• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Generation of Standardized Load-time Histories and Standardized Load Spectra

    2011-09-22 07:15:42LIShanshanCUIWeicheng
    船舶力學 2011年12期

    LI Shan-shan,CUI Wei-cheng

    (1 State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China;2 China Ship Scientific Research Center,Wuxi 214082,China)

    1 Introduction

    Recently,a Unified Fatigue Life Prediction(UFLP)method for marine structures has been proposed by the authors’group[1].In the application of the UFLP method,it is necessary to input a load-time history.For a structure to be designed using UFLP,some sort of standardized load-time history(SLH)must be provided.

    In most references,the acronym SLH is generally used for‘standardized load-time histories’ as well as for ‘standardized load sequences’,including ‘load spectra’.More specifically,it is distinguished between ‘load-time history’ for processes with actual time information and ‘load sequence’ as a succession of loading events without explicit time information[2].However,in this paper,we distinguish the ‘standardized load-time histories’ with ‘standardized load spectra’.Standardized load-time history is for time domain description,and the latter one is defined as a spectrum that does not cover the total expected in-service spectrum,but only a representative fraction(return period)in frequency domain.This spectrum is thought to be repeated in a test or a numerical simulation until final failure or the anticipated usage would be safely covered.It may be interesting for an assessment of the necessary effort in terms of testing time and cost,but it is also relevant with regard to a realistic overall spectrum shape where the(calculated)fatigue damage is properly distributed over large,medium and small cycles.

    Due to many kinds of advantages,standardized load-time histories have been developed and applied to fatigue studies for many years.The first SLH proposed and extensively applied was Ga?ner’s 8 level blocked programme test which can be dated back to 1930s[2].However,the significant progress was made in 1970s.With the need for optimum light-weight design,originally the aircraft industry was the main driver for these efforts.Two of the most well known SLH’s are the TWIST and FALSTAFF sequences for transport and fighter aircraft,respectively,which have been and are still being applied for numerous studies on materials,joints and other structural elements.HELIX/FELIX and the two TURBISTAN sequences are further examples from the aerospace field.Because of the relatively high number of cycles of the TWIST and HELIX/FELIX sequences,shortened versions of these SLH’s have been also devised as has been done later with the WISPER and other sequences.

    Starting in the mid 1980s,SLH’s for non-aerospace applications have been developed covering areas such as wind turbines,offshore platforms or steel mill drives.In the US,activities were mainly centered on the derivation of test load sequences to be used for evaluation and development of fatigue life prediction methodology[2].Bodies like the SAE Fatigue and E-valuation Committee took a pragmatic approach by selecting test load sequences from existing strain measurements,which were felt to be typical for the ground vehicle industry.The early quite short sequences published in 1977,were followed later by biaxial sequences that again were based on a set of measurements made available from different sources,but were more realistic with regard to spectrum length and distribution of small and large cycles.Similarly in the US aircraft community a variety of load sequences have been generated and distributed without the formal framework of European SLH’s,for example sequences typical for fighters(F-16)or transports(C-5)with different mission-dependent load cycle distributions.These load sequences are frequently used for validation of numerical fatigue life prediction concepts and software packages.

    The purpose of this paper is to discuss various issues related to the generation of standardized load-time histories and standardized load spectra.It starts from an overview on SLH available at present,then it details the procedure on generation of the standardized load spectra and load-time history.An example calculation is given to show the process in the end.

    2 Basis of generation of standardized load-time histories and load spectra

    The basis of the generation of standardized load-time histories is given in Ref.[3].These include Load measurements,Usage statistics,General definitions and Non-technical items[3].They are briefly described as follows.

    (1)Load measurements

    Measurements from several similar structures should be available,because otherwise it would be impossible to identify the characteristic features of the spectrum,the sequence and mixture of events and load variations.For the existing SLHs,the respective data bases that have been collected and carefully assessed by the groups of experts were considered sufficient with respect to their statistical significance.

    (2)Usage statistics

    At best the measurements available cover all relevant modes of operation and environmental conditions,but very probably not in the correct percentage.Therefore,additional information has to be collected and introduced with regard to usage statistics such as the anticipated distribution of weather statistics(seastates,max wave heights)for certain geographical locations for offshore applications,etc.

    (3)General definitions

    A number of spectrum parameters have to be defined such as the extreme values of loads which may have to be extrapolated from the data pool or determined by physical limits.Similarly the block size or return period of the SLH has to be agreed which must not be too short in order to avoid unrealistically truncated spectrum shapes(close to a constant amplitude test).With respect to applicability considerations,it is often necessary(and possible)to omit small‘non-damaging’ (at least in a relative sense)load variations.‘Rules of thumb’ have evolved that give some guidance for the selection of omission levels[4].The aspect of a realistic distribution of damage over the load ranges such as the block size(number of cycles per block)and equivalent usage present in the spectrum should be adequately taken into account.

    (4)Non-technical items

    Experience shows that the development of a SLH should be a cooperative effort of several contributors in order to consider the various aspects and requirements effectively.The principles followed and the range of application should be clearly documented and published.

    3 Generation of standardized load-time histories and load spectra

    Offshore structural loading environment can be described as sequences of different,modes which may be sea states of the given severity.These modes of operation contain load cycles of difference,but typical magnitudes and frequencies.Often distinct patterns of grouped load cycles can be distinguished,called a loading event or element,such as different sail phases of a ship.The occurrence of modes and loading events has to be defined in terms of frequency,severity and mixture/sequence,which in summary establish the so called operating profile.

    As a basic input to a SLH generation,statistically adequate samples of load measurements under operational conditions have to be available for every loading event.By means of data evaluation and processing the measured loading samples are prepared for compilation accord-ing to the operating profile.Thus,the overall load spectra will be defined,but for definition of the final load sequences and/or load time histories.The general approach for generation of SLH’s is shown in Fig.1.Further steps have to be taken that are addressed later in this Section.

    Fig.1 General(simplified)approach for the generation of SLH’s(example:passenger vehicle)[2]

    3.1 Operating profiles

    The operating profile describes the service conditions for the total or a representative fraction of the operating period.The approaches for determination of operating profiles depend on the type of structural application concerned.The use of airplanes,helicopters,offshore structures,wind energy plants,etc.can,as a rule,be predicted and verified quite well.Operating profiles can therefore be based on reliable data,e.g.mission profiles(aircraft),meteorological long-time wind(wind energy plants)or sea state observations(offshore platforms),e.g.Ref.[5].

    3.2 Analysis of operational loads

    Statistically adequate samples of operational loads have to be available for every load case.These samples are usually acquired by in-service measurements,but they may also be supported by calculations or simple assumptions.Data processing aims at the preparation of the measured samples to be used as a basis for the generation of test load sequences compiled according to the operating profile,comp.Fig.1.Tab.4 of Ref.[2]summaries the procedures that may be applied for analysis purposes.

    The two-parametric rainflow counting has the greatest significance for time domain fatigue analyses today.The result is the rainflow matrix(with residuum)that contains the number,amplitudes and mean values of load cycles that can be traced back to closed stressstrain hysteresis loops of a representative material element.These load cycles are considered to be the basic damaging elements of a load sequence.

    3.3 Determination of load spectra by extrapolation

    The load cycle distributions derived from sample measurements have to be extrapolated according to the requirements of the operating profile.The simplest way is the plain repetition(factor for the cumulative frequency of every loading element)without extrapolation of the maximum load levels.This may be sufficient when the maximum loads are well defined and already covered by the measured loading elements available(e.g.vehicle applications with extreme values measurements in proving grounds),see Fig.2.

    Fig.2 Compilation of a load spectrum by simple repetition of loading segments according to the associated operating profile[2]

    If only segments of a random load sequence are available,generally extrapolation up to physical limits will be necessary.A simple,but well-suited approach for continuous loading environments would rely on extrapolation based on an approximation of the respective sample load spectra by exponential distributions,Eq.(2)[6].However,for loading environments with discontinuous single loading events,the distribution of extreme values originating from consistent physical causes has to be considered.In principle,the methods mentioned are applicable for uniaxial loading and one-parametric distributions.However,in the framework of the so called simultaneous procedure[7],where basic elements are not load cycles,but short(multiaxial)load segments,they can be applied for the extrapolation of multiaxial processes including two parametric distributions(rainflow,joint density distributions),too.

    3.4 Generation of load time-histories for fatigue tests

    For the synthesis of test load sequences and load time histories,approaches compiled in Tab.5 of Ref.[2]will be applied with similar categories as for the analysis phase.

    (1)Use of measured load segments(time histories or sequences)

    With respect to the various loading and test conditions,synthesis of test load sequences by combination and repetition of measured loading segments is always possible.The main advantage of this approach is that all characteristics of the loading conditions are maintained with respect to the correct order,frequency contents,correlation functions or phase relations of load cycles.However,the resulting test sequence and time would be unacceptably long without further processing.Therefore,this approach has to be combined with time reduction meth-ods which again depend on the loading and test conditions.

    For uniaxial loading with stiff components(without environmental impact),the most effective time reduction is achieved by reduction of the load time histories to turning points and omission of small load cycles[4]. ‘Allowable’filter levels for omission have to be defined with care,but the reader should refer to the literature with regard to this topic[4,8].The additional inclusion of environmental exposure(e.g.temperature)may partly counterbalance the time reduction effect(comp.FALSTAFF and ENSTAFF).

    The omission of low-intensity load segments(instead of single load cycles)is a less effective method that,nevertheless,has to be applied when real-time load histories need to be utilized,e.g.in case of dynamic response,connected with multiaxial loading.

    For stiff components(negligible dynamic response),however,a reduction of testing time for multiaxial and/or rotating loading is also possible via the much more effective omission of individual load cycles if it is combined with an adaptation of the load-time history characteristics to the limits of the test facility.

    (2)Generation of load sequences by random drawing

    In most standardization applications,however,the more general(pseudo-)random generation procedures are preferred based on one or a set of load spectra that encompass the desired loading environment.For the generation of a random sequence of load cases(realization of the operating profile,Fig.1),the Markov reconstruction is well suitable,because it takes successive events into account.For synthesis of uniaxial random load sequences on a cycleby-cycle basis,random drawing of load cycles from cumulative frequency distributions[9-10],Markov-reconstruction for stationary processes[11]up to the sophisticated rainflow reconstruction[12]have been used.

    The Fourier procedures(like power spectral density)are particularly relevant for applications under dynamic test conditions.In this paper,it has to be emphasized that power spectra and other results of Fourier analyses are not directly fatigue-relevant,because load cycles are not clearly defined.For stationary Gaussian processes,however,a well-defined relation exists between power spectral densities and cumulative frequency distributions[6,13-14].This means that the Fourier tools can be applied for stationary Gaussian processes even if they are only a fraction of more complex load-time histories.

    4 A practical example of generation of standardized load-time history and load spectra

    In order to determine the design load for a specific ship or an offshore structure,we first need to provide the time fraction for each sea state,(Si,pi),where i is the sea state number from 0 to 12,0 can be used as the port time,Siis the ith sea state number and piis the time fraction of the ith sea state.Now if we know a short time period of sea state k,we can convert this measurement to different sea state assuming all the responses are in linear range.Then for each sea state,we extrapolate to the corresponding fraction of the design life.The next step,we should discuss in two aspects.In time domain analysis,we can compose a whole load history with all different sea state time fractions,then we can also study the load sequence effect for the structure’s fatigue behavior;and in frequency domain analysis,we can count and summarize all the cycles for different sea states,and derive the load spectra.This load spectrum will be independent of the short time measurements.If the time fraction for each sea state,(Si,pi)has been specified,no matter what sea state is used for the short time measurement,the same design load spectrum will be derived.The procedure of obtain the standardized loadtime history and load spectrum is shown in Fig.3.

    Fig.3 Procedure of derivation of standardized load-time history and load spectra

    Fig.4 Load signals of seastate 4 and seastate 8

    The definition of the seastates differs between some sources.Therefore,it is necessary to reconcile this information by means of the socalled ‘significant wave height’ H1/3,that is the average of the one third highest waves[4].The load time histories of different seastates here are obtained by linear conversion of the measurement,as shown in Fig.4.

    During an offshore structure’s service life of about 25 years,one year seems to be a logical return period,because offshore structures in long run experience similar weather every year.Here we suppose time scale of each seastate is shown in Tab.1.

    Tab.1 Time scale of each seastate used in this paper

    4.1 Generation of standardized load time-histories

    According to data in Tab.1,we can use load extrapolation method introduced in Ref.[15]to obtain a complete one-year load-time history,and range all the load histories of different sea states in different orders,see Fig.5 and Fig.6.The load sequence effect will be studied in the future.

    4.2 Generation of standardized load spectra

    Fig.5 Load-time history arranged in a lower to higher order

    Fig.6 Load-time history arranged in a random order

    Fig.7 Load spectra of seastates 1~12(Ranges of all cycles)

    The corresponding time fraction of one year extrapolated load spectra of different 12 seastates is shown in Fig.7,which is obtained by load extrapolation method[5]and counted by rainflow cycle counting method[15].

    The standard load spectrum finally has been generated by linking the generated strain histories for each seastate according to the time scale of seastates.Standardized load spectrum for a duration of one year is obtained at last,see Fig.8.

    Fig.8 Standardized load spectra for a duration of 1 year

    5 Summary

    In practical application,it is not satisfactory that using different design loads to assess the fatigue life of a structure at every time.Therefore,how to construct the standardized design load from limited practical measurements is a very important issue in fatigue life prediction.In this paper,a method to establish the standardized load-time history and load spectra from short time fractions for a specific structure has been introduced.An example calculation is given to illustrate the process.

    [1]Cui W C,Wang F,Huang X P.A Unified Fatigue Life Prediction(UFLP)method for marine structures[J].Marine Structures,2011,24(2):153-181.

    [2]Heuler P,Kl?tschke H.Generation and use of standardised load spectra and load-time history[J].International Journal of Fatigue,2005,27(8):974-990.

    [3]Berger C,Eulitz K G,Heuler P,Kotte K L,Naundorf H,Schuetz W,Sonsino C M,Wimmer A,Zenner H.Betriebsfestigkeit in Germany-an overview[J].International Journal of Fatigue,2002,24:603-625.

    [4]Heuler P,Seeger T.Criterion for omission of variable amplitude loading histories[J].Int J Fatigue,1986,8(4):225-230.

    [5]Schütz W,Kl?tschke H,Hück M,Sonsino C M.Standardized load sequence for offshore structures-WASH I[J].Fatigue Fract Eng Mater Struct,1990,13(1):15-29.

    [6]Buxbaum O,Betriebsfestigkeit sichere,wirtschaftliche Bemessung schwingbruchgef?hrdeter Bauteile.Durability,safe and economic design of fatigue-loaded components[M].Verlag Stahleisen mbH,Düsseldorf,2.Auflage,1992.

    [7]Nieslony A.Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components[J].Mechanical Systems and Signal Processing,2009,23(8):2712-2721.

    [8]Conle F A.An examination of variable amplitude histories in fatigue[D].PhD thesis.University of Waterloo,Canada,1979.

    [9]Schütz D,Lowak H,de Jonge J B,Schijve J.A standardised load sequence for flight simulation tests on transport aircraft wing structures[R].LBF-Report FB-106,NLR-Report TR 73,1973.

    [10]Aicher W,Branger J,van Dijk G M,Ertelt J,Hück M,de Jonge J B,et al.Description of a fighter aircraft loading standard for fatigue evaluation FALSTAFF[R].Common report of FCW Emmen,LBF,NLR,IABG,1976.

    [11]Haibach E,Fischer R,Schütz W,Hück M.A standard random load sequence of Gaussian type recommended for general application in fatigue testing;its mathematical background and digital generation[M].In:Bathgate RG,editor.Fatigue testing and design.London:The Society of Environmental Engineers,1976:29.1-29.21.

    [12]Schütz D,Kl?tschke H,Steinhilber H,Heuler P,Schütz W.Standardized load sequences for car wheel suspension components,car loading standard-CARLOS[R].Fraunhofer-Institut für Betriebsfestigkeit(LBF),Darmstadt,Industrieanlagen-Betriebsgesellschaft mbH(IABG),Ottobrunn,LBF-Report No.FB-191,1999.

    [13]Bendat J S,Piersol A G.Random data analysis and measurement procedures[M].New York:Wiley,1971.

    [14]Papoulis A.Probability-random variables and stochastic processes[M].New York:McGraw-Hill,1965.

    [15]Li Shanshan,Wang Zhibo,Cui Weicheng.On implementing a practical algorithm to generate fatigue loading history or spectrum from short time measurement[J].Journal of Ship Mechanics,2011,15(3):286-300.

    国产日本99.免费观看| 伦理电影大哥的女人| 丰满人妻熟妇乱又伦精品不卡| 日本撒尿小便嘘嘘汇集6| 欧美乱妇无乱码| 高清毛片免费观看视频网站| a在线观看视频网站| 亚洲精品久久国产高清桃花| 十八禁人妻一区二区| 少妇人妻精品综合一区二区 | 在线观看免费视频日本深夜| 香蕉av资源在线| 日韩欧美免费精品| 免费看日本二区| 99久久99久久久精品蜜桃| 精品一区二区三区人妻视频| 亚洲精品色激情综合| 久久天躁狠狠躁夜夜2o2o| 免费看日本二区| 日日摸夜夜添夜夜添av毛片 | АⅤ资源中文在线天堂| 亚洲国产色片| 午夜精品一区二区三区免费看| 一级黄色大片毛片| 久久精品久久久久久噜噜老黄 | 两人在一起打扑克的视频| 成人欧美大片| 亚洲一区二区三区色噜噜| 他把我摸到了高潮在线观看| 久久午夜福利片| 精品午夜福利视频在线观看一区| 婷婷亚洲欧美| 一进一出好大好爽视频| 成人无遮挡网站| 亚洲avbb在线观看| 一个人看视频在线观看www免费| 99国产极品粉嫩在线观看| 免费av毛片视频| 欧美zozozo另类| 国产精品伦人一区二区| 激情在线观看视频在线高清| 久久久成人免费电影| 一区二区三区四区激情视频 | 搡女人真爽免费视频火全软件 | 久久精品国产自在天天线| 我要看日韩黄色一级片| 日本撒尿小便嘘嘘汇集6| 18+在线观看网站| 12—13女人毛片做爰片一| 亚洲18禁久久av| 俺也久久电影网| 亚洲欧美精品综合久久99| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 色哟哟·www| 国产淫片久久久久久久久 | 搡女人真爽免费视频火全软件 | 国产精品av视频在线免费观看| 嫩草影院新地址| 成人鲁丝片一二三区免费| 91九色精品人成在线观看| 好男人电影高清在线观看| 深夜精品福利| 搡老妇女老女人老熟妇| 亚洲精品456在线播放app | 国产精品影院久久| www.色视频.com| 国产精品精品国产色婷婷| 十八禁人妻一区二区| 欧美xxxx性猛交bbbb| 国产高清三级在线| 亚洲 欧美 日韩 在线 免费| 变态另类丝袜制服| 夜夜夜夜夜久久久久| 欧美日本视频| 成人三级黄色视频| 99久久无色码亚洲精品果冻| 久久国产精品人妻蜜桃| 国产精品一区二区性色av| 长腿黑丝高跟| av女优亚洲男人天堂| 中文字幕人妻熟人妻熟丝袜美| 国语自产精品视频在线第100页| 久久精品国产自在天天线| 欧美在线一区亚洲| 天堂影院成人在线观看| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| 一夜夜www| 久久草成人影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 免费黄网站久久成人精品 | 国产真实乱freesex| 99热精品在线国产| 精品熟女少妇八av免费久了| 搞女人的毛片| 久久亚洲精品不卡| 午夜亚洲福利在线播放| 国产人妻一区二区三区在| 日韩欧美国产在线观看| 99国产精品一区二区三区| 99久久久亚洲精品蜜臀av| 男女下面进入的视频免费午夜| 国产一区二区亚洲精品在线观看| 亚洲精华国产精华精| 夜夜夜夜夜久久久久| 国产探花在线观看一区二区| 一个人看的www免费观看视频| 精品一区二区三区人妻视频| 亚洲综合色惰| 色哟哟·www| 性插视频无遮挡在线免费观看| 亚洲黑人精品在线| 禁无遮挡网站| 日本撒尿小便嘘嘘汇集6| 亚洲美女搞黄在线观看 | 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区| 国产免费一级a男人的天堂| 亚洲精品粉嫩美女一区| 国产成人aa在线观看| 天堂av国产一区二区熟女人妻| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 成人美女网站在线观看视频| 亚洲精品一区av在线观看| 一个人免费在线观看电影| 精品久久久久久成人av| 在线天堂最新版资源| 国产欧美日韩精品亚洲av| 国产中年淑女户外野战色| 好看av亚洲va欧美ⅴa在| 美女大奶头视频| 丝袜美腿在线中文| 啦啦啦观看免费观看视频高清| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 日日夜夜操网爽| 神马国产精品三级电影在线观看| 一个人观看的视频www高清免费观看| 亚洲第一电影网av| 国产乱人视频| 亚洲黑人精品在线| 久久久久久久亚洲中文字幕 | 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区 | 精品久久久久久成人av| 亚洲专区中文字幕在线| 国产成人福利小说| 最近最新免费中文字幕在线| 99在线视频只有这里精品首页| 国产亚洲av嫩草精品影院| 精品国产亚洲在线| 91狼人影院| 中文资源天堂在线| 高清在线国产一区| 99热这里只有精品一区| 成熟少妇高潮喷水视频| 又黄又爽又刺激的免费视频.| 日韩大尺度精品在线看网址| 18+在线观看网站| 国内精品一区二区在线观看| 精品一区二区三区人妻视频| 动漫黄色视频在线观看| ponron亚洲| 午夜福利18| 亚洲无线在线观看| 亚洲精华国产精华精| 老司机午夜福利在线观看视频| 国产亚洲精品综合一区在线观看| 久久久久久九九精品二区国产| 婷婷六月久久综合丁香| 亚洲欧美日韩卡通动漫| 91麻豆av在线| 国产毛片a区久久久久| 深夜a级毛片| 日韩欧美免费精品| 免费在线观看亚洲国产| 国产色爽女视频免费观看| 免费av不卡在线播放| 国产精品久久久久久精品电影| 精品免费久久久久久久清纯| 国产成人欧美在线观看| 国产色爽女视频免费观看| 网址你懂的国产日韩在线| 91av网一区二区| 噜噜噜噜噜久久久久久91| 亚洲黑人精品在线| 国产美女午夜福利| 人妻久久中文字幕网| a级一级毛片免费在线观看| 国产白丝娇喘喷水9色精品| 日韩中文字幕欧美一区二区| 精华霜和精华液先用哪个| 51午夜福利影视在线观看| 可以在线观看的亚洲视频| 淫妇啪啪啪对白视频| 国产免费男女视频| 亚洲精品成人久久久久久| 久久久久久大精品| 好男人在线观看高清免费视频| 日韩大尺度精品在线看网址| 国产一区二区三区视频了| 国产主播在线观看一区二区| 国产一区二区亚洲精品在线观看| 国产精华一区二区三区| 亚洲一区高清亚洲精品| 老女人水多毛片| 黄色一级大片看看| 1000部很黄的大片| 宅男免费午夜| 18禁裸乳无遮挡免费网站照片| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 1000部很黄的大片| 国产色爽女视频免费观看| 午夜日韩欧美国产| 成人特级黄色片久久久久久久| 精品国产三级普通话版| 欧美一区二区亚洲| 99在线视频只有这里精品首页| 成熟少妇高潮喷水视频| 国产乱人伦免费视频| eeuss影院久久| 欧美zozozo另类| 首页视频小说图片口味搜索| 国产欧美日韩精品一区二区| 夜夜看夜夜爽夜夜摸| 美女免费视频网站| 变态另类丝袜制服| 欧美成狂野欧美在线观看| 99热这里只有精品一区| 精品久久久久久久久久久久久| xxxwww97欧美| 脱女人内裤的视频| 每晚都被弄得嗷嗷叫到高潮| 国产黄a三级三级三级人| 国产亚洲精品久久久com| 人妻丰满熟妇av一区二区三区| 中文字幕av成人在线电影| 久久中文看片网| 午夜福利视频1000在线观看| 成人亚洲精品av一区二区| 日本熟妇午夜| 啦啦啦韩国在线观看视频| 国产探花在线观看一区二区| 午夜影院日韩av| 啪啪无遮挡十八禁网站| 国产欧美日韩一区二区精品| 国产69精品久久久久777片| 成人亚洲精品av一区二区| 动漫黄色视频在线观看| 成人特级av手机在线观看| 美女cb高潮喷水在线观看| 国产 一区 欧美 日韩| 亚洲色图av天堂| 久久精品综合一区二区三区| 首页视频小说图片口味搜索| 小说图片视频综合网站| 九九久久精品国产亚洲av麻豆| 中亚洲国语对白在线视频| 国产久久久一区二区三区| .国产精品久久| 亚洲片人在线观看| 午夜福利在线观看吧| 亚洲国产精品久久男人天堂| 三级男女做爰猛烈吃奶摸视频| 99久久精品热视频| 国产成人影院久久av| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 亚洲av成人av| 国产亚洲av嫩草精品影院| 国产在线男女| 国产老妇女一区| 一区福利在线观看| 午夜日韩欧美国产| 黄色女人牲交| 亚洲人成网站在线播| 久久国产乱子伦精品免费另类| 久久久久精品国产欧美久久久| 国产一区二区三区在线臀色熟女| 91久久精品电影网| 美女被艹到高潮喷水动态| 亚洲成av人片免费观看| 亚洲av日韩精品久久久久久密| 国产91精品成人一区二区三区| 国产精品一区二区性色av| 欧美日韩国产亚洲二区| 亚洲av不卡在线观看| 午夜老司机福利剧场| 欧美一区二区亚洲| 国产精品,欧美在线| 一级a爱片免费观看的视频| 伊人久久精品亚洲午夜| 91狼人影院| 国产综合懂色| 直男gayav资源| 国产美女午夜福利| 亚洲国产色片| 精品免费久久久久久久清纯| 九九热线精品视视频播放| 精品国产三级普通话版| 国产av在哪里看| 全区人妻精品视频| 成年女人看的毛片在线观看| 一进一出抽搐动态| 老鸭窝网址在线观看| 国产黄a三级三级三级人| 久久精品国产亚洲av香蕉五月| 91久久精品电影网| 久久久久久九九精品二区国产| 久久久久免费精品人妻一区二区| 淫妇啪啪啪对白视频| 国产精品久久久久久久久免 | 国产精品一区二区三区四区免费观看 | 在线播放国产精品三级| 9191精品国产免费久久| 欧美日韩黄片免| 天堂√8在线中文| 国模一区二区三区四区视频| 日韩欧美在线二视频| 熟妇人妻久久中文字幕3abv| 色在线成人网| 亚洲狠狠婷婷综合久久图片| 亚洲成av人片免费观看| 欧美最黄视频在线播放免费| 精品福利观看| 亚洲片人在线观看| 岛国在线免费视频观看| 校园春色视频在线观看| 欧美乱色亚洲激情| 久久国产乱子免费精品| 最近中文字幕高清免费大全6 | 欧美bdsm另类| 一个人免费在线观看的高清视频| a在线观看视频网站| 国产日本99.免费观看| 国产熟女xx| 身体一侧抽搐| 一二三四社区在线视频社区8| 好男人在线观看高清免费视频| 国产av一区在线观看免费| 白带黄色成豆腐渣| 婷婷色综合大香蕉| 免费人成视频x8x8入口观看| 国产日本99.免费观看| 国产精品野战在线观看| 两个人的视频大全免费| 精品乱码久久久久久99久播| 久久亚洲真实| 99热这里只有是精品在线观看 | 国产极品精品免费视频能看的| 五月玫瑰六月丁香| 久久午夜亚洲精品久久| 99久久精品一区二区三区| 永久网站在线| 免费电影在线观看免费观看| 老鸭窝网址在线观看| 国产综合懂色| 一区二区三区高清视频在线| 少妇人妻一区二区三区视频| 在线观看美女被高潮喷水网站 | 99热这里只有是精品50| 在线播放无遮挡| 美女大奶头视频| 深爱激情五月婷婷| 男人狂女人下面高潮的视频| 免费观看精品视频网站| 日韩精品青青久久久久久| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 久久久久亚洲av毛片大全| 一本久久中文字幕| 午夜视频国产福利| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 变态另类丝袜制服| 99久久成人亚洲精品观看| 91午夜精品亚洲一区二区三区 | 男人的好看免费观看在线视频| 人人妻人人看人人澡| 少妇丰满av| 国产真实乱freesex| 亚洲av二区三区四区| 一个人免费在线观看的高清视频| 国产综合懂色| 18禁黄网站禁片免费观看直播| 精品熟女少妇八av免费久了| 欧美区成人在线视频| 一级毛片久久久久久久久女| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| xxxwww97欧美| 永久网站在线| 老鸭窝网址在线观看| 一本综合久久免费| 亚洲av成人av| 欧美极品一区二区三区四区| 日韩精品青青久久久久久| 亚洲成av人片免费观看| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图 | АⅤ资源中文在线天堂| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区视频了| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 丰满人妻一区二区三区视频av| 性欧美人与动物交配| 好男人电影高清在线观看| 欧美在线一区亚洲| 欧美高清成人免费视频www| 国产av不卡久久| 中文在线观看免费www的网站| 3wmmmm亚洲av在线观看| 日韩 亚洲 欧美在线| 国产极品精品免费视频能看的| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| a级毛片a级免费在线| 99热这里只有是精品50| 搡女人真爽免费视频火全软件 | 亚洲精品一区av在线观看| 国产精品嫩草影院av在线观看 | 一本综合久久免费| 熟妇人妻久久中文字幕3abv| 国产一区二区亚洲精品在线观看| 国产成人啪精品午夜网站| 91午夜精品亚洲一区二区三区 | 麻豆国产av国片精品| 国产精品不卡视频一区二区 | 夜夜躁狠狠躁天天躁| 久久精品国产自在天天线| 国产成人aa在线观看| 变态另类成人亚洲欧美熟女| 天美传媒精品一区二区| 窝窝影院91人妻| 免费av毛片视频| 亚洲精品456在线播放app | 成人三级黄色视频| 久久久国产成人免费| 国产精品98久久久久久宅男小说| 偷拍熟女少妇极品色| a级一级毛片免费在线观看| 少妇的逼好多水| 免费av观看视频| 天美传媒精品一区二区| 高潮久久久久久久久久久不卡| 亚洲av成人av| 国产伦一二天堂av在线观看| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 国内精品久久久久久久电影| 日韩成人在线观看一区二区三区| 精品久久久久久久久久久久久| www.999成人在线观看| 99久久精品一区二区三区| 极品教师在线免费播放| 白带黄色成豆腐渣| 最近在线观看免费完整版| 欧美+亚洲+日韩+国产| 成人鲁丝片一二三区免费| 午夜福利欧美成人| 夜夜躁狠狠躁天天躁| 久久久精品欧美日韩精品| 黄色一级大片看看| 美女cb高潮喷水在线观看| 久久久久久九九精品二区国产| 免费在线观看亚洲国产| 久久亚洲精品不卡| 又黄又爽又刺激的免费视频.| 国产一区二区亚洲精品在线观看| 久久久久久久久久成人| 高清毛片免费观看视频网站| 日韩免费av在线播放| 最新在线观看一区二区三区| 热99在线观看视频| 国产av麻豆久久久久久久| 性色av乱码一区二区三区2| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 免费在线观看影片大全网站| 美女高潮的动态| 色综合亚洲欧美另类图片| 可以在线观看毛片的网站| av在线天堂中文字幕| 成人高潮视频无遮挡免费网站| 一本久久中文字幕| 亚洲真实伦在线观看| 亚洲av不卡在线观看| 亚洲自偷自拍三级| 亚洲午夜理论影院| 超碰av人人做人人爽久久| av天堂中文字幕网| 国产精品美女特级片免费视频播放器| 国产精品久久久久久亚洲av鲁大| 精品99又大又爽又粗少妇毛片 | 亚洲av免费高清在线观看| av中文乱码字幕在线| 色尼玛亚洲综合影院| 天堂√8在线中文| 一个人看视频在线观看www免费| 亚洲精品久久国产高清桃花| ponron亚洲| 一级av片app| 一进一出好大好爽视频| 亚洲午夜理论影院| 在线观看午夜福利视频| 悠悠久久av| 又爽又黄无遮挡网站| 国产欧美日韩一区二区三| 日日摸夜夜添夜夜添小说| 岛国在线免费视频观看| 两个人的视频大全免费| 老司机福利观看| 国产欧美日韩精品亚洲av| 99国产精品一区二区三区| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| 99热这里只有是精品50| 男女之事视频高清在线观看| 久久精品91蜜桃| 亚洲欧美激情综合另类| 国产91精品成人一区二区三区| 99久久99久久久精品蜜桃| 天天躁日日操中文字幕| 男人舔奶头视频| 在线播放国产精品三级| 淫秽高清视频在线观看| 国产精品亚洲一级av第二区| 少妇人妻精品综合一区二区 | 欧美中文日本在线观看视频| 国产91精品成人一区二区三区| 国产精品不卡视频一区二区 | 日韩欧美国产一区二区入口| 午夜福利成人在线免费观看| 亚洲自偷自拍三级| 757午夜福利合集在线观看| 色精品久久人妻99蜜桃| 午夜免费成人在线视频| 真实男女啪啪啪动态图| 欧美性感艳星| 动漫黄色视频在线观看| 99久国产av精品| 日本精品一区二区三区蜜桃| 一本综合久久免费| 国产精品嫩草影院av在线观看 | 精品午夜福利在线看| 99国产精品一区二区三区| 国产欧美日韩一区二区精品| 91av网一区二区| 国产大屁股一区二区在线视频| or卡值多少钱| 亚洲国产高清在线一区二区三| 97超级碰碰碰精品色视频在线观看| 他把我摸到了高潮在线观看| 欧美高清成人免费视频www| 日韩高清综合在线| 自拍偷自拍亚洲精品老妇| 亚洲av成人精品一区久久| 亚洲七黄色美女视频| 国产精品综合久久久久久久免费| 日本三级黄在线观看| 淫秽高清视频在线观看| 亚洲成人免费电影在线观看| 国产精品伦人一区二区| 国产欧美日韩精品亚洲av| 99久久九九国产精品国产免费| 热99re8久久精品国产| 黄色女人牲交| 免费观看精品视频网站| 性插视频无遮挡在线免费观看| av天堂在线播放| 淫妇啪啪啪对白视频| 91久久精品国产一区二区成人| 亚洲专区国产一区二区| aaaaa片日本免费| 深夜精品福利| 天天一区二区日本电影三级| 可以在线观看的亚洲视频| 一进一出好大好爽视频| 久久精品国产亚洲av涩爱 | 悠悠久久av| 国产成人a区在线观看| 亚洲成人久久爱视频| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 毛片女人毛片| 亚洲一区二区三区色噜噜| a在线观看视频网站| 精品不卡国产一区二区三区| 欧美黑人巨大hd| 国产精品国产高清国产av| 男女之事视频高清在线观看| 亚洲午夜理论影院| 超碰av人人做人人爽久久| 欧美激情久久久久久爽电影| 日韩av在线大香蕉| 国产精品国产高清国产av| 日本a在线网址| 国产探花极品一区二区| 露出奶头的视频| 国产大屁股一区二区在线视频| 色噜噜av男人的天堂激情| 精品无人区乱码1区二区| 我的老师免费观看完整版| 欧美zozozo另类| 国产白丝娇喘喷水9色精品| 一级毛片久久久久久久久女| 乱码一卡2卡4卡精品| 美女大奶头视频|