• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Investigation of Sloshing Loads and Structural Dynamic Responses in Tanks of LNG Carriers

    2011-06-22 05:07:00
    船舶力學 2011年12期
    關(guān)鍵詞:液艙模型試驗科學研究

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Experimental Investigation of Sloshing Loads and Structural Dynamic Responses in Tanks of LNG Carriers

    XU Guo-hui,QI En-rong,XU Chun,GU Xue-kang

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Sloshing in liquid tanks is a significant problem in the structural design of containment system.Since sloshing is a strong nonlinear and highly stochastic phenomenon,it is very difficult to provide a reliable estimation of sloshing pressures.In this paper,sloshing model tests with 1/55 scale membrane-type tank were carried out for regular harmonic motions to investigate various characteristics of impact pressures and structural responses of containment system in tanks of LNG carriers.

    LNG carrier;sloshing loads;model test;impact pressure;structure response

    Biography:XU Guo-hui(1985-),female,engineer of CSSRC,E-mail:guohuixu2007@hotmail.com;QI En-rong(1964-),male,researcher of CSSRC.

    1 Introduction

    Recently the increasing demand for liquefied natural gas(LNG)carriers entails more attention on the accurate prediction of sloshing fluid behavior inside its tanks.Sloshing of LNG cargo can cause high impact loads on the supporting and containing structures.This is particularly critical for membrane-type tanks since these will have flat surfaces and corner regions which can lead to increased peak pressures for sloshing impacts.

    Numerical methods are in rapid development and many have been proposed to estimate sloshing loads up to now.Faltinsen[1]used a boundary element method.Zhu et al[2-3]presented a hydroelasticity theory and a corresponding numerical technique to deal with the coupled interactions between the viscous liquid sloshing and a 2D elastic tank.Kyoung et al[4-5]applied a finite-element method based on Hamilton’s principle to simulate nonlinear sloshing.A threedimensional free surface flow in a tank is formulated in the scope of potential flow theory with the nonlinear free surface conditions.An improved Volume Of Fluid(iVOF)method was adopted to model compressible two-phase sloshing flow by Wemmenhove et al[6-7].

    Whereas,due to strong nonlinearity of large amplitude sloshing experimental studies have been the most popular approach for liquid sloshing and have provided valuable insights into the physics.Gavory[8]presented a new 6 degrees-of-freedom(dof)hexapod sloshing test rig and compared results of tests with and without heave and yaw.Zhao et al[9]discussed the characterization of local impact pressures and proposed a novel post-processing approach.They stated that large individual peaks of impacts do not necessarily give large stress responses in the structure.The scaling of measured local impact pressures to full-scale is further discussed by Lee et al[10].Tim Bunnik[11]performed a study of model test experiments on a large scale 2-D section(scale 1:10)of a LNG carrier in various loading conditions without depressurization.

    As the capacity of LNG containment increases and partial filling cases are expected more frequently than before,the hydroelastic behavior of LNG containment due to sloshing impact loads also becomes one of the more important design concerns of LNG containment.Supported by the National High Technology Ship Program of China three-dimensional sloshing model tests of representative tank in large LNG carrier are carried out.Through series of model tests and analysis of measured data various characteristics of impact pressures and structural dynamic responses are investigated in this paper.Experimental result can provide validation material for numerical methods and references for LNG containment design.

    2 Experiment apparatus

    Vessel subject to present sloshing assessment investigation is LNG carrier of 156 800m3cargo capacity with 4-tanks arrangement,equipped with No.96 cargo containment system.Selection of representative tank for the model test is governed by the criteria of the largest capacity being the furthest from the ship’s centre of gravity.According to that criterion,the selected tank for the model test is cargo Tank No.2.

    Fig.1 LNG cargo holds and No.2 tank location

    Without baffle(configuration)or other structures inside besides a pump tower,the No.2 tank is prismatic and has upper and lower chamfers to reduce impact on the bulkhead and ceiling.The model wall plate is smooth,of which the thickness is 20mm.According to the ability of test facility,model tank is made of transparent plexiglass to allow visualization of the fluid flow during the tests with inner dimensions exactly scaled down to 1/55.The tests were carried out with water and air at atmospheric pressure.The model tank and locations of the sensors are shown in Fig.2.A total number of twenty-one pressure sensors were attached for model tank to monitor pressure on the wall.Five wave probes were installed to observe sloshing fluid motion nearby the wall.

    Fig.2 The model tank for sloshing test

    LNG containment systems are made of materials that are more flexible than hull,such as plywood and polyurethane foam(PUF).As a result,dynamic effect needs to be considered when evaluating the severity of sloshing load.In this experiment hydro-elastic effects were modeled by placing four measurement elastic panels in the back wall containing eight strain gauges.

    The experiment was done at the facility in Shanghai Jiao Tong University.The sloshing test facility has the ability to perform 3-degree of freedom motion and is consisted of a machinery,motion control unit,and related software.The motion control unit employs algorithm to control the servo motor.The maximum capacity of 1.5 tons can be tested with this facility.Experimental data and the corresponding sloshing behavior in real time were recorded for different tank motions at different filling levels,excitation amplitudes and frequencies.For each test run,the tank was always started from an upright position with predetermined frequency and excitation amplitude and each test was lasted for 5 minutes.To capture the impact load with short duration,the sampling rate was 2kHz.

    3 Measurements

    Serial numbers of pressure sensors are shown in Fig.3.Sensor locations vary near the still free surface depending on four filling levels(10%L,30%H,70%H and 90%H).P01-P04 in the midline of front wall are for stimulated pitch motions.P05-P08 and P13-P18 at the corners of front wall and side walls are for stimulated coupled motions.P09-P12 in the midline of side walls are for stimulated roll motions.P19-P21 in the top wall are for high filling levels.Since deflection of tank wall may cause disturbance to impact pressure,every measuring point has a bracing sheet to strengthen structure.

    Five tantalum wires are disposed in the tank to monitor wave motions during sloshing tests.They are shown as tinged lines in Fig.3.

    The hydro-elastic effect in structural response of the containment system in tanks of LNG carriers has also been studied.According to the insulation layer of structure,plywood box was equivalent to a 1.1m×1.1m simply supported panel,and then scaled to a 20mm×20mm sheet with thickness of 0.3mm,which was attached to the prefab orifices in the back wall.A bidirectional strain gauge was disposed in the center of each phosphor bronze sheet to measure dynamic stress(see Figs.4-7).

    Fig.3 Sketch of model tank and positions of sensors

    Fig.4 Model tank with hatches in the back wall

    Fig.5 Strain gage in the panel

    Fig.6 Location of panel in the back wall

    Fig.7 Rig of strain gage

    4 Results and discussion

    The theoretical resonance frequency for a rectangular tank can be calculated using a well known formula derived from the linear potential theory:

    where,d is liquid height in the tank,l is tank length in the motion direction.

    A frequency scanning method is firstly performed to obtain longitudinal resonance frequencies.This method is based on the assumption that the resonance state is associated with the maximum kinetic energy level in the tank.A certain excitation amplitude of regular(harmonic)pitch motion is considered at each filling level(10%L,30%H,70%H and 90%H).Then with determinate resonance frequencies tests are conducted at varying excitation amplitudes of pitch motions.

    Transverse resonance frequencies are obtained in the same way.Model tank run subjected to stimulated roll motions with varying amplitudes and resonance frequency at each filling level.Furthermore,combined pitch and roll motion tests are carried out to investigate the fluid motions and impact pressures due to sloshing.The total number of test cases was up to eighty.

    4.1 Impact loads on the model tank

    4.1.1 Case 1

    This is the case when single harmonic pitch motion with 30%filling depth was tested.The test was done at 0.65Hz.Fig.8 shows time history of relative wave height at w4 and w2,w4 representing the tantalum wire in the midline of front wall(close to pressure points P1,P2,P3,P4)and w2 representing the tantalum wire round the combination of front wall and side walls(close to pressure points P5,P6,P7,P8).Figs.9-11 show time history of pressure at points in the front wall,which is magnified in the time domain in right figures.

    We can see from these figures:

    (1)It is obvious liquid impact occurs at points(P1-P3,P5-P7)near the still water level or at the abrupt intersections of the tank walls in regular pitch motion.The variation of these pressures is neither harmonic nor periodic because of strong nonlinearity,even though the external excitation is harmonic.

    Fig.8 Time history of wave height at w4 and w2(pitch30%H,f=0.65Hz)

    Fig.9 Time history of pressure at P1 and P5(pitch30%H,f=0.65Hz)

    Fig.10 Time history of pressure at P2 and P6(pitch30%H,f=0.65Hz)

    Fig.11 Time history of pressure at P3 and P7(pitch30%H,f=0.65Hz)

    (2)There are two spikes of pressure signal in each motion period.The first,being the highest with pulse characteristics is induced by wave hitting the measuring point instantaneously.The curve then drops down to a local minimum closer to the static pressure value fleetly.The second is smaller with undulate characteristics induced by the liquid climbing up along the wall.

    (3)In the 30%H pitch motion,pressure of P6,a little above the still water level,is the greatest,up to 4 000Pa,whereas pressure of P5 below the still water level and P7 are 2 800Pa and 230Pa,respectively.So in the 30%H filling level and pitch motion,liquid impact is more likely to occur at the location of P6 and amplitude of the pressure is large.

    (4)Average pressure of P1 in the midline of the front wall is about a half of that of P5 at the combination of front wall and sidewall,so it does with P2 and P3.Pressure of P3 at higher location is similar to that of P7.It is observed that water surface at the combination rises more rapidly than that near the midline of the front wall due to accumulation of liquid round the lower chamfer of sidewall.It is also shown in Fig.8 that a fall of wave height at w2 is greater than that at w4.Since amplitude of impact pressure is in direct proportion to relative velocity of liquid,pressure at the corner is larger than that in the midline of front wall.

    4.1.2 Case 2

    This is the case when single harmonic roll motion with 30%filling depth was tested.Fig.12 shows relationship between frequency and average magnitude of peak pressure at points P10 and P15 in the midline of sidewall.Fig.13 shows relationship between frequency and wave height at w3 and w2,w3 representing the tantalum wire in the midline of side wall(close to pressure points P9,P10,P11,P12)and w2 representing the tantalum wire round the combination of front wall and side walls(close to pressure points P5,P6,P7,P8).Fig.14 shows pressure time history of P10 at various excitation amplitudes.Fig.15 shows wave height time history of w3 at various excitation amplitudes.Fig.16 shows pressure patterns at points P9-P11 along the sidewalls in identical motion period time.

    We can see from these figures:amplitude of pressure varies with excitation frequency.The coupling between liquid sloshing and tank motion occurs and pressure rises up to a maximum at first mode frequency estimated by theoretical formula(1).Large fall of liquid surface and severe fluid motion including jet flow,wave breaking,spray,are observed.Fluid slaps on the tank wall loudly.

    (1)In the roll motion case of low filling level,whether excitation frequency inside or outside resonance range,average pressure of P10 is always larger than that of P15 in the same horizontal altitude.Accordingly,wave heights in those two locations vary in homologous trend.

    (2)In the 30%H roll motion,representative pressure increases with excitation roll angle of the tank.Wave heights keep synchronous pace with pressure.The impact has skewness higher than 1.From bottom to up(P9-P11)rise time and duration of impact get reduced and amplitude increases rapidly.

    Fig.12 Relationship between frequency and pressure at P10 and P15(roll 30%H)

    Fig.13 Relationship between frequency and wave height at w3 and w2(roll 30%H)

    Fig.14 Comparison of pressure time history at P08(roll 30%H)

    Fig.15 Comparison of wave height time history at w3(roll 30%H)

    4.2 Structural response of model tank

    In the test,signal of dynamic response is clear from the panel which is used to simulate containment system.Since strain characteristics are similar,just representative case is chosen for analysis.Fig.17 presents strain time history of S8 in excitation amplitude of 5 degrees 90%H pitch motion.Fig.18 presents pressure time history of P4 in correspondence to S8 in the same case.Fig.19 presents strain time history of S8 at varying amplitudes and corresponding single impulse magnified in the time domain when excitation frequency close to the natural frequency of liquid motion.We can see from these figures:

    Fig.16 Comparison of pressure patterns at points along the sidewalls(roll 30%H)

    (1)In high filling level,impact pressure of P4 was large,impulsive spike in the strain temporal curve of S8 occurred at impact instant.Amplitude of spike is distinctly larger than that at non-impact instant.Consequently impact load is a decisive factor in structure design of containment system and structural response can not be ignored.During the test fierce slaps on the top portion of front and back walls are observed in correspondence with measuring result.

    (2)When impulsive pressure occurred,peak of structural strain signal varied irregularly as that of pressure signal even in harmonic excitation.At non-impulsive instant structural strain varied regularly resulting from wave pressures and structural inertial resistance.

    Fig.17 Comparison of strain time history of S8 when f=0.90(top),0.95(middle),1.0(bottom)(pitch 90%H)

    Fig.18 Comparison of pressure time history of P4 when f=0.90(top),0.95(middle),1.0(bottom)(pitch 90%H)

    Fig.19 Comparison of strain time history of S8 at varying amplitudes(pitch 90%H,f=0.95)

    (3)At the pitch excitation frequency of 0.95Hz(closest to the natural frequency of the fluid)average strain value of S8 reached the top and is larger than that at non-resonant frequency,which is the same trend of pressure with frequency.At varying excitation amplitudes of pitch motion,the variation trend of S8 strain along with excitation amplitude is similar with that of P4 pressure.

    (4)In pitch motion with varying amplitudes,shapes of strain signal are irregular,as can be seen in Fig.19.In excitation amplitude of 5 degrees strain impulse has the shortest rise time and duration compared with the other two cases and are symmetric triangular.Owing to part of entrapped air escaping during the impact strain impulses are followed by oscillatory tail.

    5 Conclusions

    This study presents the experimental investigation on sloshing phenomenon in the tank of LNGC through model tests.Different types of fluid motion under various excitations occurred.Various characteristics of impact pressures and structural responses during liquid slapping against wall were captured and recorded.Some conclusions are drawn from analysis of test data.

    (1)Due to the nonlinearity of impact pressures,magnitude of maximum peak is discrete even in regular excitation motion.

    (2)In pitch motion,the impact pressures of sensors near the corner on the front tank wall are larger than those of middle transducers.This is because the water near the corner is squeezed.

    (3)In roll motion,the impact pressures act on the middle of tank sidewall are larger than those near the corner.

    (4)Impulsive spike was present in the temporal curve of structural strain due to sloshing impact pressure,which is distinctively different from dynamic response of local hull structure under impact.Therefore,impulsive characteristic of pressure and dynamic structural response should be considered in structure design of tank containment system.

    [1]Faltinsen O M.A numerical nonlinear method of sloshing in tanks with 2D flow[J].Journal of Ship Research,1978,22:193-202.

    [2]Zhu Renqing,Wang Zhidong,Fang Zhiyong.Prediction of pressure induced by large amplitude sloshing in a tank[J].Journal of Ship Mechanics,2004,8(6):71-78.

    [3]Zhu Renqing,Fang Zhiyong,Wu Yousheng.Numerical simulation of viscous liquid sloshing coupled with elastic structures[J].Journal of Ship Mechanics,2006,10(3):61-70.

    [4]Kyoung J H,Kim J W,Bai K J.Comparative study on the wave impact load in sloshing tank[C]//Proceedings of 23th International Conference on Offshore Mechanics and Arctic Engineering.Vancouver,British Columbia,Canada,2004.

    [5]Kyoung J H,Sa Y,Kim J W,Bai K J.Finite-element computation of wave impact load due to a violent sloshing[J].Ocean Engineering,2005,32:2020-2039.

    [6]Wemmenhove R,Luppes R,Veldman A P E,Bunnik T.Numerical simulation of sloshing in LNG tanks with a compressible two-phase model[C]//Proceedings of 26th International Conference on Offshore Mechanics and Arctic Engineering.San Diego,USA,2007.

    [7]Wemmenhove R,Luppes R,Veldman A E P,Bunnik T.Application of a VOF method to model compressible two-phase flow in sloshing tanks[C]//Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering,Estoril,Portugal,2008.

    [8]Gavory T.Innovative tools open up new prospects for liquid motion model tests[C]//Proceedings of GASTECH Conference.Spain,2005.

    [9]Zhao R,Rognebakke O,Zheng X.Wave and impact loads in design of large and conventional LNG ships[C].Proceedings of RINA Conference on Design and Operation of Gas Carriers,2004:75-85.

    [10]Lee H,Kim J W,Hwang C.Dynamic strength analysis for membrane type LNG containment system due to sloshing impact load[C].Proceedings of RINA Conference on Design&Operation of Gas Carriers,2004:39-47.

    [11]Tim Bunnik,Rene Huijsmans.Large scale LNG sloshing model tests[C].Proceedings of the Sixteenth International Offshore and Polar Engineering Conference.Lisbon,Portugal,2007.

    大型LNG船液艙晃蕩載荷及響應模型試驗研究

    徐國徽,祁恩榮,徐 春,顧學康
    (中國船舶科學研究中心,江蘇 無錫 214082)

    液艙晃蕩是大型液化天然氣船液艙設(shè)計中的重要問題之一,具有強非線性和離散性,很難確定其載荷值。為了研究大型液化天然氣船液艙晃蕩沖擊載荷及其對結(jié)構(gòu)的響應,文章開展了典型菱形液艙的三維晃蕩模型試驗,獲得了大型LNG船液艙在各種運動模式下的流體拍擊艙壁的沖擊載荷特性以及液艙圍護系統(tǒng)結(jié)構(gòu)在晃蕩沖擊載荷作用下的動響應特征。

    大型LNG船;晃蕩載荷;模型試驗;沖擊壓力;結(jié)構(gòu)動響應

    U661.4

    A

    徐國徽(1985-),女,中國船舶科學研究中心工程師;

    顧學康(1963-),男,中國船舶科學研究中心研究員。

    U661.4

    A

    1007-7294(2011)12-1374-10

    date:2011-08-09

    祁恩榮(1964-),男,中國船舶科學研究中心研究員;

    徐 春(1980-),男,中國船舶科學研究中心工程師;

    猜你喜歡
    液艙模型試驗科學研究
    B型LNG液艙支座縱骨趾端處表面裂紋擴展計算
    歡迎訂閱《林業(yè)科學研究》
    歡迎訂閱《紡織科學研究》
    紡織科學研究
    基于CFD的大型船舶液艙晃蕩研究
    反推力裝置模型試驗臺的研制及驗證
    紡織科學研究
    考慮晃蕩效應的獨立B型LNG液艙結(jié)構(gòu)多目標優(yōu)化
    海洋工程(2016年2期)2016-10-12 05:08:07
    臺階式短加筋土擋墻行為特征的離心模型試驗
    FPSO與運輸船旁靠時液艙晃蕩與船舶運動耦合效應分析
    久久久久国产一级毛片高清牌| 麻豆成人av在线观看| 后天国语完整版免费观看| 亚洲熟妇中文字幕五十中出| 欧美黑人欧美精品刺激| 亚洲熟女毛片儿| 精品久久久久久久久久免费视频| 热99re8久久精品国产| 淫秽高清视频在线观看| 亚洲美女黄片视频| 亚洲精品一卡2卡三卡4卡5卡| 淫妇啪啪啪对白视频| 在线观看免费日韩欧美大片| 国产高清激情床上av| 国产99白浆流出| 午夜日韩欧美国产| 亚洲av电影不卡..在线观看| 国产真实乱freesex| 久久中文字幕一级| 色综合亚洲欧美另类图片| 人人妻,人人澡人人爽秒播| 女人爽到高潮嗷嗷叫在线视频| 午夜久久久在线观看| 国产av又大| av超薄肉色丝袜交足视频| 99国产精品一区二区蜜桃av| 一级a爱视频在线免费观看| 午夜精品久久久久久毛片777| 久久九九热精品免费| 在线永久观看黄色视频| 久久久精品国产亚洲av高清涩受| 久久香蕉激情| 国产一区二区激情短视频| 欧美激情久久久久久爽电影| 久久青草综合色| 国产黄色视频一区二区在线观看 | 久久九九热精品免费| 国产精品爽爽va在线观看网站| eeuss影院久久| 你懂的网址亚洲精品在线观看 | 日本 av在线| 欧美+亚洲+日韩+国产| 成人永久免费在线观看视频| 三级毛片av免费| 国产精品女同一区二区软件| 99热网站在线观看| 日本与韩国留学比较| 欧美区成人在线视频| 国产精品一区二区免费欧美| 午夜福利成人在线免费观看| 国产淫片久久久久久久久| 免费搜索国产男女视频| 国产成年人精品一区二区| 22中文网久久字幕| 黄色一级大片看看| 国产成人a区在线观看| 日本黄色片子视频| 能在线免费观看的黄片| 岛国在线免费视频观看| 在线免费观看的www视频| 日韩欧美一区二区三区在线观看| 精品熟女少妇av免费看| 亚洲成人av在线免费| 国产精品亚洲美女久久久| 真人做人爱边吃奶动态| 最近最新中文字幕大全电影3| av女优亚洲男人天堂| av在线播放精品| 91麻豆精品激情在线观看国产| 国产一区二区三区av在线 | 国产探花极品一区二区| 中文在线观看免费www的网站| 亚洲国产色片| 六月丁香七月| 亚洲精品456在线播放app| 亚洲在线观看片| 在线播放无遮挡| 日本成人三级电影网站| 亚洲经典国产精华液单| 欧美潮喷喷水| 九九爱精品视频在线观看| 夜夜夜夜夜久久久久| 午夜福利在线观看吧| 国产精品女同一区二区软件| 91麻豆精品激情在线观看国产| 精品人妻偷拍中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲国产成人精品v| 天堂网av新在线| 色av中文字幕| 中国美女看黄片| 欧美性感艳星| 舔av片在线| 精品乱码久久久久久99久播| 亚洲综合色惰| 日韩欧美精品v在线| 亚洲国产精品sss在线观看| 亚洲乱码一区二区免费版| 三级经典国产精品| 国产免费男女视频| 天堂av国产一区二区熟女人妻| 亚洲第一电影网av| 尤物成人国产欧美一区二区三区| 国产精品久久久久久久久免| 亚洲va在线va天堂va国产| 欧美日韩乱码在线| 最近中文字幕高清免费大全6| 香蕉av资源在线| 99久久精品热视频| 波多野结衣高清无吗| 寂寞人妻少妇视频99o| 看十八女毛片水多多多| 亚洲精品亚洲一区二区| 全区人妻精品视频| 国产老妇女一区| 在线国产一区二区在线| 中文字幕久久专区| 成熟少妇高潮喷水视频| 精品免费久久久久久久清纯| 国产精品一区二区三区四区久久| 久久婷婷人人爽人人干人人爱| 男人舔奶头视频| 精品熟女少妇av免费看| av.在线天堂| 午夜福利在线观看免费完整高清在 | 国产老妇女一区| 亚洲人成网站在线观看播放| 国产探花极品一区二区| 不卡视频在线观看欧美| 小蜜桃在线观看免费完整版高清| 在线国产一区二区在线| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜添av毛片| 国产欧美日韩精品一区二区| 午夜久久久久精精品| 日本在线视频免费播放| 国产精品电影一区二区三区| 淫妇啪啪啪对白视频| 免费av观看视频| 欧美日韩综合久久久久久| 国产精品久久久久久亚洲av鲁大| 一进一出好大好爽视频| 狂野欧美激情性xxxx在线观看| 一夜夜www| 国内精品宾馆在线| 少妇人妻精品综合一区二区 | av天堂在线播放| 国产一区二区三区av在线 | ponron亚洲| 日本黄大片高清| 日韩人妻高清精品专区| 免费在线观看影片大全网站| 亚洲一区二区三区色噜噜| 婷婷六月久久综合丁香| 精品国产三级普通话版| 国产成人91sexporn| 五月伊人婷婷丁香| 亚洲欧美成人综合另类久久久 | 国产黄色视频一区二区在线观看 | 伦理电影大哥的女人| 欧美人与善性xxx| 天天一区二区日本电影三级| 亚洲,欧美,日韩| 欧美+日韩+精品| 久久久久久久久久成人| 搞女人的毛片| 日韩,欧美,国产一区二区三区 | 亚洲一级一片aⅴ在线观看| 久久精品国产清高在天天线| 一进一出好大好爽视频| 精品久久国产蜜桃| 一级毛片电影观看 | 丰满乱子伦码专区| 国产欧美日韩精品亚洲av| 国产亚洲91精品色在线| 免费看美女性在线毛片视频| 黄色视频,在线免费观看| 女人十人毛片免费观看3o分钟| 性插视频无遮挡在线免费观看| 毛片女人毛片| 亚洲四区av| 干丝袜人妻中文字幕| 女人被狂操c到高潮| 午夜福利成人在线免费观看| 蜜桃久久精品国产亚洲av| 国产 一区 欧美 日韩| 国产精品1区2区在线观看.| av福利片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 你懂的网址亚洲精品在线观看 | 我要搜黄色片| 91久久精品国产一区二区成人| 超碰av人人做人人爽久久| 我要搜黄色片| 中国美女看黄片| 99久国产av精品国产电影| 久久国内精品自在自线图片| 国产v大片淫在线免费观看| 在线看三级毛片| 国产又黄又爽又无遮挡在线| 久久人妻av系列| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 国产高清不卡午夜福利| 一级黄色大片毛片| 国产极品精品免费视频能看的| 亚洲精品日韩av片在线观看| 精品久久久久久久久亚洲| 国产av在哪里看| 亚洲美女黄片视频| 国产 一区精品| 国产精品国产三级国产av玫瑰| 嫩草影院精品99| 一个人免费在线观看电影| 久久6这里有精品| 久久久久国内视频| 99久国产av精品| 亚洲不卡免费看| 美女被艹到高潮喷水动态| 日韩在线高清观看一区二区三区| 国产精品不卡视频一区二区| 国产免费男女视频| 我的老师免费观看完整版| 亚洲乱码一区二区免费版| 日韩中字成人| 国产高清视频在线观看网站| 久久精品综合一区二区三区| 欧美日韩乱码在线| 国产v大片淫在线免费观看| 亚洲丝袜综合中文字幕| 亚洲性久久影院| 99久久久亚洲精品蜜臀av| 国产乱人视频| 男女做爰动态图高潮gif福利片| 国产精品国产三级国产av玫瑰| 最近视频中文字幕2019在线8| 毛片一级片免费看久久久久| 午夜激情欧美在线| 亚洲国产精品国产精品| 国产综合懂色| 欧美日韩国产亚洲二区| 亚洲经典国产精华液单| 99国产极品粉嫩在线观看| 一级a爱片免费观看的视频| 99久久精品热视频| 亚洲一级一片aⅴ在线观看| 综合色av麻豆| 欧美在线一区亚洲| 好男人在线观看高清免费视频| 久久精品国产99精品国产亚洲性色| 如何舔出高潮| 免费观看精品视频网站| 久久亚洲国产成人精品v| 亚洲第一区二区三区不卡| 成人av一区二区三区在线看| 热99在线观看视频| 国产精品人妻久久久影院| 亚洲性夜色夜夜综合| 一级黄片播放器| 九九爱精品视频在线观看| 国产伦精品一区二区三区四那| 熟妇人妻久久中文字幕3abv| 欧美日韩一区二区视频在线观看视频在线 | 桃色一区二区三区在线观看| 亚洲国产精品久久男人天堂| 免费观看精品视频网站| 在线国产一区二区在线| 精品福利观看| 国产精品国产三级国产av玫瑰| 国产黄色小视频在线观看| 18禁在线无遮挡免费观看视频 | 婷婷精品国产亚洲av| 精品人妻偷拍中文字幕| 亚洲美女黄片视频| 在线免费观看的www视频| 欧美性感艳星| videossex国产| 97超级碰碰碰精品色视频在线观看| 成熟少妇高潮喷水视频| 看黄色毛片网站| 免费无遮挡裸体视频| 国产三级在线视频| 亚洲av.av天堂| 听说在线观看完整版免费高清| 午夜免费激情av| 麻豆精品久久久久久蜜桃| 亚洲天堂国产精品一区在线| 欧美高清成人免费视频www| 亚洲中文字幕一区二区三区有码在线看| 久久久久久九九精品二区国产| 国产一区二区三区av在线 | 亚洲av.av天堂| 岛国在线免费视频观看| 最近在线观看免费完整版| 真实男女啪啪啪动态图| 国产av麻豆久久久久久久| 亚洲成人av在线免费| av在线观看视频网站免费| 床上黄色一级片| 禁无遮挡网站| 内地一区二区视频在线| 在线国产一区二区在线| 国产亚洲精品久久久久久毛片| 村上凉子中文字幕在线| АⅤ资源中文在线天堂| 色播亚洲综合网| 少妇人妻精品综合一区二区 | 亚洲精品影视一区二区三区av| 国产高清三级在线| 寂寞人妻少妇视频99o| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 成人av在线播放网站| 亚洲中文日韩欧美视频| 日本成人三级电影网站| 久久久久久九九精品二区国产| avwww免费| 乱人视频在线观看| 熟女人妻精品中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美成人精品一区二区| 成年女人看的毛片在线观看| 亚洲国产精品sss在线观看| 成人漫画全彩无遮挡| 久久国内精品自在自线图片| 黄色欧美视频在线观看| 黄色日韩在线| 精品人妻视频免费看| 麻豆国产97在线/欧美| 国产精品嫩草影院av在线观看| 一本精品99久久精品77| 日韩国内少妇激情av| 日产精品乱码卡一卡2卡三| 深夜精品福利| 一本久久中文字幕| 丝袜喷水一区| 黄色一级大片看看| 国产三级在线视频| 久久久精品94久久精品| 免费看av在线观看网站| 日韩成人伦理影院| 国产一级毛片七仙女欲春2| 日韩欧美一区二区三区在线观看| 嫩草影院新地址| 国产精品一二三区在线看| 国产精品人妻久久久久久| 国产高清视频在线播放一区| 男女下面进入的视频免费午夜| 淫秽高清视频在线观看| 麻豆乱淫一区二区| 久久久久免费精品人妻一区二区| 亚洲激情五月婷婷啪啪| 国产一区亚洲一区在线观看| 最近手机中文字幕大全| 内地一区二区视频在线| 久久鲁丝午夜福利片| 日本色播在线视频| 观看美女的网站| 中文字幕精品亚洲无线码一区| 黄色配什么色好看| 欧美日本亚洲视频在线播放| 欧美一区二区亚洲| 久久草成人影院| 伦精品一区二区三区| 亚洲av中文av极速乱| 噜噜噜噜噜久久久久久91| 国产精品久久久久久av不卡| 天堂影院成人在线观看| 国产老妇女一区| 亚洲av美国av| 麻豆国产av国片精品| 久久久精品大字幕| 寂寞人妻少妇视频99o| 国产成人福利小说| 亚洲av免费高清在线观看| 国产乱人偷精品视频| 精品福利观看| 亚洲欧美成人综合另类久久久 | 亚洲国产日韩欧美精品在线观看| 我的老师免费观看完整版| 有码 亚洲区| 99热这里只有是精品在线观看| 国产精品人妻久久久久久| 亚洲精品亚洲一区二区| 亚洲内射少妇av| 久99久视频精品免费| av在线亚洲专区| 亚洲国产精品sss在线观看| 欧美日韩乱码在线| 成人亚洲精品av一区二区| h日本视频在线播放| 3wmmmm亚洲av在线观看| 日本爱情动作片www.在线观看 | 日本黄大片高清| 美女xxoo啪啪120秒动态图| 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 亚洲激情五月婷婷啪啪| 日韩强制内射视频| 校园春色视频在线观看| 国产精品久久久久久久电影| 十八禁网站免费在线| 99热6这里只有精品| 日韩国内少妇激情av| eeuss影院久久| 亚洲五月天丁香| 亚洲不卡免费看| 国产视频一区二区在线看| 国产精品国产三级国产av玫瑰| 色视频www国产| 黄色日韩在线| 有码 亚洲区| 少妇熟女欧美另类| 国产成人一区二区在线| 国产真实伦视频高清在线观看| 欧美成人a在线观看| 乱码一卡2卡4卡精品| 久久久久久九九精品二区国产| 丰满乱子伦码专区| 校园春色视频在线观看| 国产精品1区2区在线观看.| 亚洲av免费在线观看| 午夜精品在线福利| 波多野结衣巨乳人妻| www日本黄色视频网| 少妇猛男粗大的猛烈进出视频 | 久久精品久久久久久噜噜老黄 | 亚洲性久久影院| 日韩欧美一区二区三区在线观看| 一本久久中文字幕| 日韩一区二区视频免费看| 婷婷精品国产亚洲av在线| av在线播放精品| 中文字幕人妻熟人妻熟丝袜美| 免费在线观看影片大全网站| 国产精品爽爽va在线观看网站| 国产久久久一区二区三区| 成年女人看的毛片在线观看| 亚洲精品粉嫩美女一区| 亚洲国产精品久久男人天堂| 熟女电影av网| 俄罗斯特黄特色一大片| 国产精品永久免费网站| 国产探花在线观看一区二区| 久久久久久久久久黄片| 亚洲图色成人| 国产一区二区在线观看日韩| 麻豆av噜噜一区二区三区| 一进一出抽搐gif免费好疼| 亚洲精品国产av成人精品 | 亚洲精品一区av在线观看| 久久国内精品自在自线图片| av在线亚洲专区| 久久久久久国产a免费观看| 人妻久久中文字幕网| 亚洲成人久久性| 69av精品久久久久久| 91在线观看av| 久久精品影院6| 日韩欧美国产在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲高清免费不卡视频| 青春草视频在线免费观看| 五月伊人婷婷丁香| 成人av在线播放网站| 国产白丝娇喘喷水9色精品| or卡值多少钱| 老女人水多毛片| 精华霜和精华液先用哪个| 久久精品夜色国产| 欧美日韩综合久久久久久| 一级毛片电影观看 | 特级一级黄色大片| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区 | 高清毛片免费看| 婷婷精品国产亚洲av在线| 春色校园在线视频观看| 内射极品少妇av片p| 丰满乱子伦码专区| 国产aⅴ精品一区二区三区波| 欧美日韩精品成人综合77777| 别揉我奶头~嗯~啊~动态视频| 九九在线视频观看精品| 99国产精品一区二区蜜桃av| 亚洲欧美成人精品一区二区| 久久婷婷人人爽人人干人人爱| 午夜爱爱视频在线播放| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 日韩一区二区视频免费看| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| 国产高潮美女av| 男人和女人高潮做爰伦理| 国产极品精品免费视频能看的| 观看美女的网站| 中文字幕久久专区| 一进一出好大好爽视频| 欧美成人免费av一区二区三区| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 国产伦精品一区二区三区四那| 亚洲欧美成人综合另类久久久 | 欧美日韩综合久久久久久| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 一a级毛片在线观看| 可以在线观看的亚洲视频| 一级黄色大片毛片| 欧美性猛交╳xxx乱大交人| 成熟少妇高潮喷水视频| av在线观看视频网站免费| 免费av观看视频| 免费不卡的大黄色大毛片视频在线观看 | 欧美成人一区二区免费高清观看| 白带黄色成豆腐渣| 丝袜美腿在线中文| 国产精品一区二区三区四区免费观看 | 国产片特级美女逼逼视频| 免费观看在线日韩| 免费观看的影片在线观看| 国产亚洲精品久久久久久毛片| videossex国产| 女同久久另类99精品国产91| 一边摸一边抽搐一进一小说| 三级男女做爰猛烈吃奶摸视频| 性插视频无遮挡在线免费观看| 99久久九九国产精品国产免费| 91久久精品国产一区二区成人| 国产精品一区二区三区四区免费观看 | 啦啦啦啦在线视频资源| 日本与韩国留学比较| 国产亚洲欧美98| 国产真实伦视频高清在线观看| 久久久国产成人精品二区| 美女免费视频网站| 成人亚洲精品av一区二区| 午夜a级毛片| 直男gayav资源| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 亚洲熟妇中文字幕五十中出| 日韩国内少妇激情av| 亚洲av免费高清在线观看| 日韩精品青青久久久久久| 久久精品国产亚洲av天美| 国产精品三级大全| 国语自产精品视频在线第100页| 欧美色视频一区免费| 美女大奶头视频| 精品久久久噜噜| 日本a在线网址| 麻豆久久精品国产亚洲av| 99久国产av精品| 国产欧美日韩精品亚洲av| 久久鲁丝午夜福利片| 久久久国产成人免费| 看非洲黑人一级黄片| 成人欧美大片| 欧美成人a在线观看| 亚洲精品亚洲一区二区| 久久久久精品国产欧美久久久| 久久久精品94久久精品| av福利片在线观看| a级毛色黄片| 美女黄网站色视频| 欧美绝顶高潮抽搐喷水| 欧美色视频一区免费| 久久精品国产自在天天线| 日日摸夜夜添夜夜添小说| 国产精品久久久久久av不卡| 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| 国产国拍精品亚洲av在线观看| 少妇高潮的动态图| 51国产日韩欧美| 亚洲综合色惰| 亚洲,欧美,日韩| 好男人在线观看高清免费视频| 日韩中字成人| 欧美潮喷喷水| 午夜福利在线观看吧| 婷婷精品国产亚洲av在线| 久久久a久久爽久久v久久| 偷拍熟女少妇极品色| 亚洲一区二区三区色噜噜| 久久精品国产99精品国产亚洲性色| 国产男人的电影天堂91| 欧美不卡视频在线免费观看| 少妇人妻精品综合一区二区 | 99在线人妻在线中文字幕| 久久久久久久久久成人| 国产精品久久久久久av不卡| 大型黄色视频在线免费观看| av黄色大香蕉| 天美传媒精品一区二区| 成人毛片a级毛片在线播放| 亚洲不卡免费看| 最近视频中文字幕2019在线8| 日本黄色视频三级网站网址| 欧美成人精品欧美一级黄| 97在线视频观看| 中文亚洲av片在线观看爽| 一级av片app| 男女边吃奶边做爰视频| 女同久久另类99精品国产91| 免费看日本二区| 变态另类丝袜制服| 国产高清不卡午夜福利| 欧美3d第一页| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 中出人妻视频一区二区| 成人特级av手机在线观看|