• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of the Prediction of the Engine’s Underwater Exhaust Noise

    2011-06-22 05:07:16WANGXiaoqiangLOUJingjunLIHuaWUHaipingZHUShijian
    船舶力學(xué) 2011年12期
    關(guān)鍵詞:排氣動(dòng)力數(shù)值

    WANG Xiao-qiang,LOU Jing-jun,LI Hua,WU Hai-ping,ZHU Shi-jian

    (1 College of Naval Architecture and Power,Naval University of Engineering,Wuhan 430033,China;

    2 Dalian Navy Academy,Dalian 116018,China)

    Study of the Prediction of the Engine’s Underwater Exhaust Noise

    WANG Xiao-qiang1,LOU Jing-jun1,LI Hua2,WU Hai-ping1,ZHU Shi-jian1

    (1 College of Naval Architecture and Power,Naval University of Engineering,Wuhan 430033,China;

    2 Dalian Navy Academy,Dalian 116018,China)

    The generation mechanism and radiation characteristics of the engine’s underwater exhaust noise are complicated due to gas water two phase flow.In this paper,the engine’s underwater exhaust noise is predicted numerically based on the Mixture multiphase flow model,the RNG κ-ε turbulence model and the Ffowcs Williams-Hawkings acoustic model.Meanwhile,the engine’s underwater exhaust noise is measured based on the designed test rig.Comparison between the predicted underwater exhaust noise and the measured one shows that the proposed numerical method for the prediction of the engine’s underwater exhaust noise is feasible in engineering.

    engine;underwater exhaust;noise prediction;numerical simulation;experiment

    Biography:WANG Xiao-qiang(1982-),male,Ph.D.student of Naval University of Engineering,E-mail:wxq_nue@126.com.

    1 Introduction

    The generation mechanism and radiation characteristics of engine’s underwater exhaust noise are complicated and the related theory is not mature yet because the discharge process is involved with the gas water two phase flow.And the previous researches on this problem rely heavily on experiments[1-9],which are expensive and complex.The engine’s underwater exhaust noise caused by exhaust pressure pulsation,a monopole sound source,can be predicted accurately by the existing theoretical model,however,the dipole source noise formed by the interaction between the fluid and walls,the quadrupole source noise caused by turbulence and the influence of the water spay in the exhaust pipe on the underwater exhaust noise can not be predicted yet.Therefore,it is necessary to further strengthen the research on related theory and simulation of the engine’s underwater exhaust noise and its control technology.

    The engine’s underwater exhaust noise is predicted based on the Mixture model,the RNG κ-ε turbulence model and the Ffowcs Williams-Hawkings(FW-H)acoustic model and the simulation results are verified by the experiment.

    2 Mathematical formulations

    The procedure for computing engine’s underwater exhaust noise consists largely of two steps.In the first step,a time-accurate flow solution is generated using the Mixture model and the RNG κ-ε turbulence model,from which time histories of pressure on the selected source surface are obtained.In the second step,sound pressure signals at the specified receiver location are computed using the source data collected during the first step and the FW-H model,which is applicable to predict the propagation of sound toward free space.

    2.1 Governing equations

    2.1.1 The mixture model

    The mixture model is a simplified multiphase model that can be used to model multiphase flows where the phases move at different velocities,but assume local equilibrium over short spatial length scales.The coupling between the phases should be strong.It can also be used to model homogeneous multiphase flows with very strong coupling and the phases moving at the same velocity.The mixture model can model n phases(fluid or particulate)by solving the momentum,continuity,and energy equations for the mixture,the volume fraction equations for the secondary phases,and algebraic expressions for the relative velocities[10].

    The continuity equation for the mixture is:

    The momentum equation can be expressed as:

    where n is the number of phases,is a body force, μmis the viscosity of the mixture,vdr,lis the drift velocity for secondary phase l,and αlis the volume fraction of phase l.

    The energy equation for the mixture takes the following form:

    where keffis the effective conductivity,SEincludes any other volumetric heat sources.

    The relative velocity(also referred to as the slip velocity)is defined as the velocity of a secondary phase(p ) relative to the velocity of the primary phase(q):

    The drift velocity and the relative velocity)are connected by the following expression:

    From the continuity equation for secondary phase p,the volume fraction equation for secondary phase p can be obtained:

    2.1.2 The RNG κ-ε turbulence model

    The turbulence kinetic energy κ,and its rate of dissipation ε,are obtained from the following transport equations[11]:

    In these equations,Gkrepresents the generation of turbulence kinetic energy due to the mean velocity gradients.Gbis the generation of turbulence kinetic energy due to buoyancy.YMrepresents the contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation rate.The quantities αkand αεare the inverse effective Prandtl numbers for κ and ε,respectively.

    2.2 The Ffowcs Williams and Hawkings model

    The FW-H equation was derived by Ffowcs Williams and Hawkings in 1969 to compute the sound caused by the interaction between the solid boundaries of any movement and fluid using Lighthill acoustic analogy and the theory of generalized functions.A more generalized FW-H equation was derived by Frances Antonio in 1997 by combining Kirchhoff equations and the FW-H equation,which not only has the accuracy of the FW-H equation,but also retains the advantages of Kirchhoff formulas in calculating the total aerodynamic noise.FW-H equation is an accurate sound field equation for monopole,dipole and quadrupole noise prediction,which is formed by reordering the Navier-Stokes equations in the form of the wave equation,meets the wave equations even if the integration surface is in the nonlinear region,and therefore has better adaptability.FW-H equation has been widely successful in the recent decades of application,and is recognized as one of the theoretical basis of the aeroacoustics,in particular,the aerodynamic noise prediction.

    The FW-H equation is essentially an inhomogeneous wave equation that can be derived by manipulating the continuity equation and the Navier-Stokes equations.The FW-H equation can be written as[11]:

    3 Numerical research

    In this section the engine’s underwater exhaust flow field is simulated using the Mixture multiphase flow model and the RNG κ-ε turbulence model when the exhaust back pressure is 0.115MPa and the engine speed is 1 900r/min.Based on the simulation results of the flow field,the engine’s underwater exhaust noise is simulated using the FW-H model.The computational domain of the simulation model contains the exhaust pipe and its external water space,and the state parameters of the exhaust gas of a single-cylinder engine under the operating condition are set as the relevant boundary conditions.

    3.1 Numerical model and boundary conditions

    The three-dimensional two-phase flow field calculation region is shown in Fig.1.The exhaust pipe nozzle(Fig.2)is a cylindrical pipe without any appendages.The exhaust pipe is 1.8m long in the vertical direction,the center of the pipe exit is 1.4m below the water surface and the nozzle diameter D=0.03m.The cylindrical area(The diameter is 40D,and the length is 75D)is occupied by water initially,while the boundaries are set as pressure outlet except that the surface in the left side is set as wall.Orthogonal hexahedral grids are used in the flow field calculation with the jet nozzle and the vicinity of the jet axis encrypted with more dense grids.The turbulent boundary layer is established on the wall of the pipe to fully consider the impact of the wall on turbulence.The whole computational domain is discretized into about 935 748 control volumes by hexahedral cells,which is determined by the grid-independent study.The inlet of the exhaust pipe is set as pressure inlet,and the value of the pressure is defined by UDF,which equals to that of the exhaust gas of the engine under the operating condition.The density of the gas at the inlet is set as constant and the gas temperature is set to 473.15K.The pressure at the pressure outlet is equal to the sum of the local atmospheric pressure and the water pressure at the location and is also defined by UDF.The mathematical model is solved using finite volume method.To ensure the convergence of the solution,the SIMPLE pressure-velocity coupling equation is used for pressure correction,and the equations such as the momentum equation,the turbulence equation,the energy equation and the volume fraction equations are discretized with the first-order upwind theme.First-order implicit time scheme is adopted and the time step of the unsteady calculation is set to 1e-3s.

    Fig.1 Grid of the computational area and boundary conditions

    Fig.2 Grid of the exhaust pipe exit

    3.2 Numerical results

    3.2.1 Flow field

    As is shown in the contours of the static pressure and the velocity magnitude of the vertical profile along the axis of the exhaust pipe at 5.25s(Figs.3~4),the pressure gradient and the velocity gradient are much larger in the vicinity of the exhaust nozzle,and therefore the vicinity of the exhaust nozzle can be regarded as the main sound source area.Fig.5 and Fig.6 show the time history of the static pressure and the spectrum characteristics of the pressure pulsation at the measuring point respectively.As is shown in Fig.6,the frequencies of the main peak of the pressure pulsation are equal to the engine’s firing frequency(15.8Hz)and its higher harmonics.And thus it can be concluded that the pressure pulsation of the two phase exhaust flow field and that of the gas in the exhaust pipe are closely related.

    Fig.3 Contours of static pressure at 5.25s(Pa)

    Fig.4 Contours of velocity magnitude at 5.25s(m/s)

    Fig.5 Time history of the static pressure at the measuring point

    Fig.6 Spectrum characteristics of the pressure pulsation at the measuring point

    3.2.2 Sound field

    Based on the converged simulation results of the unsteady two-phase flow field,the engine’s underwater exhaust noise is simulated using the FW-H model.A permeable cylindrical surface in the vicinity of the exhaust nozzle is selected as the sound source surface,which surrounds the major sound sources.And the diameter is 10D and the length is 20D.The time step(Δt ) is set to 0.001s in consideration of the computational expenses.As the maximum fre-quency of the predicted noise(fM)is limited by the time step fM=1/(2·Δt),the maximum frequency of the predicted noise is 500Hz.The reference sound pressure is set to 1μPa,the farfield velocity 1 500m/s,the far-field density 1 000kg/m3.An observation point is arranged,and the coordinate is(1.25,3.165,-1.7).

    Fig.7 shows the sound pressure level spectrum of the underwater exhaust noise at the observation point.It can be seen from the figure that there are many line spectrum whose frequencies are the engine’s firing frequency(15.8Hz)and its higher harmonics.The sound pressure level at the firing frequency is 152.1dB,which is the highest in the studied frequency range.And the predicted total sound pressure level is 155.9dB.

    Fig.7 Predicted underwater exhaust noise at the monitoring point

    4 Test and validation

    To facilitate the comparison between the simulation results and the test data,and thus evaluate the accuracy of the methods for the prediction of the engine’s underwater exhaust flow field and the underwater exhaust noise proposed in section 3,the test rig and test procedures are designed combing with the relevant parameters of the simulation model to ensure the test conditions consistent with the simulation conditions.The test system includes:the gas supply system,the anechoic water tank and the data acquisition and processing system.The gas supply system is to provide the high-temperature pulsative gas source necessary for the test.It consists of the diesel generator set,the exhaust pipe,vibration isolators,simple acoustic enclosures,and etc.Anechoic pool can reduce the interference of the reverberation of the pool with the noise measurement,and thus can make the measured underwater exhaust noise value closer to that in the environment of free sound field.And therefore the anechoic pool is used in the experiment.The main function of the data acquisition and processing system is to measure and record the state parameters in the test.The main components include the data acquisition system,the hydrophones,the pressure sensors,the thermocouples,the flow meters,the speed sensor,the pressure gauges and etc(see Fig.8).Data acquisition system is the PXI-1042Q data acquisition system using the NI PXI-4472 board.The data acquisition program for the test of the engine’s underwater exhaust noise is developed on LabVIEW,a virtual instrument platform of National Instruments.The RHS-30-type hydrophones and the EWCT-312M-1.7BARA transient-type water-cooled pressure sensors produced by Kulite are used in the test.

    Fig.8 Sketch of experimental system for the engine’s underwater exhaust noise

    The underwater exhaust noise is measured at the same observation point when the engine runs under the similar operating condition comparing with the simulation.By comparing the measured and the predicted underwater exhaust noise level spectrum(Fig.9)at the observation point,it can be found that there are significant similarities.The measured and the predicted noise both have line spectrum at the engine’s firing frequency(15.8Hz)and its higher harmonics and the sound pressure levels are both the highest at the firing frequency in the studied frequency range.At the firing frequency,the predicted sound pressure level is 152.1dB,the measured sound pressure level is 155.4dB,and the difference is 3.3dB.In the studied frequency range,the predicted total sound pressure level is 155.9dB,the measured total sound pressure level is 158.6dB,and the difference is 2.7dB.In the higher frequency range,the difference between the predicted value and the measured data is larger.

    Taking into account the errors of the predicted results and the measured ones,the proposed method for the prediction of the engine’s underwater exhaust noise is feasible in engineering.

    Fig.9 Predicted and measured underwater exhaust noise at the monitoring point

    5 Conclusions

    The engine’s underwater exhaust noise is predicted numerically based on the Mixture multiphase flow model,the RNG κ-ε turbulence model and the Ffowcs Williams-Hawkings acoustic model.And the proposed numerical method is verified by the experiment.Comparison between the predicted underwater exhaust noise and the measured one shows that the simulation results and experimental results are basically the same.Although there are some differences,the proposed numerical method for the prediction of the engine’s underwater exhaust noise can be regarded as feasible in engineering by taking into account the errors of the simulation model and the experiment.And the previous researches on this problem rely heavily on experiments,which are expensive and complex.Therefore the proposed underwater exhaust flow field and noise prediction method can be used for the underwater exhaust noise reduction to shorten the design cycle and reduce the research costs.

    [1]Fang Kaixiang.A study on the submerged exhaust noise generated from an oscillating disk heat engine[J].Shipbuilding of China,1995(3):80-86.

    [2]Zhang Wenping,Ma Qiang,Zhang Zhihua,et al.The ways to attenuate and the factors to affect noise generated from submerged exhaust of a diesel engine[J].Journal of Harbin Shipbuilding Engineering Institute,1991,12(4):406-413.

    [3]Zhang Wenping.Experimental and theoretical studies of submerged exhaust noise from diesel engine[D].Harbin:Harbin Shipbuilding Engineering Institute,1992.

    [4]Zhang Wenping,Ma Qiang,Zhang Zhihua,et al.Noise radiated from the submerged exhaust exit of diesel engine[J].Journal of Harbin Shipbuilding Engineering Institute,1993,14(2):25-33.

    [5]Zhang Wenping,Ma Qiang,Zhang Zhihua,et al.Experimental studies of submerged exhaust noise from diesel engine[J].Chinese Internal Combustion Engine Engineering,1994,15(2):52-56,62.

    [6]Zhang Wenping.The characteristics analysis and control of the exhaust noise of an underwater exhaust submarine[R].China Shipbuilding Technology Report,1995.

    [7]Zhang Wenping,Zhang Zhihua,Ma Qiang.A boundary model of submerged exhaust exit of diesel engine[J].Transactions of CSICE,1996,14(2):188-194.

    [8]Zhang Wenping,Zhang Tianyun,Liu Zhigang,et al.The two-phase flow pattern of submerged exhaust of diesel engine[J].Chinese Internal Combustion Engine Engineering,1996,17(3):14-18.

    [9]Zhang Jianhua,Li Jian.Experimental researches of submerged exhaust noise from diesel engine[J].Wuhan Shipbuilding,1995(1):16-21.

    [10]Zhou Junjie,Xu Guoquan,Zhang Huajun.FLUENT engineering and case analysis[M].Beijing:China Water Power Press,2010:464-466.

    [11]Fluent.Inc.Fluent 6.3 user’s guide[K].2006.

    發(fā)動(dòng)機(jī)水下排氣噪聲預(yù)報(bào)研究

    王曉強(qiáng)1,樓京俊1,李 華2,吳海平1,朱石堅(jiān)1
    (1海軍工程大學(xué) 船舶與動(dòng)力學(xué)院,武漢 430033;2海軍大連艦艇學(xué)院,遼寧 大連116018)

    由于涉及到兩相流,所以發(fā)動(dòng)機(jī)水下排氣噪聲的產(chǎn)生機(jī)理和輻射特性非常復(fù)雜。文章基于Mixture多相流模型、RNG κ-ε湍流模型和Ffowcs Williams-Hawking聲學(xué)模型對發(fā)動(dòng)機(jī)水下排氣噪聲進(jìn)行了數(shù)值預(yù)報(bào)研究,并試驗(yàn)測量了相應(yīng)工況下發(fā)動(dòng)機(jī)水下排氣噪聲,對數(shù)值研究的結(jié)果進(jìn)行了驗(yàn)證。結(jié)果表明,文中所提出的發(fā)動(dòng)機(jī)水下排氣噪聲數(shù)值預(yù)報(bào)方法在工程上是可行的。

    發(fā)動(dòng)機(jī);水下排氣;噪聲預(yù)報(bào);數(shù)值模擬;試驗(yàn)

    TB566

    A

    王曉強(qiáng)(1982-),男,海軍工程大學(xué)船舶與動(dòng)力學(xué)院博士研究生,wxq_nue@126.com;

    朱石堅(jiān)(1955-),男,海軍工程大學(xué)船舶與動(dòng)力學(xué)院教授。

    TB566

    A

    1007-7294(2011)12-1463-08

    date:2011-06-02

    樓京俊(1976-),男,海軍工程大學(xué)船舶與動(dòng)力學(xué)院副教授;

    李 華(1969-),男,海軍大連艦艇學(xué)院工程師;

    吳海平(1982-),男,海軍工程大學(xué)船舶與動(dòng)力學(xué)院博士研究生;

    猜你喜歡
    排氣動(dòng)力數(shù)值
    用固定數(shù)值計(jì)算
    學(xué)習(xí)動(dòng)力不足如何自給自足
    數(shù)值大小比較“招招鮮”
    胖胖一家和瘦瘦一家(10)
    動(dòng)力船
    基于Fluent的GTAW數(shù)值模擬
    焊接(2016年2期)2016-02-27 13:01:02
    基于多動(dòng)力總成的六點(diǎn)懸置匹配計(jì)算
    堀場制作所的新型排氣流量計(jì)
    堀場制作所的新型排氣流量計(jì)
    排氣歧管螺栓緊固力的測定
    色网站视频免费| 国产一区二区亚洲精品在线观看| 免费观看在线日韩| 一个人看的www免费观看视频| 黄色配什么色好看| av在线亚洲专区| 午夜免费观看性视频| 丝瓜视频免费看黄片| 国产在线一区二区三区精| 亚洲精品国产av蜜桃| 亚洲精品国产av蜜桃| 嘟嘟电影网在线观看| 建设人人有责人人尽责人人享有的 | 国产精品不卡视频一区二区| 欧美高清成人免费视频www| 人人妻人人看人人澡| 看免费成人av毛片| 你懂的网址亚洲精品在线观看| 91狼人影院| 80岁老熟妇乱子伦牲交| 2021少妇久久久久久久久久久| 天美传媒精品一区二区| 嫩草影院入口| 久99久视频精品免费| 久久99热6这里只有精品| 中文乱码字字幕精品一区二区三区 | 亚洲图色成人| 国产91av在线免费观看| 丝袜喷水一区| 免费观看精品视频网站| 老女人水多毛片| 午夜福利成人在线免费观看| 亚洲av成人精品一区久久| 久久久久精品久久久久真实原创| 久久久亚洲精品成人影院| 国产永久视频网站| 蜜臀久久99精品久久宅男| 亚洲激情五月婷婷啪啪| 国产乱人视频| 亚洲欧美精品专区久久| 街头女战士在线观看网站| 美女大奶头视频| 日本午夜av视频| 一级毛片 在线播放| 少妇被粗大猛烈的视频| av免费在线看不卡| a级毛片免费高清观看在线播放| 黑人高潮一二区| 午夜亚洲福利在线播放| 一区二区三区四区激情视频| 男插女下体视频免费在线播放| 久久韩国三级中文字幕| 国内精品宾馆在线| 尤物成人国产欧美一区二区三区| 小蜜桃在线观看免费完整版高清| 久久久欧美国产精品| .国产精品久久| ponron亚洲| 久久久久久久久大av| 久久久精品欧美日韩精品| 一个人观看的视频www高清免费观看| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品在线观看| 精品99又大又爽又粗少妇毛片| 国产91av在线免费观看| 极品少妇高潮喷水抽搐| 可以在线观看毛片的网站| 久久久久免费精品人妻一区二区| 全区人妻精品视频| 中文天堂在线官网| 亚洲国产精品专区欧美| 激情五月婷婷亚洲| 乱人视频在线观看| 日本av手机在线免费观看| 99久久精品国产国产毛片| 亚洲国产色片| 麻豆av噜噜一区二区三区| 久久草成人影院| 乱码一卡2卡4卡精品| 联通29元200g的流量卡| 午夜视频国产福利| 国内精品一区二区在线观看| 一个人看的www免费观看视频| 亚洲成人av在线免费| 国产免费一级a男人的天堂| 男人舔奶头视频| 街头女战士在线观看网站| 精品久久久久久电影网| 国产男人的电影天堂91| 亚洲国产欧美人成| 国产精品久久久久久av不卡| 一级毛片我不卡| 在线 av 中文字幕| 亚洲精品中文字幕在线视频 | 最近视频中文字幕2019在线8| 久久6这里有精品| 美女内射精品一级片tv| 国产亚洲精品久久久com| 国产精品国产三级国产专区5o| 久久精品久久久久久久性| 成年免费大片在线观看| 欧美极品一区二区三区四区| 午夜精品一区二区三区免费看| 国产成人精品福利久久| 日日啪夜夜撸| 26uuu在线亚洲综合色| 我的女老师完整版在线观看| 亚洲欧美日韩卡通动漫| 乱系列少妇在线播放| 大又大粗又爽又黄少妇毛片口| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品中国| 免费大片18禁| 日韩 亚洲 欧美在线| 国产亚洲av片在线观看秒播厂 | 黄片无遮挡物在线观看| 一级毛片电影观看| 久久午夜福利片| 久久99热6这里只有精品| 嘟嘟电影网在线观看| 男女那种视频在线观看| 尾随美女入室| 成人亚洲欧美一区二区av| 婷婷色麻豆天堂久久| 色吧在线观看| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 亚洲精品,欧美精品| 日本免费a在线| 亚洲av不卡在线观看| 欧美激情久久久久久爽电影| 一边亲一边摸免费视频| 亚洲精品成人av观看孕妇| 精品少妇黑人巨大在线播放| 免费不卡的大黄色大毛片视频在线观看 | 特级一级黄色大片| 国产精品国产三级国产av玫瑰| 国产老妇伦熟女老妇高清| 日韩成人伦理影院| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 床上黄色一级片| 啦啦啦啦在线视频资源| 天堂中文最新版在线下载 | 丝袜美腿在线中文| 啦啦啦韩国在线观看视频| 亚洲真实伦在线观看| av在线播放精品| 日韩欧美国产在线观看| 日韩av不卡免费在线播放| 天美传媒精品一区二区| 日韩欧美国产在线观看| 日韩av在线免费看完整版不卡| 天美传媒精品一区二区| 日韩电影二区| 少妇丰满av| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 黄片wwwwww| 午夜福利视频1000在线观看| 亚洲最大成人中文| 婷婷色综合大香蕉| 亚洲欧洲日产国产| 中文字幕av在线有码专区| 黄色配什么色好看| 日韩电影二区| 在线观看人妻少妇| 99久久九九国产精品国产免费| 天堂av国产一区二区熟女人妻| 免费观看精品视频网站| 久久久久久久久久成人| 久久精品熟女亚洲av麻豆精品 | 欧美+日韩+精品| 国产黄片美女视频| 午夜日本视频在线| 久久久久久久久大av| 免费看美女性在线毛片视频| 男人爽女人下面视频在线观看| 天堂影院成人在线观看| 亚洲经典国产精华液单| 亚洲自偷自拍三级| 久久久久久久大尺度免费视频| 欧美xxⅹ黑人| 视频中文字幕在线观看| 天堂影院成人在线观看| 欧美日韩精品成人综合77777| 国产精品久久视频播放| 午夜免费男女啪啪视频观看| 美女国产视频在线观看| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜 | 在线观看人妻少妇| 欧美日韩精品成人综合77777| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 日韩欧美三级三区| 中文字幕制服av| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 中文字幕久久专区| 日韩不卡一区二区三区视频在线| 精品人妻熟女av久视频| 一级毛片黄色毛片免费观看视频| 日日干狠狠操夜夜爽| 日韩视频在线欧美| 日本wwww免费看| 能在线免费观看的黄片| 国产男女超爽视频在线观看| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式| 久久热精品热| 亚洲四区av| 亚洲在久久综合| 亚洲av福利一区| 亚洲精品中文字幕在线视频 | or卡值多少钱| 国产乱人偷精品视频| 婷婷色麻豆天堂久久| 亚洲婷婷狠狠爱综合网| 尾随美女入室| 97在线视频观看| 国产精品久久久久久久久免| 精品一区二区三区人妻视频| 美女内射精品一级片tv| 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看| 欧美成人精品欧美一级黄| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频| 80岁老熟妇乱子伦牲交| 美女黄网站色视频| av线在线观看网站| 亚洲成人中文字幕在线播放| a级毛色黄片| 国产一级毛片七仙女欲春2| 久久97久久精品| 午夜免费观看性视频| 亚洲欧美成人综合另类久久久| 日韩亚洲欧美综合| 国产精品久久久久久久电影| 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 日韩大片免费观看网站| 亚洲精品乱码久久久v下载方式| 婷婷色麻豆天堂久久| 99久久精品国产国产毛片| 黄色配什么色好看| 91久久精品国产一区二区三区| 极品少妇高潮喷水抽搐| 热99在线观看视频| 亚洲精品456在线播放app| 午夜福利高清视频| 国产老妇伦熟女老妇高清| 国产黄片美女视频| 一区二区三区四区激情视频| 特级一级黄色大片| 淫秽高清视频在线观看| 国产伦精品一区二区三区四那| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 男女边摸边吃奶| 最近手机中文字幕大全| 国产成人精品福利久久| 国产高清有码在线观看视频| 国产成人一区二区在线| 久久久精品欧美日韩精品| 国产免费又黄又爽又色| 亚洲精品乱久久久久久| 亚洲图色成人| 男人舔女人下体高潮全视频| 亚洲精品456在线播放app| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 国产男女超爽视频在线观看| 男女视频在线观看网站免费| 免费大片黄手机在线观看| 久久久精品94久久精品| 日韩欧美一区视频在线观看 | 少妇的逼水好多| 七月丁香在线播放| 99久久人妻综合| 美女大奶头视频| 亚洲精品第二区| 国内精品美女久久久久久| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 超碰av人人做人人爽久久| av专区在线播放| 七月丁香在线播放| 少妇的逼水好多| xxx大片免费视频| 又爽又黄a免费视频| 日韩中字成人| 中文字幕亚洲精品专区| 亚洲精品日韩av片在线观看| 国产单亲对白刺激| 91aial.com中文字幕在线观看| 国产精品美女特级片免费视频播放器| 午夜福利网站1000一区二区三区| 久久国内精品自在自线图片| 熟女电影av网| 一本久久精品| 熟女电影av网| 美女cb高潮喷水在线观看| 精品酒店卫生间| 超碰av人人做人人爽久久| 国产午夜精品一二区理论片| 精品久久久久久久久av| 美女被艹到高潮喷水动态| 日韩大片免费观看网站| 精品久久久久久成人av| 精品国产三级普通话版| 亚洲美女搞黄在线观看| 亚洲av成人精品一二三区| 极品教师在线视频| 亚洲精品日韩av片在线观看| 久热久热在线精品观看| 国产一区二区在线观看日韩| 久久久久久久国产电影| 搡女人真爽免费视频火全软件| 亚洲成人一二三区av| 亚洲真实伦在线观看| 午夜激情福利司机影院| 国产极品天堂在线| 韩国av在线不卡| ponron亚洲| 在线 av 中文字幕| 亚洲精品aⅴ在线观看| 亚洲精品国产av成人精品| 国产黄片美女视频| 午夜福利在线观看吧| 成年版毛片免费区| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 男女视频在线观看网站免费| 国产男女超爽视频在线观看| 午夜老司机福利剧场| 亚洲成色77777| 丝袜美腿在线中文| 免费av不卡在线播放| 男女视频在线观看网站免费| 国产男女超爽视频在线观看| 久久久久九九精品影院| 国产一级毛片七仙女欲春2| 最近手机中文字幕大全| 大话2 男鬼变身卡| 国产精品一区www在线观看| 国产女主播在线喷水免费视频网站 | 国产成人午夜福利电影在线观看| 色哟哟·www| 可以在线观看毛片的网站| 免费av毛片视频| 亚洲人与动物交配视频| 黄色一级大片看看| 亚洲av免费在线观看| 女人被狂操c到高潮| 国产三级在线视频| 欧美成人精品欧美一级黄| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 免费观看a级毛片全部| 日本一二三区视频观看| 亚洲最大成人中文| 久久韩国三级中文字幕| 国产男女超爽视频在线观看| 高清欧美精品videossex| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 肉色欧美久久久久久久蜜桃 | 国产成人精品一,二区| 最近最新中文字幕免费大全7| 午夜久久久久精精品| 亚洲综合色惰| 精品久久久噜噜| 最新中文字幕久久久久| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 青春草国产在线视频| 国产精品福利在线免费观看| 欧美日韩亚洲高清精品| 亚洲怡红院男人天堂| 蜜桃久久精品国产亚洲av| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天堂av国产一区二区熟女人妻| 国国产精品蜜臀av免费| 免费av观看视频| 欧美性猛交╳xxx乱大交人| 91狼人影院| 一夜夜www| 黄色配什么色好看| 性色avwww在线观看| 精品国产一区二区三区久久久樱花 | 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 午夜福利在线在线| 99久国产av精品| 国产一区二区在线观看日韩| 天堂影院成人在线观看| 又粗又硬又长又爽又黄的视频| 啦啦啦韩国在线观看视频| 色综合站精品国产| 国产伦在线观看视频一区| 国产黄片视频在线免费观看| 久久久久久久久久人人人人人人| 老司机影院成人| 欧美精品一区二区大全| 国模一区二区三区四区视频| 国产一区二区三区综合在线观看 | 在线 av 中文字幕| 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 中文在线观看免费www的网站| 国产精品国产三级专区第一集| 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 午夜激情久久久久久久| 国产91av在线免费观看| 日韩精品青青久久久久久| 男女视频在线观看网站免费| 波多野结衣巨乳人妻| 最近最新中文字幕免费大全7| 晚上一个人看的免费电影| 三级国产精品欧美在线观看| 大片免费播放器 马上看| 日韩成人伦理影院| 777米奇影视久久| 99热这里只有精品一区| 国内少妇人妻偷人精品xxx网站| 久久午夜福利片| 国产成人freesex在线| 少妇猛男粗大的猛烈进出视频 | 七月丁香在线播放| av专区在线播放| 一级二级三级毛片免费看| 久久鲁丝午夜福利片| 欧美成人a在线观看| 美女脱内裤让男人舔精品视频| 国产精品嫩草影院av在线观看| av网站免费在线观看视频 | 国产午夜福利久久久久久| av卡一久久| 免费看光身美女| 欧美成人a在线观看| 网址你懂的国产日韩在线| 日本av手机在线免费观看| 尾随美女入室| 大片免费播放器 马上看| 午夜福利在线观看免费完整高清在| 亚洲欧美一区二区三区国产| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 麻豆成人午夜福利视频| 日产精品乱码卡一卡2卡三| 欧美成人精品欧美一级黄| www.色视频.com| 中文字幕久久专区| 国产综合精华液| 亚洲av二区三区四区| 国内精品宾馆在线| 久久99精品国语久久久| 别揉我奶头 嗯啊视频| 777米奇影视久久| 日韩在线高清观看一区二区三区| 国精品久久久久久国模美| 全区人妻精品视频| 99热全是精品| 精品国产三级普通话版| 亚洲在线观看片| 中国国产av一级| 亚洲性久久影院| 亚洲婷婷狠狠爱综合网| 国内少妇人妻偷人精品xxx网站| 亚洲成人一二三区av| 精品一区二区免费观看| a级一级毛片免费在线观看| 久久综合国产亚洲精品| 最近中文字幕2019免费版| 乱系列少妇在线播放| 日本色播在线视频| 国产一区有黄有色的免费视频 | 黄色欧美视频在线观看| 嫩草影院精品99| 一个人看的www免费观看视频| 在线 av 中文字幕| 久久国产乱子免费精品| 老女人水多毛片| 激情五月婷婷亚洲| 国产黄片美女视频| 国产精品美女特级片免费视频播放器| 黄片wwwwww| 欧美一级a爱片免费观看看| 18禁在线播放成人免费| 老司机影院毛片| 亚洲国产精品成人久久小说| av国产免费在线观看| av在线老鸭窝| 免费看美女性在线毛片视频| 精品国产露脸久久av麻豆 | 欧美xxⅹ黑人| 亚洲成人一二三区av| 免费电影在线观看免费观看| 中文字幕av在线有码专区| 久久韩国三级中文字幕| ponron亚洲| 中文字幕亚洲精品专区| 亚洲内射少妇av| 久久久久国产网址| av女优亚洲男人天堂| 日本午夜av视频| 精品久久久噜噜| 一个人免费在线观看电影| 最近中文字幕2019免费版| 在线免费观看不下载黄p国产| 日韩不卡一区二区三区视频在线| 国产伦精品一区二区三区四那| 成人午夜高清在线视频| 亚洲欧美一区二区三区黑人 | 国产 亚洲一区二区三区 | 久久精品熟女亚洲av麻豆精品 | 日韩成人伦理影院| 性色avwww在线观看| 日产精品乱码卡一卡2卡三| 伊人久久国产一区二区| 嫩草影院精品99| 最近中文字幕2019免费版| 免费在线观看成人毛片| 亚洲国产av新网站| 久久久欧美国产精品| 一区二区三区免费毛片| 国产亚洲5aaaaa淫片| 精品人妻一区二区三区麻豆| 91久久精品国产一区二区三区| 波野结衣二区三区在线| 99热全是精品| 免费电影在线观看免费观看| 国产伦一二天堂av在线观看| 午夜精品在线福利| 亚洲成人中文字幕在线播放| 国产淫语在线视频| 午夜福利视频精品| 午夜日本视频在线| 乱码一卡2卡4卡精品| 99九九线精品视频在线观看视频| 你懂的网址亚洲精品在线观看| 成人鲁丝片一二三区免费| 国产欧美另类精品又又久久亚洲欧美| 麻豆成人av视频| 高清欧美精品videossex| 久久国产乱子免费精品| 联通29元200g的流量卡| 午夜福利视频精品| 日日啪夜夜撸| 十八禁国产超污无遮挡网站| 国产综合精华液| 麻豆久久精品国产亚洲av| 午夜精品国产一区二区电影 | 91久久精品国产一区二区成人| 国产爱豆传媒在线观看| 免费黄网站久久成人精品| 久久精品综合一区二区三区| 亚洲成人av在线免费| 久久精品久久久久久久性| 精品午夜福利在线看| 欧美激情久久久久久爽电影| 久久精品夜色国产| 高清日韩中文字幕在线| 麻豆成人av视频| 亚洲精品日本国产第一区| 又大又黄又爽视频免费| 欧美高清成人免费视频www| 夜夜骑夜夜射夜夜干| 免费观看a级毛片全部| 秋霞伦理黄片| 99九九在线精品视频| 黄片无遮挡物在线观看| 久久狼人影院| 丝袜美足系列| 青草久久国产| 青春草视频在线免费观看| 高清不卡的av网站| 国产黄色免费在线视频| 国产精品麻豆人妻色哟哟久久| 天美传媒精品一区二区| 一级片免费观看大全| av在线app专区| xxxhd国产人妻xxx| 91午夜精品亚洲一区二区三区| 97在线人人人人妻| 精品少妇久久久久久888优播| 美女大奶头黄色视频| 国产日韩欧美亚洲二区| 精品少妇久久久久久888优播| 母亲3免费完整高清在线观看 | 欧美bdsm另类| 免费看不卡的av| 婷婷色综合www| 26uuu在线亚洲综合色| 亚洲精华国产精华液的使用体验| 亚洲四区av| 精品国产一区二区久久| 亚洲,欧美,日韩| 水蜜桃什么品种好| 成人国产av品久久久| 天天操日日干夜夜撸| 精品亚洲乱码少妇综合久久| 午夜免费鲁丝| 亚洲激情五月婷婷啪啪| 国产精品久久久av美女十八| 国产免费视频播放在线视频| 在线观看免费日韩欧美大片| 一区福利在线观看|