• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flow Pattern and Pressure Fluctuation of Severe Slugging inPipeline-riser System*

    2011-05-15 08:52:10LUOXiaoming羅小明HELimin何利民andMAHuawei馬華偉
    關(guān)鍵詞:利民

    LUO Xiaoming (羅小明), HE Limin (何利民) and MA Huawei (馬華偉)

    ?

    Flow Pattern and Pressure Fluctuation of Severe Slugging inPipeline-riser System*

    LUO Xiaoming (羅小明)**, HE Limin (何利民) and MA Huawei (馬華偉)

    Department of Storage & Transportation Engineering, China University of Petroleum, Qingdao 266555, China

    During the exploitation of offshore oil and gas, it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system. The flow pattern and pressure fluctuation of severe slugging were studied in an experimental simulation system with inner diameter of 0.051 m. It is found that severe slugging can be divided into three severe slugging regimes: regime I at low gas and liquid flow rates with large pressure fluctuation, intermittent flow of liquid and gas in the riser, and apparent cutoff of liquid phase, regime II at high gas flow rate with non-periodic fluctuation and discontinuous liquid outflow and no gas cutoff, regime III at high liquid flow rate with degenerative pressure fluctuation in form of relatively stable bubbly or plug flow. The results indicate that severe slugging still occurs when the declination angle of pipeline is 0?, and there are mainly two kinds of regimes: regime I and regime II. As the angle increases, the formation ranges of regime I and regime III increase slightly while that of regime II is not affected. With the increase of gas superficial velocity and liquid superficial velocity, the pressure fluctuation at the bottom of riser increases initially and then decreases. The maximum value of pressure fluctuation occurs at the transition boundary of regimes I and II.

    multiphase flow, severe slugging, pipeline-riser system, flow regime, pressure fluctuation

    1 INTRODUCTION

    During the exploitation of offshore oil and gas, a long riser is needed to transport oil (with water) and associated gas from submarine wellheads to an offshore platform preprocessing system. Due to the flow rate variation and the rugged subsea terrain, it is easy to form severe slugging in the riser, which is characterized by considerable gas-liquid flow rate variation and pressure fluctuation. Severe slugging can result in rapid changes of pressure drop in pipeline, and lead to overflow or interruption of the terminal gas-liquid separator. Also it can cause the formation of hydrate to block the pipeline. Besides, it can increase the wellhead back pressure and reduce well production.

    In recent years, the research of severe slugging attracts more attention with the development of offshore oil exploitation in deep-water area. Some researchers focused on formation mechanism, flow characteristics and elimination methods of severe slugging by theoretical and experimental research. The formation mechanism of severe slugging is different from that of hydrodynamic slug flow. Hydrodynamic slug flow is formed because the interface fluctuation aroused by Kelvin-Helmholtz instability causes the pipeline blocked by liquid slug [1-7]. However, the mechanism of severe slugging is that the liquid accumulating at the bottom of riser blocks the gas in the pipe and then long liquid slug is formed [8]. B?e [9] believed that the ratio of the increasing rate of the accumulated liquid pressure to that of the gas compressing pressure in the riser is the criterion of severe slugging formation. He. [10-12] proposed a method which utilized pressure signals to measure characteristic parameters of severe slugging. Tin. [13, 14] indicated that the accumulated gas in the declined pipe before the last ascending pipe in S-pipe had great influence on the characteristics of severe slugging. Montgomery and Yeung [15] found that the formation range of unstable flow was little affected by the increase of system back pressure. Corteville [16] studied the severe slugging in U-pipe and believed that flow instability in U-pipe was lower than that in the riser. Liu. [17] built a simplified quasi-equilibrium state mathematical model of severe slugging based on one-dimensional hydrodynamic equation. Yu. [18] performed the numerical simulation of transient flow characteristics and sensibility in the riser by OLGA 2000. Wang and Guo [19] developed a simplified theoretical model based on the drift flux model which can help accurately predict the expansion process of gas flow and the system variables such as period, liquid slug length and maximum liquid length in inclined pipe. Mokhatab [20] built a dynamic model which can exactly simulate severe slugging in floating riser. Hernandez. [21] analyzed the process of bubbles moving from the bottom to the top of riser and revised the deviation of gas density. The modified transient model was more accurate than the former ones.

    Regimes I and II are always the focus of researches, while regime III gets little attention which is an important part of severe slugging as well. In this paper, the flow regimes and pressure fluctuation of severe slugging in pipeline-riser system were studied in order to obtain a more impeccable relationship.

    2 EXPERIMENTAL

    The experimental system consists of liquid tank, centrifugal pump, screw compressor, gas buffer tank, metallic gas float flow meter, liquid elliptical gear flow meter, precise regulation valve, baffle-type gas-liquid mixer, test pipe, gas-liquid separator and so on. The ID of the test pipe is 0.051 m, and the pipe is made of transparent (poly methylmethacrylate) PMMA for visual observation. Along the flow direction, it can be divided into three parts: a declined pipe with a length of 10.6 m, and the inclination is(0--4°); a vertical pipe with a length of 4.1 m; and a 0.6 m long horizontal pipe which connects the gas-liquid separator. The declined pipe and the ascending pipe are connected by a 0.4 m long hose to adjust the inclination easily. The detailed diagram of experimental system is shown in Fig. 1.

    Figure 1 Schematic diagram of experimental system

    1—liquid tank; 2—pump; 3—elliptic gear flow meter; 4—compressor; 5—gas tank; 6—float flow meter; 7—mixer; 8—declined pipe; 9—riser; 10—separator

    In order to study pressure fluctuation characteristics of severe slugging, 5 Keller PA23 pressure transducers (P1-P5) with the frequency of 5 kHz are installed. The accuracy, repeatability and temperature stability can meet the requirements of present experiment. The liquid holdup is tested with two groups of self-made annular conductance probes. Each one is made up of two parallel stainless steel wires with diameter of 0.6 mm. The two electrodes 5 mm apart are implanted into PMMA tube and are both parallel with the wall. The input signal of conductance probe is sine-wave signal with amplitude of 10 V and frequency of 100 kHz. The output signal enters the self-made processing circuit which consists four parts: voltage- current switching circuit, full-wave rectifier circuit, range adjustment, and second-order low-pass active filter. NI PCI-6071E high-speed acquisition panel is used for data acquisition, and the sampling frequency is 1 kHz. The wavelet self-adaptive filtering method is chosen to filter pressure signal. The range of experimental parameters is as follows: gas superficial velocity ranges from 0.02 m·s-1to 1.0 m·s-1(standard state), liquid superficial velocity ranges from 0.02 m·s-1to 1.0 m·s-1, and the declination angle of declined pipe ranges from 0° to-4°. The maximum relative uncertainty of superficial gas velocity, superficial liquid velocity, pressure and liquid holdup are 2.01%, 1.46%, 1.75% and 2.70%, respectively.

    3 FLOW PATTERN

    3.1 Classification of severe slugging

    Severe slugging is a kind of periodic flow phenomenon that occurs at low gas and liquid flow rates. Due to the influence of pipeline layout, liquid tends to accumulate at the lower part of pipeline and form liquid slugs. The gas blocked by the liquid slug in limited space accumulates continuously and finally blows out. The characteristics of severe slugging are listed as follows: (1) occurs at low gas and liquid flow rates; (2) great static pressure posed by the liquid accumulated in the riser leads to great pressure fluctuation when gas blows out; (3) great changes of gas and liquid flow rates at the pipeline outlet; (4) periodicity of characteristic parameters such as pressure fluctuation and flow rate variation.

    According to above definition and characteristics, severe slugging caused by the changes of gas and liquid flow rates can be classified into three types.

    Figure 2&for SS I (-2°)

    Severe slugging regime I (SS I) [9] occurs at low gas and liquid flow rates, and the length of liquid slug reaches as long as one or several heights of the riser. Fig. 2 shows the fluctuation curves of pressure and liquid holdup which indicate the characteristics of regime I: large pressure fluctuation, intermittent flow of liquid and gas phase in the riser, and apparent cutoff of liquid phase.

    Severe slugging regime II (SS II) [8]: In the severe slugging regime I, as the gas flow rate increases, the gas in the declined pipe gets into the riser before the slug head formed at the end of blowout reaches the top of the riser. Meanwhile, the length of outflow liquid slug is shorter than that of the riser. As the gas flow rate increases further, the gas gets into the riser continuously, and then slugs containing many bubbles are formed. Meanwhile, the regime in the riser is bubble flow or plug flow, and no gas cutoff occurs at the pipe outlet, but the blowout of gas and liquid still happens. Fig. 3 demonstrates that regime II displays periodic fluctuation. As the gas flow rate increases, the cycle length changes more intensely until the periodicity disappears gradually. Liquid outflows of the pipe outlet discontinuously with no gas cutoff.

    Figure 3for SS II (-2°)

    Severe slugging regime III (SS III): In the severe slugging regime I, as the liquid flow rate increases, the liquid column formed at the end of blowout in the riser becomes higher, and the rising velocity of liquid level becomes larger. When liquid flow rate rises to a certain value, the whole riser is filled with liquid phase at the end of blowout, and no liquid cutoff occurs at the pipe outlet. Fig. 4 indicates that the periodicity of regime III is basically corresponded to that of regime I. However, as liquid flow rate increases, the pressure fluctuation becomes smaller gradually, and severe slugging disappears, and then relatively stable bubble flow or plug flow is formed. Gas outflows of the pipe outlet discontinuously with no liquid cutoff.

    At certain gas and liquid flow rates, there will be a long period of steady flow, but severe slugging may happen occasionally which results in fluctuations of pressure and outlet flow rate. This regime is known as irregular severe slugging. Wang and Guo [19] also discovered this kind of regime. Irregular severe slugging appears in the region of SS II or SS III where the gas and liquid flow rates are very close to those of steady flow. Hence this phenomenon still belongs to SS II or SS III. When the declination angle is 0° and the gas-liquid flow rate is low, the liquid hold-up of horizontal pipe is high. The liquid and gas flow rates in the riser and the pressure fluctuation will cause the gas-liquid interface fluctuation in the horizontal pipe, thus the regime will change from stratified flow to bubble flow or plug flow. When the bubble flow or plug flow enters into the riser, certain pressure fluctuation will maintain. No severe slugging occurs.

    Figure 4for SS III (-2°)

    Figure 5 Flow pattern map (0°)

    Figure 6 Flow pattern map (-1°)

    Figure 7 Flow pattern map (-2°)

    Figure 8 Flow pattern map (-4°)

    3.2 Flow regime map

    Schmidt. [8] believed that when inclination angle was 0°, severe slugging would not occur. However, Wang and Guo [19] thought that severe slugging might occur when inclination angle was 0° because of the influence of liquid viscosity. In this study, severe slugging is observed when inclination angle is 0°. As shown in Fig. 6, there are mainly two kinds of regimes: regime I and regime II. When inclination angle is 0°, the gas and liquid superficial velocity corresponding to the formation region of severe slugging are very low.

    Comparing the figures when the inclination angle-1°,-2°,-4°, it is found that as the inclination angle increases the region of severe slugging increases slightly. Meanwhile, the region of regime II is hardly affected by the change of inclination angle.

    4 PRESSURE FLUCTUATIONS

    4.1 Analysis of pressure fluctuation

    The characteristic parameters of severe slugging vary periodically over time. Generally, one severe slugging cycle can be divided into 4 stages: blowout, liquid fallback, slug formation and slug production as shown in Fig. 9. In the lower part of Fig. 9, the amplitude of pressure fluctuation,ampis defined.

    Figure 10 shows the pressure fluctuation time series of P1, P3and P5, and the pressure signals of P1and P3are almost the same. This indicates that when severe slugging occurs, the pressure drop is very small due to the stratified flow or bubble flow in declined pipe. The pressure of P3at the bottom of the riser is the most representative pressure parameter for it can represent both the gas pressure in declined pipe and the pressure of liquid flowing in the riser. The pressure and fluctuation amplitude of P5are both smaller compared with those of P1and P3. It is because that P5locates at the top of the riser. Therefore, the pressure signal of P3at the bottom of the riser is used to analyze the pressure fluctuation characteristics of severe slugging.

    4.2 Relationship of pressure fluctuation and gas velocity

    Figures 11, 12 and 13 show the relation curves of pressure fluctuation amplitude (amp) of P3with superficial gas velocity (sg) when inclination angles are-1°,-2° and-4° respectively. It demonstrates that with the increase of gas superficial velocity, the flow pattern of severe slugging changes from SS III to SS I, and then to SS II. In this process, the maximum amplitude of pressure fluctuation occurs at SS I.

    Figure 9 Time series of P3

    Figure 10 Time series of P1, P3, P5

    Figure 11amp.sg(-1°)

    I—SS I; II—SS II; III—SS III

    Figure 12amp.sg(-2°)

    I—SS I; II—SS II; III—SS III

    Figure 13amp.sg(-4°)

    I—SS I; II—SS II; III—SS III

    When SS III and SS I occur, the maximum pressure (max) at the riser base almost does not change with the changes of gas superficial velocity, liquid superficial velocity or inclination angle. However, the increase of gas flow rate leads to more intense blowout of gas, and more liquid is carried out of pipeline in the process of blowout. Therefore, the gas pressure of declined pipe is much lower at the end of the liquid fallback stage and the initial length of newly formed liquid slug decreases. The pressure fluctuation of P3shows that the minimum pressure (min) decreases indicates that the pressure fluctuation amplitude (amp) in the riser increases.

    In the transition regime of SS II,maxat the bottom of riser is lower than those when SS III and SS I occur. The increase of gas flow rate can heighten the void fraction of liquid slug in riser and reducemaxfurther at the bottom of riser. Meanwhile, the pressure at the bottom of riser decreases, so does the intensity of blowout, and less liquid is carried out of the pipeline. Therefore the initial length of liquid slug formed after liquid fallback increases. Theminincreases andampdecreases in riser.

    4.3 Relationship of pressure and liquid velocity

    Figures 14, 15 and 16 show the relation curves of pressure fluctuation amplitude (amp) of P3at the bottom of riser with liquid superficial velocity (sl) when inclination angles are-1°,-2° and-4° respectively. It demonstrates that with the increase of liquid superficial velocity (sl),.. liquid flow rate, severe slugging changes from SS II to SS I, and then to SS III. In this process,ampincreases when SS II occurs, and decreases when SS III and SS I appear.

    Figure 14amp.sl(-1°)

    I—SS I; II—SS II; III—SS III

    Figure 15amp.sl(-2°)

    I—SS I; II—SS II; III—SS III

    Figure 16amp.sl(-4°)

    I—SS I; II—SS II; III—SS III

    When SS II occurs, the increase of liquid flow rate leads to the decrease of void fraction of liquid slug in the riser and the increase ofmaxat the bottom of riser. Meanwhile, the pressure at the bottom of the riser increases, leading to the more intense blowout of gas, and more liquid is carried out. Theminat the bottomof riser decreases, and theampin the riser increases.

    When SS III and SS I occur, themaxat the bottom of riser generally keeps constant. The increase of liquid flow rate can enhance more liquid entering into riser during the blowout. The liquid film adhering to the pipe wall becomes thicker and the initial length of slug formed after liquid fallback increases. In the riser, theminincreases andampdecreases.

    4.4 Relationship of pressure and flow pattern

    In the regions of SS I, SS II and SS III, the regular pattern that pressure fluctuation amplitude (amp) varies with the changes of gas and liquid superficial velocity is different from each other. The contour lines of pressure fluctuation amplitude at different liquid and gas superficial velocities are drawn in the flow regime maps when inclination angles are-1°,-2° and-4° respectively, as shown in Figs. 17, 18 and 19.

    Figure 17 Contour plot ofamp(-1°)

    Figure 18 Contour plot ofamp(-2°)

    Figure 19 Contour plot ofamp(-4°)

    The above figures show that with the increase of gas superficial velocity (sg), severe slugging changes from SS III to SS I, and then to SS II. In this process, theampincreases while SS III and SS I occur, and decreases when SS II appears. As the liquid superficial velocity (sl) increases, the flow pattern of severe slugging undergoes reversed order, andampat the bottom of the riser increases when SS II occurs, then decreases when SS I and SS III happen. Therefore the maximum value ofampappears at the transition boundary of SS I and SS II.

    5 CONCLUSIONS

    (1) Severe slugging still occurs when inclination angle is 0°. As the inclination angle increases from-1° to-4°, the formation range of severe slugging increases slightly. When the inclination angle changes, the formation range of regime II is almost invariant, and those of regime I and regime III vary slightly.

    (2) With the increase of gas superficial velocity and liquid superficial velocity, the pressure fluctuation amplitude at the bottom of the riser increases initially and then decreases, and the maximum value occurs at the transition boundary of SS I and SS II.

    1 Kordyban, E., “Horizontal slug flow: A comparison of existing theories”,., 112 (1), 74-83 (1990).

    2 Fabre, J., Line, A., “Modeling of two-phase slug flow”,..., 24, 21-46 (1992).

    3 Wallis, G.B., Dobson, J.E., “The onset of slugging in horizontal stratified air-water flow”,.., 1 (1), 173-193 (1973).

    4 Taitel, Y., Dukler, A.E., “A model for predicting flow regime transition in horizontal and near horizontal gas-liquid flow”,., 22 (1), 47-54 (1976).

    5 Taitel, Y., Dukler, A.E., “A model for slug frequency during gas-liquid flow in horizontal and near horizontal pipes”,.., 3 (5), 585-596 (1977).

    6 Mishima, K., Ishii, M., “Theoretical prediction of onset of horizontal slug flow”,.., 102 (4), 441-445 (1980).

    7 Barnea, D., Taitel, Y., “Kelvin-Helmholtz stability criteria for stratified flow, viscousnon-viscous (inviscid) approaches”,.., 19 (4), 639-649 (1993).

    8 Schmidt, Z., Brill, J.P., Beggs, H.D., “Choking can eliminate severe pipeline slugging”,., 12 (3), 230-238 (1979).

    9 B?e, A., “Severe slugging characteristics: (1) Flow regime for severe slugging (2) Point model simulation study”, Presented at Selected Topics in Two-Phase Flow, NTH, Trondheim, Norway (1981).

    10 He, L.M., Zhao, Y.C., Luo, X.M., “The measurement methods on characteristic parameters of air-water severe slugging in pipe-riser systems”,..., 26 (4), 621-624 (2005). (in Chinese)

    11 Luo, X.M., He, L.M., Ma, H.W., “Experimental study of characteristic parameters of severe slugging in riser-pipe systems”,.., 29 (6), 74-77 (2005). (in Chinese)

    12 Ma, H.W., He, L.M., Luo, X.M., “Experiment on pressure fluctuation characteristic of severe slugging”,.., 32 (1), 95-99 (2008). (in Chinese)

    13 Tin, V., Sarshar, M.M., “An investigation of severe slugging characteristics in flexible risers”, In: Proc. 6th Int. Conf. on Multiphase Production, BHRG, France, 205-228 (1993).

    14 Tin, V., “Severe slugging in flexible risers”, In: Proc. 5th BHRG Int. Conf. Multiphase Production, France, 507-525 (1991).

    15 Montgomery, J.A., Yeung, H.C., “The stability of fluid production from a flexible riser”,.., 124 (2), 83-88 (2002).

    16 Corteville, T., “An experimental study of severe slugging in multiphase production lines”, In: Proc. of the 7th Int. BHRG Conf. on Multiphase Production, France, 105-121 (1995).

    17 Liu, M.E., Li, Q.P., An, W.J., “One-dimension unsteady model of severe slugging in a riser system”,, 19 (2), 125-130 (2007). (in Chinese)

    18 Yu, X.C., Ren, Y.B., Wu, Y.L., “The analysis of transient flow characteristics and sensitivity in the riser of subsea multiphase pipeline”,, 19 (1), 60-64 (2007). (in Chinese)

    19 Wang, X., Guo, L.J., “Experimental investigation and simulation of severe slugging in pipeline-riser system”,.., 27 (4), 611-614 (2006). (in Chinese)

    20 Mokhatab, S., “Severe slugging in a catenary-shaped riser: Experimental and simulation studies”,, 25 (6), 719-740 (2007).

    21 Hernandez, G., Asuaje, M., Kenyery, F., Tremante, A., Aguillón, O., Vidal, A., “Two-phase flow transient simulation of severe slugging in pipeline-risers systems”,.., 56 (4), 39-50 (2007).

    22 Mandhane, J.M., Gregory, G.A., Aziz, K., “A flow pattern map for gas liquid flow in horizontal pipes”,.., 1, 537-551 (1974).

    ** To whom correspondence should be addressed. E-mail: luo-xiaoming@163.com

    2010-04-07,

    2010-12-12.

    the National High Technology Research and Development Program of China (2006AA09Z302).

    猜你喜歡
    利民
    編委風(fēng)采
    ——戎利民教授
    Nanobubbles produced by hydraulic air compression technique
    新型捕收劑BK610和BK612在利民選煤廠的應(yīng)用
    看水 聽(tīng)濤
    文化交流(2020年12期)2020-12-28 03:02:30
    果樹(shù)大容器育苗技術(shù)的研究
    全面小康——利民之路
    傅利民
    心聲歌刊(2019年1期)2019-12-07 09:19:38
    垃圾分類:雖然“繁瑣”但利已利民
    鹽城利民的黃龍夢(mèng)
    漫畫
    讀書(2014年11期)2014-09-10 07:22:44
    别揉我奶头~嗯~啊~动态视频| 亚洲成a人片在线一区二区| 熟女少妇亚洲综合色aaa.| 国产精品野战在线观看 | 99国产精品免费福利视频| 色精品久久人妻99蜜桃| 在线播放国产精品三级| 亚洲欧美日韩另类电影网站| 黄色女人牲交| 夜夜爽天天搞| 色尼玛亚洲综合影院| 一本大道久久a久久精品| 97碰自拍视频| 叶爱在线成人免费视频播放| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 亚洲精品国产区一区二| 91成人精品电影| 男女床上黄色一级片免费看| 日韩欧美三级三区| 国产一区在线观看成人免费| 免费一级毛片在线播放高清视频 | 精品久久久久久久久久免费视频 | 精品一区二区三卡| 色综合站精品国产| 丝袜人妻中文字幕| 亚洲人成伊人成综合网2020| 免费av中文字幕在线| 高潮久久久久久久久久久不卡| 又黄又爽又免费观看的视频| 一边摸一边做爽爽视频免费| 日韩精品青青久久久久久| 国产精品香港三级国产av潘金莲| 国产高清激情床上av| 亚洲精品粉嫩美女一区| 中亚洲国语对白在线视频| 久久精品成人免费网站| 日本a在线网址| 十八禁人妻一区二区| 后天国语完整版免费观看| 亚洲欧美激情综合另类| 国产亚洲欧美精品永久| 精品第一国产精品| 99国产精品一区二区三区| 成人特级黄色片久久久久久久| 国产精品1区2区在线观看.| 一区二区三区激情视频| 夜夜看夜夜爽夜夜摸 | 亚洲成人国产一区在线观看| 亚洲av日韩精品久久久久久密| 99国产精品一区二区蜜桃av| 欧美日韩福利视频一区二区| 我的亚洲天堂| 热re99久久精品国产66热6| 午夜免费观看网址| 欧美色视频一区免费| 欧美久久黑人一区二区| 在线观看www视频免费| 黄片小视频在线播放| 日韩大码丰满熟妇| 亚洲在线自拍视频| 精品电影一区二区在线| 色综合站精品国产| 久久久久国产一级毛片高清牌| 欧美人与性动交α欧美软件| 黄色女人牲交| 麻豆国产av国片精品| 精品国产乱子伦一区二区三区| 亚洲精品国产区一区二| 久久久水蜜桃国产精品网| 青草久久国产| 看片在线看免费视频| 18禁观看日本| 日韩欧美免费精品| 法律面前人人平等表现在哪些方面| 又黄又爽又免费观看的视频| 欧美黑人精品巨大| 亚洲五月婷婷丁香| 久久 成人 亚洲| 日韩精品青青久久久久久| 亚洲人成77777在线视频| 99久久精品国产亚洲精品| 午夜91福利影院| 国产亚洲精品第一综合不卡| 国产精品久久久久久人妻精品电影| av网站在线播放免费| 欧美日韩精品网址| 天堂动漫精品| 中文字幕人妻熟女乱码| av国产精品久久久久影院| 老汉色∧v一级毛片| 久久人人97超碰香蕉20202| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 91麻豆av在线| 精品一区二区三区视频在线观看免费 | 久久亚洲精品不卡| 老鸭窝网址在线观看| 免费av中文字幕在线| 午夜两性在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲五月天丁香| 黄色丝袜av网址大全| 亚洲欧美精品综合一区二区三区| 99在线人妻在线中文字幕| 中文字幕人妻熟女乱码| 欧美性长视频在线观看| 另类亚洲欧美激情| 精品熟女少妇八av免费久了| 国产成人精品久久二区二区免费| 亚洲精品一区av在线观看| 久久人妻熟女aⅴ| 成熟少妇高潮喷水视频| 超碰97精品在线观看| 亚洲精品国产精品久久久不卡| 99久久国产精品久久久| 国产精品国产高清国产av| 国产av一区二区精品久久| 久久精品亚洲av国产电影网| 好看av亚洲va欧美ⅴa在| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 久久国产精品人妻蜜桃| 亚洲av成人不卡在线观看播放网| 一夜夜www| 欧美中文综合在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品爽爽va在线观看网站 | а√天堂www在线а√下载| 高清av免费在线| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 国内久久婷婷六月综合欲色啪| 久久精品91蜜桃| 美女高潮到喷水免费观看| 桃色一区二区三区在线观看| 亚洲欧美日韩另类电影网站| 亚洲狠狠婷婷综合久久图片| 午夜成年电影在线免费观看| 久久欧美精品欧美久久欧美| 满18在线观看网站| 午夜免费鲁丝| 一a级毛片在线观看| 久久久久九九精品影院| 啦啦啦在线免费观看视频4| 国产av在哪里看| 久久99一区二区三区| 国产高清国产精品国产三级| 精品人妻1区二区| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看| 欧美av亚洲av综合av国产av| 国产精品偷伦视频观看了| 看片在线看免费视频| 在线视频色国产色| 成年人黄色毛片网站| 99精品在免费线老司机午夜| 夜夜看夜夜爽夜夜摸 | 久久香蕉国产精品| 久久精品91无色码中文字幕| 国产单亲对白刺激| 欧美乱色亚洲激情| 97碰自拍视频| 美女高潮喷水抽搐中文字幕| 性色av乱码一区二区三区2| 无人区码免费观看不卡| 免费在线观看日本一区| 黄网站色视频无遮挡免费观看| av在线播放免费不卡| 中文字幕另类日韩欧美亚洲嫩草| 三级毛片av免费| 99精品在免费线老司机午夜| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看| 亚洲国产欧美一区二区综合| 精品日产1卡2卡| 无限看片的www在线观看| 久久久久久免费高清国产稀缺| 欧美激情 高清一区二区三区| 国产成人精品无人区| 日韩高清综合在线| 色综合欧美亚洲国产小说| netflix在线观看网站| 老熟妇仑乱视频hdxx| 人人妻人人爽人人添夜夜欢视频| 午夜福利在线观看吧| 美女扒开内裤让男人捅视频| 欧美乱色亚洲激情| 69精品国产乱码久久久| 午夜老司机福利片| 国产精品一区二区在线不卡| 女性被躁到高潮视频| 欧美日本亚洲视频在线播放| 亚洲av日韩精品久久久久久密| 99热国产这里只有精品6| 国产99久久九九免费精品| 亚洲精品国产区一区二| 啪啪无遮挡十八禁网站| 欧美乱码精品一区二区三区| 国产高清激情床上av| 久99久视频精品免费| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站 | 久久久久久久午夜电影 | 十八禁网站免费在线| 国产亚洲欧美98| 黄网站色视频无遮挡免费观看| 俄罗斯特黄特色一大片| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 久久午夜亚洲精品久久| 又紧又爽又黄一区二区| 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看| 精品一区二区三卡| 欧美日韩一级在线毛片| 一边摸一边做爽爽视频免费| 国产av精品麻豆| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 一a级毛片在线观看| 亚洲人成电影免费在线| 侵犯人妻中文字幕一二三四区| 视频区欧美日本亚洲| 黑人猛操日本美女一级片| 老熟妇仑乱视频hdxx| 久久久久久久久久久久大奶| 啦啦啦在线免费观看视频4| 在线观看免费视频网站a站| 视频区图区小说| 亚洲精品成人av观看孕妇| 亚洲性夜色夜夜综合| 欧美大码av| 免费看a级黄色片| 桃红色精品国产亚洲av| 国产精品乱码一区二三区的特点 | 久久久国产成人免费| 手机成人av网站| 国产精品爽爽va在线观看网站 | 久久99一区二区三区| 日日摸夜夜添夜夜添小说| av视频免费观看在线观看| 无人区码免费观看不卡| 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 精品高清国产在线一区| 亚洲熟妇中文字幕五十中出 | 宅男免费午夜| 欧美中文综合在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区久久| 麻豆久久精品国产亚洲av | 天堂俺去俺来也www色官网| 亚洲精品国产精品久久久不卡| 久久草成人影院| 午夜精品国产一区二区电影| 成人手机av| 欧美精品啪啪一区二区三区| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 久久精品国产清高在天天线| 成人亚洲精品av一区二区 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人久久性| 中亚洲国语对白在线视频| 日韩免费高清中文字幕av| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 婷婷精品国产亚洲av在线| tocl精华| 欧美成人午夜精品| 亚洲七黄色美女视频| 精品高清国产在线一区| 最好的美女福利视频网| 日韩大码丰满熟妇| 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区| 麻豆久久精品国产亚洲av | 国产亚洲精品久久久久久毛片| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| 国产不卡一卡二| 精品无人区乱码1区二区| 久久久久久免费高清国产稀缺| 18禁美女被吸乳视频| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| 亚洲国产精品一区二区三区在线| 欧美成人免费av一区二区三区| 亚洲中文日韩欧美视频| 精品第一国产精品| av中文乱码字幕在线| 淫妇啪啪啪对白视频| 热re99久久精品国产66热6| 日韩 欧美 亚洲 中文字幕| 国产成人影院久久av| 国产精品一区二区免费欧美| 亚洲 国产 在线| 99国产综合亚洲精品| 黄色a级毛片大全视频| 亚洲国产精品999在线| 国产精华一区二区三区| 欧美日韩瑟瑟在线播放| 国产亚洲欧美在线一区二区| 搡老乐熟女国产| 搡老岳熟女国产| 在线观看日韩欧美| 欧美成人午夜精品| 五月开心婷婷网| 国产精品一区二区在线不卡| 亚洲国产看品久久| 成年女人毛片免费观看观看9| 亚洲 欧美 日韩 在线 免费| 夜夜爽天天搞| 女性被躁到高潮视频| 亚洲精品粉嫩美女一区| 9色porny在线观看| 欧美午夜高清在线| 高清av免费在线| www.自偷自拍.com| 欧美日韩福利视频一区二区| 国产一区二区三区视频了| 麻豆av在线久日| 两性午夜刺激爽爽歪歪视频在线观看 | 纯流量卡能插随身wifi吗| 国产成人影院久久av| 老司机在亚洲福利影院| cao死你这个sao货| www日本在线高清视频| 色综合站精品国产| 久久 成人 亚洲| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久| 久久国产精品男人的天堂亚洲| 精品一区二区三区四区五区乱码| 97碰自拍视频| 精品一区二区三区四区五区乱码| av天堂在线播放| 99香蕉大伊视频| 一边摸一边做爽爽视频免费| 色精品久久人妻99蜜桃| 国产精品1区2区在线观看.| 亚洲国产精品一区二区三区在线| 日韩国内少妇激情av| 成人亚洲精品一区在线观看| 9191精品国产免费久久| 午夜福利在线免费观看网站| 在线观看免费高清a一片| 一二三四社区在线视频社区8| 法律面前人人平等表现在哪些方面| 国产精品久久久av美女十八| 日本vs欧美在线观看视频| 日韩精品青青久久久久久| 欧美日韩一级在线毛片| 三上悠亚av全集在线观看| 制服诱惑二区| 纯流量卡能插随身wifi吗| 欧美人与性动交α欧美精品济南到| 中文亚洲av片在线观看爽| av欧美777| 日韩一卡2卡3卡4卡2021年| 午夜精品国产一区二区电影| 操出白浆在线播放| 97碰自拍视频| 国产区一区二久久| 99国产极品粉嫩在线观看| 久久亚洲真实| 一级毛片女人18水好多| 啦啦啦免费观看视频1| 两性夫妻黄色片| 高清欧美精品videossex| 在线免费观看的www视频| 欧美日韩一级在线毛片| 亚洲精品av麻豆狂野| 日韩精品青青久久久久久| 精品福利永久在线观看| 国产精品一区二区免费欧美| 国产精品影院久久| 亚洲av第一区精品v没综合| 久久久国产成人精品二区 | 国产精品二区激情视频| 日本wwww免费看| 不卡av一区二区三区| 宅男免费午夜| 99精品久久久久人妻精品| 亚洲 欧美一区二区三区| 国产一卡二卡三卡精品| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 法律面前人人平等表现在哪些方面| 日本免费一区二区三区高清不卡 | 日本vs欧美在线观看视频| 国产乱人伦免费视频| 免费一级毛片在线播放高清视频 | 亚洲精品国产区一区二| 欧美午夜高清在线| 香蕉国产在线看| 欧美乱码精品一区二区三区| 午夜福利,免费看| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 欧美 亚洲 国产 日韩一| 日本 av在线| 欧美成狂野欧美在线观看| 一区二区三区国产精品乱码| 日本欧美视频一区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品99久久99久久久不卡| 亚洲av成人av| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| 欧美 亚洲 国产 日韩一| av有码第一页| 制服人妻中文乱码| 亚洲色图 男人天堂 中文字幕| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费 | 国产成年人精品一区二区 | www.自偷自拍.com| 一级,二级,三级黄色视频| 亚洲精品久久午夜乱码| 国产亚洲精品第一综合不卡| 久久精品成人免费网站| 亚洲中文日韩欧美视频| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 12—13女人毛片做爰片一| av网站免费在线观看视频| 9色porny在线观看| 精品电影一区二区在线| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 久久精品91蜜桃| 淫秽高清视频在线观看| 精品久久久久久成人av| 黄色 视频免费看| 精品免费久久久久久久清纯| 久久人人爽av亚洲精品天堂| 久久天堂一区二区三区四区| 久久热在线av| 欧美激情极品国产一区二区三区| 久久精品国产综合久久久| 日本免费a在线| 欧美日韩瑟瑟在线播放| 日韩大码丰满熟妇| 女人被躁到高潮嗷嗷叫费观| 三级毛片av免费| 亚洲成人精品中文字幕电影 | 亚洲av成人不卡在线观看播放网| www国产在线视频色| 国产不卡一卡二| 级片在线观看| 老汉色av国产亚洲站长工具| 亚洲av片天天在线观看| 天堂中文最新版在线下载| 激情在线观看视频在线高清| 亚洲五月婷婷丁香| 精品电影一区二区在线| 老司机午夜福利在线观看视频| 欧美黑人精品巨大| 久久人人爽av亚洲精品天堂| 一个人免费在线观看的高清视频| 91在线观看av| www.999成人在线观看| 国产精品亚洲av一区麻豆| 欧美精品啪啪一区二区三区| 宅男免费午夜| 在线播放国产精品三级| 免费少妇av软件| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区激情视频| 国产精品 国内视频| 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 在线播放国产精品三级| 国产av一区二区精品久久| √禁漫天堂资源中文www| 午夜福利欧美成人| 老司机午夜福利在线观看视频| 亚洲美女黄片视频| 日本wwww免费看| 大型黄色视频在线免费观看| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 精品国产乱码久久久久久男人| 淫妇啪啪啪对白视频| 精品国产美女av久久久久小说| 婷婷丁香在线五月| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 精品久久久久久,| 99香蕉大伊视频| 亚洲精品中文字幕在线视频| 欧美精品一区二区免费开放| 激情视频va一区二区三区| 青草久久国产| 久久精品91蜜桃| 久久九九热精品免费| 亚洲一区二区三区色噜噜 | 首页视频小说图片口味搜索| 韩国精品一区二区三区| 久久香蕉激情| 99久久久亚洲精品蜜臀av| 国产av又大| 成人特级黄色片久久久久久久| 老鸭窝网址在线观看| 一边摸一边抽搐一进一出视频| 在线看a的网站| 在线国产一区二区在线| 在线观看一区二区三区激情| 欧美乱妇无乱码| 午夜两性在线视频| 日本精品一区二区三区蜜桃| 桃色一区二区三区在线观看| av中文乱码字幕在线| 免费在线观看亚洲国产| 午夜影院日韩av| 亚洲成国产人片在线观看| 亚洲成人久久性| 久久午夜亚洲精品久久| 每晚都被弄得嗷嗷叫到高潮| 欧美色视频一区免费| 成人av一区二区三区在线看| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 欧美精品一区二区免费开放| 麻豆久久精品国产亚洲av | 纯流量卡能插随身wifi吗| 美女 人体艺术 gogo| 日本五十路高清| 久9热在线精品视频| 天堂动漫精品| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 怎么达到女性高潮| www.999成人在线观看| 91大片在线观看| 91麻豆精品激情在线观看国产 | 日本 av在线| svipshipincom国产片| 亚洲精品久久成人aⅴ小说| 自拍欧美九色日韩亚洲蝌蚪91| 色在线成人网| 国产精品亚洲av一区麻豆| 亚洲国产精品999在线| 99久久精品国产亚洲精品| 午夜免费成人在线视频| 无人区码免费观看不卡| 神马国产精品三级电影在线观看 | 91精品国产国语对白视频| 国产亚洲欧美在线一区二区| 91精品国产国语对白视频| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 久久99一区二区三区| 欧美不卡视频在线免费观看 | 91麻豆av在线| 两个人免费观看高清视频| 久久久久久久久免费视频了| 亚洲av成人av| 91精品国产国语对白视频| 精品免费久久久久久久清纯| 水蜜桃什么品种好| 18禁裸乳无遮挡免费网站照片 | 高清黄色对白视频在线免费看| 一级黄色大片毛片| 久久久国产成人免费| 黑人巨大精品欧美一区二区蜜桃| 女人精品久久久久毛片| 日韩 欧美 亚洲 中文字幕| 级片在线观看| 精品乱码久久久久久99久播| 国产精品野战在线观看 | 精品国内亚洲2022精品成人| 亚洲人成77777在线视频| 搡老熟女国产l中国老女人| 性色av乱码一区二区三区2| 757午夜福利合集在线观看| 最近最新免费中文字幕在线| 久热爱精品视频在线9| 亚洲一区二区三区欧美精品| 老汉色∧v一级毛片| 免费不卡黄色视频| 男女午夜视频在线观看| 一级片'在线观看视频| 亚洲,欧美精品.| 男男h啪啪无遮挡| 99精国产麻豆久久婷婷| 欧美不卡视频在线免费观看 | 久久热在线av| 99国产精品免费福利视频| 色综合婷婷激情| 一个人免费在线观看的高清视频| 国产精品久久久久成人av| 国产精品久久久久久人妻精品电影| 欧美日韩av久久| 久久精品亚洲av国产电影网| 精品电影一区二区在线| 可以免费在线观看a视频的电影网站| 天天影视国产精品| 成人18禁在线播放| 中文字幕人妻丝袜一区二区| 麻豆一二三区av精品| 亚洲一码二码三码区别大吗| 女同久久另类99精品国产91|