• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase stability,elastic properties and electronic structures of Mg-Y intermetallics from frst-principles calculations

    2015-02-16 00:38:08ChenTngMPeng
    Journal of Magnesium and Alloys 2015年2期

    **J.Chen,K.TngM.P.Peng

    aKey Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,The Education Department of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    bKey Laboratory of Effcient and Clean Energy Utilization,College of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    cCollege of Materials Science and Engineering,Hunan University,Changsha 410082,China

    Phase stability,elastic properties and electronic structures of Mg-Y intermetallics from frst-principles calculations

    J.Zhanga,b,*,C.Maoa,*,C.G.Longa,J.Chenb,K.Tanga,M.J.Zhanga,P.Pengc

    aKey Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,The Education Department of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    bKey Laboratory of Effcient and Clean Energy Utilization,College of Hunan Province,Changsha University of Science and Technology,Changsha 410114,China

    cCollege of Materials Science and Engineering,Hunan University,Changsha 410082,China

    The phase stability,elastic properties and electronic structures of three typical Mg-Y intermetallics including Mg24Y5,Mg2Y and MgY are systematically investigated using frst-principles calculations based on density functional theory.The optimized structural parameters including lattice constants and atomic coordinates are in good agreement with experimental values.The calculated cohesive energies and formation enthalpies show that either phase stability or alloying ability of the three intermetallics is gradually enhanced with increasing Y content.The single-crystal elastic constantsCijof Mg-Y intermetallics are also calculated,and the bulk modulusB,shear modulusG,Young's modulusE, Poisson ratiovand anisotropy factorAof polycrystalline materials are derived.It is suggested that the resistances to volume and shear deformation as well as the stiffness of the three intermetallics are raised with increasing Y content.Besides,these intermetallics all exhibit ductile characteristics,and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg24Y5presents a relatively higher ductility,while MgY has a relatively stronger anisotropy in shear and stiffness.Further analysis of electronic structures indicates that the phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level. Namely,the more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.

    Magnesium alloys;Intermetallics;Phase stability;Elastic properties;Electronic structure

    1.Introduction

    Magnesium alloys have been attracted extensive attention and gained increasing applications in transportation felds due to their low density,high specifc strength and good stiffness. However,the widespread uses of magnesium alloys still remain obstacle fortheir low creep resistance,poorcorrosionresistance and poor deformation ability[1].In order to improve the comprehensive properties of magnesium alloys,many experimental attempts have been performed and some signifcant progresses have been achieved in recent decades.It was shown that magnesium alloys added with rare earth(RE)elements exhibit higher mechanical properties, better thermal stability and corrosion properties as well as improved deformability[2-5].

    The yttrium(Y)is one typical representation of RE elements,which has been reported as an effective alloyingaddition to prepare high performance Mg-RE based alloys [6-8].It is known from Mg-Y phase diagram that Y possesses a high solid solubility in Mg of 12.5wt.%,which induces the remarkable solution strengthening effects. Additionally,Mg-Y alloys have three different intermetallic phases across different temperature ranges with increasing content of Y,i.e.Mg24Y5,Mg2Y and MgY[9].These intermetallics exhibit precipitate strengthening effects during decomposition of Mg-Y supersaturated solid solutions.Both solution and precipitate strengthening result in the enhanced mechanical properties and thermal stability of Mg-Y based alloys.Also the addition of Y element to magnesium alloys can lead to high corrosion resistance and deformability.The improved corrosion properties are mainly attributed to the formation of stable anti-oxide layer containing Y element on the surface of alloys[10].The enhanced deformability is mainly originated from the contribution of Y element on texture weakening[11].

    Evidently,Y element plays important roles in improving the comprehensive performances of magnesium alloys.The investigations on Mg-Y based alloys are very important, especially for studying the effects of Y element on the properties of magnesium alloys.To data,although some experimental studies associated with Mg-Y based alloys have been performed[10-13],the systematic studies on the physical characteristics such as phase stability,elastic properties and electronic structures of Mg-Y intermetallics are scare due to the diffculties of experimental measurements.Considering the important roles of Mg-Y intermetallics in mechanical properties and thermal stability of magnesium alloys,their physical properties mentioned above should be thoroughly investigated and discussed.In this paper,a systematic study on the stability,elastic and electronic properties of Mg24Y5, Mg2Y and MgY intermetallics in Mg-Y based alloys is performed using frst-principles calculations based on density functional theory(DFT).The results will allow for providing usefuldata forunderstanding these intermetallicsand designing the high performance Mg-Y based alloys.

    2.Calculation models and methodology

    Mg24Y5phase is a cubic compound with space groupI-43m(No.217)andcI58 symmetry[14].Its unit cell contains 2 formula units as shown in Fig.1a.The lattice constants area=b=c=11.257 ?.There are two kinds of unequivalent Mg(Mg1 and Mg2)and Y(Y1 and Y2)atoms in Mg24Y5unit cell.The Mg1,Mg2,Y1 and Y2 atoms are located on the 24g,24g,2aand 8csites,respectively.Mg2Y phase is a hexagonal compound with space groupP63/mmc(No.194) andhP12 symmetry[14].Its unit cell contains 4 formula units as shown in Fig.1b.The lattice constants area=b=6.037 ? andc=9.752 ?.There are also two kinds of unequivalent Mg(Mg1 and Mg2)atoms but one kind of Y atoms in Mg2Yunit cell.The Mg1,Mg2 and Yare located on the 2a,6hand 4fsites,respectively.Similar to Mg24Y5,MgY phase is also a cubic compound with space groupPm-3m(No.221)andcP2 symmetry[14].Its unit cell contains 1 formula unit as shown in Fig.1c.The lattice constants area=b=c=3.796 ?.There is one kind of Mg and Yatoms in MgY unit cell.The Mg and Y atoms occupy the 1aand 1bsites,respectively.

    The calculations are performed using a frst-principles plane-wave pseudopotential method based on density functional theory(DFT)[15].Ultrasoft pseudopotentials[16]in reciprocal space are used.The orbitals of Mg 2p63s2and Y 4s24p64d15 s2are treated as valence electrons.The Perdew-Wang(PW91)generalized gradient approximation(GGA) [17]is adopted for the exchange-correction functional.The cutoff energy of plane wave basis is set as 310 eV for all phases.The special points sampling integration over the brillouin zone is employed by using the Monkhorst-Pack method [18]with 2×2×2,4×4×2 and 6×6×6 specialk-point meshes for Mg24Y5,Mg2Y and MgY phases,respectively.A fnite basis set correction and the Pulay scheme of density mixing[19,20]are applied for evaluation of energy and stress. The cell parameters including lattice constants and atomic coordinates of all phases are fully relaxed according to the total energy and force using the Broyden-Flecher-Goldfarb-Shanno(BFGS)scheme[21]based on the convergence criteria of optimization(energy of 2.0×10-5eV/atom,force of 0.05 eV/?,stress of 0.1 GPa and displacement of 0.002 ?). The calculations of single-point energy,elastic properties and electronic structures are followed by cell optimization.By increasing the cutoff energy of plane wave to 380 eV and the k-point meshes to 3×3×3,5×5×4 and 8×8×8 for Mg24Y5,Mg2Yand MgY phases,respectively,their respective total energies and lattice constants are changed by less than 0.02 eV/atom and 0.09%,respectively.Therefore,the present calculations are precise enough to represent the ground-state properties of these intermetallics.

    3.Results and discussions

    3.1.Structural properties

    Starting from experimentally available structural parameters,the lattice constants and atomic coordinates of Mg24Y5, Mg2Yand MgY phases are estimated from the minimized total energy with breaking their symmetries.The calculated results are listed in Table 1.It is found that the optimized structures of three phases retain their respective space groups.The equilibrium lattice constants of crystal cells and atomic coordinates are also consistent with experimental values[14]. The maximal deviation of lattice constants calculated here relative to the experimental results is only 0.58%(avalue of Mg2Y),suggesting that the calculations in the present work are highly reliable.

    In general,the structural stability of crystal is closely associated with its cohesive energy.A higher cohesive energy indicates the crystal combines frmly and is uneasy to decompose.In other words,the stability is good[22].In order to understand the structural stabilities of Mg-Yintermetallics, their cohesive energiesEcohare calculated using Equation(1) [22]:

    Fig.1.The crystal cell models of Mg24Y5(a),Mg2Y(b)and MgY(c)intermetallics.

    whereEtot(MgmYn)represents the total energies per formula unit of MgmYn(Mg24Y5,Mg2Y and MgY)intermetallics.(Mg)and(Y)represent the total energies of single Mg and Y atoms in free state,respectively.The subscriptsmandnrepresent the atomic numbers of Mg and Y within MgmYncrystal cells,respectively.The calculated results ofEcohare plotted as shown in Fig.2.It can be found that theEcohvalues of the three intermetallics increase in the order ofMg24Y5,Mg2Y and MgY.This means that the structural stabilities of Mg-Y intermetallics are enhanced with increasing Y content.

    Table 1The calculated lattice constants(in ?)and atomic coordinates of Mg24Y5,Mg2Y and MgY intermetallics.

    Fig.2.The calculated cohesive energies(a)and formation enthalpies(b)of Mg24Y5,Mg2Y and MgY intermetallics.

    Besides,the alloying ability of crystal can be evaluated by its formation enthalpy.Commonly,a negative formation enthalpy means crystal can be formed and exist stably. Furthermore,a lower formation enthalpy corresponds to a stronger alloying ability of crystal[23].In order to assess the alloying abilities of Mg-Y intermetallics,their formation enthalpies ΔHformare further calculated using Equation(2) [23]:

    3.2.Mechanical properties

    The elastic constants determine the response of a crystal to external forces,as characterized by bulk modulus,shear modulus,Young's modulus,and Poisson's ratio,and obviously play an important part in determining the mechanical properties of the materials[24].Therefore,it is essential to investigate the elastic constants to understand the mechanical properties of Mg-Y intermetallics.A stress-strain approach is employed to calculate elastic properties in the present work [25].According to the generalized Hook's law,a linear relationship exists between stress(σ)and strain(ε).Thus,proportional elastic constantCijcan be written as Equation(3):

    In order to obtain each independent elastic constant,an appropriate number of strain patterns are imposed on crystal cell with a maximum strain value of 0.003 in the present calculations.The calculated independentCijvalues of the three Mg-Y intermetallics are listed in Table 2.For Mg24Y5and MgY with cubic structure as well as Mg2Y with hexagonal structure,their mechanical stability criteria can be expressed as Equations(4)and(5)respectively:

    Cubic structure[26]:

    Hexagonal structure[26]:

    From Table 2,it can be derived that the calculated elastic constants satisfy the above corresponding criteria,indicating the mechanical stability of Mg-Y intermetallics.

    Based on the independent single-crystal elastic constants of Mg-Y intermetallics,their bulk modulus(B),shear modulus (G),Young's modulus(E)and Poisson's ratio(v)for polycrystalline crystal can be deduced.For all crystal structures, the polycrystalline modulus can be estimated by two approximation methods,i.e.the Voigt and Reuss methods[27],and they can be expressed as Equations(6)-(9):

    Table 2The calculated elastic constants(Cij)(in GPa)of single-crystal Mg24Y5,Mg2Y and MgY intermetallics.

    whereSijare the elastic compliance constants.VandRrepresent the Voigt and Reuss bounds.They provide the maximum(Voigt)and minimum(Reuss)limits of the polycrystalline elastic modulus.The average of the voigt and Reuss bounds are Voigt-Reuss-Hill(VRH)average[27],which is considered as the best estimate of the theoretical polycrystalline elastic modulus.They can be expressed as Equations(10)and(11)respectively:

    Additionally,the Young's modulus(E)and Poisson's ratio (v)can also be calculated from the bulk modulus(B)and shear modulus(G)using Equations(12)and(13)[25]respectively:

    The calculated results are listed in Table 3.Commonly,the bulk modulus is assumed to be a measure of resistance to volume change by applied pressure[28].A larger bulk modulus corresponds to a stronger resistance to volume change by applied pressure.Additionally,the shear modulus is an indication of resistance to reversible deformations upon shear stress[28].A larger shear modulus corresponds to a more notable directional bonding between atoms.From Table 3,it is seen that eitherBVRHorGVRHvalues of the three intermetallics increase in the order of Mg24Y5,Mg2Y and MgY, suggesting that the resistances to volume and shear deformation of Mg-Y intermetallics are enhanced with increasing Y content.Furthermore,the Young's modulus is assumed to be a measure of stiffness of materials[28].A larger Young's modulus corresponds to a stiffer material.Obviously,the stiffness of the three Mg-Y intermetallics is also raised with increasing Y content.

    The quotient of shear modulus to bulk modulus,i.e.G/B,of crystalline phases proposed by Pugh[28]can be considered as an indication of the extent of fracture range in materials. According to the Pugh criterion,a high or lowG/Bvalue is associated with brittleness or ductility.Commonly,a material is regarded as brittle ifG/Bvalue is above 0.57,and vice versa. From Table 3,the values of the three Mg-Y intermetallics are all less than 0.57,suggesting they are all ductile.Comparatively,Mg24Y5phase exhibits the biggest ductility.Besides, the Poisson's ratio can refect the stability of a crystal against shear,which usually ranges from-1 to 0.5[28].The smaller value of Poisson's ratio corresponds to the more stable against shear of crystal.The calculated results in Table 3 show that the three Mg-Y intermetallics are all unstable against shear owing to their close values to 0.5.Comparatively,Mg24Y5phase presents the best plasticity,which keeps consistent with the analytical result fromG/B.

    Elastic anisotropy of crystals refects a different bonding character in different directions and has an important implication since it correlates with the possibility to induce microcrack in materials.Chung and Buessem introduced a concept of percent elastic anisotropy which is a measure of elastic anisotropy possessed by the crystal under consideration [24].The percentage anisotropy in compression,shear and stiffness are defned as Equations(14)-(16)respectively:

    whereB,GandEare the bulk,shear and Young's modulus, respectively.The subscriptsVandRrepresent the Voigt and Reuss bounds.For the three expressions,a value of zero represents elastic isotropy and a value of 1(100%)is the largest possible anisotropy.The calculated anisotropy factors ofAB,AGandAEare also listed in Table 3.Clearly,the three Mg-Y intermetallics nearly exhibit isotropy in compression,but present anisotropy to a certain degree in shear and stiffness. Comparatively,MgY phase has a relatively strong anisotropy in shear and stiffness.

    3.3.Electronic structures

    To reveal the nature of bonding interactions within Mg-Y intermetallics and understand their structural stability mechanism,the total and partial density of states per atom of Mg24Y5,Mg2Y and MgY are calculated and compared as shown in Fig.3.In these fgures,the Fermi level(EF)is set as zero and used as a reference.From Fig.3(a)-(c),it can be found that the three Mg-Y intermetallics all exhibit metallic properties.Their bonding peaks are mainly located in energy region fromEFto-7 eV,and mainly originate from the contribution of valence electron numbers of Y(4s),Y(5s), Y(4p),Y(4d),Mg(3s)and Mg(2p)orbits.Further comparison of total densities of states of the three Mg-Y intermetallics per atom is performed as shown in Fig.3d.The bonding electrons numbers of these intermetallics are calculated by integrating the total densities of states belowEF,and the calculated values are 2.1656,2.3202 and 2.4274electrons/atom for Mg24Y5,Mg2Y and MgY respectively.Commonly,the bonding electrons number belowEFcan be used to characterize and judge the structural stability of crystal,the more bonding electrons number belowEFmeans the higher structural stability of crystal[29].Therefore,the sequence of structural stability for the three Mg-Y intermetallics is: MgY>Mg2Y>Mg24Y5,which is consistent with the results from energetic point of view.

    4.Conclusions

    Using frst-principles calculations method based on density functional theory(DFT),the phase stability,elastic properties and electronic structures of Mg-Y intermetallics including Mg24Y5,Mg2Y and MgY are systematically investigated.The main conclusions are summarized as the following:

    1)Either phase stability or alloying ability of Mg-Y intermetallics is gradually enhanced with increasing Y content.

    2)The resistances to volume and shear deformation as well as the stiffness of Mg-Y intermetallics are enhanced with increasing Y content.

    3)Mg-Y intermetallics all exhibit ductile characteristics, and they are isotropic in compression but anisotropic to a certain degree in shear and stiffness.Comparatively,Mg24Y5presents a relatively higher ductility,while MgY phase has a relatively strong anisotropy in shear and stiffness.

    4)The phase stability of Mg-Y intermetallics is closely related with their bonding electrons numbers below Fermi level.The more bonding electrons number below Fermi level corresponds to the higher structural stability of Mg-Y intermetallics.

    Acknowledgments

    This work was fnancially supported by the National Natural Science Foundation of China(No.51401036),the Hunan ProvincialNaturalScience Foundation ofChina (No. 14JJ3086),the Research Foundation of Education Bureau of Hunan Province(No.12B001)and the Key Laboratory of Effcient and Clean Energy Utilization,College of Hunan Province(No.2015NGQ005).

    [1]H.E.Friedrich,B.L.Mordike,Magnesium Technology(Metallurgy, Design Data,Applications),Springer,Berlin,2006.

    [2]Y.D.Wang,G.H.Wu,W.C.Liu,S.Pang,Y.Zhang,W.J.Ding,Mater. Sci.Eng.A 594(2014)52-61.

    [3]L.Li,J.Alloys Comp 555(2013)255-262.

    [4]G.Ben-Hamu,D.Eliezer,K.S.Shin,S.Cohen,J.Alloys Comp.431 (2007)269-276.

    [5]J.E.Saal,C.Wolverton,Acta Mater.68(2014)325-338.

    [6]A.D.Sudholz,K.Gusieva,X.B.Chen,B.C.Muddle,M.A.Gibson, N.Birbilis,Corro.Sci.53(2011)2277-2282.

    [7]D.L.Zhang,B.L.Zheng,Y.Z.Zhou,S.Mahajan,E.J.Lavernia,Scr. Mater.76(2014)61-64.

    [8]S.Sandl¨obes,M.Fri′ak,J.Neugebauer,D.Raabe,Mater.Sci.Eng.A 576 (2013)61-68.

    [9]L.L.Rokhlin,Magnesium Alloys Containing Rare Earth Metals,Taylor&Francis,London,UK,2003.

    [10]H.Ardelean,A.Seyeux,S.Zanna,Corro.Sci.73(2013)196-207.

    [11]L.B.Tong,X.H.Li,J.Zhang,Mater.Sci.Eng.A 563(2013)177-183.

    [12]R.Cottam,J.Robson,G.Lorimer,B.Davis,Mater.Sci.Eng.A 485 (2008)375-382.

    [13]C.Zlotea,M.Sahlberg,P.Moretto,Y.Andersson,J.Alloys Comp.489 (2010)375-378.

    [14]P.Villars,L.D.Calvert,Pearson's Handbook of Crystallographic Data for Intermetallic Phases,ASM,Metals Park,Ohio,1985.

    [15]M.D.Segall,L.D.Lindanp,M.J.Probert,C.J.Pickard,P.J.Hasnip, S.J.Clark,M.C.Payne,J.Phys.Condens.Matter 14(2002)2717-2744.

    [16]D.Vanderbilt,Phys.Rev.B 41(1990)7892-7895.

    [17]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996)3865-3868.

    [18]H.J.Monkhorst,J.D.Pack,Phys.Rev.B 13(1976)5188-5192.

    [19]B.Hammer,L.B.Hansen,J.K.N?rskov,Phys.Rev.B 59(1999) 7413-7421.

    [20]G.P.Francis,M.C.Payne,J.Phys,Condens.Matter 2(1990)4395-4404.

    [21]T.Fischer,J.Almlof,J.Phys.Chem.96(1992)9768-9774.

    [22]Y.K.Han,J.Jung,J.Chem.Phys.121(2004)8500-8502.

    [23]N.A.Zarkevich,T.L.Tan,D.D.Johnson,Phys.Rev.B 75(2007)104203.

    [24]P.Ravindran,L.Fast,P.A.Korzhavyi,B.Johansson,J.Wills, O.Eriksson,J.Appl.Phys.84(1998)4891.

    [25]W.Zhou,L.J.Liu,B.L.Li,P.Wu,Q.G.Song,Comp.Mater.Sci.46 (2009)921-931.

    [26]D.C.Wallace,Thermodynamics of Crystals,Wiley,New York,1972.

    [27]J.H.Westbrook,R.L.Fleischer,Basic Mechanical Properties and Lattice Defects of Intermetallic Compounds,Wiley,New York,2000.

    [28]M.M.Wu,L.Wen,B.Y.Tang,L.M.Peng,W.J.Ding,J.Alloys Comp. 506(2010)412-417.

    [29]J.Nyl′en,F.J.Garcìa,B.D.Mosel,R.P¨ottgen,U.H¨aussermann,Solid State Sci.6(2004)147-155.

    Received 10 December 2014;revised 25 January 2015;accepted 17 March 2015 Available online 16 May 2015

    *Corresponding authors.Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,The Education Department of Hunan Province,Changsha University of Science and Technology,Changsha 410114, China.Tel./fax:+86 731 85258646.

    E-mail addresses:zj4343@163.com(J.Zhang),1305648099@qq.com(C. Mao).

    Peer review under responsibility of National Engineering Research Center for Magnesium Alloys of China,Chongqing University.

    http://dx.doi.org/10.1016/j.jma.2015.03.003.

    2213-9567/Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright 2015,National Engineering Research Center for Magnesium Alloys of China,Chongqing University.Production and hosting by Elsevier B.V.All rights reserved.

    久久久水蜜桃国产精品网| 黄色a级毛片大全视频| 欧美不卡视频在线免费观看 | 久久人人97超碰香蕉20202| 午夜免费观看网址| 欧美日韩成人在线一区二区| 多毛熟女@视频| 欧美黑人精品巨大| 69av精品久久久久久| 99久久精品国产亚洲精品| 我的亚洲天堂| 久久久久久免费高清国产稀缺| 精品亚洲成a人片在线观看| 99在线人妻在线中文字幕 | 精品电影一区二区在线| 美女高潮到喷水免费观看| 桃红色精品国产亚洲av| 国产在线精品亚洲第一网站| 婷婷成人精品国产| 91麻豆精品激情在线观看国产 | 亚洲精品国产一区二区精华液| 女人爽到高潮嗷嗷叫在线视频| 婷婷成人精品国产| 黄色视频不卡| 热99re8久久精品国产| 精品国产乱子伦一区二区三区| 侵犯人妻中文字幕一二三四区| 搡老岳熟女国产| 黑丝袜美女国产一区| 18禁裸乳无遮挡免费网站照片 | 99热国产这里只有精品6| 欧美日韩视频精品一区| 亚洲色图 男人天堂 中文字幕| 嫁个100分男人电影在线观看| 亚洲熟女精品中文字幕| 中文字幕人妻熟女乱码| bbb黄色大片| 一进一出抽搐动态| 日本撒尿小便嘘嘘汇集6| 免费不卡黄色视频| av片东京热男人的天堂| e午夜精品久久久久久久| 国产男女内射视频| 久久热在线av| 美女福利国产在线| www日本在线高清视频| 国产亚洲精品久久久久久毛片 | 可以免费在线观看a视频的电影网站| 在线播放国产精品三级| 欧美最黄视频在线播放免费 | 色播在线永久视频| 欧美日韩av久久| 美女视频免费永久观看网站| 一级a爱片免费观看的视频| 午夜免费观看网址| 国产av又大| 黄片播放在线免费| 国产一区二区三区视频了| 国产一卡二卡三卡精品| 一区二区三区精品91| 久久午夜综合久久蜜桃| 麻豆乱淫一区二区| 久久久久精品人妻al黑| 久久香蕉激情| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 久久中文字幕一级| 色综合欧美亚洲国产小说| 不卡av一区二区三区| tube8黄色片| 欧美激情高清一区二区三区| 亚洲综合色网址| 少妇猛男粗大的猛烈进出视频| 老司机深夜福利视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲色图综合在线观看| 91在线观看av| 欧美不卡视频在线免费观看 | 50天的宝宝边吃奶边哭怎么回事| 久久青草综合色| 亚洲av片天天在线观看| 亚洲欧美日韩另类电影网站| 国产精品影院久久| 老汉色av国产亚洲站长工具| 亚洲人成伊人成综合网2020| 欧美 亚洲 国产 日韩一| 国产精品久久久av美女十八| 视频在线观看一区二区三区| 丁香六月欧美| 午夜福利视频在线观看免费| 亚洲国产欧美一区二区综合| 国产在线精品亚洲第一网站| 99国产极品粉嫩在线观看| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看 | 超碰97精品在线观看| 亚洲成av片中文字幕在线观看| 国产色视频综合| 精品国内亚洲2022精品成人 | 男人的好看免费观看在线视频 | 日韩免费av在线播放| 成人免费观看视频高清| 欧美一级毛片孕妇| 侵犯人妻中文字幕一二三四区| 91麻豆精品激情在线观看国产 | 日日爽夜夜爽网站| 久久国产乱子伦精品免费另类| 狠狠婷婷综合久久久久久88av| 亚洲第一欧美日韩一区二区三区| 亚洲精品成人av观看孕妇| a级片在线免费高清观看视频| 久久性视频一级片| 看黄色毛片网站| 国产日韩欧美亚洲二区| 久久久久久久久久久久大奶| 一级毛片女人18水好多| 亚洲美女黄片视频| 久久亚洲真实| 久久青草综合色| 国产99久久九九免费精品| 老熟妇仑乱视频hdxx| 成人亚洲精品一区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 久久亚洲精品不卡| 亚洲色图 男人天堂 中文字幕| 一级毛片高清免费大全| 欧美在线黄色| 男人操女人黄网站| 高清欧美精品videossex| 美女午夜性视频免费| 一级,二级,三级黄色视频| 最新美女视频免费是黄的| 婷婷成人精品国产| 极品教师在线免费播放| 777米奇影视久久| 九色亚洲精品在线播放| 亚洲精品美女久久久久99蜜臀| 久久这里只有精品19| 一本大道久久a久久精品| 一a级毛片在线观看| a在线观看视频网站| 怎么达到女性高潮| 国产又色又爽无遮挡免费看| 久久久国产成人免费| 在线国产一区二区在线| 国产免费av片在线观看野外av| 超色免费av| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 日本a在线网址| 免费久久久久久久精品成人欧美视频| ponron亚洲| 91av网站免费观看| 最新美女视频免费是黄的| 悠悠久久av| 午夜福利免费观看在线| 黑人猛操日本美女一级片| 亚洲成人免费电影在线观看| 国产男女超爽视频在线观看| 色综合欧美亚洲国产小说| 亚洲欧美激情在线| 久久中文字幕人妻熟女| 国产精品 欧美亚洲| 亚洲中文字幕日韩| 中文字幕人妻丝袜制服| 我的亚洲天堂| 精品亚洲成国产av| 中文欧美无线码| 丝袜美足系列| 亚洲视频免费观看视频| 日本撒尿小便嘘嘘汇集6| 亚洲欧美一区二区三区久久| 亚洲精品中文字幕在线视频| 国产xxxxx性猛交| 日韩欧美三级三区| 免费观看人在逋| 国产色视频综合| 国产激情久久老熟女| 人人妻人人澡人人爽人人夜夜| 成在线人永久免费视频| 一级作爱视频免费观看| 亚洲精品国产一区二区精华液| 无限看片的www在线观看| 午夜视频精品福利| 国产欧美亚洲国产| 91麻豆av在线| 国产欧美日韩一区二区三区在线| 久久精品91无色码中文字幕| 韩国av一区二区三区四区| 亚洲片人在线观看| 欧美色视频一区免费| 老司机深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 狂野欧美激情性xxxx| 一边摸一边做爽爽视频免费| 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 黄网站色视频无遮挡免费观看| 老司机影院毛片| 欧美另类亚洲清纯唯美| 日本五十路高清| 亚洲国产欧美一区二区综合| 亚洲一区二区三区不卡视频| 黄色视频不卡| 制服人妻中文乱码| 亚洲国产精品sss在线观看 | 亚洲一区高清亚洲精品| 悠悠久久av| 亚洲av日韩在线播放| 淫妇啪啪啪对白视频| 在线视频色国产色| 99香蕉大伊视频| www日本在线高清视频| 天堂√8在线中文| 亚洲成国产人片在线观看| 中文亚洲av片在线观看爽 | 欧美不卡视频在线免费观看 | bbb黄色大片| 国产精品一区二区精品视频观看| 精品国产一区二区三区久久久樱花| 在线播放国产精品三级| 亚洲欧美色中文字幕在线| 国产精品成人在线| 欧美不卡视频在线免费观看 | 一进一出抽搐动态| 757午夜福利合集在线观看| 国产一区二区三区综合在线观看| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 亚洲av欧美aⅴ国产| 国产激情欧美一区二区| 精品国产美女av久久久久小说| 国产精品秋霞免费鲁丝片| 亚洲精品一卡2卡三卡4卡5卡| 老汉色av国产亚洲站长工具| 亚洲人成电影免费在线| 精品少妇久久久久久888优播| 亚洲国产欧美日韩在线播放| 麻豆av在线久日| 亚洲精品av麻豆狂野| 国产在线一区二区三区精| 国产精品久久久久久人妻精品电影| 看片在线看免费视频| 一a级毛片在线观看| 视频区图区小说| 黄色成人免费大全| 久久人妻熟女aⅴ| www.熟女人妻精品国产| 麻豆乱淫一区二区| 91av网站免费观看| 王馨瑶露胸无遮挡在线观看| 亚洲av成人av| 法律面前人人平等表现在哪些方面| 乱人伦中国视频| 国产精品成人在线| 97人妻天天添夜夜摸| 女性生殖器流出的白浆| 久久影院123| 91字幕亚洲| 中文字幕人妻丝袜制服| 99国产精品99久久久久| 99精品欧美一区二区三区四区| 久久精品国产99精品国产亚洲性色 | 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 国产精品香港三级国产av潘金莲| 夜夜夜夜夜久久久久| 少妇 在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久午夜乱码| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 无遮挡黄片免费观看| 久9热在线精品视频| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 亚洲av片天天在线观看| 18禁国产床啪视频网站| 99精品久久久久人妻精品| 99国产精品99久久久久| 国产精品综合久久久久久久免费 | 如日韩欧美国产精品一区二区三区| 中出人妻视频一区二区| 久久精品亚洲精品国产色婷小说| 十八禁高潮呻吟视频| 精品久久久久久久毛片微露脸| 很黄的视频免费| 国产成人av激情在线播放| 动漫黄色视频在线观看| 宅男免费午夜| 欧美日韩成人在线一区二区| 淫妇啪啪啪对白视频| 999精品在线视频| 成在线人永久免费视频| 精品欧美一区二区三区在线| av免费在线观看网站| 欧美激情 高清一区二区三区| 欧美日韩成人在线一区二区| 国产在线精品亚洲第一网站| 成人av一区二区三区在线看| 91麻豆精品激情在线观看国产 | 日本一区二区免费在线视频| 在线国产一区二区在线| 国产精品久久久av美女十八| 免费女性裸体啪啪无遮挡网站| e午夜精品久久久久久久| 国产精品久久久久成人av| 亚洲情色 制服丝袜| 欧美 亚洲 国产 日韩一| 久热这里只有精品99| 午夜精品在线福利| 亚洲av片天天在线观看| 少妇被粗大的猛进出69影院| 久久草成人影院| 自线自在国产av| 中文欧美无线码| 亚洲五月色婷婷综合| 狠狠狠狠99中文字幕| 看黄色毛片网站| 啦啦啦 在线观看视频| 9色porny在线观看| 国产精品二区激情视频| 成人影院久久| 久久中文看片网| 亚洲avbb在线观看| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看 | 大香蕉久久网| 国产精品电影一区二区三区 | 亚洲一区二区三区不卡视频| 国产有黄有色有爽视频| 亚洲自偷自拍图片 自拍| 黑丝袜美女国产一区| 一级毛片高清免费大全| 啦啦啦 在线观看视频| 黑人欧美特级aaaaaa片| 宅男免费午夜| 搡老乐熟女国产| 一级a爱片免费观看的视频| 欧美黄色淫秽网站| 韩国精品一区二区三区| 性少妇av在线| 久久国产乱子伦精品免费另类| 日本vs欧美在线观看视频| 999久久久精品免费观看国产| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 欧美亚洲 丝袜 人妻 在线| 无限看片的www在线观看| 亚洲人成电影免费在线| 夜夜夜夜夜久久久久| 欧美日韩av久久| 亚洲av美国av| 欧美日韩一级在线毛片| 日韩欧美在线二视频 | 免费人成视频x8x8入口观看| 精品国产国语对白av| www.999成人在线观看| 国内久久婷婷六月综合欲色啪| 十八禁高潮呻吟视频| 在线观看午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 国产精品1区2区在线观看. | 他把我摸到了高潮在线观看| 51午夜福利影视在线观看| 热99re8久久精品国产| 脱女人内裤的视频| 亚洲一区中文字幕在线| 久久国产精品影院| 十八禁高潮呻吟视频| 在线永久观看黄色视频| videosex国产| 高清黄色对白视频在线免费看| 亚洲人成电影免费在线| 夜夜夜夜夜久久久久| 久久人妻av系列| 成年人午夜在线观看视频| av欧美777| 亚洲五月婷婷丁香| 久久 成人 亚洲| 亚洲少妇的诱惑av| 日本a在线网址| 丰满人妻熟妇乱又伦精品不卡| 动漫黄色视频在线观看| 男女床上黄色一级片免费看| 成人手机av| 啦啦啦在线免费观看视频4| 91成人精品电影| 免费人成视频x8x8入口观看| 黄色a级毛片大全视频| 亚洲少妇的诱惑av| 99riav亚洲国产免费| 欧美久久黑人一区二区| av天堂在线播放| 国产精品 国内视频| 中文字幕最新亚洲高清| 韩国精品一区二区三区| 18禁美女被吸乳视频| 别揉我奶头~嗯~啊~动态视频| 99久久人妻综合| av超薄肉色丝袜交足视频| 久久国产亚洲av麻豆专区| 久久狼人影院| 欧美日韩一级在线毛片| 手机成人av网站| 超碰97精品在线观看| 久久99一区二区三区| 黄片播放在线免费| 91成人精品电影| 久久久国产成人免费| av不卡在线播放| 99热只有精品国产| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合一区二区三区| 99国产精品免费福利视频| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 久久久久久久午夜电影 | 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 国产91精品成人一区二区三区| 日本vs欧美在线观看视频| 手机成人av网站| 久久久水蜜桃国产精品网| av网站在线播放免费| 激情视频va一区二区三区| 国产精品av久久久久免费| 搡老乐熟女国产| 99久久人妻综合| 久久久久久久久久久久大奶| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 男女之事视频高清在线观看| 久久热在线av| 免费看a级黄色片| 1024视频免费在线观看| 亚洲国产欧美网| 在线观看免费视频网站a站| 久久香蕉激情| 少妇 在线观看| 大香蕉久久网| 成人18禁在线播放| 久久精品国产a三级三级三级| 日韩人妻精品一区2区三区| 精品国内亚洲2022精品成人 | 成人影院久久| 丝袜在线中文字幕| 69av精品久久久久久| 亚洲在线自拍视频| 免费少妇av软件| 高清毛片免费观看视频网站 | 一级片'在线观看视频| 欧美成人午夜精品| 成在线人永久免费视频| 久久热在线av| 欧美av亚洲av综合av国产av| a在线观看视频网站| 免费日韩欧美在线观看| 日本精品一区二区三区蜜桃| 精品久久久久久电影网| 麻豆成人av在线观看| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 丁香欧美五月| 精品熟女少妇八av免费久了| 国产精品免费视频内射| 国产精品自产拍在线观看55亚洲 | 国产精品二区激情视频| 欧美日韩乱码在线| 淫妇啪啪啪对白视频| 精品一区二区三卡| 午夜老司机福利片| 一级黄色大片毛片| 岛国毛片在线播放| 国产精品欧美亚洲77777| 自线自在国产av| a级毛片在线看网站| 91精品国产国语对白视频| 亚洲国产看品久久| 午夜老司机福利片| 亚洲五月色婷婷综合| 久久99一区二区三区| 欧美性长视频在线观看| 午夜福利免费观看在线| 欧美最黄视频在线播放免费 | 精品亚洲成国产av| 人人妻人人澡人人看| 老汉色∧v一级毛片| 国产精华一区二区三区| 一二三四在线观看免费中文在| 免费人成视频x8x8入口观看| 免费在线观看视频国产中文字幕亚洲| 一个人免费在线观看的高清视频| 黄色毛片三级朝国网站| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 在线观看免费视频网站a站| 午夜久久久在线观看| 亚洲片人在线观看| 久久久国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区高清亚洲精品| videos熟女内射| 免费不卡黄色视频| 亚洲精品在线观看二区| 黄色片一级片一级黄色片| 午夜精品国产一区二区电影| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 大香蕉久久成人网| 亚洲欧美激情在线| 18禁裸乳无遮挡免费网站照片 | 一级黄色大片毛片| 日韩人妻精品一区2区三区| 亚洲专区国产一区二区| 欧美在线一区亚洲| 女性被躁到高潮视频| 亚洲国产精品一区二区三区在线| 热99国产精品久久久久久7| 香蕉丝袜av| 好看av亚洲va欧美ⅴa在| 91av网站免费观看| 欧美 亚洲 国产 日韩一| 男女之事视频高清在线观看| 超碰成人久久| 在线看a的网站| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 色老头精品视频在线观看| 亚洲七黄色美女视频| 欧美激情久久久久久爽电影 | 国产男靠女视频免费网站| 亚洲成a人片在线一区二区| av天堂在线播放| 国产97色在线日韩免费| 精品亚洲成国产av| 可以免费在线观看a视频的电影网站| 天天影视国产精品| av网站在线播放免费| 日韩欧美一区二区三区在线观看 | 亚洲熟女毛片儿| 国产成人影院久久av| 亚洲欧美日韩另类电影网站| 久久精品亚洲av国产电影网| 超碰97精品在线观看| 视频区图区小说| 精品亚洲成国产av| 精品午夜福利视频在线观看一区| 久久狼人影院| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线 | 亚洲精品在线美女| 久久香蕉激情| 亚洲专区中文字幕在线| 精品一区二区三区四区五区乱码| 91成人精品电影| 久久久国产一区二区| 少妇被粗大的猛进出69影院| 国产成人av激情在线播放| 久久久久精品人妻al黑| 国产激情欧美一区二区| 国产亚洲欧美在线一区二区| 精品高清国产在线一区| 精品久久久久久久毛片微露脸| 亚洲午夜理论影院| 中文字幕另类日韩欧美亚洲嫩草| 色老头精品视频在线观看| 1024视频免费在线观看| 水蜜桃什么品种好| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 高清毛片免费观看视频网站 | 欧美日韩精品网址| 夜夜爽天天搞| 久热爱精品视频在线9| 免费看十八禁软件| 999精品在线视频| 免费不卡黄色视频| 日韩 欧美 亚洲 中文字幕| av一本久久久久| 欧美日本中文国产一区发布| 黄色丝袜av网址大全| 久久国产精品男人的天堂亚洲| 777米奇影视久久| 国产精品久久久人人做人人爽| 制服人妻中文乱码| 99re6热这里在线精品视频| 少妇猛男粗大的猛烈进出视频| 大陆偷拍与自拍| 亚洲一区中文字幕在线| 99riav亚洲国产免费| 久久人人97超碰香蕉20202| 亚洲人成伊人成综合网2020| 久久精品国产a三级三级三级| 国产成人欧美在线观看 | aaaaa片日本免费| 丁香欧美五月| 一级片'在线观看视频| 精品国产美女av久久久久小说| 黄色怎么调成土黄色| 久久久久久久午夜电影 | 色婷婷久久久亚洲欧美| 最近最新免费中文字幕在线| 黑人巨大精品欧美一区二区mp4| 青草久久国产| 亚洲专区中文字幕在线| 国产区一区二久久| 精品视频人人做人人爽| 多毛熟女@视频| 欧美激情 高清一区二区三区| 国产99久久九九免费精品| 人人妻人人澡人人爽人人夜夜| 国产亚洲精品一区二区www | 岛国在线观看网站| 最新的欧美精品一区二区|