• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Na促進(jìn)的CuCoMn催化劑催化生物質(zhì)合成氣合成高醇

    2011-11-30 10:49:06葉同奇張朝霞顏世志朱九方李全新
    物理化學(xué)學(xué)報(bào) 2011年6期
    關(guān)鍵詞:合成氣合肥生物質(zhì)

    葉同奇 張朝霞 徐 勇 顏世志 朱九方 劉 勇 李全新,*

    (1中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,生物質(zhì)潔凈能源安徽省重點(diǎn)實(shí)驗(yàn)室,合肥230026; 2合肥天焱綠色能源開發(fā)有限公司,合肥230026)

    Na促進(jìn)的CuCoMn催化劑催化生物質(zhì)合成氣合成高醇

    葉同奇1張朝霞1徐 勇1顏世志1朱九方1劉 勇2李全新1,*

    (1中國科學(xué)技術(shù)大學(xué)化學(xué)物理系,生物質(zhì)潔凈能源安徽省重點(diǎn)實(shí)驗(yàn)室,合肥230026;2合肥天焱綠色能源開發(fā)有限公司,合肥230026)

    研究鈉促進(jìn)的CuCoMn催化劑的特性及其在生物質(zhì)氣化合成氣合成高醇中的應(yīng)用.研究了催化劑中Na含量及合成條件(溫度、壓力和空速)對(duì)生物質(zhì)基合成氣合成高醇性能的影響.發(fā)現(xiàn)CuCoMnNa0.1催化劑較適合高醇合成,在300°C以下,隨著溫度的上升,碳轉(zhuǎn)化率增大,而醇選擇性降低.壓力的增加有利于醇的合成,增大空速會(huì)明顯降低碳轉(zhuǎn)化率,但醇時(shí)空產(chǎn)率則因轉(zhuǎn)換頻率的增加而增大.在所考察的范圍內(nèi),醇產(chǎn)率最高達(dá)到304.6 g·kg-1·h-1,其中C2+高醇(C2-C6醇)占64.4%(w,質(zhì)量分?jǐn)?shù)).醇產(chǎn)物和烴產(chǎn)物均符合ASF(Anderson-Schulz-Flory)分布關(guān)系.根據(jù)催化劑性能與表征分析,Na的加入有利于提高生物質(zhì)氣化合成氣合成高醇的選擇性和活性元素Cu、Co的分散性.X射線光電子譜(XPS)測(cè)試結(jié)果顯示反應(yīng)后的催化劑表面上,Cu以Cu+和Cu0的混合形式存在,而Co則是Co2+/Co3+和Co0的混合物.增加Na的含量,Cu0/Cu+比率和Co0的強(qiáng)度均隨之減小.

    生物質(zhì);生物質(zhì)合成氣;高醇;ASF分布;CuCoMnNa催化劑

    1 Introduction

    With the gradual depletion of fossil fuel resources,increasing energy demand and global climate change,renewable energy such as biomass energy will play a more important role in the future energy scenario of the world.1Based on the thermochemical and biochemical processes,biomass can be converted into a wide range of liquid fuels(called as bio-fuels)or chemicals,such as bio-oil,bio-ethanol,bio-diesel,mixed alcohols,dimethyl ether(DME),etc.2,3However,the raw bio-oil from various biomass by pyrolysis processes can not be directly used in gasoline or diesel engines because of low heating value,poor volatility,high viscosity,coking,corrosiveness,and high water content,and it must be upgraded prior to being used as a replacement for diesel and gasoline fuels.4Another important route for the conversion of biomass to fuels is through its conversion to an intermediate synthesis gas,a mixture of CO and H2named bio-syngas.Bio-syngas can be further catalytically converted into various bio-fuels and chemicals,especially to methanol,ethanol,mixed alcohols,and Fischer-Tropsch(FT) fuels.5The unstinted feedstock type of biomass is one major advantage of this synthesis route.6,7

    With stringent restrictions on pollution emissions,alcohols appear to not only be environmentally friendly fuel additives, but also effective as potential octane number enhancer for motor fuels.As a potential alternative fuel/additive or chemical raw materials,the higher alcohols have many advantages including complete combustion,higher octane numbers,volatility control,lower toxic exhaust gas(CO,NOx)emissions,excellent substitutes for methyl tert-butyl ether(MTBE)and higher added value.8,9So the catalytic conversion of synthesis gas to higher alcohols is now attracting renewed attention for both industrial application and fundamental research.

    A wide range of homogeneous and heterogeneous catalysts for higher alcohol synthesis from syngas have been explored and well reviewed in recent papers.10These catalysts can be broadly classified into four types:noble metals-based catalysts,11-13modified Fischer-Tropsch catalysts,14-17modified methanol catalysts,18-20and Mo-based catalysts.21,22Among those alcohol synthesis catalysts,copper modified Fischer-Tropsch catalysts have drawn a wide attention because of their high activity and selectivity,such as CuCo-based catalysts developed by Institut Francais du Petrole.23For CuCo-based catalysts,cobalt was thought to provide the chain growth,while copper would be responsible for chain termination to produce alcohols.14The component synergism result from interaction between Cu and Co plays a very important role in alcohol synthesis.16However,the fact that these catalysts can be modified to increase their selectivity to higher alcohols suggests that they need to be further studied.

    Generally speaking,a catalyst active for higher oxygenate synthesis must contain both adsorbed molecular CO,and surface carbon species derived from dissociative adsorption of CO.So the catalyst must be able to balance the CO dissociation and CO insertion that is necessary for the synthesis of higher alcohols.24Thus besides copper and cobalt,a third component mainly including transition metal elements(such as Zn, Cr,Mn,etc.)and a forth promoter of alkaline metal are also needed,14,15although their functions are remained not quite clear.In the past decades,many attentions have been paid to the Al,Cr,and/or Zn promoted CuCo catalysts,including the preparation methods,25alkali promote effects,15and catalytic performances.26Some new types of CuCo-based catalysts such as CuCo/CNTs have also been reported.27However,to the best of our knowledge,alkali-promoted CuCoMn catalysts for higher alcohol synthesis are rarely reported.

    In our previous work,attention has been paid to produce syngas from the biomass gasification and the bio-oil reforming, both in lab and pilot plant scales.28-30Present work aims to efficiently produce higher alcohols over the CuCoMn-based catalyst from the bio-syngas.Moreover,the influences of sodium addition on catalyst structure and catalytic performance of alcohol synthesis were also investigated.Biomass gasification-synthesis route could produce higher alcohols through the use of any biomass resource in large quantities.However,the bio-syngas conversion to higher alcohols remains challenging,and no commercial process exists so far although there is a growing worldwide interest in this topic for the past decades.Further researches and developments in catalyst and processing need to be achieved to make this conversion commercially attractive.

    2 Experimental

    2.1 Catalyst preparation and characterization

    The CuCoMn-based mixed oxides catalysts with a settled molar ratio(nCu:nCo:nMn=1:1:1)were prepared by the co-precipitation method from two aqueous solutions,one of which contained metal nitrate solution(A.R.)and the other contained sodium carbonate solution(A.R.).The metal nitrate solution was added quickly to the sodium carbonate solution at about 70°C. The coprecipitates were left to age in the mother liquor for 1 h, dried at 120°C for 12 h,and calcined at 450°C for 4 h in air to obtain the corresponding mixed oxide catalysts.The mixed oxides catalysts were finally crushed into 40-60 mesh for the higher alcohol syntheses.Catalysts before calcination were impregnated with different amounts of Na2CO3(A.R.)for CuCoMnNa0.1and CuCoMnNa0.2.The molar ratios of Cu/Co/ Mn/Na are 1:1:1:0.1 and 1:1:1:0.2 for CuCoMnNa0.1and CuCoMnNa0.2,respectively.

    The Brunauer-Emmett-Teller(BET)surface area and pore volume were determined by the N2physisorption at-196°C using a COULTER SA 3100 analyzer.The X-ray diffraction (XRD)was measured on an X′pert Pro Philips diffractrometer with a Cu Kαradiation(λ=0.154 nm).The measurement conditions were in the range of 2θ=10°-80°,step counting time 5 s, and step size 0.017°at 25°C.The surface elements and their states were analyzed by X-ray photoelectron spectroscopy (XPS).The XPS measurements were performed on an ESCALAB-250(Thermo-VG Scientific,USA)spectrometer with Al Kα(1486.6 eV)irradiation source.The C 1s peak at 284.6 eV was generally used as a calibration standard for determining the peaks′position and the elemental concentration.

    2.2 Reaction system for higher alcohol syntheses

    As shown in Fig.1,the performance of higher alcohol syntheses from the selected bio-syngas over the different CuCoMnbased catalysts was evaluated in a fixed-bed continuous-flow reactor using an on-line gas chromatograph(GC)detection system.The cylindrical reactor was constructed from 316L with 40 cm length and an internal diameter of 1 cm.Gas flow rates were regulated using Seven Star 17B mass flow controllers.Reactor pressure was maintained by a back pressure regulator. The catalyst bed temperature was measured during reactions using a type K thermocouple positioned within the reactor itself,near the center of the catalyst bed.

    Fig.1 Schematic setup of the fixed-bed flow reaction system for mixed alcohol synthesis

    Usually,1.0 mL catalyst,diluted with 2.0 mL Pyrex beads, was loaded in the reactor in any cases.Prior to kinetic tests the catalysts were activated with 5%(volume fraction)H2/Ar at 320°C for 12 h.Then,bio-syngas was conducted to the reactor for the higher alcohol syntheses under a setup synthesis condition.The syntheses were carried out under typical operating conditions:T=260-320°C,p=3.0-7.0 MPa,GHSV(gas hourly space velocity)=3000-9000 h-1.Quantitative product analysis from the reactor outlet stream was on-line sampled every 15 min using two on-line gas chromatographs(GC1 and GC2). The gases of H2,CO,and CO2were detected by GC1(Model: SP6890,column:TDX-01)with a thermal conductivity detector(TCD),and gaseous hydrocarbons were detected by GC2 (Model:SP6890,column:PorapakQ-S,USA)with a flame ionization detector(FID).The condensable vapors(mainly consisting of higher alcohols and water)were cooled into a liquid tank and then detected offline by GC2 with a FID.The performance of higher alcohol syntheses was evaluated by the carbon conversion(CC),space time yield of higher alcohols(YAlc,g· kg-1·h-1),selectivity of alcohols(SAlc),and hydrocarbons(SHc), according to the following equations:

    2.3 Feedstock for higher alcohol syntheses

    In this work,one bio-syngas derived from the biomass gasification was used for the higher alcohol synthesis.The bio-syngas was produced by biomass gasification in a circulating fluidized bed using rice husks with the gasification temperature of 1000-1300°C and pressure of 1.5-3.0 MPa,followed by conditioning the syngas via water-gas shift(WGS)reaction and purification processes.31The main composition of the bio-syngas is H262.80%,CO 30.89%,CO22.96%,N21.75%,CH41.20%, and others 0.40%(volume fraction).

    3 Results and discussion

    3.1 Catalyst screening

    Catalysts were prepared with the sodium promoter concentration varied from 0 to 6%(molar fraction)and compared under constant conditions of 5.0 MPa,300°C and gas hourly space velocity(GHSV)of 6000 h-1.The CO hydrogenation performances summarized in Table 1 show that the catalyst with a 3%(molar fraction)Na loading produces the highest alcohol synthesis activity.The overall activity of the promoted catalyst increases as the Na loading increases from 0 to 3%,showing the highest carbon conversion of 36.2%,while decreases rapidly to 24.2%when the Na loading further increases to 6%.As shown in Table 1,Na promoter not only influences catalytic activity,but also promotes alcohol selectivity and inhibits hydro-carbon synthesis in CO hydrogenation reaction.The total alcohol selectivity(SC)increased from 24.3%to 46.8%as Na loading(xNa)increased from 0 to 3%,while the hydrocarbon selectivity decreased from 51.7%to 20.5%,respectively.

    Table 1 Performance of higher alcohol synthesis for various sodium loading

    Alkali addition has been demonstrated to influence the catalyst activity through two typical ways.One is to facilitate adsorption of CO molecules on the catalyst surface16,32thus resulting in a higher efficiency of hydrogenation,as the 3%Na loading catalyst shows.The other is to cover the active sites which induce a decrease of catalytic activity.As Boz14reported that the addition of K to the CuCoZnAl catalyst resulted in the suppression of overall catalytic activity on higher alcohol synthesis.And Chen et al.33proved the excessive K2O loading induced a serious accumulation of potassium on the catalyst surface by XPS characterization.The presence of Na additive strongly suppresses the formation of hydrocarbons(Table 1),possibly due to the decrease in the availability of H*atoms required for termination of growth chains via hydrogen addition reactions to produce paraffins.34,35However,another view proposed by Courty et al.36for the enhanced alcohol selectivity is that alkali addition suppresses alcohol dehydration by suppressing the acidic nature of the catalyst.

    3.2 Performance of higher alcohol synthesis

    Table 2 shows the influence of operating conditions(temperature,pressure,and GHSV)on the higher alcohol synthesis using bio-syngas over the 3%Na promoted catalyst under the synthesis conditions:T=260-320°C,p=3.0-7.0 MPa,and GHSV=3000-9000 h-1.Commonly,temperature is one of the most critical reaction parameters in the higher alcohol synthesis,which significantly affects the rate of kinetically controlled synthesis reactions.In the lower temperature region,an increasing temperature is conducive to the dissociative adsorption of CO and H2while promoting the formation of the specified intermediates(e.g.,alkyls and formyl species),37,38which leads to an increase of the CO hydrogenation.However,another important characteristic of higher alcohol synthesis is the unavoidable production of a large amount of hydrocarbons,and exorbitant temperature will greatly decrease the alcohol selectivity and enhance the formation of hydrocarbons.39,40Consequently, considering the balance of productivity and selectivity,an appropriate temperature needs to be determined through experimentation and then to be closely controlled at this value in the reactor.

    As shown in Table 2,the carbon conversion significantly increased from 11.9%to 59.7%with a rising temperature from 260 to 320°C.An increasing trend was also observed for the space time yield of higher alcohols in this range.The selectivity towards total alcohols(C1-C6alcohols)decreased from 61.8%to 28.3%with a rising temperature versus an opposite trend for the hydrocarbons selectivity.In the hydrocarbon distribution,products were almost C1-C4gaseous hydrocarbons besides a small quantity of liquid hydrocarbons.In the alcohols products,the C2+alcohols(C2-C6higher alcohols)contained with a mass fraction of 28.7%-63.9%(w)and main alcohol products were methanol,ethanol,and propanol under the tested synthesis conditions.When the temperature was fixed at 300°C,the carbon conversion and space time yield ascended monotonously as pressure increased,for the synthesis reactions involved a decrease in the number of molecules.In contrast, the carbon conversion decreased with the increase of the gas hourly space velocity,which was accompanied by an increase of the space time yield of higher alcohol.The negative impact of GHSV on the carbon conversion may result from shortening residence time in the catalyst bed,while the positive impact on the fuel yield can arise from the increase of the turnover frequency of the synthesis products with increasing GHSV.The maximum higher alcohol yield from bio-syngas was about 304.6 g·kg-1·h-1with the alcohol selectivity of 50.1%and C2+alcohols distribution of 64.4%(w)within our studied range. Apart from the alcohol and hydrocarbon products,only a small amount of other compounds including aldehydes,ketones,esters,and ethers were also detected.

    Moreover,the catalytic stability in the higher alcohol synthesis process was tested by measuring the CO conversion,selectivity of alcohols and hydrocarbons,yields of alcohols as a function of time on stream.As shown in Fig.2,the activity increases initially until it reaches the maximum at about 4-6 h of time on stream,and then it decreases very slowly in our tested 80 h.The selectivity of hydrocarbons increases gradually,however,both the alcohol selectivity and yields follow a trend of decrease.A long-term(80 h)reaction test led to about 5%-8% reduction in the higher alcohol synthesis activity compared tothe maximum values.Generally,the slow catalyst inactivation observed in the higher alcohol synthesis process could mainly ascribe to the sintering of active sites and deposition of the carbon16on the catalysts.

    Table 2 Performance of higher alcohol synthesis using bio-syngas over CuCoMnNa0.1catalyst

    Fig.2 Stability of the CuCoMnNa0.1catalyst in the higher alcohol synthesis(a)yield of higher alcohols,(b)selectivity of alcohols,(c)carbon conversion, (d)selectivity of hydrocarbons;synthesis conditions:T=300°C, GHSV=6000 h-1,p=5.0 MPa

    As shown in Fig.3,both alcohols and hydrocarbon products were consistent with the ASF distributions.41Interestingly,the rate of methanol formation was also in line with higher alcohols according to the ASF distribution.Using the ASF distribution we determined the chain growth probability(α)from the slope of the linear part of the plot.The α values of alcohols were found to be increased(from 0.196 to 0.362)while those of hydrocarbons remained nearly constant(α=0.460±0.020)for the CuCoMnNa0.1catalyst when temperature increased from 260 to 300°C.This fact can be taken as an indirect evidence that alcohols and hydrocarbons were formed on different active sites for CuCo-based catalysts as Boz14proposed.

    3.3 Catalyst characterization

    Fig.3 Anderson-Schulz-Flory plots of(a)hydrocarbons and(b)alcohols over CuCoMnNa0.1catalyst at different temperatures Wnis the mass fraction of a product containing n carbon atoms.

    Table 3 Texture parameters of fresh and used CuCoMn-based catalysts

    Some of important physical and chemical properties,including BET surface area,pore volume,and the size of the crystallites were investigated for the CuCoMn-based catalysts before and after used.As shown in Table 3,the doping of sodium in the catalyst induced an obviously decrease of BET surface area and increase of pore size.The BET surface area decreased from 111 to 71 m2·g-1,while the pore size increased from 6.7 to 10.4 nm with the Na loading from 0 to 6%.Such an effect may be related to the clogging of micropores caused by sodium carbonate when considering the adsorption/desorption isotherm data.16

    Fig.4 shows the XRD patterns of the fresh CuCoMnNa0.1catalyst,the reduced ones(pure H2,320°C,8 h),and the used ones(T=300°C,p=5.0 MPa,GHSV=6000 h-1,t=20 h)for higher alcohol synthesis,corresponding patterns of CuCuMn catalyst were also shown.For the fresh samples,all the diffraction peaks can be assigned to spinal CuCoMnO4(JCPDS 47-0324).42Formation of the mixture oxide may be the cause of the excellent catalytic stability of CuCoMn catalysts.The addition of Na promoter did not present significant structural modification when compared with the diffractogram of none sodium addition sample.As suggested by Dalmon et al.16for the CoAl-based catalysts,alkali doping probably just coats the surface as sodium carbonate.For the catalysts reduced by H2, Cu(JCPDS 04-0836)and MnO(JCPDS 01-1206)were detected,but none of Co signals was found suggesting a high dispersion of Co species under reduction conditions.However,after being used at 300°C for higher alcohol synthesis,the diffraction peaks of Co3O4appeared probably due to a slightly sintering.Moreover,the Cu particle sizes for the used catalysts calculated by XRD line widths of the strongest peak(2θ=43.4°) using Debye-Scherrer equation are shown in Table 3.Compared with the none-sodium addition catalyst,the Na-promoted sample showed a smaller Cu particle size.It is well-known that catalysts with small crystallite sizes have an advantage to produce more alcohols while larger crystallites to hydrocarbons.43

    Fig.4 XRD patterns of(a)fresh CuCoMn catalyst,(b)reduced CuCoMn catalyst,(c)used CuCoMn catalyst, (d)fresh CuCoMnNa0.1catalyst,(e)reduced CuCoMnNa0.1catalyst,and(f)used CuCoMnNa0.1catalyst■CuCoMnO4,●Cu,□MnO,○Co3O4;synthesis conditions:(b)T=300°C,pure H2,p=0.5 MPa,(c)T=300°C,GHSV=6000 h-1,p=5.0 MPa,t=20 h, (e)T=300°C,pure H2,p=0.5 MPa,(f)T=300°C,GHSV=6000 h-1,p=5.0 MPa,t=20 h

    Fig.5 Cu 2pXPS spectra and Cu LMMAuger electron spectra for different catalysts (a)Cu 2p XPS spectra for fresh catalysts,(b)Cu 2p XPS spectra for used catalysts,(c)Cu LMMAuger electron spectra for used catalysts; synthesis conditions:T=300°C,p=0.5 MPa,GHSV=6000 h-1,t=20 h

    Fig.6 Co 2p XPS spectra for different catalysts (a)Co 2p XPS spectra for fresh catalysts,(b)Co 2p XPS spectra for used catalysts;synthesis conditions:T=300°C,p=0.5 MPa,GHSV=6000 h-1,t=20 h

    The alterations of the atomic states on the catalyst′s surfaces before and after the synthesis reaction were investigated by the XPS measurements.As can be seen from Fig.5(a),the binding energy at about 930.8 and 933.7 eV were observed for the pristine catalysts,which were assigned to the main line of Cu+(2p3/2) and Cu2+(2p3/2),44respectively.Note that no reduction was employed on the catalysts,the presence of Cu+should attribute to the internal reduction of Mn3+,which has been proved by Yang et al.42After the higher alcohol synthesis,the Cu2+on the surface was reduced as Fig.5(b)shows.For the Cu0and Cu+species can not be distinguished by the 2p3/2peak,Fig.5(c)shows the Cu LMM Auger electron spectra.It can be found that the used samples exhibit a double peak structure at kinetic energy values of 917.0 and 918.7 eV.According to Velu et al.,44these two peaks are corresponding to Cu+and Cu metal,respectively. With the increasing of sodium addition,the Cu+/Cu0ratio increased,indicating the stabilization of Cu+species.A similar internal reduction effect was also observed on Co as Fig.6(a) shows,the weak satellite of Co3+(2p2/3)was about 10 eV higher than its main peak,not as commonly 6 eV.In addition,the very weak satellite shows a mixture of Co2+and Co3+.44After the higher alcohol synthesis,as Fig.6(b)shows,a peak at binding energy(EB)value of 778.8 eV appeared,which could be assigned to Co0species.However,the intensity of Co0decreased with increasing the Na content.Some argue that Co0is an active site of hydrogenation that tends to formation of hydrocarbons.14

    4 Conclusions

    This work reports that higher alcohols can be efficiently produced from bio-syngas derived from the biomass gasification using Na-promoted CuCoMn catalysts.Appropriate amount of sodium enhances the total alcohol selectivity and productivity. CuCoMnNa0.1catalyst is moderately selective for production of higher alcohols under mild conditions.It was found that alcohol selectivity decreased monotonously with the temperature increasing,while the mass fraction of C2+(C2-C6)alcohols in total alcohol products increased.The optimum temperature was about 300°C based on the higher alcohol selectivity and productivity.The maximum higher alcohol yield from the biosyngas was about 304.6 g·kg-1·h-1with the alcohol selectivity of 50.1%and C2+alcohols distribution of 64.4%(w)within the tested conditions.Considering of the ASF distributions,there probably exists two different active sites with two distinctly chain growth probability factors for alcohols and hydrocarbons,respectively.According to XRD analysis,CuCoMnO4mixture oxide is the dominant phase for the fresh catalysts. XPS results suggest that Cu presents as mixture of Cu+and Cu0on the catalyst surface after being used,and Co presents as mixture of Co2+/Co3+and Co0.With increasing of sodium addition,the Cu0/Cu+ratio and the Co0intensity both decreased. The CuCoMnNa0.1catalyst may be one of the most suitable candidates for the higher alcohol synthesis from bio-syngas because this non-noble metal catalyst can efficiently produce higher alcohols through the hydrogenation of CO.The higher alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.The bio-fuels synthesis is unstinted by the feedstocks of biomass, and potentially,may be one promising route to produce bio-fuels in future.

    (1) Navarro,R.M.;Pena,M.A.;Fierro,J.L.G.Chem.Rev.2007, 107,3952.

    (2) Zhang,Q.;Chang,J.;Wang,T.J.;Xu,Y.Energy Convers. Manage.2007,48,87

    (3)Li,H.Y.;Xu,Q.L.;Xue,H.S.;Yan,Y.J.Renewable Energy 2009,34,2872.

    (4) Czernik,S.;Bridgwater,A.V.Energy&Fuels 2004,18,590.

    (5)Zhou,M.;Yan,L.F.;Wang,Y.Q.;Guo,Q.X.;Zhu,Q.S.Chin. J.Chem.Phys.2005,18,69.[周 密,閆立峰,王益群,郭慶祥,朱清時(shí).化學(xué)物理學(xué)報(bào),2005,18,69.]

    (6)Tijmensen,M.J.A.;Faaij,A.P.C.;Hamelinck,C.N.;Van Hardeveld,M.R.M.Biomass Bioenergy 2002,23,129.

    (7) Steen,E.V.;Claeys,M.Chem.Eng.Technol.2008,31,655.

    (8) Xu,X.D.;Doesburg,E.B.M.;Sckolen,J.J.F.Catal.Today 1987,2,125.

    (9) Verkerk,A.N.;Jaeger,B.;Finkeldei,C.H.;Keim,W.Appl. Catal.A 1999,186,407.

    (10) Subramani,V.;Gangwal,S.K.Energy&Fuels 2008,22,814.

    (11) Li,Z.R.;Fu,Y.L.;Jiang,M.;Hu,T.D.;Liu,T.;Xie,Y.N. Chin.J.Chem.Phys.,2001,14,355.[李忠瑞,伏義路,姜明,胡天斗,劉 濤,謝亞寧.化學(xué)物理學(xué)報(bào),2001,14,355.]

    (12)Zhang,W.;Luo,H.Y.;Zhou,H.W.;Wu,Z.H.;Huang,S.Y.; Liu,C.Z.;Chu,H.P.;Lin,P.Z.;Lin,L.W.Chin.J.Catal. 1999,20,285.[張 偉,羅洪源,周煥文,吳治華,黃世煜,劉崇早,初惠萍,林培滋,林勵(lì)吾.催化學(xué)報(bào),1999,20,285.]

    (13) Ojeda,M.;Granados,M.L.;Rojas,S.;Terreros,P.; Garcia-Garcia,F.J.;Fierro,J.L.G.Appl.Catal.A 2004,261, 47.

    (14) Boz,I.Catal.Lett.2003,87,187.

    (15)Tien-Thao,N.;Zahedi-Niaki,M.H.;Alamdari,H.;Kaliaguine, S.J.Catal.2007,245,348.

    (16)Dalmona,J.A.;Chaumetteb,P.;Mirodatos,C.Catal.Today 1992,15,101.

    (17) Su,Y.L.;Liu,B.;Pei,S.P.;Wang,X.Y.;Liu,Z.M.Chin.J. Catal.2004,25,683.[蘇運(yùn)來,劉 博,裴素朋,王向宇,劉中民.催化學(xué)報(bào),2004,25,683.]

    (18)Xu,R.;Wei,W.;Li,W.H.;Hu,T.D.;Sun,Y.H.J.Mol.Catal. A 2005,234,75.

    (19) Gupta,M.;Spivey,J.J.Catal.Today 2009,147,126.

    (20)Chen,X.P.;Wu,G.S.;Wang,X.Z.;Sun,Y.H.;Zhong,B. Chin.J.Catal.2000,21,301.[陳小平,吳貴升,王秀芝,孫予罕,鐘 炳.催化學(xué)報(bào),2000,21,301.]

    (21) Li,D.B.;Qi,H.J.;Li,W.H.;Sun,Y.H.;Zhong,B.Acta Phys.-Chim.Sin.2006,22,1132.[李德寶,齊會(huì)杰,李文懷,孫予罕,鐘 炳.物理化學(xué)學(xué)報(bào),2006,22,1132.]

    (22) Ma,X.M.;Lin,G.D.;Zhang,H.B.Chin.J.Catal.2006,27, 1019.[馬曉明,林國棟,張鴻斌.催化學(xué)報(bào),2006,27,1019.]

    (23) Sugier,A.;Freund,E.;Malmaison,R.Process for ManufacturingAlcohols and More Particularly Saturated Linear PrimaryAlcohols from Synthesis Gas.US Pat.Appl.105312, 1981.

    (24) Spivey,J.J.;Kumar,C.S.S.R.;Balaji,G.;Subramanian,N.D. Catal.Today 2009,147,100.

    (25) Xu,H.Y.;Chu,W.;Deng,S.Y.Acta Phys.-Chim.Sin.2010,26, 345.[徐慧遠(yuǎn),儲(chǔ) 偉,鄧思玉.物理化學(xué)學(xué)報(bào),2010,26, 345.]

    (26) Mehr,J.Y.;Islami,M.;Peyrovi,M.H.;Mahdavi,V.Appl. Catal.A 2005,281,259.

    (27) Zhang,H.B.;Dong,X.;Lin,G.D.;Liang,X.L.;Li,H.Y. Chem.Commun.2005,5094.

    (28) Kan,T.;Xiong,J.X.;Li,X.L.;Ye,T.Q.;Yuan,L.X.; Torimoto,Y.;Yamamoto,M.;Li,Q.X.Int.J.Hydrog.Energy 2010,35,518.

    (29)Yuan,L.X.;Chen,Y.Q.;Song,C.F.;Ye,T.Q.;Guo,Q.X.; Zhu,Q.S.;Torimoto,Y.;Li,Q.X.Chem.Commun.2008,5215.

    (30)Ye,T.Q.;Yuan,L.X.;Chen,Y.Q.;Kan,T.;Tu,J.;Zhu,X.F.; Torimoto,Y.;Yamamoto,M.;Li,Q.X.Catal.Lett.2009,127, 323.

    (31) Liu,Y.;Chen,F.;Zhuang,S.X.;Wang,J.J.;Ma,R.G. AMethod and Equipment for Preparation of Syngas from Solid Biomass.CN Patent CN101191060A,2007.[劉 勇,陳 楓,莊叔賢,王家俊,馬仁貴.一種由固體生物質(zhì)制備合成氣的方法和設(shè)備:中國,CN101191060A[P],2007]

    (32)Aquino,A.D.;Cobo,A.J.G.Catal.Today 2001,65,209.

    (33) Chen,B.S.;Zhao,J.S.;Zhang,L.;Xiong,G.X.;Sheng,S.S. Chin.J.Catal.1990,11,265.[陳寶樹,趙九生,張 鎏,熊國興,盛世善.催化學(xué)報(bào),1990,11,265.]

    (34) Li,S.;Li,A.;Krishnamoorthy,S.;Iglesia,E.Catal.Lett.2001, 77,197.

    (35) Mross,W.D.Catal.Rev.Sci.Eng.1983,25,591.

    (36) Courty,P.;Durand,D.;Freund,E.;Sugier,A.J.Mol.Catal. 1982,17,241.

    (37) Laan,G.P.V.;Beenackers,A.A.C.M.Catal.Rev.Sci.Eng. 1999,41,255.

    (38)Sachtler,W.M.H.;Ichikawa,M.J.Phys.Chem.1986,90,4752.

    (39) Dry,M.E.Catal.Today 2002,71,227.

    (40) Huang,X.;Curtis,C.W.;Roberts,C.B.Fuel Chemistry Division Preprints 2002,47,150.

    (41) Schulz,H.Appl.Catal.A 1999,186,3.

    (42)Yang,B.L.;Chan,S.F.;Chang,W.S.;Chen,Y.Z.J.Catal. 1991,130,52.

    (43) Li,D.B.;Yang,C.;Li,W.H.;Sun,Y.H.;Zhong,B.Top.Catal. 2005,32,233.

    (44) Velu,S.;Suzuki,K.;Gopinath,C.S.J.Phys.Chem.B 2002, 106,12737

    January 20,2011;Revised:April 1,2011;Published on Web:April 22,2011.

    Higher Alcohol Synthesis from Bio-Syngas over Na-Promoted CuCoMn Catalyst

    YE Tong-Qi1ZHANG Zhao-Xia1XU Yong1YAN Shi-Zhi1ZHU Jiu-Fang1LIU Yong2LI Quan-Xin1,*
    (1Anhui Key Laboratory of Biomass Clean Energy,Department of Chemical Physics,University of Science and Technology of China, Hefei 230026,P.R.China;2Hefei Tianyan Green Energy Development Co.,Ltd.,Hefei 230026,P.R.China)

    Na-promoted CuCoMn catalysts were successfully applied to the highly efficient production of higher alcohols from bio-syngas,which was derived from biomass gasification.The influence of Na content and synthesis conditions(temperature,pressure,and gas hourly space velocity(GHSV))on higher alcohol synthesis was investigated.The CuCoMnNa0.1catalyst gave the best performance for higher alcohol synthesis.Carbon conversion increased significantly with an increase in temperature at lower than 300°C but alcohol selectivity showed an opposite trend.A higher pressure was found to be beneficial for higher alcohol synthesis.Increasing the GHSV reduced carbon conversion but increased the yield of higher alcohols.The maximum higher alcohol yield that was derived from bio-syngas was 304.6 g·kg-1·h-1with the C2+alcohols(C2-C6higher alcohols)of 64.4%(w,mass fraction)under the conditions used.The distributions of the alcohols and the hydrocarbons were consistent with Anderson-Schulz-Flory(ASF)plots.Adding Na to the CuCoMn catalysts led to an increase in the selectivity toward the higher alcohols and promoted the dispersion of the active elements,copper and cobalt.X-ray photoelectron spectroscopy(XPS)results suggested that Cu was present as a mixture of Cu+and Cu0on the catalyst′s surface after use and Co was present as a mixture of Co2+/Co3+and Co0.With an increase in sodium addition the Cu0/Cu+ratio and the Co0intensity both decreased.

    Biomass;Bio-syngas;Higher alcohol;ASF distribution;CuCoMnNa catalyst

    O643

    ?Corresponding author.Email:liqx@ustc.edu.cn;Tel:+86-551-3601118.

    The project was supported by the National Natural Science Foundation of China(50772107),National Key Basic Research Program of China(973) (2007CB210206)and National High-Tech Research and Development Program of China(863)(2009AA05Z435).

    國家自然科學(xué)基金(50772107),國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃(973)(2007CB210206)及國家高技術(shù)研究發(fā)展計(jì)劃(863)(2009AA05Z435)資助項(xiàng)目

    猜你喜歡
    合成氣合肥生物質(zhì)
    BiZrOx/ZSM-5催化合成氣直接芳構(gòu)化的研究
    分子催化(2022年1期)2022-11-02 07:10:44
    合肥的春節(jié)
    生物質(zhì)揮發(fā)分燃燒NO生成規(guī)律研究
    能源工程(2021年5期)2021-11-20 05:50:44
    《生物質(zhì)化學(xué)工程》第九屆編委會(huì)名單
    《造紙與生物質(zhì)材料》(英文)2020年第3期摘要
    中國造紙(2020年9期)2020-10-20 05:33:36
    合成氣余熱回收器泄漏原因分析及維修方案
    合肥:打造『中國IC之都』
    生物質(zhì)碳基固體酸的制備及其催化性能研究
    醋酸甲酯與合成氣一步合成醋酸乙烯
    生態(tài)合肥
    亚洲欧洲日产国产| 精品午夜福利在线看| 91国产中文字幕| 在线看a的网站| 精品福利永久在线观看| 亚洲国产欧美一区二区综合| 久久99一区二区三区| 香蕉丝袜av| av.在线天堂| 老司机影院毛片| 天天添夜夜摸| 男女之事视频高清在线观看 | 午夜福利影视在线免费观看| 亚洲国产av影院在线观看| 亚洲成色77777| 国产熟女欧美一区二区| www.av在线官网国产| 91精品三级在线观看| 亚洲精品美女久久久久99蜜臀 | 黄色视频不卡| 精品国产一区二区三区久久久樱花| 国产精品无大码| 国产亚洲最大av| a 毛片基地| 少妇精品久久久久久久| 一级毛片黄色毛片免费观看视频| 精品久久蜜臀av无| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 在线看a的网站| 中文字幕色久视频| 中文乱码字字幕精品一区二区三区| 国产野战对白在线观看| 亚洲七黄色美女视频| 日韩制服骚丝袜av| 无限看片的www在线观看| 丝瓜视频免费看黄片| 十八禁网站网址无遮挡| 操出白浆在线播放| 色播在线永久视频| 97在线人人人人妻| 精品免费久久久久久久清纯 | 高清欧美精品videossex| 亚洲av在线观看美女高潮| 19禁男女啪啪无遮挡网站| 国产一区二区三区av在线| 久久热在线av| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 亚洲av国产av综合av卡| 成人漫画全彩无遮挡| 韩国av在线不卡| av视频免费观看在线观看| 欧美精品人与动牲交sv欧美| 国产精品 欧美亚洲| 亚洲国产精品成人久久小说| 国产又色又爽无遮挡免| 香蕉国产在线看| 两个人看的免费小视频| 国产精品久久久久久精品古装| 国产伦理片在线播放av一区| 国产熟女午夜一区二区三区| 亚洲婷婷狠狠爱综合网| 新久久久久国产一级毛片| 亚洲人成77777在线视频| 日韩精品有码人妻一区| 亚洲婷婷狠狠爱综合网| 国产xxxxx性猛交| 制服丝袜香蕉在线| 久久久精品94久久精品| 国产精品一二三区在线看| a级片在线免费高清观看视频| 18在线观看网站| 欧美精品av麻豆av| 亚洲av综合色区一区| 高清视频免费观看一区二区| 精品国产一区二区久久| 超碰成人久久| 久久久久久人妻| 一区福利在线观看| 人人妻人人添人人爽欧美一区卜| 91精品国产国语对白视频| 狂野欧美激情性bbbbbb| 一区二区三区激情视频| 成人午夜精彩视频在线观看| 久久鲁丝午夜福利片| 日韩大码丰满熟妇| 操出白浆在线播放| 亚洲精品国产色婷婷电影| 欧美日韩国产mv在线观看视频| 一边摸一边做爽爽视频免费| 飞空精品影院首页| 午夜福利乱码中文字幕| 精品酒店卫生间| 亚洲欧美精品自产自拍| 桃花免费在线播放| 大片电影免费在线观看免费| 热re99久久国产66热| 欧美成人午夜精品| 亚洲精品国产区一区二| 热re99久久精品国产66热6| 老汉色∧v一级毛片| 午夜福利视频在线观看免费| 亚洲视频免费观看视频| 五月开心婷婷网| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 一级片'在线观看视频| 精品少妇久久久久久888优播| 人妻人人澡人人爽人人| 狂野欧美激情性bbbbbb| 国产乱人偷精品视频| 国产又色又爽无遮挡免| 美女脱内裤让男人舔精品视频| 亚洲精品久久久久久婷婷小说| 国产国语露脸激情在线看| 中国国产av一级| a 毛片基地| 午夜福利乱码中文字幕| 久久人妻熟女aⅴ| 又大又黄又爽视频免费| 精品久久久精品久久久| 久久毛片免费看一区二区三区| av在线观看视频网站免费| 久久久久久久精品精品| 亚洲成人免费av在线播放| 免费观看人在逋| 日本色播在线视频| 日韩大片免费观看网站| 欧美最新免费一区二区三区| 天堂中文最新版在线下载| 在线观看免费日韩欧美大片| 欧美日韩一级在线毛片| 丝袜在线中文字幕| 秋霞在线观看毛片| 国产 精品1| 蜜桃国产av成人99| 波多野结衣av一区二区av| 99re6热这里在线精品视频| 高清黄色对白视频在线免费看| 欧美日韩一级在线毛片| 国产精品欧美亚洲77777| 亚洲婷婷狠狠爱综合网| 亚洲精品在线美女| 精品一区二区三卡| 国产毛片在线视频| 欧美在线一区亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 一级片'在线观看视频| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院| 看非洲黑人一级黄片| 精品国产国语对白av| 国产又爽黄色视频| 婷婷色综合大香蕉| 热99国产精品久久久久久7| 国产精品久久久人人做人人爽| 成人黄色视频免费在线看| 午夜日韩欧美国产| 国产不卡av网站在线观看| 99精品久久久久人妻精品| 亚洲国产最新在线播放| 国产毛片在线视频| 可以免费在线观看a视频的电影网站 | 成人亚洲精品一区在线观看| 久久久久视频综合| 婷婷色av中文字幕| 国产免费现黄频在线看| 男女高潮啪啪啪动态图| 亚洲国产精品国产精品| 亚洲av国产av综合av卡| 久久 成人 亚洲| 国产一区有黄有色的免费视频| 亚洲精品aⅴ在线观看| 91老司机精品| 美女中出高潮动态图| 又大又爽又粗| 咕卡用的链子| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 免费黄色在线免费观看| 欧美日韩亚洲综合一区二区三区_| 成人三级做爰电影| 久久久久久久大尺度免费视频| 最近中文字幕2019免费版| www.精华液| 国产无遮挡羞羞视频在线观看| 夫妻性生交免费视频一级片| 制服人妻中文乱码| 免费黄频网站在线观看国产| 又大又爽又粗| netflix在线观看网站| 久久狼人影院| 成人国产麻豆网| 婷婷色综合www| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线| 少妇 在线观看| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 国产成人欧美| 制服丝袜香蕉在线| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 日韩中文字幕视频在线看片| 天堂俺去俺来也www色官网| 亚洲成色77777| 国产精品 欧美亚洲| 晚上一个人看的免费电影| 亚洲欧美精品自产自拍| 国产免费视频播放在线视频| avwww免费| 一区在线观看完整版| 无限看片的www在线观看| 亚洲第一青青草原| 中文字幕色久视频| 自线自在国产av| 欧美精品人与动牲交sv欧美| 天天躁日日躁夜夜躁夜夜| av视频免费观看在线观看| 少妇人妻 视频| 9热在线视频观看99| 精品少妇黑人巨大在线播放| 熟女少妇亚洲综合色aaa.| 国产精品蜜桃在线观看| 电影成人av| 啦啦啦视频在线资源免费观看| 欧美在线黄色| 欧美日韩福利视频一区二区| 亚洲三区欧美一区| 国产福利在线免费观看视频| 国产免费一区二区三区四区乱码| 欧美黑人欧美精品刺激| 男女边吃奶边做爰视频| 亚洲av成人不卡在线观看播放网 | 黄频高清免费视频| 中文字幕高清在线视频| 人人妻人人爽人人添夜夜欢视频| 丰满乱子伦码专区| 搡老岳熟女国产| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 欧美国产精品一级二级三级| 亚洲国产毛片av蜜桃av| 菩萨蛮人人尽说江南好唐韦庄| 在线免费观看不下载黄p国产| 久久国产精品大桥未久av| 成人18禁高潮啪啪吃奶动态图| 日日啪夜夜爽| 男人操女人黄网站| 亚洲三区欧美一区| 亚洲激情五月婷婷啪啪| 在线 av 中文字幕| 色网站视频免费| 综合色丁香网| 宅男免费午夜| 亚洲精品国产一区二区精华液| 韩国精品一区二区三区| 国产 一区精品| 久久久久网色| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| kizo精华| 精品久久蜜臀av无| 91成人精品电影| av福利片在线| 黄色 视频免费看| 电影成人av| 日韩免费高清中文字幕av| 国产一区二区三区综合在线观看| 在线观看国产h片| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久小说| 久久人人爽人人片av| 免费女性裸体啪啪无遮挡网站| 色视频在线一区二区三区| 午夜福利乱码中文字幕| 别揉我奶头~嗯~啊~动态视频 | 成年女人毛片免费观看观看9 | 黑人猛操日本美女一级片| 99久久人妻综合| 在线观看免费日韩欧美大片| 少妇 在线观看| 欧美xxⅹ黑人| 欧美人与性动交α欧美软件| 国产男女超爽视频在线观看| 久久国产亚洲av麻豆专区| 国产成人午夜福利电影在线观看| 欧美另类一区| 久久狼人影院| 一级片'在线观看视频| 高清在线视频一区二区三区| 亚洲美女视频黄频| 亚洲精品国产av蜜桃| 国产黄色免费在线视频| 午夜激情av网站| 人体艺术视频欧美日本| 亚洲欧美一区二区三区久久| 免费高清在线观看日韩| 热re99久久国产66热| 99国产精品免费福利视频| 欧美另类一区| 少妇被粗大的猛进出69影院| 欧美少妇被猛烈插入视频| 一个人免费看片子| 中国三级夫妇交换| 国产爽快片一区二区三区| 大香蕉久久成人网| 亚洲欧美激情在线| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 老鸭窝网址在线观看| 亚洲四区av| 国产男女超爽视频在线观看| 99九九在线精品视频| 大香蕉久久网| 啦啦啦在线免费观看视频4| 欧美激情 高清一区二区三区| 亚洲国产中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 一级毛片 在线播放| 伊人久久大香线蕉亚洲五| 亚洲美女黄色视频免费看| 一级黄片播放器| 久久久久久久久久久久大奶| 国产精品久久久久久精品电影小说| 免费女性裸体啪啪无遮挡网站| 色播在线永久视频| 天天添夜夜摸| 日韩免费高清中文字幕av| 啦啦啦 在线观看视频| 91老司机精品| 老汉色av国产亚洲站长工具| xxxhd国产人妻xxx| 19禁男女啪啪无遮挡网站| 观看美女的网站| 宅男免费午夜| 青青草视频在线视频观看| 亚洲精品一二三| svipshipincom国产片| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 亚洲av男天堂| 国产一区有黄有色的免费视频| 99热网站在线观看| av在线老鸭窝| xxx大片免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人欧美在线观看 | 最近中文字幕2019免费版| av卡一久久| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 一区二区三区四区激情视频| 伦理电影大哥的女人| 中文字幕av电影在线播放| 捣出白浆h1v1| 午夜福利视频精品| 黑丝袜美女国产一区| 9191精品国产免费久久| 最近中文字幕2019免费版| av国产久精品久网站免费入址| 午夜福利免费观看在线| 99九九在线精品视频| 成人亚洲欧美一区二区av| av卡一久久| 国产精品一区二区在线观看99| 精品少妇内射三级| 国产av码专区亚洲av| 9191精品国产免费久久| 免费女性裸体啪啪无遮挡网站| 高清欧美精品videossex| 精品国产一区二区三区久久久樱花| 丰满少妇做爰视频| 国产成人精品久久久久久| 亚洲欧美清纯卡通| 永久免费av网站大全| 男人爽女人下面视频在线观看| 高清黄色对白视频在线免费看| 国产片特级美女逼逼视频| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区国产| 一区二区三区精品91| 国产乱来视频区| 国产精品成人在线| 在线亚洲精品国产二区图片欧美| 亚洲伊人久久精品综合| 免费黄频网站在线观看国产| 亚洲精品国产一区二区精华液| 日韩一区二区视频免费看| 国产精品欧美亚洲77777| 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 精品人妻熟女毛片av久久网站| 久久97久久精品| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 国产av精品麻豆| 一本大道久久a久久精品| 亚洲第一区二区三区不卡| 在现免费观看毛片| 亚洲精品自拍成人| 欧美亚洲日本最大视频资源| 国产麻豆69| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 免费av中文字幕在线| 亚洲精华国产精华液的使用体验| 天美传媒精品一区二区| 欧美最新免费一区二区三区| 国产精品嫩草影院av在线观看| 美女大奶头黄色视频| 免费黄色在线免费观看| 免费观看a级毛片全部| 午夜精品国产一区二区电影| 色吧在线观看| 日韩欧美一区视频在线观看| 两个人看的免费小视频| 成人免费观看视频高清| 不卡av一区二区三区| 永久免费av网站大全| 在线免费观看不下载黄p国产| 日韩大码丰满熟妇| 在线亚洲精品国产二区图片欧美| 最近最新中文字幕免费大全7| 日韩视频在线欧美| 青春草亚洲视频在线观看| 精品人妻熟女毛片av久久网站| 少妇猛男粗大的猛烈进出视频| 国产高清不卡午夜福利| 国产老妇伦熟女老妇高清| 男的添女的下面高潮视频| 秋霞在线观看毛片| 男人操女人黄网站| 精品亚洲乱码少妇综合久久| 熟女少妇亚洲综合色aaa.| kizo精华| 久久韩国三级中文字幕| 国产免费福利视频在线观看| 国产精品国产三级国产专区5o| 国产 一区精品| 老熟女久久久| 2018国产大陆天天弄谢| 亚洲第一青青草原| 日日摸夜夜添夜夜爱| 精品国产露脸久久av麻豆| 久久久久精品性色| 国产精品一国产av| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产一区二区精华液| 亚洲成人国产一区在线观看 | 韩国高清视频一区二区三区| 国产极品粉嫩免费观看在线| 天天影视国产精品| 在线观看国产h片| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区久久| 一级片免费观看大全| 亚洲精品国产区一区二| 99久久精品国产亚洲精品| 国产一区有黄有色的免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本猛色少妇xxxxx猛交久久| 日本91视频免费播放| 国产亚洲欧美精品永久| 久久亚洲国产成人精品v| 91精品国产国语对白视频| av.在线天堂| 中文乱码字字幕精品一区二区三区| 国产精品国产三级专区第一集| 中文字幕亚洲精品专区| xxx大片免费视频| kizo精华| 亚洲国产欧美网| 纵有疾风起免费观看全集完整版| 啦啦啦啦在线视频资源| e午夜精品久久久久久久| 一区二区日韩欧美中文字幕| 久久97久久精品| 欧美日韩一区二区视频在线观看视频在线| 狂野欧美激情性bbbbbb| 日本一区二区免费在线视频| 免费少妇av软件| 国产精品一区二区在线不卡| 成人亚洲精品一区在线观看| 丝袜脚勾引网站| 成人黄色视频免费在线看| 国产亚洲精品第一综合不卡| 成人影院久久| 成人免费观看视频高清| 下体分泌物呈黄色| 最黄视频免费看| 国产日韩欧美在线精品| 青青草视频在线视频观看| 久久国产精品大桥未久av| 97人妻天天添夜夜摸| 别揉我奶头~嗯~啊~动态视频 | 999久久久国产精品视频| 精品午夜福利在线看| 欧美黄色片欧美黄色片| av电影中文网址| 亚洲av中文av极速乱| 自线自在国产av| 国产男女内射视频| www.av在线官网国产| www日本在线高清视频| 日本av免费视频播放| 久久久国产欧美日韩av| 亚洲av电影在线观看一区二区三区| 女人久久www免费人成看片| 不卡av一区二区三区| 黄片无遮挡物在线观看| av在线老鸭窝| 黄片播放在线免费| 久久人妻熟女aⅴ| 性色av一级| 女人精品久久久久毛片| kizo精华| 国语对白做爰xxxⅹ性视频网站| 麻豆av在线久日| 久久人人97超碰香蕉20202| 777米奇影视久久| 在线精品无人区一区二区三| 欧美人与性动交α欧美软件| 久久精品亚洲av国产电影网| 亚洲成人免费av在线播放| 男女国产视频网站| 波野结衣二区三区在线| 9热在线视频观看99| 99香蕉大伊视频| 免费少妇av软件| 观看美女的网站| 免费观看av网站的网址| 超碰97精品在线观看| 成人国产av品久久久| 日本一区二区免费在线视频| 亚洲美女搞黄在线观看| 日韩不卡一区二区三区视频在线| 麻豆乱淫一区二区| 一个人免费看片子| 亚洲av成人精品一二三区| 人人妻,人人澡人人爽秒播 | 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 欧美人与性动交α欧美精品济南到| 韩国精品一区二区三区| 一本色道久久久久久精品综合| 久久久国产欧美日韩av| 午夜激情久久久久久久| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 亚洲久久久国产精品| 午夜日韩欧美国产| 欧美日韩一区二区视频在线观看视频在线| 老司机亚洲免费影院| 日韩av在线免费看完整版不卡| 国产成人欧美| 亚洲伊人久久精品综合| 精品亚洲成a人片在线观看| 日韩伦理黄色片| av在线app专区| 成人三级做爰电影| 亚洲精华国产精华液的使用体验| 啦啦啦在线免费观看视频4| 老司机影院毛片| 婷婷色综合www| 中文天堂在线官网| 韩国高清视频一区二区三区| 日本一区二区免费在线视频| 久久精品国产a三级三级三级| 极品人妻少妇av视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人欧美在线观看 | 欧美日韩av久久| 欧美日韩成人在线一区二区| 如何舔出高潮| 精品一区二区免费观看| 成年动漫av网址| 久久热在线av| 午夜福利免费观看在线| 欧美国产精品va在线观看不卡| 亚洲av国产av综合av卡| 国产一级毛片在线| 国产精品秋霞免费鲁丝片| 新久久久久国产一级毛片| 可以免费在线观看a视频的电影网站 | 国产亚洲一区二区精品| 青草久久国产| 国产成人欧美| 国产一区二区在线观看av| 国产免费又黄又爽又色| 一级毛片电影观看| 久久久久久久久久久免费av| 国产日韩欧美视频二区| 女人精品久久久久毛片| 精品人妻熟女毛片av久久网站| 欧美日韩av久久| 精品一区二区免费观看| 国产精品二区激情视频| 男人爽女人下面视频在线观看| 日本wwww免费看| 在线观看免费视频网站a站| 99九九在线精品视频| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频网站a站| 午夜91福利影院| 日本av免费视频播放| 欧美黑人精品巨大| 美国免费a级毛片|