• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      內(nèi)質(zhì)網(wǎng)應(yīng)激與炎癥、肥胖、脂代謝和運(yùn)動(dòng)關(guān)系研究進(jìn)展

      2011-08-15 00:51:12溫悅萌艾華
      關(guān)鍵詞:內(nèi)質(zhì)網(wǎng)磷酸化蛋白質(zhì)

      溫悅萌 艾華

      北京大學(xué)第三醫(yī)院運(yùn)動(dòng)醫(yī)學(xué)研究所,北京大學(xué)肥胖與代謝病研究中心營(yíng)養(yǎng)運(yùn)動(dòng)與肥胖研究室(北京 200191)

      內(nèi)質(zhì)網(wǎng)是廣泛分布于哺乳動(dòng)物細(xì)胞內(nèi)的一種重要的亞細(xì)胞器,參與蛋白質(zhì)的合成、修飾加工(包括糖基化、羥基化、酰基化、二硫鍵形成等)、折疊、組裝以及向高爾基體的運(yùn)輸。同時(shí)內(nèi)質(zhì)網(wǎng)也是細(xì)胞內(nèi)鈣離子的儲(chǔ)存場(chǎng)所,在細(xì)胞內(nèi)具有重要的生理功能[1]。

      內(nèi) 質(zhì) 網(wǎng) 應(yīng) 激(endoplasmic reticulum stress,ERS)是指由于各種原因?qū)е碌募?xì)胞內(nèi)質(zhì)網(wǎng)功能發(fā)生紊亂的一種生理病理過(guò)程。多種因素如缺血缺氧、鈣離子失衡、糖耗竭、蛋白糖基化障礙或二硫鍵形成異常等均可使內(nèi)質(zhì)網(wǎng)內(nèi)穩(wěn)態(tài)失衡,引起內(nèi)質(zhì)網(wǎng)應(yīng)激,激活未折疊蛋白反應(yīng)。內(nèi)質(zhì)網(wǎng)應(yīng)激過(guò)程中,機(jī)體通過(guò)增加應(yīng)激蛋白基因的表達(dá),上調(diào)內(nèi)質(zhì)網(wǎng)伴侶蛋白,抑制蛋白翻譯和啟動(dòng)內(nèi)質(zhì)網(wǎng)相關(guān)蛋白降解,改善細(xì)胞生理狀態(tài),加強(qiáng)內(nèi)質(zhì)網(wǎng)的自我修復(fù)功能。內(nèi)質(zhì)網(wǎng)應(yīng)激實(shí)際上是一種細(xì)胞的自我保護(hù)性功能。本文就近年來(lái)內(nèi)質(zhì)網(wǎng)應(yīng)激熱點(diǎn)領(lǐng)域的研究進(jìn)展做一綜述。

      1 內(nèi)質(zhì)網(wǎng)應(yīng)激與未折疊蛋白反應(yīng)

      在真核細(xì)胞的內(nèi)質(zhì)網(wǎng)應(yīng)激中,未折疊或者錯(cuò)誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)腔內(nèi)蓄積而引發(fā)未折疊蛋白質(zhì)反應(yīng)(unfolded protein response,UPR)[2]。UPR是內(nèi)質(zhì)網(wǎng)應(yīng)激的標(biāo)志性現(xiàn)象。UPR由3種重要的內(nèi)質(zhì)網(wǎng)應(yīng)激感受蛋白介導(dǎo):雙鏈RNA依賴的蛋白激酶樣內(nèi)質(zhì)網(wǎng)類激酶[double-stranded RNA-dependent protein kinase (PKR)-like ER kinase,PERK],肌醇需酶1 (inositol requiring enzyme 1,IRE1)和活化轉(zhuǎn)錄因子6 (activating transcription factor 6,ATF6)。在靜息狀態(tài)下,這3種跨膜蛋白均與葡萄糖調(diào)節(jié)蛋白78/B細(xì)胞免疫球蛋白結(jié)合蛋白(glucose-regulated protein 78/B-cell immunoglobulinbinding protein,GRP78/BIP)結(jié)合,呈無(wú)活性狀態(tài)[3]。GRP78屬于熱休克蛋白70 (hot shock protein 70,HSP70) 家族,可以結(jié)合未折疊和錯(cuò)誤折疊的蛋白質(zhì),促進(jìn)新生蛋白質(zhì)的正確折疊,防止未折疊、錯(cuò)誤折疊蛋白質(zhì)的聚集。內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),GRP78表達(dá)上調(diào)非常明顯,因而GRP78的誘導(dǎo)表達(dá)增加被認(rèn)為是UPR激活的標(biāo)志[4]。發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),GRP78轉(zhuǎn)而結(jié)合未折疊或錯(cuò)誤折疊的蛋白質(zhì),從而激活PERK、IRE1和ATF6。

      PERK具有絲/蘇氨酸蛋白激酶活性。在內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),PERK可以磷酸化真核細(xì)胞起始因子2α(eukaryotic initiation factor 2α,eIF2α)上的 51位絲氨酸,從而抑制蛋白質(zhì)的翻譯與合成[5]。這種翻譯水平的調(diào)控可有效減少內(nèi)質(zhì)網(wǎng)內(nèi)新合成的蛋白質(zhì),減輕內(nèi)質(zhì)網(wǎng)負(fù)荷,進(jìn)而減少未折疊和錯(cuò)誤折疊的蛋白質(zhì)[6]。

      IRE1是內(nèi)質(zhì)網(wǎng)N 型跨膜蛋白,具有絲/蘇氨酸蛋白激酶活性和位點(diǎn)特異性的核酸內(nèi)切酶活性[7]。IRE1有 IRE1α和IRE1β兩種構(gòu)型。當(dāng)處于內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài)時(shí),IRE1α自身磷酸化激活其RNA酶活性,切割轉(zhuǎn)錄因子X(jué)盒結(jié)合蛋白1(X box binding protein 1,XBP1) 前體 mRNA 分子內(nèi)一個(gè)26堿基的內(nèi)含子[8],剪接后的mRNA發(fā)生翻譯框移,產(chǎn)生有活性的轉(zhuǎn)錄因子X(jué)BP1s (X box binding protein 1 splicing ),使其成為成熟的mRNA,編碼含有堿性亮氨酸拉鏈結(jié)構(gòu)的轉(zhuǎn)錄因子,轉(zhuǎn)移至細(xì)胞核激活UPR目的基因的表達(dá),增強(qiáng)內(nèi)質(zhì)網(wǎng)內(nèi)蛋白質(zhì)的正確折疊能力。

      ATF6在發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),與GRP78解離,并轉(zhuǎn)移至高爾基體內(nèi),被高爾基體膜蛋白酶位點(diǎn)1蛋白酶 (site-1 protease,S1P)和位點(diǎn)2蛋白酶 (site-2 protease,S2P)切割后激活[9],釋放出含堿性亮氨酸拉鏈結(jié)構(gòu)域的功能性片段,進(jìn)入細(xì)胞核并激活其下游基因的轉(zhuǎn)錄[10]。

      然而,當(dāng)內(nèi)質(zhì)網(wǎng)應(yīng)激過(guò)于劇烈或持久時(shí),細(xì)胞自身不能有效地清除未折疊的蛋白質(zhì)[11],未折疊蛋白反應(yīng)會(huì)啟動(dòng)由轉(zhuǎn)錄因子C/EBP同源蛋白 (C/EBP homologous protein,CHOP)和半胱天冬酶12(caspase-12)介導(dǎo)的內(nèi)質(zhì)網(wǎng)相關(guān)性死亡 (endoplasmic reticulum-associated death,ERAD)[12],清除受損的細(xì)胞,阻止進(jìn)一步的破壞。

      2 內(nèi)質(zhì)網(wǎng)應(yīng)激與炎癥反應(yīng)

      以往的研究指出,炎癥因子可以導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激從而激活未折疊蛋白反應(yīng)。有研究證明,腫瘤壞死因子α (tumor necrosis factor α,TNF-α),白細(xì)胞介素-1β (interleukin-1,IL-1β)以及白細(xì)胞介素-6(interleukin-6,IL-6)分別在纖維肉瘤細(xì)胞[13]和肝細(xì)胞[14]中誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激,并激活PERK、IRE1α和ATF6三條通路。此外,代謝因素如膽固醇、非酯化脂肪酸、葡萄糖、同型半胱氨酸和神經(jīng)遞質(zhì)等[15-17],均可以在各種細(xì)胞中誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激和炎癥反應(yīng)。其可能的機(jī)制是細(xì)胞因子和代謝因素引發(fā)的內(nèi)質(zhì)網(wǎng)內(nèi)鈣離子平衡的失調(diào)和自由基的堆積干擾蛋白質(zhì)的折疊和線粒體的代謝。

      大量證據(jù)表明未折疊蛋白反應(yīng)的信號(hào)途徑和炎癥通路在許多機(jī)制上有內(nèi)在的聯(lián)系。核因子κB(nuclear factor-κB,NF-κB)是炎癥反應(yīng)中起著重要作用的轉(zhuǎn)錄調(diào)節(jié)因子[18]。在無(wú)炎癥刺激時(shí),NF-κB 與其抑制蛋白(inhibitory protein of NF-κB,IκB)結(jié)合而呈無(wú)活性狀態(tài);當(dāng)受到外界刺激時(shí),IκB磷酸化降解并釋放出NF-κB,使其轉(zhuǎn)移入核,激活炎癥基因的轉(zhuǎn)錄。當(dāng)內(nèi)質(zhì)網(wǎng)中大量的未折疊蛋白質(zhì)積聚時(shí)(例如病毒感染),就會(huì)導(dǎo)致NF-κB的激活[19]。

      內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),IRE1α的胞質(zhì)區(qū)磷酸化并募集TNF-α受體相關(guān)因子2 (TNF-α receptor-associated factor 2,TRAF2),IRE1α–TRAF2 復(fù)合物與 Jun 氨基端激酶 (Jun N-terminal kinase,JNK)和IκB激酶(IκB kinase,IKK)結(jié)合并將它們激活。激活的JNK磷酸化轉(zhuǎn)錄因子激活蛋白1 (activator protein 1,AP1)[20];激活的IKK 磷酸化 IκB使其降解釋放出NF-κB。激活的AP1和NF-κB轉(zhuǎn)移入細(xì)胞核,誘導(dǎo)炎癥反應(yīng)相關(guān)基因的轉(zhuǎn)錄[21]。有研究證明,內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí),缺乏IRE1α的小鼠胚胎成纖維細(xì)胞中JNK的激活被明顯削弱,這表明IRE1α可能是連接內(nèi)質(zhì)網(wǎng)應(yīng)激和炎癥反應(yīng)的紐帶[22]。

      此外,PREK和ATF6途徑也可以使NF-κB入核激活下游炎癥因子的表達(dá)[23],例如IL-1和TNF-α,這三條途徑存在一定的交叉性。

      3 內(nèi)質(zhì)網(wǎng)應(yīng)激與脂質(zhì)代謝

      內(nèi)質(zhì)網(wǎng)不止是蛋白質(zhì)加工合成的場(chǎng)所,同時(shí)在脂肪酸合成和膽固醇代謝過(guò)程中也起著重要作用。未折疊蛋白反應(yīng)的三條通路均參與脂質(zhì)合成的調(diào)節(jié)。在肝臟細(xì)胞中,XBP1s調(diào)節(jié)著許多脂肪酸合成相關(guān)基因的轉(zhuǎn)錄,包括硬脂酰輔酶A去飽和酶1 (stearoyl-CoA desaturase-1,SCD-1)、乙酰輔酶A羧化酶2 (acetyl-CoA carboxylases 2,ACC2)和二酰甘油脂?;D(zhuǎn)移酶2 (diacyl glycerol acyltransferase 2,DGAT2)。因此,肝臟特異性敲除XBP1的小鼠血漿甘油三酯和膽固醇水平均下降[24],且沒(méi)有肝臟脂肪變性的表現(xiàn)。同樣的,敲除PERK后,由于缺少脂肪酸合成相關(guān)基因例如脂肪酸合酶 (fatty acid synthase,F(xiàn)AS)、ATP檸檬酸裂解酶 (ATP citrate lyase,ACL)和SCD-1的表達(dá),自由脂肪酸含量下降[25]。

      4 內(nèi)質(zhì)網(wǎng)應(yīng)激與肥胖

      肥胖是導(dǎo)致許多代謝性疾病發(fā)生的始動(dòng)因素。Sharma等[26]證實(shí),隨著體重指數(shù) (body mass index,Bmi)的增加,人體皮下脂肪組織中內(nèi)質(zhì)網(wǎng)應(yīng)激的標(biāo)志性分子表達(dá)增加。進(jìn)食過(guò)多是導(dǎo)致肥胖的主要原因。最近的許多研究表明,內(nèi)質(zhì)網(wǎng)應(yīng)激是進(jìn)食過(guò)多最早出現(xiàn)的結(jié)果,進(jìn)而導(dǎo)致胰島素抵抗和炎癥反應(yīng)。Gregor等[27]分別在ob/ob小鼠和喂養(yǎng)高脂飲食的普通小鼠的實(shí)驗(yàn)中證明,慢性的攝食過(guò)量可以導(dǎo)致脂肪組織內(nèi)質(zhì)網(wǎng)應(yīng)激、胰島素抵抗和炎癥反應(yīng)。而當(dāng)編碼內(nèi)質(zhì)網(wǎng)應(yīng)激的伴侶蛋白的基因過(guò)表達(dá)時(shí),內(nèi)質(zhì)網(wǎng)應(yīng)激、胰島素抵抗和炎癥反應(yīng)均減輕。同時(shí)有研究證明,在肥胖病人實(shí)施胃旁路分流術(shù)一年后,內(nèi)質(zhì)網(wǎng)應(yīng)激的標(biāo)志性分子包括GRP78、磷酸化的eIF2α和JNK蛋白的表達(dá)及XBP1的mRNA表達(dá)均顯著下降[28]。

      Ozcan等[29]發(fā)現(xiàn),與對(duì)照組相比,高脂飲食喂養(yǎng)的小鼠脂肪和肝臟組織PERK和IRE1α的磷酸化程度和JNK的活性均顯著增加。而在肥胖小鼠肝臟內(nèi)過(guò)表達(dá)內(nèi)質(zhì)網(wǎng)的伴侶蛋白——GRP78,脂肪生成的相關(guān)基因表達(dá)和肝臟的脂肪變性均顯著下降。同時(shí)胰島素敏感性也得到了提高,產(chǎn)生了對(duì)機(jī)體有益的代謝效應(yīng)。Sun 等[30]建立了大鼠糖尿病模型,發(fā)現(xiàn)給予3周胰島素治療后內(nèi)質(zhì)網(wǎng)應(yīng)激和炎癥反應(yīng)明顯減輕。

      5 內(nèi)質(zhì)網(wǎng)應(yīng)激與運(yùn)動(dòng)

      運(yùn)動(dòng)鍛煉對(duì)代謝性疾病如肥胖、2型糖尿病和肝臟脂肪變性的恢復(fù)有著重要作用[31]。運(yùn)動(dòng)鍛煉能增加體內(nèi)能量消耗,降低體重,改善肥胖的一系列代謝癥狀[32]。da Luz等建立高脂喂養(yǎng)的大鼠模型并給予2個(gè)月的游泳訓(xùn)練,發(fā)現(xiàn)運(yùn)動(dòng)后大鼠附睪脂肪和肝臟組織中內(nèi)質(zhì)網(wǎng)應(yīng)激明顯減輕,同時(shí)促炎分子含量也顯著下降,胰島素敏感性得到改善[33]。但是對(duì)于運(yùn)動(dòng)和內(nèi)質(zhì)網(wǎng)應(yīng)激的關(guān)系目前尚存在爭(zhēng)議。Kim 等[34]的研究指出,3個(gè)星期的跑臺(tái)運(yùn)動(dòng)并未使肥胖小鼠腦組織和肝臟組織內(nèi)質(zhì)網(wǎng)應(yīng)激得到改善,反而使其增加。運(yùn)動(dòng)可以減脂減肥,從而減輕內(nèi)質(zhì)網(wǎng)應(yīng)激;但另一方面,運(yùn)動(dòng)又是誘導(dǎo)內(nèi)質(zhì)網(wǎng)發(fā)生應(yīng)激的刺激形式。Wu 等[35]發(fā)現(xiàn),一次性力竭運(yùn)動(dòng)和長(zhǎng)時(shí)間適應(yīng)性運(yùn)動(dòng)訓(xùn)練均能導(dǎo)致小鼠股四頭肌組織內(nèi)質(zhì)網(wǎng)應(yīng)激蛋白和mRNA的表達(dá)升高。Gonzalez 等[36]也證明經(jīng)過(guò)3個(gè)月的運(yùn)動(dòng)訓(xùn)練,大鼠比目魚(yú)肌和趾長(zhǎng)伸肌中GRP78的表達(dá)上調(diào)。以上研究證明一定強(qiáng)度或時(shí)間的運(yùn)動(dòng)可使內(nèi)質(zhì)網(wǎng)發(fā)生應(yīng)激。但也有研究指出短期的運(yùn)動(dòng)并不能提高心肌組織中內(nèi)質(zhì)網(wǎng)應(yīng)激蛋白的表達(dá)[37]。

      總之,內(nèi)質(zhì)網(wǎng)應(yīng)激可能與運(yùn)動(dòng)的方式、持續(xù)時(shí)間、強(qiáng)度和肌肉的種類有關(guān),對(duì)此學(xué)術(shù)界尚沒(méi)有統(tǒng)一的定論。運(yùn)動(dòng)是一把雙刃劍,既能誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激,又能改善疾病狀態(tài)下的內(nèi)質(zhì)網(wǎng)應(yīng)激。所以尋找最適合的運(yùn)動(dòng)方式和強(qiáng)度,對(duì)于合理運(yùn)動(dòng)鍛煉,抵御和對(duì)抗疾病,提高健康水平,具有重要意義。

      6 小結(jié)與展望

      在很多生理和病理情況下,如運(yùn)動(dòng)、炎癥、肥胖等都會(huì)引起內(nèi)質(zhì)網(wǎng)應(yīng)激,而內(nèi)質(zhì)網(wǎng)應(yīng)激又會(huì)影響機(jī)體細(xì)胞的蛋白質(zhì)和脂質(zhì)代謝。減輕內(nèi)質(zhì)網(wǎng)應(yīng)激,保護(hù)和恢復(fù)內(nèi)質(zhì)網(wǎng)的功能是未來(lái)研究的方向。如何進(jìn)行合理的運(yùn)動(dòng)無(wú)疑是需要深入研究的領(lǐng)域。另外,近年來(lái)提出了“細(xì)胞器治療”的觀點(diǎn)[38],發(fā)現(xiàn)一些化學(xué)分子伴侶如苯丁酸和牛黃去氧膽酸可以幫助蛋白質(zhì)正確折疊并保護(hù)細(xì)胞免于內(nèi)質(zhì)網(wǎng)應(yīng)激,進(jìn)而減輕疾病癥狀。研究新型藥物作用于未折疊蛋白反應(yīng)通路,阻止內(nèi)質(zhì)網(wǎng)應(yīng)激的發(fā)生發(fā)展,也是未來(lái)研究的重點(diǎn)。

      [1]Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum:coordination of gene transcriptional and translational controls. Genes Dev,1999,13(10):1211-1233.

      [2]Ron D,Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol,2007,8(7):519-529.

      [3]Bertolotti A,Zhang Y,Hendershot LM,et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol,2000,2(6):326-332.

      [4]Schroder M,Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem,2005,74:739-789.

      [5]Shi Y,Vattem KM,Sood R,et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase,PEK,involved in translational control. Mol Cell Biol,1998,18(12):7499-7509.

      [6]Harding HP,Zhang Y,Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature,1999,397(6716):271-274.

      [7]Cox JS,Shamu CE,Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell,1993,73(6):1197-1206.

      [8]Sidrauski C,Walter P. The transmembrane kinase Ire1p is a site-speci fi c endonuclease that initiates mRNA splicing in the unfolded protein response. Cell,1997,90(6):1031-1039.

      [9]Chen X,Shen J,Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum( ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem,2002,277(15):13045-13052.

      [10]Shi Y,Vattem KM,Sood R,et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase,PEK,involved in translational control. Mol Cell Biol,1998,18(12):7499-7509.

      [11]Rao RV,Ellerby HM,Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ,2004,11(4):372-380.

      [12]Ohoka N,Yoshii S,Hattori T,et al. TRB3,a novel ER stress-inducible gene,is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J,2005,24(6):1243-1255.

      [13]Xue X,Piao JH,Nakajima A,et al. Tumor necrosis factor alpha( TNFalpha) induces the unfolded protein response( UPR) in a reactive oxygen species( ROS)-dependent fashion,and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem,2005,280(40):33917-33925.

      [14]Zhang K,Shen X,Wu J,et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic in fl ammatory response. Cell,2006,124(3):587-599.

      [15]Feng B,Yao PM,Li Y,et al. The endoplasmic reticulumis the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol,2003,5(9):781-792.

      [16]Maedler K,Sergeev P,Ris F,et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest,2002,110(6):851-860.

      [17]Kharroubi I,Ladriere L,Cardozo AK,et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms:role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology,2004,145(11):5087-5096.

      [18]Rius J,Guma M,Schachtrup C,et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature,2008,453(7196):807-811.

      [19]Pahl HL,Baeuerle PA. Expression of in fl uenza virus hemagglutinin activates transcription factor NF-kappa B. J Virol,1995,69(3):1480-1484.

      [20]Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell,2000,103(2):239-252.

      [21]Hu P,Han Z,Couvillon AD,et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol,2006,26(8):3071-3084.

      [22]Urano F,Wang X,Bertolotti A,et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science,2000,287(5453):664-666.

      [23]Nakamura T,F(xiàn)uruhashi M,Li P,et al. Double-stranded RNA-dependent protein kinase links pathogen sensing w ith stress and metabolic homeostasis. Cell,2010,140(3):338-348.

      [24]Lee AH,Scapa EF,Cohen DE,et al. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science,2008,320(5882):1492-1496.

      [25]Bobrovnikova-Marjon E,Hatzivassiliou G,Grigoriadou C,et al. PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci USA,2008,105(42):16314-16319.

      [26]Sharma NK,Das SK,Mondal AK,et al. Endoplasmic reticulum stress markers are associated w ith obesity in nondiabetic subjects. J Clin Endocrinol Metab,2008,93(11):4532-4541.

      [27]Gregor MG,Hotamisligil GS. Adipocyte stress:The endoplasmic reticulum and metabolic disease. J Lipid Res,2007,48:1905-1914.

      [28]Gregor MF,Yang L,F(xiàn)abbrini E,et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes,2009,58(3):693-700.

      [29]Ozcan U,Cao Q,Yilmaz E,et al. Endoplasmic reticulum stress links obesity,insulin action,and type 2 diabetes. Science,2004,306(5695):457-461.

      [30]Sun W,Bi Y,Liang H,et al. Inhibition of obesity-induced hepatic ER stress by early insulin therapy in obese diabetic rats. Endocrine,2011,39(3):235-41.

      [31]Chapados NA. Assessment of endurance exercise training in hepatic endoplasmic reticulum stress. Methods Enzymol,2011,489 :97-107.

      [32]Martinez DMP,Lopez M.“Mens sana in corpore sano”:exercise and hypothalamic ER stress. PLoS Biol,2010,8(8):e1000464.

      [33]da Luz G,F(xiàn)rederico MJ,da Silva S,et al. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats. Eur J Appl Physiol,2011, 111(9): 2015-23.

      [34]Kim Y,Park M,Boghossian S,et al. Three weeks voluntary running wheel exercise increases endoplasmic reticulum stress in the brain of mice. Brain Res,2010,1317:13-23.

      [35]Wu J,Ruas JL,Estall JL,et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1alpha/ATF6alpha complex. Cell Metab,2011,13(2):160-169.

      [36]Gonzalez B,Hernando R,Manso R. Stress proteins of 70 kDa in chronically exercised skeletal muscle. P fl ugers Arch,2000,440(1):42-49.

      [37]Murlasits Z,Lee Y,Powers SK. Short-term exercise does not increase ER stress protein expression in cardiac muscle.Med Sci Sports Exerc,2007,39(9):1522-1528.

      [38]Ozcan U,Yilmaz E,Ozcan L,et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science,2006,313(5790):1137-1140.

      猜你喜歡
      內(nèi)質(zhì)網(wǎng)磷酸化蛋白質(zhì)
      蛋白質(zhì)自由
      肝博士(2022年3期)2022-06-30 02:48:48
      內(nèi)質(zhì)網(wǎng)自噬及其與疾病的關(guān)系研究進(jìn)展
      人工智能與蛋白質(zhì)結(jié)構(gòu)
      海外星云(2021年9期)2021-10-14 07:26:10
      憤怒誘導(dǎo)大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá)
      ITSN1蛋白磷酸化的研究進(jìn)展
      LPS誘導(dǎo)大鼠肺泡上皮細(xì)胞RLE-6 TN內(nèi)質(zhì)網(wǎng)應(yīng)激及凋亡研究
      蛋白質(zhì)計(jì)算問(wèn)題歸納
      MAPK抑制因子對(duì)HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
      Caspase12在糖尿病大鼠逼尿肌細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激中的表達(dá)
      組蛋白磷酸化修飾與精子發(fā)生
      遺傳(2014年3期)2014-02-28 20:59:01
      金华市| 梅州市| 长春市| 深水埗区| 南乐县| 枝江市| 鲁甸县| 时尚| 宣城市| 平邑县| 邻水| 平谷区| 阿城市| 玛曲县| 门源| 清河县| 长沙市| 沂水县| 佛冈县| 张家港市| 荃湾区| 水富县| 蒲城县| 昔阳县| 昌乐县| 安福县| 霍邱县| 江都市| 铅山县| 永顺县| 九龙城区| 天水市| 井陉县| 唐山市| 台东市| 武隆县| 宁乡县| 鹤岗市| 木里| 梧州市| 兰西县|