9期)2021-01-07 09:30:04
    致敬學(xué)報(bào)40年
    加快無機(jī)原料藥產(chǎn)品開發(fā)的必要性和途徑
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    有機(jī)心不如無機(jī)心
    山東青年(2016年2期)2016-02-28 14:25:31
    學(xué)報(bào)簡(jiǎn)介
    學(xué)報(bào)簡(jiǎn)介
    亚洲自拍偷在线| 97精品久久久久久久久久精品| 色综合亚洲欧美另类图片| 夜夜看夜夜爽夜夜摸| 男女那种视频在线观看| 亚洲欧美一区二区三区国产| 久久久久久久午夜电影| 久久久久久九九精品二区国产| 免费看光身美女| 精品99又大又爽又粗少妇毛片| 2021少妇久久久久久久久久久| 有码 亚洲区| www.色视频.com| 最近中文字幕2019免费版| 青春草视频在线免费观看| a级毛色黄片| 高清欧美精品videossex| 欧美性猛交╳xxx乱大交人| 久久99热这里只有精品18| 日韩一本色道免费dvd| 国产午夜精品论理片| 国产在线一区二区三区精| 女人被狂操c到高潮| 国产亚洲精品久久久com| 丰满乱子伦码专区| 精品久久久久久电影网| 欧美精品一区二区大全| 国产白丝娇喘喷水9色精品| 免费看不卡的av| 啦啦啦啦在线视频资源| 69av精品久久久久久| 国产精品久久久久久精品电影| 22中文网久久字幕| 国产精品一区二区三区四区免费观看| av在线老鸭窝| 免费观看的影片在线观看| 嫩草影院新地址| 我的女老师完整版在线观看| 国产在线一区二区三区精| 精品国产三级普通话版| 一级毛片黄色毛片免费观看视频| 尾随美女入室| 青春草视频在线免费观看| 色尼玛亚洲综合影院| a级毛色黄片| 成人二区视频| 男人爽女人下面视频在线观看| 综合色av麻豆| 亚洲自偷自拍三级| 91av网一区二区| 国产爱豆传媒在线观看| 人妻一区二区av| 亚洲av在线观看美女高潮| 亚洲精品第二区| 精品久久久久久久末码| a级毛片免费高清观看在线播放| 日韩中字成人| 久久热精品热| 国产有黄有色有爽视频| 免费看不卡的av| 又爽又黄a免费视频| 国产黄色视频一区二区在线观看| 精品久久久久久久末码| 国产高清国产精品国产三级 | 国产精品久久久久久精品电影| 中文字幕av成人在线电影| 久久久久久久久久久免费av| 国产激情偷乱视频一区二区| 熟妇人妻不卡中文字幕| 欧美xxxx性猛交bbbb| 91久久精品国产一区二区成人| 一级a做视频免费观看| 美女主播在线视频| 亚洲精品亚洲一区二区| 精品国产一区二区三区久久久樱花 | 亚洲aⅴ乱码一区二区在线播放| 男女边吃奶边做爰视频| 中文精品一卡2卡3卡4更新| 日韩av不卡免费在线播放| 美女脱内裤让男人舔精品视频| 91狼人影院| 日韩视频在线欧美| 熟妇人妻不卡中文字幕| 一级黄片播放器| 亚洲国产精品成人久久小说| 久久久久九九精品影院| 亚洲aⅴ乱码一区二区在线播放| av在线天堂中文字幕| a级毛片免费高清观看在线播放| 免费av毛片视频| 亚洲欧美日韩无卡精品| 日韩精品青青久久久久久| 男的添女的下面高潮视频| 全区人妻精品视频| 欧美最新免费一区二区三区| 亚洲,欧美,日韩| 99久久精品一区二区三区| 日韩视频在线欧美| 老师上课跳d突然被开到最大视频| 最近2019中文字幕mv第一页| 大片免费播放器 马上看| 亚洲av电影在线观看一区二区三区 | 天堂影院成人在线观看| 亚洲成人一二三区av| 熟女人妻精品中文字幕| 高清欧美精品videossex| 一二三四中文在线观看免费高清| 国产亚洲91精品色在线| 国产黄a三级三级三级人| 色综合亚洲欧美另类图片| 哪个播放器可以免费观看大片| 亚洲激情五月婷婷啪啪| 1000部很黄的大片| 大话2 男鬼变身卡| 一级毛片黄色毛片免费观看视频| av福利片在线观看| 亚洲av二区三区四区| 高清视频免费观看一区二区 | 精品人妻偷拍中文字幕| 美女脱内裤让男人舔精品视频| 国内精品一区二区在线观看| 国产伦理片在线播放av一区| 看黄色毛片网站| 国产精品麻豆人妻色哟哟久久 | 蜜桃久久精品国产亚洲av| 国产麻豆成人av免费视频| 午夜免费激情av| 天天躁日日操中文字幕| 国产黄片视频在线免费观看| 激情五月婷婷亚洲| 日本猛色少妇xxxxx猛交久久| 一夜夜www| 嫩草影院入口| 嫩草影院新地址| 18禁在线无遮挡免费观看视频| 六月丁香七月| 亚洲精品日本国产第一区| 亚洲最大成人手机在线| 日本一二三区视频观看| 欧美日韩国产mv在线观看视频 | 国产一级毛片在线| 午夜激情欧美在线| 国产人妻一区二区三区在| 99久国产av精品国产电影| 高清欧美精品videossex| 国语对白做爰xxxⅹ性视频网站| 大片免费播放器 马上看| 国产成人a∨麻豆精品| 色播亚洲综合网| 国产高清有码在线观看视频| 国产精品女同一区二区软件| 激情 狠狠 欧美| 国产亚洲午夜精品一区二区久久 | 亚洲欧洲国产日韩| 精品人妻视频免费看| 搡女人真爽免费视频火全软件| 深夜a级毛片| 只有这里有精品99| 国产一区二区在线观看日韩| 免费观看a级毛片全部| 亚洲av国产av综合av卡| 日韩精品青青久久久久久| 亚洲av中文av极速乱| 亚洲精品日韩在线中文字幕| 中文欧美无线码| 少妇丰满av| 最近最新中文字幕免费大全7| 99久久中文字幕三级久久日本| 亚洲精品乱久久久久久| 最近最新中文字幕免费大全7| 一边亲一边摸免费视频| 超碰av人人做人人爽久久| 91久久精品国产一区二区成人| 最近中文字幕高清免费大全6| 亚洲国产精品成人综合色| 日本爱情动作片www.在线观看| 国产综合精华液| av卡一久久| 亚洲av免费高清在线观看| 亚洲欧美清纯卡通| 高清欧美精品videossex| 亚洲av免费高清在线观看| 中文乱码字字幕精品一区二区三区 | 国产黄色视频一区二区在线观看| 在线免费观看不下载黄p国产| 亚洲国产成人一精品久久久| 欧美极品一区二区三区四区| 亚洲国产精品国产精品| 亚洲三级黄色毛片| 一级爰片在线观看| 男女那种视频在线观看| 成年女人在线观看亚洲视频 | 色尼玛亚洲综合影院| 成年女人在线观看亚洲视频 | 18+在线观看网站| 大香蕉久久网| 国产老妇女一区| 国内精品美女久久久久久| 亚洲精品视频女| 亚洲精品日韩av片在线观看| 亚洲欧美日韩无卡精品| 哪个播放器可以免费观看大片| 日韩中字成人| 亚洲国产精品专区欧美| 精品午夜福利在线看| 亚洲欧洲日产国产| 综合色丁香网| 一二三四中文在线观看免费高清| 春色校园在线视频观看| 51国产日韩欧美| 国产精品久久久久久精品电影小说 | 亚洲欧美清纯卡通| 成人性生交大片免费视频hd| 国产精品嫩草影院av在线观看| 欧美xxxx性猛交bbbb| 成人鲁丝片一二三区免费| 如何舔出高潮| 又爽又黄a免费视频| 床上黄色一级片| 搡老妇女老女人老熟妇| 天天躁日日操中文字幕| 精品欧美国产一区二区三| 99热全是精品| 精品99又大又爽又粗少妇毛片| 国产色爽女视频免费观看| 国产在线男女| 岛国毛片在线播放| 五月伊人婷婷丁香| 国国产精品蜜臀av免费| 乱人视频在线观看| 久久97久久精品| 国产美女午夜福利| 国产久久久一区二区三区| 可以在线观看毛片的网站| 免费大片黄手机在线观看| 老司机影院毛片| 日韩av不卡免费在线播放| 在线观看一区二区三区| 精品久久国产蜜桃| 一二三四中文在线观看免费高清| 国产精品久久久久久精品电影小说 | 天堂网av新在线| 熟妇人妻久久中文字幕3abv| 夜夜看夜夜爽夜夜摸| 哪个播放器可以免费观看大片| 色哟哟·www| 日日摸夜夜添夜夜爱| 一级毛片我不卡| 少妇人妻精品综合一区二区| 蜜桃亚洲精品一区二区三区| 99热这里只有是精品50| 国产成人精品福利久久| 亚洲av中文av极速乱| 热99在线观看视频| 在线免费观看的www视频| 亚洲av电影在线观看一区二区三区 | 熟女电影av网| 国产精品国产三级专区第一集| 亚洲怡红院男人天堂| 激情五月婷婷亚洲| 天天躁日日操中文字幕| 能在线免费观看的黄片| 国产91av在线免费观看| 久久精品熟女亚洲av麻豆精品 | 免费观看av网站的网址| 中文字幕av成人在线电影| 日日撸夜夜添| 天天躁日日操中文字幕| 97热精品久久久久久| 免费在线观看成人毛片| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 大陆偷拍与自拍| 深夜a级毛片| 麻豆国产97在线/欧美| 午夜福利在线观看吧| 国产精品伦人一区二区| 亚洲av中文字字幕乱码综合| 夜夜看夜夜爽夜夜摸| 美女主播在线视频| 精品久久国产蜜桃| 99久国产av精品国产电影| 国产精品蜜桃在线观看| 青春草视频在线免费观看| 伊人久久精品亚洲午夜| 亚洲电影在线观看av| 中文欧美无线码| 亚洲自偷自拍三级| 国精品久久久久久国模美| 成人性生交大片免费视频hd| 精品久久久久久成人av| 精品久久久久久久人妻蜜臀av| 亚洲成人av在线免费| 亚洲成人精品中文字幕电影| 亚洲av成人av| 97热精品久久久久久| 亚洲欧美一区二区三区国产| 99久久人妻综合| 国产午夜精品论理片| 男女边摸边吃奶| 久久久久久久久久黄片| 深爱激情五月婷婷| 国产人妻一区二区三区在| 精品久久久噜噜| 女人久久www免费人成看片| 亚洲精品日韩在线中文字幕| 最近最新中文字幕免费大全7| 综合色av麻豆| 日韩亚洲欧美综合| 伊人久久国产一区二区| 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 亚洲精品成人久久久久久| 有码 亚洲区| 亚洲va在线va天堂va国产| 欧美成人午夜免费资源| 欧美日本视频| 欧美最新免费一区二区三区| 亚洲成人中文字幕在线播放| 亚洲最大成人av| 建设人人有责人人尽责人人享有的 | 国产亚洲精品久久久com| av黄色大香蕉| 国产精品1区2区在线观看.| 亚洲成人中文字幕在线播放| 亚洲av一区综合| 国产视频内射| 亚洲精华国产精华液的使用体验| 亚洲综合精品二区| 三级毛片av免费| 免费看不卡的av| 国产av在哪里看| 99九九线精品视频在线观看视频| 99久国产av精品国产电影| 极品少妇高潮喷水抽搐| 大陆偷拍与自拍| 黄片wwwwww| 最近中文字幕高清免费大全6| 日日啪夜夜爽| 人妻夜夜爽99麻豆av| 久久人人爽人人爽人人片va| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 人人妻人人澡人人爽人人夜夜 | 精品国产三级普通话版| 久久99热这里只频精品6学生| 最近的中文字幕免费完整| 久久精品熟女亚洲av麻豆精品 | 国产不卡一卡二| 综合色丁香网| 亚洲一区高清亚洲精品| 亚洲av中文字字幕乱码综合| 两个人的视频大全免费| 精品午夜福利在线看| 一级毛片我不卡| 极品少妇高潮喷水抽搐| 欧美最新免费一区二区三区| 成人国产麻豆网| 成人特级av手机在线观看| 国模一区二区三区四区视频| 亚洲人成网站在线播| 看免费成人av毛片| 婷婷六月久久综合丁香| 亚洲av一区综合| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 男女啪啪激烈高潮av片| 最近视频中文字幕2019在线8| 成人av在线播放网站| 亚洲人成网站高清观看| 日本黄大片高清| 天堂√8在线中文| 国产美女午夜福利| 亚洲精华国产精华液的使用体验| 只有这里有精品99| 嫩草影院新地址| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 国产精品一及| 在现免费观看毛片| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕| 噜噜噜噜噜久久久久久91| 狂野欧美白嫩少妇大欣赏| 午夜视频国产福利| freevideosex欧美| 听说在线观看完整版免费高清| 国产精品一二三区在线看| 人妻一区二区av| 国产 一区精品| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻不卡中文字幕| 在线a可以看的网站| 免费不卡的大黄色大毛片视频在线观看 | 午夜老司机福利剧场| 国产亚洲av片在线观看秒播厂 | 看非洲黑人一级黄片| 亚洲欧美日韩卡通动漫| 丝瓜视频免费看黄片| 欧美区成人在线视频| 亚洲精品色激情综合| 日韩亚洲欧美综合| 免费人成在线观看视频色| 午夜日本视频在线| 综合色丁香网| 免费黄网站久久成人精品| 欧美区成人在线视频| 777米奇影视久久| 久久久久精品性色| 在线播放无遮挡| 美女主播在线视频| 欧美成人一区二区免费高清观看| 精品人妻一区二区三区麻豆| 全区人妻精品视频| 淫秽高清视频在线观看| 久久精品久久久久久久性| 欧美不卡视频在线免费观看| 精品一区二区免费观看| 禁无遮挡网站| 精品久久久久久久人妻蜜臀av| 亚洲精品aⅴ在线观看| 麻豆国产97在线/欧美| 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| 久久精品夜夜夜夜夜久久蜜豆| 男插女下体视频免费在线播放| 日韩电影二区| 亚洲真实伦在线观看| 成人午夜高清在线视频| av黄色大香蕉| 亚洲精品乱码久久久久久按摩| 嫩草影院精品99| 亚洲精品乱码久久久v下载方式| 插逼视频在线观看| av一本久久久久| 亚洲av在线观看美女高潮| 亚洲经典国产精华液单| 天堂√8在线中文| 久久精品夜色国产| 内射极品少妇av片p| 国产精品久久久久久精品电影| 老司机影院成人| kizo精华| 日本wwww免费看| 男人爽女人下面视频在线观看| 特级一级黄色大片| 美女国产视频在线观看| 最近的中文字幕免费完整| 中文字幕av在线有码专区| 热99在线观看视频| 国产免费视频播放在线视频 | 国产伦理片在线播放av一区| 97人妻精品一区二区三区麻豆| 一区二区三区免费毛片| 亚洲人成网站在线观看播放| 亚洲乱码一区二区免费版| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲网站| 黄色配什么色好看| 一级片'在线观看视频| 久久精品国产亚洲av天美| 91av网一区二区| 在现免费观看毛片| 久久这里有精品视频免费| 亚洲精品成人久久久久久| 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 黄色配什么色好看| 色综合亚洲欧美另类图片| 免费黄色在线免费观看| 大香蕉久久网| 色哟哟·www| 成年av动漫网址| 22中文网久久字幕| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 婷婷色综合大香蕉| 亚洲国产色片| 少妇熟女aⅴ在线视频| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 成人毛片60女人毛片免费| 久久6这里有精品| 久久这里有精品视频免费| 亚洲国产av新网站| 国产精品美女特级片免费视频播放器| 岛国毛片在线播放| 国产一区二区亚洲精品在线观看| 日日啪夜夜爽| 日本色播在线视频| 一区二区三区乱码不卡18| 国产伦一二天堂av在线观看| av免费在线看不卡| 91久久精品国产一区二区成人| 成年女人在线观看亚洲视频 | 欧美变态另类bdsm刘玥| 国产伦精品一区二区三区视频9| 免费黄色在线免费观看| 高清午夜精品一区二区三区| 综合色丁香网| 成人欧美大片| 免费av毛片视频| 一级av片app| 天天躁夜夜躁狠狠久久av| 插阴视频在线观看视频| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 哪个播放器可以免费观看大片| 久久精品夜色国产| 日本免费在线观看一区| 91久久精品国产一区二区成人| 人人妻人人看人人澡| 国产欧美另类精品又又久久亚洲欧美| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 亚洲欧美日韩卡通动漫| 赤兔流量卡办理| 久久久成人免费电影| 成人av在线播放网站| 国产老妇女一区| 啦啦啦中文免费视频观看日本| 欧美变态另类bdsm刘玥| 亚州av有码| 蜜桃久久精品国产亚洲av| 久久99精品国语久久久| 男人爽女人下面视频在线观看| 欧美最新免费一区二区三区| 欧美日韩视频高清一区二区三区二| 啦啦啦韩国在线观看视频| 免费av毛片视频| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 性色avwww在线观看| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 亚洲av成人精品一区久久| 九九久久精品国产亚洲av麻豆| 又爽又黄无遮挡网站| 男人舔奶头视频| 最近手机中文字幕大全| 女人久久www免费人成看片| 免费大片18禁| 中文字幕av在线有码专区| 亚洲av福利一区| 丝袜喷水一区| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩无卡精品| av女优亚洲男人天堂| 免费大片黄手机在线观看| 国产精品女同一区二区软件| 免费av观看视频| 综合色av麻豆| 秋霞伦理黄片| 久久久国产一区二区| 日韩电影二区| xxx大片免费视频| 十八禁国产超污无遮挡网站| 日韩制服骚丝袜av| 高清毛片免费看| 男女下面进入的视频免费午夜| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 午夜免费激情av| 插逼视频在线观看| av国产久精品久网站免费入址| 国产精品一区二区三区四区免费观看| 日本免费a在线| 久久久久免费精品人妻一区二区| 综合色av麻豆| 人人妻人人看人人澡| 久久久精品94久久精品| 可以在线观看毛片的网站| 国产成人精品婷婷| 天堂网av新在线| xxx大片免费视频| 国产精品麻豆人妻色哟哟久久 | 亚洲精品成人av观看孕妇| 中文天堂在线官网| 成人av在线播放网站| 两个人的视频大全免费| 久久久久网色| 午夜福利在线观看免费完整高清在| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 天天躁日日操中文字幕| 成年版毛片免费区| 男女视频在线观看网站免费| 99久久九九国产精品国产免费| 69av精品久久久久久| 99久久九九国产精品国产免费| 69av精品久久久久久| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| 天天一区二区日本电影三级| 最近中文字幕高清免费大全6| 欧美人与善性xxx| 久久99热这里只频精品6学生| 精品少妇黑人巨大在线播放| 淫秽高清视频在线观看| 18+在线观看网站| 欧美性猛交╳xxx乱大交人| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 国内精品一区二区在线观看| 欧美zozozo另类| av福利片在线观看| 久久久久九九精品影院| 日本免费在线观看一区| 国产淫片久久久久久久久| 日韩精品青青久久久久久| 啦啦啦啦在线视频资源|