• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于機(jī)器學(xué)習(xí)方法的丙型肝炎病毒非結(jié)構(gòu)蛋白5B聚合酶抑制劑活性預(yù)測(cè)

    2011-12-11 09:09:54
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:四川大學(xué)丙型肝炎抑制劑

    呂 巍 薛 英

    (1山東農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018;2四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都610064;3四川大學(xué)生物治療國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610041)

    基于機(jī)器學(xué)習(xí)方法的丙型肝炎病毒非結(jié)構(gòu)蛋白5B聚合酶抑制劑活性預(yù)測(cè)

    呂 巍1薛 英2,3,*

    (1山東農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安271018;2四川大學(xué)化學(xué)學(xué)院,教育部綠色化學(xué)與技術(shù)重點(diǎn)實(shí)驗(yàn)室,成都610064;3四川大學(xué)生物治療國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610041)

    在丙型肝炎病毒(HCV)的基因復(fù)制和蛋白質(zhì)成熟的過程中,非結(jié)構(gòu)蛋白5B(NS5B)作為RNA依賴的RNA聚合酶起到了重要的作用.抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA復(fù)制,因此成為一種治療丙型肝炎的有效方法.通過計(jì)算機(jī)方法進(jìn)行虛擬篩選和預(yù)測(cè)NS5B聚合酶抑制劑已經(jīng)變得越來越重要.本文主要采用機(jī)器學(xué)習(xí)方法(支持向量機(jī)(SVM)、k-最近相鄰法(k-NN)和C4.5決策樹(C4.5 DT))對(duì)已知的丙型肝炎病毒NS5B蛋白酶抑制劑與非抑制劑建立分類預(yù)測(cè)模型.1248個(gè)結(jié)構(gòu)多樣性化合物(552個(gè)NS5B抑制劑與696個(gè)非NS5B抑制劑)被用于測(cè)試分類預(yù)測(cè)系統(tǒng),并用遞歸變量消除法選擇與NS5B抑制劑相關(guān)的性質(zhì)描述符以提高預(yù)測(cè)精度.獨(dú)立驗(yàn)證集的總預(yù)測(cè)精度為84.1%-85.0%,NS5B抑制劑的預(yù)測(cè)精度為81.4%-91.7%,非NS5B抑制劑的預(yù)測(cè)精度為78.2%-87.2%.其中支持向量機(jī)給出最好的NS5B抑制劑預(yù)測(cè)精度(91.7%);C4.5決策樹給出最好的非NS5B抑制劑預(yù)測(cè)精度(87.2%);k-最近相鄰法給出最好的總預(yù)測(cè)精度(85.0%).研究表明機(jī)器學(xué)習(xí)方法可以有效預(yù)測(cè)未知數(shù)據(jù)集中潛在的NS5B抑制劑,并有助于發(fā)現(xiàn)與其相關(guān)的分子描述符.

    機(jī)器學(xué)習(xí)方法;分子描述符;遞歸變量消除法; 支持向量機(jī);丙型肝炎病毒

    1 Introduction

    Hepatitis C virus(HCV)is a positive strand RNA virus of the Flaviviridae family.1The capsid and envelope are composed of four structural proteins and there are five non-structural proteins which play important roles in protein maturation and gene replication.HCV is responsible for a variety of clinical conditions ranging from acute viral hepatitis to chronic liver disease and cirrhosis.2It is the major cause of liver cancer and about two thirds of all liver transplants are a result of HCV infection.Since the HCV cDNA was cloned successfully by Choo et al.in 1989,3there have been many researches about the genome,function of protein,and biological function of HCV.In 2000,according to the World Health Organization survey,there are estimated 170 million people worldwide chronically infected by the HCV and an estimated 3-4 million new infections annually.4Currently,there is no effective vaccine to prevent hepatitis.Therefore,drug development for the treatment of HCV has become a hot spot for many scientists.The current standard of care for HCV,which is based on a combination of Interferon(IFN)and Ribavarin,can cure HCV infections,but is often inadequate.5In addition,there will be serious side effects and a low success rate in the main viral genotype. The need for improved therapies is pressing because although the incidence of new HCV infections is declining,mortality is expected to increase into the middle of the next decade.6

    The lack of a highly effective and safe treatment option for the HCV highlights the necessity of developing more efficient means of combating and curing this viral disease ultimately.A primary focus is currently on finding new inhibitors of the NS5B polymerase.As we all know,NS5B polymerase has been identified as an RNA dependent RNA polymerase,which can be essential for replication since it both affects the synthesis of a(-)-stranded HCV RNA template and regenerates the (+)-stranded genomic RNA.7Inhibiting NS5B polymerase will prevent the RNA replication,so it has a significant effect on the treatment of HCV.In recent years,some X-ray crystallographic structures of NS5B have been determined and their resolutions are more accurate too,such as the structures(PDB ID: 3mwv,3mww,3gyn,etc.).8,9The modulation of NS5B inhibitors has become more explicit10and more databases of commercially available compounds were generated.In this situation, the area of NS5B inhibitor predicted by the non-structurebased computational methods has developed too.

    The machine learning(ML)methods are very important computational methods and efficacious tools in the virtual screening and the computer-aided drug design.They have been applied in drug pharmacodynamics,pharmacokinetics,and toxicology,11-13with much achievement.Recursive feature elimination(RFE)method,14,15which has been extensively used in the feature selecting,is employed in this research for selecting the most relevant molecular descriptors to NS5B inhibitory liability.To assess the prediction accuracy of the models in this research,two different evaluation methods have been employed which are valid for estimating drug prediction models.One is five-fold cross validation16and the other is evaluation by an independent validation set.

    In this paper,we use ML methods,such as support vector machines(SVM),k-nearest neighbor(k-NN),and C4.5 decision tree(C4.5 DT),to study NS5BIs and non-NS5BIs for developing a fast and cost-efficient tool for facilitating NS5BIs prediction and design,and we employ the RFE method to select the descriptors which are most relative to the discrimination of NS5BIs and non-NS5BIs for improving the accuracy of the prediction models.

    2 Methodology

    2.1 Selection of NS5BIs and non-NS5BIs

    Atotal of 1313 compounds about NS5B with known IC50values were selected from a number of published papers9,17-70(See Supporting Information:Table S1).Based on the tested experimental data in prevenient researches,35when the IC50value is lower than 300 nmol·L-1,the molecule has good activity.And in the other papers,24,56it was indicated that when the IC50value is between 400 and 600 nmol·L-1,the molecule has inhibitory potential too,but not strong.For example,the compounds(07-1-20 and 07-1-21)have the activity of inhibiting NS5B and their IC50values are 200 and 300 nmol·L-1,respectively.35The compound(08-9-4c)with IC50value of 440 nmol·L-1can inhibit NS5B activity,however,methylation of the R3 sulfonamide moiety present in 08-9-4b(27 nmol·L-1)resulted in significant loss of NS5B inhibition properties.56The phenyl ethyl amide compounds(05-3-43 and 05-3-44)with substituents at R3 with Cl and F are little potential at inhibiting NS5B and the IC50values are 500 and 600 nmol·L-1,respectively.24The compound (09-15-11f)with the IC50value of 685 nmol·L-1is a weaker NS5B inhibitor.61For compounds(09-12-4n and 09-12-4s) with the IC50values of 780 and 730 nmol·L-1,respectively,the inhibiting activity for NS5B is very weak because of an αbranched in the R1 moiety.58In this work,based on experimental data mentioned above,one method was applied to assign compounds as NS5BIs and non-NS5BIs.71In all molecules collected,we can divide them into three sets based on the IC50values of these molecules.One set includes 552 inhibitors(IC50≤400 nmol·L-1),the second set includes 696 non-inhibitors (IC50≥600 nmol·L-1).The last set includes 65 molecules(400 nmol·L-1<IC50<600 nmol·L-1)which are ambiguous between inhibitors and non-inhibitors.In these three sets,we only choose the first two sets to test.

    The two-dimensional(2D)structure of each of the compounds was generated by using ChemDraw72and was subsequently converted into three-dimensional(3D)structure by using Corina73for calculating the quantum chemical properties. The 3D structure of each compound was manually inspected to ensure that the chirality of each chiral agent is properly generated.All the generated geometrics have been fully optimized without symmetry restrictions.

    Firstly,all compounds were divided into training set,testing set,and independent validation set according to their distributions in the chemical space defined by their structural and chemical features.74Compounds of similar structural and chemical features were evenly assigned into separate sets.For those compounds without enough structurally and chemically similar counterparts,they were assigned,in order of priority,to the training set and then the testing set,respectively.The ID of compound in every subset is supplied in Table S2 in Supporting Information.The training set was used by SVM to develop a statistical model.The testing set was used by SVM to optimize the parameters of SVM classification algorithm,and the independent validation set was used for assessing the classification accuracy of the model.Then,all compounds in training set and testing set were randomly divided into five subsets of approximately equal size.After training the SVM with a collection of four subsets,the performance of the SVM was tested against the fifth subset.This process was repeated five times, so that every subset was once used as the test data.

    2.2 Molecular descriptors

    Molecular descriptors were used to routinely represent quantitatively structural and physicochemical properties of molecules,which have been extensively applied in the structureactivity relationship(SAR),14quantitative structure-activity relationship(QSAR),75and other computational researches of pharmaceutical agents.76,77In this work,a total of 198 molecular descriptors listed in Table S3 in Supporting Information were used,which were selected from more than 1000 descriptors described in the literature by eliminating those descriptors that are obviously redundant.78The resulting 198 molecular descriptors include 18 descriptors in the class of simple molecular properties,27 descriptors in the class of molecular connectivity and shape,97 descriptors in the class of electro-topological state,31 descriptors in the class of quantum chemical properties,and 25 descriptors in the class of geometrical properties. They were computed from the 3D structure of each compound by using the molecular descriptor computing program.79The irrelevant and redundant descriptors to NS5BIs and non-NS5BIs were further eliminated by using feature selection method.11,80

    2.3 Feature selection method

    In a dataset with a fixed number of samples,excessive descriptors may cause a predicting model to be over-fitted to affect its precision.Therefore,feature selection methods have become increasingly prevalent.It is good at enhancing the performance of ML methods by eliminating the molecular descriptors which are redundant and irrelevant to the discrimination of different datasets.12Recursive feature elimination(RFE),one of the feature selection methods,has been widely acknowledged because of its high efficacy manifested in discovering informative feature molecular descriptors most relevant to the cancer classification,13prediction of P-glycoprotein substrates,81prediction of tetrahymena pyriformis toxicity chemicals,12and the drug activity analysis.11RFE with SVM is used to reduce the other redundant and unrelated descriptors.For a fixed parameter σ,in the first step,the SVM builds a model with the complete set of descriptors.In the second step,the contribution of the descriptors is ranked in the datasets based on a criterion score which is calculated by a scoring function.In the third step,the m ranked lowest descriptors are washed out.Finally, the SVM classifier is retrained by using the remaining descriptors,and the corresponding prediction accuracy is computed by means of five-fold cross validation.All the four steps are then repeated for other σ until all descriptors have been removed. After the completion of these procedures,the set of descriptors and parameter σ which give the best prediction accuracy are selected.

    The choice of the parameter m affects the performance of SVM as well as the speed of feature selection.To control the size of the selected descriptors,we only consider the number of descriptors smaller than one-fifth of the whole descriptors.78Our earlier studies suggested that the performance of a SVM system with m=5 is only reduced by a few percentages smaller than that with m=1,which is consistent with the findings from other studies.15In this work,m=5 is used for the sake of computational efficiency.

    2.4 Machine learning methods

    There are a number of downloadable ML methods software packages.For example,PHAKISO(http://www.phakiso.com/ index.htm)and WEKA(http://www.cs.waikato.ae.nz/~ml/weka)for a collection of ML methods software,82NeuNet(http:// www.cormactech.com/neunet/index.html)for neural network, SVM-Light(http://svmlight.joachims.org)for SVM software were used in many researches.We used our in-house program to build SVM model83for predicting the compounds from NS5BIs and non-NS5BIs.And we also use the other ML methods to predict them,for example,k-NN84and C4.5.85Then the results calculated by these ML methods are compared.

    2.5 Performance evaluation

    As in the case of all discriminative methods,86the performance of ML methods can be measured by the quantity of true positives(TP),true negatives(TN),false positives(FP),and false negatives(FN),which are the number of NS5BIs predicted as NS5BIs,non-NS5BIs predicted as non-NS5BIs,non-NS5BIs predicted as NS5BIs,NS5BIs predicted as non-NS5BIs,respectively.There are several accuracy functions for measuring prediction performance,which include sensitivity SE=(TP/(TP+FN))×100%(prediction accuracy for NS5BIs), specificity SP=(TN/(TP+FN))×100%(prediction accuracy for non-NS5BIs),the overall prediction accuracy(Q),and Matthews correlation coefficient(C)are given by Eq.(1)and Eq.(2),respectively.

    3 Results and discussion

    3.1 Overall prediction accuracies and merit of the machine learning methods

    SVM prediction of NS5BIs is evaluated by the method of 5-fold cross validation.Through comparing the accuracies of SVM,which used 5-fold cross validation with and without theuse of RFE of feature selection method,we find that the feature selection method plays an important role in the performance of SVM for the prediction of NS5BIs and non-NS5BIs. The results are listed in Table 1.Through this method,we find 24 descriptors which are critical for SVM model.The 24 descriptors are listed in Table 2.The accuracies of SVM with RFE are 81.8%for NS5BIs and 81.8%for non-NS5BIs;and the accuracies of SVM without RFE are 90.2%for NS5BIs and 53.1%for non-NS5BIs.The average accuracies with and without RFE are 82.0%and 69.8%,respectively.It obviously indicates that the method with RFE is substantially better than that derived from SVM without RFE,especially for NS5BIs.This suggests that RFE is useful in selecting the proper set of molecular descriptors for the prediction of NS5BIs.The results show that the selection of appropriate molecular descriptors is important for the improvement of average prediction accuracy,but more important for implying which pharmacological features are more propitious to distinguish NS5BIs and non-NS5BIs.

    Table 1 Accuracies of NS5BIs and non-NS5BIs derived from SVM without and with the use of the RFE method (SVM+RFE)by using five-fold cross validation

    Table 2 The 24 molecular descriptors selected from the RFE method for the classification of NS5BIs and non-NS5BIs

    Table 3 gives the prediction accuracies of NS5BIs and non-NS5BIs derived from other two machine learning methods(k-NN and C4.5 DT)by using the RFE selected descriptors and five-fold cross validation method.For comparison,those results from SVM are also labeled in Table 3.By comparing the prediction accuracies from the three methods,we have obtained several results.For NS5BIs,the accuracies of these methods are in the range of 81.4%-91.7%with SVM givingthe best accuracy at 91.7%.For non-NS5BIs,the accuracies are in the range of 78.2%-87.2%with C4.5 DT giving the best accuracy at 87.2%.Lastly,for both NS5BIs and non-NS5BIs, the average accuracies are in the range of 84.1%-85.0%with k-NN giving the best accuracy at 85.0%,C4.5 DT giving the second best accuracy at 84.7%and SVM giving the worst accuracy at 84.1%.

    Table 3 Comparison of the prediction accuracies of NS5BIs and non-NS5BIs derived from different machine learning methods by using independent validation sets

    A frequently used method for checking whether a prediction system is over-fitting is to compare the prediction accuracies determined by using cross validation methods and independent validation sets.Since descriptor selection is performed by using the cross validation method as the modeling testing sets,an over-fitted classification system is expected to have much higher prediction accuracy for the cross validation sets than that for the independent validation sets.As shown in Table 1 and Table 3,the predication accuracies of the SVM systems based on the five-fold cross validation method and those based on independent validation sets are similar.This shows that the SVM classi-fication systems in this work are unlikely over-fitted.

    Fig.1 Structures of the part of misclassified NS5BIs

    Fig.2 Structures of the part of misclassified non-NS5BIs

    Overall,our study suggests that ML methods are useful for facilitating the prediction of novel NS5BIs from compounds with diverse structures.Another advantage of the SVM studied in this work is that they do not require the knowledge about the molecular mechanism or structure-activity relationship of a particular drug property.

    3.2 Molecular descriptors associated with the diversity between NS5BIs and non-NS5BIs

    Selecting molecular descriptors which are most relevant to the prediction of NS5BIs is important for optimizing the prediction models and for elucidating the molecular factors contributing to NS5BIs.Commonly,QSAR models particularly design a group of specific descriptors to represent the studied NS5BIs which have similar structural groups or structural alerts.34In this research,a total of 24 molecular descriptors are selected by RFE.These descriptors,given in Table 2,represent the structural and physicochemical properties associated with the diversity between NS5BIs and non-NS5BIs.All of them are found to match or partially match those descriptors used in the published NS5BIs QSAR models.34The physicochemical properties,such as steric,electrostatic,hydrophobic,hydrogen bond acceptor,and hydrogen bond donor,are incorporated in the comparative molecular similarity indices analysis(CoMSIA)and comparative molecular field analysis(CoMFA)methods for the studies of NS5B polymerase inhibitors.34In our work,the descriptors selected by RFE method are the same as the results in other researches.34For example,topological state descriptors including S(1),S(5),S(8),S(13),S(25),S(28), S(76)and Tbmdd are selected which are related with steric property;χen(electronegativity index),QH,Max(most positive charge on H atoms),QC,Max(most positive charge on C atoms), QN,SS(sum of squares of charges on N atoms),QO,SS(sum of squares of charges on O atoms),Rpc(relative positive charge), Rnc(relative negative charge),Svpc(sum of van der Waals surface areas of positively charged atoms)and Svpcw(sum of charge weighted van der Waals surface areas of positively charged atoms)are related to electrostatic;and the descriptors of Shpb(hydrophobic region)and Hiwpb(hydrophobic integy moment)are selected to descript the hydrophobic property in our work.In addition,Srivastava et al.87constructed the QSAR model of NS5BIs with several molecular descriptors including electronegativity(χeq)which is selected as χen(electronegativity index)in our work.

    3.3 Misclassified compounds in the independent validation set

    There are 53 molecules incorrectly classified by our SVM system with the independent validation set method.The predic-tion accuracy is 91.7%for NS5BIs,78.2%for non-NS5BIs, and 84.1%for all of them.And for NS5BIs set,which is comprised of 145 molecules,there are 12 molecules which are predicted to non-NS5BIs,on the other hand,for non-NS5BIs set, which is comprised of 188 molecules,there are 41 molecules which are predicted to NS5BIs.All of these misclassified molecules are shown in Fig.1,Fig.2 and Fig.S1 in Supporting Information.From these figures,we can see that the misclassified agents are mainly the compounds with multiple and dense rings.It suggests that using current molecular descriptors may not be sufficient to properly show the molecular features.So it implies that further improvement and refinement of our molecular descriptors may be needed.

    4 Conclusions

    This study shows that machine learning methods,especially SVM,are useful for facilitating the prediction of NS5BIs without the knowledge of mechanisms but only with the choice of specific molecular descriptors.However,the current ML methods are limited in their ability to facilitate the study of the mechanism of predicted properties.Nevertheless,we believe in the near future,this weakness may be partially overcome by the development of regression-based ML methods.In addition, our study indicates that prediction accuracy of this model is affected by the molecular descriptors selected by RFE which can further help to optimally select molecular descriptors.To conclude,the availability of more extensive information about various NS5BIs and associated mechanisms will facilitate the development of machine learning methods into practical tools for the prediction of different types of NS5BIs in the early stage of drug development.

    Supporting Information Available:The information of the investigated dataset is provided in Tables S1,S2,S3 and Fig.S1. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Bréchot,C.Digest.Dis.Sci.1996,41,6S.

    (2) Hoofnagle,J.H.Hepatology 1997,26,15S.

    (3) Choo,Q.L.;Kuo,G.;Weiner,A.J.;Overby,L.R.;Bradley,D. W.;Houghton,M.Science 1989,244,359.

    (4)World Health Organization(WHO)Hepatitis C Fact Sheet No. 164,Rev,October,2000.

    (5)Cornberg,M.;Wedemeyer,H.;Manns,M.P.Curr. Gastroenterol.Rep.2002,4,23.

    (6) Garber,K.;Arbor,A.Nat.Biotechnol.2007,25,1379.

    (7) Appel,N.;Schaller,T.;Penin,F.;Bartenschlager,R.J.Biol. Chem.2006,281,9833.

    (8) Laplante,S.R.;Gillard,J.R.;Jakalian,A.;Aubry,N.; Coulombe,R.;Brochu,C.;Tsantrizos,Y.S.;Poirier,M.; Kukolj,G.;Beaulieu,P.L.J.Am.Chem.Soc.2010,132,15204.

    (9) Ellis,D.A.;Blazel,J.K.;Tran,C.V.;Ruebsam,F.;Murphy,D. E.;Li,L.S.;Zhao,J.;Zhou,Y.;McGuire,H.M.;Xiang,A.X.; Webber,S.E.;Zhao,Q.;Han,Q.;Kissinger,C.R.;Lardy,M.; Gobbi,A.;Showalter,R.E.;Shah,A.M.;Tsan,M.;Patel,R.A.; LeBrun,L.A.;Kamran,R.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.Bioorg.Med. Chem.Lett.2009,19,6047.

    (10)Biswal,B.K.;Wang,M.;Cherney,M.M.;Chan,L.; Yannopoulos,C.G.;Bilimoria,D.;Bedard,J.;James,M.N.G. J.Mol.Biol.2006,361,33.

    (11) Xue,Y.;Li,Z.R.;Yap,C.W.;Sun,L.Z.;Chen,X.;Chen,Y.Z. J.Chem.Inf.Comput.Sci.2004,44,1630.

    (12)Xue,Y.;Li,H.;Ung,C.Y.;Yap,C.W.;Chen,Y.Z.Chem.Res. Toxicol.2006,19,1030.

    (13)Lin,H.H.;Han,L.Y.;Yap,C.W.;Xue,Y.;Liu,X.H.;Zhu,F.; Chen,Y.Z.J.Mol.Graph.Model.2007,26,505.

    (14)Yu,H.;Yang,J.;Wang,W.;Han,J.Proc.IEEE Comput.Soc. Bioinformatics Conf.2003,220.

    (15) Furlanello,C.;Serafini,M.;Merler,S.;Jurman,G.Neural Networks 2003,16,641.

    (16) Trotter,M.W.B.;Holden,S.QSAR Comb.Sci.2003,22,533.

    (17) Pace,P.;Nizi,E.;Pacini,B.;Pesci,S.;Matassa,V.;De-Francesco R.;Altamura S.;Summa V.Bioorg.Med.Chem.Lett.2004,14, 3257.

    (18) Gopalsamy,A.;Lim,K.;Ellingboe,J.W.;Krishnamurthy,G.; Orlowski,M.;Feld,B.;van Zeijlb,M.;Howe,A.Y.M.Bioorg. Med.Chem.Lett.2004,14,4221.

    (19) Stansfield,I.;Avolio,S.;Colarusso,S.;Gennari,N.;Narjes,F.; Pacini,B.;Ponzi,S.;Harper,S.Bioorg.Med.Chem.Lett.2004, 14,5085.

    (20) Chan,L.;Pereira,O.;Reddy,T.G.;Das,S.K.;Poisson,C.; Courchesne,M.;Proulx,M.L.;Siddiqui,A.;Yannopoulos,C. G.;Nguyen-Ba,N.;Roy,C.;Nasturica,D.;Moinet,C.;Bethell, R.;Hamel,M.;Heureux,L.L.;David,M.;Nicolas,O.; Courtemanche-Asselin,P.;Brunette,S.;Bilimoria,D.;Bédard, J.Bioorg.Med.Chem.Lett.2004,14,797.

    (21) Chan,L.;Das,S.K.;Reddy,T.G.;Poisson,C.;Proulx,M.L.; Pereira,O.;Courchesne,M.;Roy,C.;Wang,W.Y.;Siddiqui,A.; Yannopoulos,C.G.;Nguyen-Ba,N.;Labrecque,D.;Bethell,R.; Hamel,M.;Courtemanche-Asselin,P.;Heureux,L.L.;David, M.;Nicolas,O.;Brunette,S.;Bilimoria,D.;Bédard,J.Bioorg. Med.Chem.Lett.2004,14,793.

    (22) Pfefferkorn,J.A.;Greene,M.L.;Nugent,R.A.;Gross,R.G.; Mitchell,M.A.;Finzel,B.C.;Harris,M.S.;Wells,P.A.; Shelly,G.A.;Anstadt,R.A.;Kilkuskie,B.E.;Koptab,L.A.; Schwendea,F.J.Bioorg.Med.Chem.Lett.2005,15,2481.

    (23) Pratt,J.K.;Donner,P.;McDaniel,K.F.;Maring,C.J.;Kati,W. M.;Mo,H.M.;Middleton,T.;Liu,Y.Y.;Ng,T.;Xie,Q.H.; Zhang,R.;Montgomery,D.;Molla,A.;Kempf,D.J.; Kohlbrenner,W.Bioorg.Med.Chem.Lett.2005,15,1577.

    (24) Pfefferkorn,J.A.;Nugent,R.;Gross,R.J.;Greene,M.; Mitchell,M.A.;Reding,M.T.;Funk,L.A.;Anderson,R.; Wells,P.A.;Shelly,J.A.;Anstadt,R.;Finzel,B.C.;Harris,M. S.;Kilkuskie,R.E.;Koptab,L.A.;Schwendea,F.J.Bioorg. Med.Chem.Lett.2005,15,2812.

    (25)Shipps,G.W.;Deng,Y.Q.;Wang,T.;Popovici-Muller,J.; Curran,P.J.;Rosner,K.E.;Cooper,A.B.;Girijavallabhan,V.; Butkiewiczb,N.;Cableb,M.Bioorg.Med.Chem.Lett.2005, 15,115.

    (26) LaPorte,M.G.;Lessen,T.A.;Leister,L.;Cebzanov,D.; Amparo,E.;Faust,C.;Ortlip,D.;Bailey,T.R.;Nitz,T.J.; Chunduru,S.K.;Young,D.C.;Burns,J.C.Bioorg.Med. Chem.Lett.2006,16,100.

    (27) Gopalsamy,A.;Aplasca,A.;Ciszewski,G.;Park,K.;Ellingboe, J.W.;Orlowski,M.;Feldb,B.;Howeb,A.Y.M.Bioorg.Med. Chem.Lett.2006,16,457.

    (28) Beaulieu,P.L.;Gillard,J.;Bykowski,D.;Brochu,C.; Dansereau,N.;Duceppe,J.S.;Haché,B.;Jakalian,A.;Lagacé, L.;LaPlante,S.;McKercher,G.;Moreau,E.;Perreault,S.P.; Stammers,T.;Thauvette,L.;Warrington,J.;Kukolj,G.Bioorg. Med.Chem.Lett.2006,16,4987.

    (29)Krueger,A.C.;Madigan,D.L.;Jiang,W.W.;Kati,W.M.;Liu, D.C.;Liu,Y.Y.;Maring,C.J.;Masse,S.;McDaniel,K.F.; Middleton,T.;Mo,H.M.;Molla,A.;Montgomery,D.;Pratt,J. K.;Rockway,T.W.;Zhang,R.;Kempf,D.J.Bioorg.Med. Chem.Lett.2006,16,3367.

    (30) Rockway,T.W.;Zhang,R.;Liu,D.C.;Betebenner,D.A.; McDaniel,K.F.;Pratt,J.K.;Beno,D.;Montgomery,D.;Jiang, W.W.;Masse,S.;Kati,W.M.;Middleton,T.;Molla,A.; Maring,C.J.;Kempf,D.J.Bioorg.Med.Chem.Lett.2006,16, 3833.

    (31) Gopalsamy,A.;Shi,M.X.;Ciszewski,G.;Park,K.;Ellingboe, J.W.;Orlowski,M.;Feldb,B.;Howeb,A.Y.M.Bioorg.Med. Chem.Lett.2006,16,2532.

    (32) Ontoria,J.M.;Hernando,J.I.M.;Malancona,S.;Attenni,B.; Stansfield,I.;Conte,I.;Ercolani,C.;Habermann,J.;Ponzi,S.; Filippo,M.D.;Koch,U.;Rowley,M.;Narjes,F.Bioorg.Med. Chem.Lett.2006,16,4026.

    (33) Ishida,T.;Suzuki,T.;Hirashima,S.;Mizutani,K.;Yoshida,A.; Ando,J.;Ikeda,S.;Adachic,T.;Hashimotoa,H.Bioorg.Med. Chem.Lett.2006,16,1859.

    (34) Li,H.;Tatlock,J.;Linton,A.;Gonzalez,J.;Borchardt,A.; Dragovich,P.;Jewell,T.;Prins,T.;Zhou,R.;Blazel,J.;Parge, H.;Love,R.;Hickey,M.;Doan,C.;Shi,S.;Duggal,R.;Lewisc, C.;Fuhrmana,S.Bioorg.Med.Chem.Lett.2006,16,4834.

    (35)Yan,S.Q.;Appleby,T.;Gunic,E.;Shim,J.H.;Tasu,T.;Kim, H.;Rong,F.;Chen,N.H.;Hamatake,R.;Wu,J.Z.;Hong,Z.; Yao,N.H.Bioorg.Med.Chem.Lett.2007,17,28.

    (36)Yan,S.Q.;Larson,G.;Wu,J.Z.;Appleby,T.;Ding,Y.L.; Hamatake,R.;Hong,Z.;Yao,N.H.Bioorg.Med.Chem.Lett. 2007,17,63.

    (37)Yan,S.Q.;Appleby,T.;Larson,G.;Wu,J.Z.;Hamatake,R.K.; Hong,Z.;Yao,N.H.Bioorg.Med.Chem.Lett.2007,17,1991.

    (38) Burton,G.;Ku,T.W.;Carr,T.G.;Kiesow,T.;Sarisky,R.T.; Lin-Goerke,J.L.;Hofmann,G.A.;Slater,M.G.;Haigh,D.; Dhanak,D.;Johnson,V.K.;Parryb,N.R.;Thommesb,P. Bioorg.Med.Chem.Lett.2007,17,1930.

    (39) Krueger,A.C.;Madigan,D.L.;Green,B.E.;Hutchinson,D. K.;Jiang,W.W.;Kati,W.M.;Liu,Y.Y.;Maring,C.J.;Masse, S.V.;McDaniel,K.F.;Middleton,T.R.;Mo,H.M.;Molla,A.; Montgomery,D.A.;Ng,T.I.;Kempf,D.J.Bioorg.Med.Chem. Lett.2007,17,2289.

    (40)Rong,F.;Chow,S.;Yan,S.Q.;Larson,G.;Hong,Z.;Wu,J. Bioorg.Med.Chem.Lett.2007,17,1663.

    (41) Ding,Y.L.;Smith,K.L.;Varaprasad,C.V.N.S.;Chang,E.; Alexander,J.;Yao,N.H.Bioorg.Med.Chem.Lett.2007,17, 841.

    (42) Dragovich,P.S.;Blazel,J.K.;Ellis,D.A.;Han,Q.;Kamran, R.;Kissinger,C.R.;LeBrun,L.A.;Li,L.S.;Murphy,D.E.; Noble,M.;Patel,R.A.;Ruebsam,F.;Sergeeva,M.V.;Shah,A. M.;Showalter,R.E.;Tran,C.V.;Tsan,M.;Webber,S.E.; Kirkovsky,L.;Zhou,Y.F.Bioorg.Med.Chem.Lett.2008,18, 5635.

    (43) Hutchinson,D.K.;Rosenberg,T.;Klein,L.L.;Bosse,T.D.; Larson,D.P.;He,W.P.;Jiang,W.W.;Kati,W.M.; Kohlbrenner,W.E.;Liu,Y.Y.;Masse,S.V.;Middleton,T.; Molla,A.;Montgomery,D.A.;Beno,D.W.A.;Stewart,K.D.; Stoll,V.S.;Kempf,D.J.Bioorg.Med.Chem.Lett.2008,18, 3887.

    (44) Rawal,R.K.;Katti,S.B.;Kaushik-Basu,N.;Arora,P.;Pan,Z. H.Bioorg.Med.Chem.Lett.2008,18,6110.

    (45)Kim,S.H.;Tran,M.T.;Ruebsam,F.;Xiang,A.X.;Ayida,B.; McGuire,H.;Ellis,D.;Blazel,J.;Tran,C.V.;Murphy,D.E.; Webber,S.E.;Zhou,Y.F.;Shah,A.M.;Tsan,M.;Showalter,R. E.;Patel,R.;Gobbi,A.;LeBrun,L.A.;Bartkowski,D.M.; Nolan,T.G.;Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.; Zhao,Q.;Han,Q.;Kissinger,C.R.Bioorg.Med.Chem.Lett. 2008,18,4181.

    (46) Evans,K.A.;Chai,D.P.;Graybill,T.L.;Burton,G.;Sarisky,R. T.;Lin-Goerke,J.;Johnstonb,V.K.;Riveroa,R.A.Bioorg. Med.Chem.Lett.2006,16,2205.

    (47) Bosse,T.D.;Larson,D.P.;Wagner,R.;Hutchinson,D.K.; Rockway,T.W.;Kati,W.M.;Liu,Y.Y.;Masse,S.;Middleton, T.;Mo,H.;Montgomery,D.;Jiang,W.;Koev,G.;Kempf,D.J.; Molla,A.Bioorg.Med.Chem.Lett.2008,18,568.

    (48) Donner,P.L.;Xie,Q.H.;Pratt,J.K.;Maring,C.J.;Kati,W.; Jiang,W.;Liu,Y.Y.;Koev,G.;Masse,S.;Montgomery,D.; Molla,A.;Kempf,D.J.Bioorg.Med.Chem.Lett.2008,18, 2735.

    (49) Liu,Y.Y.;Donner,P.L.;Pratt,J.K.;Jiang,W.W.;Ng,T.; Gracias,V.;Baumeister,S.;Wiedeman,P.E.;Traphagen,L.; Warrior,U.;Maring,C.;Kati,W.M.;Djuric,S.W.;Molla,A. Bioorg.Med.Chem.Lett.2008,18,3173.

    (50) Li,L.S.;Zhou,Y.F.;Murphy,D.E.;Stankovic,N.;Zhao,J.J.; Dragovich,P.S.;Bertolini,T.;Sun,Z.X.;Ayida,B.;Tran,C. V.;Ruebsam,F.;Webber,S.E.;Shah,A.M.;Tsan,M.; Showalter,R.E.;Patel,R.;LeBrun,L.A.;Bartkowski,D.M.; Nolan,T.G.;Norris,D.A.;Kamran,R.;Brooks,J.;Sergeeva, M.V.;Kirkovsky,L.;Zhao,Q.;Kissinger,C.R.Bioorg.Med. Chem.Lett.2008,18,3446.

    (51) Zhou,Y.F.;Webber,S.E.;Murphy,D.E.;Li,L.S.;Dragovich, P.S.;Tran,C.V.;Sun,Z.X.;Ruebsam,F.;Shah,A.M.;Tsan, M.;Showalter,R.E.;Patel,R.;Li,B.;Zhao,Q.;Han,Q.; Hermann,T.;Kissinger,C.R.;LeBrun,L.;Sergeeva,M.V.; Kirkovsky,L.Bioorg.Med.Chem.Lett.2008,18,1413.

    (52) Ruebsam,F.;Webber,S.E.;Tran,M.T.;Tran,C.V.;Murphy, D.E.;Zhao,J.J.;Dragovich,P.S.;Kim,S.H.;Li,L.S.;Zhou, Y.F.;Han,Q.;Kissinger,C.R.;Showalter,R.E.;Lardy,M.; Shah,A.M.;Tsan,M.;Patel,R.;LeBrun,L.A.;Kamran,R.; Sergeeva,M.V.;Bartkowski,D.M.;Nolan,T.G.;Norris,D. A.;Kirkovsky,L.Bioorg.Med.Chem.Lett.2008,18,3616.

    (53) Sergeeva,M.V.;Zhou,Y.F.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Okamoto,E.;Kirkovsky,L.;Kamran,R.; LeBrun,L.A.;Tsan,M.;Patel,R.;Shah,A.M.;Lardy,M.; Gobbi,A.;Li,L.S.;Zhao,J.J.;Bertolini,T.;Stankovic,N.; Sun,Z.X.;Murphy,D.E.;Webber,S.E.;Dragovich,P.S. Bioorg.Med.Chem.Lett.2008,18,3421.

    (54) Zhou,Y.F.;Li,L.S.;Dragovich,P.S.;Murphy,D.E.;Tran,C. V.;Ruebsam,F.;Webber,S.E.;Shah,A.M.;Tsan,M.;Averill, A.;Showalter,R.E.;Patel,R.;Han,Q.;Zhao,Q.;Hermann,T.; Kissinger,C.R.;LeBrun,L.;Sergeeva,M.V.Bioorg.Med. Chem.Lett.2008,18,1419.

    (55) Ruebsam,F.;Sun,Z.X.;Ayida,B.K.;Webber,S.E.;Zhou,Y. F.;Zhao,Q.;Kissinger,C.R.;Showalter,R.E.;Shah,A.M.; Tsan,M.;Patel,R.;LeBrun,L.A.;Kamran,R.;Sergeeva,M. V.;Bartkowski,D.M.;Nolan,T.G.;Norris,D.A.;Kirkovsky, L.Bioorg.Med.Chem.Lett.2008,18,5002.

    (56) Ellis,D.A.;Blazel,J.K.;Webber,S.E.;Tran,C.V.;Dragovich, P.S.;Sun,Z.X.;Ruebsam,F.;McGuire,H.M.;Xiang,A.X.; Zhao,J.J.;Li,L.S.;Zhou,Y.F.;Han,Q.;Kissinger,C.R.; Showalter,R.E.;Lardy,M.;Shah,A.M.;Tsan,M.;Patel,R.; LeBrun,L.A.;Kamran,R.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Sergeeva,M.V.;Kirkovsky,L.Bioorg.Med. Chem.Lett.2008,18,4628.

    (57) Hendricks,R.T.;Spencer,S.R.;Blake,J.F.;Fell,J.B.;Fischer, J.P.;Stengel,P.J.;Leveque,V.J.P.;LePogam,S.;Rajyaguru, S.;Najera,I.;Josey,J.A.;Swallow,S.Bioorg.Med.Chem.Lett. 2009,19,410.

    (58) Ruebsam,F.;Tran,C.V.;Li,L.S.;Kim,S.H.;Xiang,A.X.; Zhou,Y.F.;Blazel,J.K.;Sun,Z.X.;Dragovich,P.S.;Zhao,J. J.;McGuire,H.M.;Murphy,D.E.;Tran,M.T.;Stankovic,N.; Ellis,D.A.;Gobbi,A.;Showalter,R.E.;Webber,S.E.;Shah, A.M.;Tsan,M.;Patel,R.A.;LeBrun,L.A.;Hou,H.Y.J.; Kamran,R.;Sergeeva,M.V.;Bartkowski,D.M.;Nolan,T.G.; Norris,D.A.;Kirkovsky,L.Bioorg.Med.Chem.Lett.2009,19, 451.

    (59) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Zhao,J.P.;Elworthy, T.R.;Tracy,J.;Chin,E.;Li,J.;Lui,A.;Wang,B.;Oshiro,C.; Harris,S.F.;Ghate,M.;Leveque,V.J.P.;Najera,I.;Pogam,S. L.;Rajyaguru,S.;Ao-Ieong,G.;Alexandrova,L.;Fitch,B.; Brandl,M.;Masjedizadeh,M.;Wua,S.Y.;de Keczer,S.; Voronin,T.Bioorg.Med.Chem.Lett.2009,19,5648.

    (60) Pacini,B.;Avolio,S.;Ercolani,C.;Koch,U.;Migliaccio,G.; Narjes,F.;Pacini,L.;Tomei,L.;Harper,S.Bioorg.Med.Chem. Lett.2009,19,6245.

    (61) Shaw,A.N.;Tedesco,R.;Bambal,R.;Chai,D.P.;Concha,N. O.;Darcy,M.G.;Dhanak,D.;Duffy,K.J.;Fitch,D.M.;Gates, A.;Johnston,V.K.;Keenan,R.M.;Lin-Goerke,J.;Liu,N.; Sarisky,R.T.;Wiggall,K.J.;Zimmerman,M.N.Bioorg.Med. Chem.Lett.2009,19,4350.

    (62) Habermann,J.;Capitò,E.;Ferreira,M.R.R.;Koch,U.;Narjes, F.Bioorg.Med.Chem.Lett.2009,19,633.

    (63) Muller,J.P.;Shipps,G.W.,Jr.;Rosner,K.E.;Deng,Y.Q.; Wang,T.;Curran,P.J.;Brown,M.A.;Siddiqui,M.A.;Cooper, A.B.;Duca,J.;Cable,M.;Girijavallabhan,V.Bioorg.Med. Chem.Lett.2009,19,6331.

    (64) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Adjabeng,G.; Elworthy,T.R.;Li,J.;Wanga,B.;Bamberg,J.T.;Harris,S.F.; Wonga,A.;Leveque,V.J.P.;Najera,I.;Pogam,S.L.;Rajyaguru, S.;Ao-Ieong,G.;Alexandrova,L.;Larrabee,S.;Brandl,M.; Briggs,A.;Sukhtankar,S.;Farrell,R.Bioorg.Med.Chem.Lett. 2009,19,5652.

    (65) deVicente,J.;Hendricks,R.T.;Smith,D.B.;Fell,J.B.;Fischer, J.;Spencer,S.R.;Stengel,P.J.;Mohr,P.;Robinson,J.E.; Blake,J.F.;Hilgenkamp,R.K.;Yee,C.;Adjabeng,G.; Elworthy,T.R.;Tracy,J.;Chin,E.;Li,J.;Wanga,B.;Bamberg, J.T.;Stephenson,R.;Oshiro,C.;Harris,S.F.;Ghate,M.; Leveque,V.;Najera,I.;Pogam,S.L.;Rajyaguru,S.;Ao-Ieong, G.;Alexandrova,L.;Larrabee,S.;Brandl,M.;Briggs,A.; Sukhtankar,S.;Farrell,R.;Xu,B.Bioorg.Med.Chem.Lett. 2009,19,3642.

    (66)Wang,G.Y.;Lei,H.X.;Wang,X.F.;Das,D.;Hong,J.; Mackinnon,C.H.;Coulter,T.S.;Montalbetti,C.A.G.N.; Mears,R.;Gai,X.J.;Bailey,S.E.;Ruhrmund,D.;Hooi,L.; Misialek,S.;Rajagopalan,P.T.R.;Cheng,R.K.Y.;Barker,J. J.;Felicetti,B.;Sch?nfeld,D.L.;Stoycheva,A.;Buckman,B. O.;Kossen,K.;Seiwert,S.D.;Beigelman,L.Bioorg.Med. Chem.Lett.2009,19,4480.

    (67)Wanga,G.Y.;Zhang,L.G.;Wu,X.M.;Das,D.;Ruhrmund,D.; Hooi,L.;Misialek,S.;Rajagopalan,P.T.R.;Buckman,B.O.; Kossen,K.;Seiwert,S.D.;Beigelman,L.Bioorg.Med.Chem. Lett.2009,19,4484.

    (68)Wanga,G.Y.;He,Y.Z.;Sun,J.;Das,D.;Hu,M.G.;Huang,J. H.;Ruhrmund,D.;Hooi,L.;Misialek,S.;Rajagopalan,P.T.R.; Stoycheva,A.;Buckman,B.O.;Kossen,K.;Seiwert,S.D.; Beigelman,L.Bioorg.Med.Chem.Lett.2009,19,4476.

    (69)McGowan,D.;Nyanguile,O.;Cummings,M.D.;Vendeville, S.;Vandyck,K.;den Broeck,W.V.;Boutton,C.W.;Bondt,H. D.;Quirynen,L.;Amssoms,K.;Bonfanti,J.F.;Last,S.; Rombauts,K.;Tahri,A.;Hu,L.L.;Delouvroy,F.;Vermeiren, K.;Vandercruyssen,G.;Van der Helm,L.;Cleiren,E.; Mostmans,W.;Lory,P.;Pille,G.;Van Emelen,K.;Fanning,G.; Pauwels,F.;Lin,T.I.;Simmen,K.;Raboisson,P.Bioorg.Med. Chem.Lett.2009,19,2492.

    (70) Hendricks,R.T.;Fell,J.B.;Blake,J.F.;Fischer,J.P.; Robinson,J.E.;Spencer,S.R.;Stengel,P.J.;Bernacki,A.L.; Leveque,V.J.P.;Pogam,S.L.;Rajyaguru,S.;Najera,I.;Josey, J.A.;Harris,J.R.;Swallow,S.Bioorg.Med.Chem.Lett.2009, 19,3637.

    (71)Lv,W.;Xue,Y.Eur.J.Med.Chem.2010,45,1167.

    (72) ChemDraw,version 9.0;Cambridge Soft Corporation: Cambridge,USA,2004.

    (73)Corina,Version 3.4;Molecular Networks GmbH Computerchemie:Erlangen,Germany,2006.

    (74) Todeschini,R.;Consonni,V.Handbook of Molecular Descriptors;Wiley-VCH:New York,2000.

    (75) Hasegawa,K.J.Chem.Inf.Comput.Sci.1999,39,112.

    (76) Byvatov,E.;Fechner,U.;Sadowski,J.;Schneider,G.J.Chem. Inf.Comput.Sci.2003,43,1882.

    (77) He,L.;Jurs,P.C.;Custer,L.L.;Durham,S.K.;Pearl,G.M. Chem.Res.Toxicol.2003,16,1567.

    (78) Lü,W.;Xue,Y.Acta Phys.-Chim.Sin.2010,26,471. [呂 巍,薛 英.物理化學(xué)學(xué)報(bào),2010,26,471.]

    (79) Degroeve,S.;de Baets,B.;van de Peer,Y.;Rouze,P. Bioinformatics 2002,18,S75.

    (80)Xue,Y.;Yap,C.W.;Sun,L.Z.;Cao,Z.W.;Wang,J.F.;Chen, Y.Z.J.Chem.Inf.Comput.Sci.2004,44,1497.

    (81) Leach,A.R.;Gillet,V.J.An Introduction to Chemoinformatics; Springer:New York,2007.

    (82) Garner,S.R.Weka,version 3.4.12;University of Waikato:New Zealand,2005.

    (83) Vapnik,V.N.The Nature of Statistical Learning Theory; Springer-Verlag:New York,1995.

    (84) Johnson,R.A.;Wichern,D.W.Applied Multivariate Statistical Analysis;Prentice Hall:New York,1982.

    (85) Quinlan,J.R.C4.5,Programs for Machine Learning;Morgan Kaufmann:San Mateo,CA,1992.

    (86) Baldi,P.;Brunak,S.;Chauvin,Y.;Andersen,C.A.;Nielsen,H. Bioinformatics 2000,16,412.

    (87) Srivastava,A.K.;Pandey,A.;Srivastava,A.;Shukla,N.J.Sau. Chem.Soc.2011,15,25.

    March 2,2011;Revised:March 29,2011;Published on Web:April 21,2011.

    Prediction of Hepatitis C Virus Non-Structural Proteins 5B Polymerase Inhibitors Using Machine Learning Methods

    Lü Wei1XUE Ying2,3,*
    (1College of Life Sciences,State Key Laboratory of Crop Biology,Shandong Agricultural University,Tai′an 271018,Shandong Province,P.R.China;2College of Chemistry,Key Laboratory of Green Chemistry and Technology,Ministry of Education,Sichuan University,Chengdu 610064,P.R.China;3State Key Laboratory of Biotherapy,Sichuan University,Chengdu 610041,P.R.China)

    Non-structural proteins 5B(NS5B)play an important role in protein maturation and gene replication as an RNA dependent RNA polymerase in the hepatitis C virus(HCV).Inhibiting NS5B polymerase will prevent RNA replication and,therefore,it is significant for the treatment of HCV.It is becoming increasingly important to screen and predict molecules that have NS5B inhibitory activity by computational methods.This work explores several machine learning(ML)methods(support vector machine(SVM),k-nearest neighbor(k-NN),and C4.5 decision tree(C4.5 DT))for the prediction of NS5B inhibitors(NS5BIs).This prediction system was tested using 1248 compounds(552 NS5BIs and 696 non-NS5BIs),which are significantly more diverse in chemical structure than those used in other studies.A feature selection method was used to improve the prediction accuracy and the selection of molecular descriptors responsible for distinguishing between NS5BIs and non-NS5BIs.The prediction accuracies were 81.4%-91.7%for the NS5BIs,78.2%-87.2%for the non-NS5BIs,and 84.1%-85.0%overall based on the three kinds of machine learning methods.SVM gave the best accuracy of 91.7%for the NS5BIs, C4.5 gave the best accuracy of 87.2%for the non-NS5BIs,and k-NN gave the best overall accuracy of 85.0%for all the compounds.This work suggests that machine learning methods can facilitate the prediction of the NS5BIs potential for unknown sets of compounds and to determine the molecular descriptors associated with NS5BIs.

    Machine learning method;Molecular descriptor;Recursive feature elimination; Support vector machine;Hepatitis C virus

    *Corresponding author.Email:xue@scu.edu.cn;Tel:+86-28-85418330.

    The project was supported by the National Key Basic Research Program of China(2009CB118500)and Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China(20071108-18-15).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(2009CB118500)和教育部留學(xué)歸國(guó)人員科研啟動(dòng)基金(20071108-18-15)

    O641

    猜你喜歡
    四川大學(xué)丙型肝炎抑制劑
    圍剿暗行者——丙型肝炎
    肝博士(2022年3期)2022-06-30 02:48:54
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    凋亡抑制劑Z-VAD-FMK在豬卵母細(xì)胞冷凍保存中的應(yīng)用
    百年精誠(chéng) 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    α-干擾素聯(lián)合利巴韋林治療慢性丙型肝炎
    丙型肝炎治療新藥 Simeprevir
    組蛋白去乙酰化酶抑制劑的研究進(jìn)展
    慢性丙型肝炎中醫(yī)治療進(jìn)展
    磷酸二酯酶及其抑制劑的研究進(jìn)展
    交换朋友夫妻互换小说| 欧美日韩乱码在线| 久久中文看片网| 97碰自拍视频| 亚洲国产欧美网| 热re99久久国产66热| 一区二区三区国产精品乱码| 日韩国内少妇激情av| 亚洲一区中文字幕在线| 法律面前人人平等表现在哪些方面| 搡老乐熟女国产| 精品第一国产精品| 免费在线观看日本一区| 9191精品国产免费久久| 老熟妇乱子伦视频在线观看| 老汉色∧v一级毛片| 亚洲色图av天堂| 亚洲三区欧美一区| 久久国产乱子伦精品免费另类| 黄色女人牲交| 伊人久久大香线蕉亚洲五| 色综合婷婷激情| 成人黄色视频免费在线看| 久久亚洲精品不卡| 亚洲片人在线观看| 亚洲精品美女久久av网站| av在线播放免费不卡| 亚洲激情在线av| 无遮挡黄片免费观看| 亚洲av成人不卡在线观看播放网| 国产一卡二卡三卡精品| 日韩三级视频一区二区三区| а√天堂www在线а√下载| 国产一区二区三区在线臀色熟女 | 免费在线观看视频国产中文字幕亚洲| 不卡一级毛片| 天天影视国产精品| 国产高清激情床上av| 天堂动漫精品| 精品福利永久在线观看| cao死你这个sao货| 久99久视频精品免费| 天堂√8在线中文| 伊人久久大香线蕉亚洲五| 成人三级黄色视频| 男人操女人黄网站| 日韩精品免费视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| tocl精华| 亚洲国产毛片av蜜桃av| 在线国产一区二区在线| 久久久国产成人免费| 精品久久久久久,| 久久精品国产综合久久久| 欧美日韩精品网址| 国产深夜福利视频在线观看| 国产野战对白在线观看| 变态另类成人亚洲欧美熟女 | 窝窝影院91人妻| 波多野结衣一区麻豆| 最近最新中文字幕大全电影3 | 亚洲国产欧美一区二区综合| www.999成人在线观看| avwww免费| 国产野战对白在线观看| 老熟妇乱子伦视频在线观看| 在线播放国产精品三级| 99久久综合精品五月天人人| 精品国产一区二区久久| 久久人妻熟女aⅴ| 国产伦一二天堂av在线观看| 正在播放国产对白刺激| 午夜福利影视在线免费观看| 精品电影一区二区在线| 国产欧美日韩一区二区三| 午夜福利,免费看| 丝袜美腿诱惑在线| av福利片在线| 我的亚洲天堂| 老司机在亚洲福利影院| 欧美日韩黄片免| 韩国精品一区二区三区| 亚洲视频免费观看视频| 69精品国产乱码久久久| 日日摸夜夜添夜夜添小说| 韩国精品一区二区三区| 99国产精品一区二区蜜桃av| 精品第一国产精品| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av| 久久久久久久久免费视频了| 日韩欧美国产一区二区入口| 亚洲aⅴ乱码一区二区在线播放 | av欧美777| 麻豆av在线久日| 黑人欧美特级aaaaaa片| 亚洲精品一区av在线观看| 欧美日韩亚洲综合一区二区三区_| 国产亚洲欧美98| 国产免费男女视频| 亚洲激情在线av| 午夜精品在线福利| netflix在线观看网站| 最好的美女福利视频网| 母亲3免费完整高清在线观看| 国产精品永久免费网站| 老汉色∧v一级毛片| 视频区欧美日本亚洲| 国产区一区二久久| 国产精品1区2区在线观看.| 国产一卡二卡三卡精品| 日本vs欧美在线观看视频| 中文字幕精品免费在线观看视频| 午夜福利一区二区在线看| 国产亚洲精品久久久久5区| 欧美日韩视频精品一区| www.熟女人妻精品国产| 老司机亚洲免费影院| 亚洲精品一卡2卡三卡4卡5卡| 手机成人av网站| 三上悠亚av全集在线观看| 一进一出好大好爽视频| a级毛片在线看网站| 国产97色在线日韩免费| 看黄色毛片网站| 精品一区二区三区视频在线观看免费 | av网站在线播放免费| 国产1区2区3区精品| 在线观看66精品国产| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清 | 99热只有精品国产| 母亲3免费完整高清在线观看| 女人被狂操c到高潮| 久久国产亚洲av麻豆专区| 咕卡用的链子| 国产男靠女视频免费网站| 啦啦啦 在线观看视频| 国产成人影院久久av| 亚洲第一欧美日韩一区二区三区| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲高清精品| 88av欧美| 精品熟女少妇八av免费久了| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品合色在线| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频| 国产亚洲欧美精品永久| 亚洲专区国产一区二区| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 午夜成年电影在线免费观看| 日韩精品中文字幕看吧| 男人舔女人下体高潮全视频| 夜夜爽天天搞| 校园春色视频在线观看| 国产精品乱码一区二三区的特点 | 亚洲成人免费电影在线观看| 80岁老熟妇乱子伦牲交| 欧美成人性av电影在线观看| 狂野欧美激情性xxxx| 热re99久久国产66热| 国产一区二区三区视频了| 在线永久观看黄色视频| 亚洲国产精品一区二区三区在线| 久久亚洲真实| 中文欧美无线码| 久久伊人香网站| 亚洲国产精品合色在线| 热re99久久精品国产66热6| 男女下面进入的视频免费午夜 | 少妇裸体淫交视频免费看高清 | 亚洲国产精品999在线| 长腿黑丝高跟| 成年人黄色毛片网站| 女人精品久久久久毛片| 黄片小视频在线播放| 99国产综合亚洲精品| 午夜免费激情av| 亚洲精华国产精华精| 欧美日韩一级在线毛片| 热re99久久国产66热| 激情视频va一区二区三区| 久久精品国产亚洲av香蕉五月| av网站免费在线观看视频| 久久久久久大精品| 欧美日韩一级在线毛片| 琪琪午夜伦伦电影理论片6080| 亚洲成av片中文字幕在线观看| 国产又色又爽无遮挡免费看| 午夜免费成人在线视频| 男人舔女人的私密视频| 久久中文看片网| 国产免费现黄频在线看| 国产免费现黄频在线看| 欧美日本中文国产一区发布| 两性午夜刺激爽爽歪歪视频在线观看 | 18禁国产床啪视频网站| 久久婷婷成人综合色麻豆| 黄色 视频免费看| 一二三四在线观看免费中文在| 亚洲成人久久性| 亚洲片人在线观看| 久久人妻熟女aⅴ| 亚洲一卡2卡3卡4卡5卡精品中文| 大码成人一级视频| 精品国产国语对白av| 妹子高潮喷水视频| 免费看a级黄色片| 99re在线观看精品视频| 日本免费一区二区三区高清不卡 | av国产精品久久久久影院| 搡老乐熟女国产| 国产高清国产精品国产三级| 久久久国产一区二区| 欧美成人免费av一区二区三区| 夜夜夜夜夜久久久久| 桃色一区二区三区在线观看| 在线观看午夜福利视频| 99riav亚洲国产免费| 一个人免费在线观看的高清视频| 亚洲精品美女久久久久99蜜臀| 18禁美女被吸乳视频| 日韩有码中文字幕| svipshipincom国产片| 久久精品国产综合久久久| 国产精品综合久久久久久久免费 | 最近最新中文字幕大全电影3 | 国产真人三级小视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久免费高清国产稀缺| 欧美黑人精品巨大| 久久99一区二区三区| 国产97色在线日韩免费| 久久久国产一区二区| 9191精品国产免费久久| 亚洲全国av大片| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美精品济南到| 国产激情欧美一区二区| 久久亚洲精品不卡| 久久草成人影院| 一进一出抽搐gif免费好疼 | 大型黄色视频在线免费观看| tocl精华| 一区二区三区激情视频| a级毛片在线看网站| 咕卡用的链子| 成人亚洲精品一区在线观看| 国产精品电影一区二区三区| 国产成年人精品一区二区 | 男女做爰动态图高潮gif福利片 | 淫妇啪啪啪对白视频| 亚洲精品一区av在线观看| 两性夫妻黄色片| 国产精品国产高清国产av| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 亚洲片人在线观看| 少妇的丰满在线观看| 免费在线观看影片大全网站| 18美女黄网站色大片免费观看| 午夜91福利影院| 午夜福利一区二区在线看| 色婷婷av一区二区三区视频| 国产一区二区三区视频了| 国产成人精品无人区| 人妻丰满熟妇av一区二区三区| 亚洲精品久久成人aⅴ小说| 色婷婷av一区二区三区视频| 日韩精品青青久久久久久| 高清毛片免费观看视频网站 | 国产一区二区激情短视频| 国内久久婷婷六月综合欲色啪| 乱人伦中国视频| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女 | 欧美日韩亚洲国产一区二区在线观看| 新久久久久国产一级毛片| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清 | www.999成人在线观看| 多毛熟女@视频| 国产成人系列免费观看| 男人操女人黄网站| 999久久久精品免费观看国产| 99国产精品一区二区蜜桃av| 亚洲欧美一区二区三区久久| 国产亚洲欧美在线一区二区| 一级毛片精品| 亚洲熟妇中文字幕五十中出 | 久久久水蜜桃国产精品网| 高清av免费在线| 亚洲美女黄片视频| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 嫁个100分男人电影在线观看| 欧美日韩av久久| 免费女性裸体啪啪无遮挡网站| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 级片在线观看| 1024香蕉在线观看| 搡老乐熟女国产| 国产主播在线观看一区二区| 在线观看免费午夜福利视频| 午夜视频精品福利| 在线观看免费日韩欧美大片| 日本黄色视频三级网站网址| 青草久久国产| 在线观看www视频免费| 久久精品成人免费网站| 侵犯人妻中文字幕一二三四区| 国产亚洲精品久久久久5区| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 搡老乐熟女国产| 久久精品aⅴ一区二区三区四区| e午夜精品久久久久久久| 天天躁夜夜躁狠狠躁躁| 精品熟女少妇八av免费久了| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 激情视频va一区二区三区| 免费看十八禁软件| 国产亚洲精品久久久久久毛片| 精品福利永久在线观看| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 丝袜美腿诱惑在线| 亚洲自偷自拍图片 自拍| 国产精品爽爽va在线观看网站 | 一进一出抽搐动态| www.自偷自拍.com| 一进一出抽搐动态| 国产精品影院久久| 十分钟在线观看高清视频www| 亚洲专区中文字幕在线| 精品无人区乱码1区二区| 欧美日韩亚洲高清精品| 视频区图区小说| 亚洲成人久久性| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 午夜老司机福利片| 新久久久久国产一级毛片| aaaaa片日本免费| 亚洲伊人色综图| 国产麻豆69| www.自偷自拍.com| 两人在一起打扑克的视频| 久久久久久免费高清国产稀缺| 大香蕉久久成人网| 亚洲国产欧美日韩在线播放| 女警被强在线播放| 久久人人97超碰香蕉20202| 国产熟女午夜一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 男人操女人黄网站| 久久香蕉精品热| 18美女黄网站色大片免费观看| 国产精品免费视频内射| 在线观看午夜福利视频| 999久久久精品免费观看国产| 91国产中文字幕| 亚洲欧美激情在线| 一区在线观看完整版| 欧美不卡视频在线免费观看 | 国产乱人伦免费视频| 电影成人av| 一二三四在线观看免费中文在| a级毛片在线看网站| 亚洲专区国产一区二区| 91国产中文字幕| 国产一区二区三区视频了| 男人操女人黄网站| 久久久久久人人人人人| 午夜老司机福利片| 日韩成人在线观看一区二区三区| 中出人妻视频一区二区| 久久国产精品男人的天堂亚洲| 色综合欧美亚洲国产小说| av在线播放免费不卡| 法律面前人人平等表现在哪些方面| 国产主播在线观看一区二区| 最新美女视频免费是黄的| 亚洲男人天堂网一区| 国产日韩一区二区三区精品不卡| 国产精品二区激情视频| 欧美最黄视频在线播放免费 | 亚洲情色 制服丝袜| 亚洲成av片中文字幕在线观看| 看免费av毛片| videosex国产| 免费在线观看视频国产中文字幕亚洲| 满18在线观看网站| 国产亚洲av高清不卡| 久久性视频一级片| 大型黄色视频在线免费观看| 亚洲一区高清亚洲精品| 国产高清激情床上av| 国产片内射在线| 久久精品国产清高在天天线| 正在播放国产对白刺激| 久久精品影院6| 日日夜夜操网爽| 淫秽高清视频在线观看| 一本大道久久a久久精品| 满18在线观看网站| 国产亚洲精品久久久久久毛片| 久久九九热精品免费| 老熟妇仑乱视频hdxx| 很黄的视频免费| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 免费av毛片视频| 精品第一国产精品| 成人免费观看视频高清| 超碰成人久久| 丝袜人妻中文字幕| 午夜视频精品福利| 首页视频小说图片口味搜索| 国产又色又爽无遮挡免费看| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久av网站| 久久久久久久久中文| 国内毛片毛片毛片毛片毛片| 亚洲第一av免费看| 美女国产高潮福利片在线看| 国产三级黄色录像| 亚洲情色 制服丝袜| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 青草久久国产| 在线观看66精品国产| 狠狠狠狠99中文字幕| 亚洲av成人一区二区三| 亚洲激情在线av| 一级片'在线观看视频| 老熟妇仑乱视频hdxx| 黄片大片在线免费观看| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 一区二区三区国产精品乱码| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| 久久亚洲精品不卡| 国产极品粉嫩免费观看在线| 午夜影院日韩av| 久久久久久人人人人人| 亚洲成a人片在线一区二区| 亚洲国产看品久久| 最近最新中文字幕大全电影3 | 国产1区2区3区精品| 日韩欧美免费精品| 777久久人妻少妇嫩草av网站| 青草久久国产| 亚洲精品一区av在线观看| 欧美成人免费av一区二区三区| 亚洲激情在线av| 国产激情欧美一区二区| 少妇裸体淫交视频免费看高清 | 日日干狠狠操夜夜爽| 九色亚洲精品在线播放| 精品熟女少妇八av免费久了| 国产又爽黄色视频| av天堂久久9| 在线天堂中文资源库| 亚洲欧美一区二区三区久久| cao死你这个sao货| 在线观看www视频免费| 精品一区二区三区四区五区乱码| 新久久久久国产一级毛片| 法律面前人人平等表现在哪些方面| 美女高潮喷水抽搐中文字幕| 国产亚洲精品综合一区在线观看 | 亚洲一区二区三区色噜噜 | 黄色 视频免费看| 两人在一起打扑克的视频| 国产主播在线观看一区二区| 日日夜夜操网爽| 天堂中文最新版在线下载| 亚洲人成网站在线播放欧美日韩| 精品熟女少妇八av免费久了| 国产一区在线观看成人免费| 我的亚洲天堂| 中文字幕人妻丝袜制服| 一边摸一边做爽爽视频免费| 人人妻人人澡人人看| 日韩 欧美 亚洲 中文字幕| 久久久久久久久免费视频了| 国内毛片毛片毛片毛片毛片| 一级a爱视频在线免费观看| 男人操女人黄网站| 美女大奶头视频| 天堂影院成人在线观看| 视频区欧美日本亚洲| 曰老女人黄片| 日韩有码中文字幕| 国产一区在线观看成人免费| 高潮久久久久久久久久久不卡| 国产有黄有色有爽视频| 亚洲欧美日韩另类电影网站| 国产熟女午夜一区二区三区| 巨乳人妻的诱惑在线观看| 国产aⅴ精品一区二区三区波| 一个人免费在线观看的高清视频| 一二三四在线观看免费中文在| 国产精品美女特级片免费视频播放器 | 80岁老熟妇乱子伦牲交| 美女福利国产在线| 男女下面插进去视频免费观看| 老汉色∧v一级毛片| www国产在线视频色| 88av欧美| 美国免费a级毛片| 久久久久九九精品影院| 人人妻,人人澡人人爽秒播| 国内久久婷婷六月综合欲色啪| 女性生殖器流出的白浆| 亚洲色图av天堂| 女警被强在线播放| 黄色女人牲交| 美女福利国产在线| 18美女黄网站色大片免费观看| 伊人久久大香线蕉亚洲五| 成人亚洲精品av一区二区 | 免费日韩欧美在线观看| 欧美乱妇无乱码| 久久人人精品亚洲av| 欧美久久黑人一区二区| 久久中文字幕人妻熟女| 在线观看www视频免费| 久久久国产成人精品二区 | 热re99久久国产66热| 色精品久久人妻99蜜桃| 午夜免费成人在线视频| 久久人妻av系列| 成在线人永久免费视频| 天堂俺去俺来也www色官网| 操出白浆在线播放| 一区福利在线观看| 黄色毛片三级朝国网站| 国产精品 国内视频| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 亚洲狠狠婷婷综合久久图片| 午夜两性在线视频| 少妇的丰满在线观看| 日本黄色日本黄色录像| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 日韩欧美三级三区| 在线十欧美十亚洲十日本专区| 一级作爱视频免费观看| 精品人妻在线不人妻| 9191精品国产免费久久| 久久性视频一级片| 国产一区在线观看成人免费| 91精品国产国语对白视频| 久久精品91无色码中文字幕| 国产深夜福利视频在线观看| 最新美女视频免费是黄的| 免费女性裸体啪啪无遮挡网站| 黄色 视频免费看| www.精华液| 久久久精品欧美日韩精品| 亚洲 欧美 日韩 在线 免费| 亚洲欧美精品综合久久99| 欧美黑人欧美精品刺激| 不卡av一区二区三区| 日韩有码中文字幕| 欧美午夜高清在线| 欧美乱码精品一区二区三区| 桃红色精品国产亚洲av| 久久国产精品男人的天堂亚洲| 免费一级毛片在线播放高清视频 | 正在播放国产对白刺激| 午夜亚洲福利在线播放| 亚洲国产欧美日韩在线播放| 国产精品 欧美亚洲| 国产精品av久久久久免费| 亚洲精品中文字幕在线视频| www.精华液| 99国产综合亚洲精品| 久久婷婷成人综合色麻豆| 久久伊人香网站| 琪琪午夜伦伦电影理论片6080| 国产亚洲av高清不卡| 中出人妻视频一区二区| 视频区欧美日本亚洲| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 亚洲av成人av| 变态另类成人亚洲欧美熟女 | 欧美日韩瑟瑟在线播放| 久久这里只有精品19| 天堂动漫精品| 亚洲欧美精品综合一区二区三区| 亚洲一区高清亚洲精品| 国产精品九九99| 亚洲中文字幕日韩| 中出人妻视频一区二区| 淫秽高清视频在线观看| 亚洲一区二区三区色噜噜 | 国产xxxxx性猛交| 亚洲av成人一区二区三| 成人黄色视频免费在线看| 丰满的人妻完整版|