• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Viscoelastic Extrudate Swell ThroughElliptical Ring Die*

    2011-05-15 08:52:16XUXingming許星明ZHAOGuoqun趙國群QINShengxue秦升學(xué)andWANGWei王威
    關(guān)鍵詞:王威趙國升學(xué)

    XU Xingming (許星明), ZHAO Guoqun (趙國群), QIN Shengxue (秦升學(xué)) and WANG Wei (王威)

    ?

    Numerical Simulation of Viscoelastic Extrudate Swell ThroughElliptical Ring Die*

    XU Xingming (許星明)1,2, ZHAO Guoqun (趙國群)2,**, QIN Shengxue (秦升學(xué))3and WANG Wei (王威)1

    1College of Mechanical and Electrical Engineering, Shandong University of Science and Technology, Tai’an 271019, China2Engineering Research Center for Mold & Die Technologies, Shandong University, Jinan 250061, China3College of Mechanical and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266510, China

    The numerical simulation of extrudate swell is significant in extrusion processing. Precise prediction of extrudate swell is propitious to the control of melt flow and the quality of final products. A mathematical model of three-dimensional (3D) viscoelastic flow through elliptical ring die for polymer extrusion was investigated. The penalty function formulation of viscoelastic incompressible fluid was introduced to the finite element model to analyze 3D extrusion problem. The discrete elastic viscous split stress (DEVSS) and streamline-upwind Petrov- Galerkin (SUPG) technology were used to obtain stable simulation results. Free surface was updated by updating the streamlines which needs less memory space. According to numerical simulation results, the effect of zero-shear viscosity and elongation parameter on extrudate swell was slight, but with the increase of volumetric flow rate and relax time the extrudate swell ratio increased markedly. Finally, the numerical simulation of extrudate swell flow for low-density polyethylene (LDPE) melts was investigated and the results agreed well with others’ work. These conclusions provided quantitative basis for the forecasting extrudate swell ratio and the controlling of extrusion productivity shape.

    viscoelastic fluid, extrudate swell, finite element method, polymer extrusion

    1 INTRODUCTION

    Extrudate swell is a common elastic manifestation existed in polymer processing, which is also known as die swell. The prediction of extrudate swell ratio is of great significance in both theoretical and industrial context[1, 2]. The selection of appropriate numerical scheme has great influence on accurate simulation of flow properties and flow patterns [3]. Much effort has been made in attempting to find robust and stable numerical methods including finite difference method [4, 5], finite volume method [6], finite element method [7], spectral method [8], and boundary integral method [9]. Among them, the finite element method incarnates the advantage of adaptability to the complex geometry boundaries [10].

    Based on the numerical simulation methods mentioned above, many researchers have investigated the extrudate swell behavior with different rheological models. Mitsoulis and Heng simulated die swell ratio of Newtonian liquids for diverging, straight and converging dies respectively [11]. They found out that for all resins examined, the diameter swell ratio of converging dies is always higher than that of the diverging dies. Garcia-Rejon. did further research on extrudate swell ratio for diverging and converging dies [12]. They found that thickness extrudate swell ratio increases with the increase of die contraction ratio but decreases with the increase of inclination angle and the length of tapered section. They also compared the extrudate swell ratio of Newtonian liquids with that of non-Newtonian liquids. Mitsoulis worked on extrudate swell ratio of pseudoplastic and viscoplastic fluids [13], and came to the conclusion that the thickness swell ratio increases monotonically as shear-thickening increases, extreme shear-thinning produces no swelling and no exit correction for power law liquids, while for the viscoplastic Bingham model, the thickness swell ratio decreases to zero as viscoplasticity increases. Ganvir. proposed a method for the numerical simulation of extrudate swell ratio using an Arbitrary Lagrangian Eulerian (ALE) technique based finite element formulation [14]. They predicted die swell ratio of planar and axisymmetric extrusion with abrupt contraction ahead of the die exit.

    In actual manufacture, precise geometric dimension is essential to produce qualified final products and die swell is considered one of the primary obstacles in product shape control [15]. As is known to all, when the melt flows out of the die orifice, the melt extends to all directions when die swell happens. However, most of the relevant numerical simulation work done before mainly aimed at two-dimensional or axisymmetric flow problems and most of the cross sectional shape is simply circular, annular or rectangular. The full 3D simulation is necessary to obtain more realistic flow properties and patterns. In the present work, we established the mathematical model of 3D polymer die swell of elliptical ring die with differential constitutive equation. Free surface was updated with decoupled method by updating the streamlines which needs less memory space than Gandharv Bhatara’s method adopted by Guo[16]. The numerical simulation was executed with different material and technological parameters and the distribution of velocity, shear stress and first normal stress difference were analyzed.

    2 MATHEMATIC MODELING

    The flow of viscoelastic melt extrusion is typically governed by principles of conservation which are expressed in terms of partial differential equations [17].

    Considering incompressible, isothermal and creeping steady flow, the governing equations of conservation of mass and momentum are simplified as follows:

    whereis Cauchy stress tensor which is defined as

    whereis strain rate tensor which is expressed as

    The Phan-Thien and Tanner (PTT) constitutive equation is adopted to describe the rheological characteristics of the polymer:

    3 BOUNDARY CONDITIONS

    To solve the above governing equations, it is necessary to impose appropriate boundary conditions. The boundary conditions are set as follows [20]:

    (1) On the inlet boundary surface, the velocity is expressed as follows:

    4 NUMERICAL PROCEDURE

    4.1 Free surface update

    As the position of the free surface is unknown a priori, the surface update scheme turns out to be a challenge as it introduces non-linearity and the number of iteration increases to obtain a solution [21]. The free surface is found in a decoupled way. The contour of the free surface is first assumed, and then it is updated with the streamline equation [22]:

    Integration in the-direction only, the new location of the free face is calculated from the velocity field based on the latest velocity field as follows [23]:

    4.2 Finite element formulation

    Considering both computational efficiency and memory requirement, the penalty finite element algorithm is introduced to solve the nonlinear governing equations [24]. By using the penalty model, the momentum Eq. (2) becomes:

    The discrete elastic viscous split stress (DEVSS) method is adopted by introducing an additional elliptic term and then the momentum equation becomes [24]:

    A Galerkin finite element discrete form is proposed by taking the same form of weighted function as that of interpretation function.

    whereNis the isoparametric weighted function which is expressed as follows:

    With the asymmetric weighted function adopted, the finite element formula of simplified Phan-Thien and Tanner (SPTT) model is obtained:

    5 RESULTS AND DISCUSSION

    5.1 Geometric model and simulation parameters

    The geometry of the elliptic ring die is defined by the inner and outer ellipses (Fig. 1). The geometric parameters of computational domain is as follows: the length of longer axis of the outer ellipse1, the length of shorter axis of outer ellipse1, the length of longer axis of the inner ellipse2, the length of shorter axis of inner ellipse2, the entry length1and the extrudate length2. The origin of coordinates is set at the ellipse center of die outlet. Theaxis is along the flow direction,axis is along shorter axis of elliptical ring cross section andaxis is along longer axis of elliptical ring cross section. The values of geometric parameters and the values of material parameters for low-density polyethylene (LDPE) with the average molecular weight of 25000 are shown in Table 1 [16]. All the numerical simulation results below are calculated with the parameters in Table 1 unless otherwise specified.

    The finite element meshes adopted in present paper are shown in Fig. 1. As the deformation of the melt around the die exit is relatively severe, the meshes near the die exit are refined. The coordinate direction is shown in the figure, and the origin of coordinate is set on the centre of die orifice. By taking both computational efficiency and calculation accuracy into consideration, only one quarter of the computational domain is used in the simulation due to symmetry.

    The swell ratio calculated by the finite element simulation is defined as

    5.2 Mesh dependency

    In order to study the effects of mesh refinements on the numerical results, four mesh division schemes are carried out as shown in Table 2. Fig. 2 shows the comparison of extrudate swell ratio respectively predicted with three meshes for the flow of PTT viscoelastic fluid. The material parameters are taken from Table 1. A similar distribution tendency of extrudate swell ratio is found from Fig. 2, whereas mesh 1 leads to a lower extrudate swell ratio and mesh 2 leads to a higher extrudate swell ratio. As the meshes reach to a certain number (mesh 3 and mesh 4), the extrudate swell ratio tends to be very much the same. Considering the sufficient accuracy and computational cost-effectiveness, mesh 3 is adopted as our base mesh and all the results to be given below are computed with the mesh 3 unless otherwise stated.

    Table 2 Mesh characteristics

    Table 1 Geometric and material parameters

    Figure 1 Finite element meshes used in the computation

    Figure 2 Fitting curves of swell ratio-coordinate with different mesh numbers (Volumetric flow rate: 1.0×10-5m3·s-1; zero-shear viscosity: 1.0×104Pa·s)

    mesh number:□?768;○?1080; △?1260; ▽?1350

    5.3 Distribution of physical quantities

    5.3.1

    5.3.2

    5.3.3

    Normal stress difference is a characteristic parameter for polymer due to its elastic effect. Usually the value of first normal stress difference is much larger than that of second normal stress difference. Thus, the first normal stress difference is the main normal stress difference making the die swell occur. Fig. 6 shows the contours of first normal stress difference on different cross sections. Due to symmetry, only the right-hand side is drawn. Fig. 6 (a) shows the contours of first normal stress difference near to the die orifice on theplane, which suggest that the flow has already reached steady state inside the die, but the first normal stress difference changes greatly around the die orifice. When the deformation of the melt is restored outside the die, the first normal stress difference vanishes quickly. The contour of first normal stress difference near the die orifice on theplane is similar as shown in Fig. 6 (b), but the stress gradient around the die orifice is a little smaller.

    Figure 3 Deformed finite element meshes

    (Volumetric flow rate: 1.0×10-5m3·s-1; zero-shear viscosity: 1.0×104Pa·s)

    (Volumetric flow rate: 1.0×10-5m3·s-1; zero-shear viscosity: 1.0×104Pa·s)

    Figure 6 Contour of first normal stress difference (unit: Pa) on different cross sections

    (Volumetric flow rate: 1.0×10-5m3·s-1; zero-shear viscosity: 1.0×104Pa·s)

    5.4 Effect of zero-shear viscosity

    Viscosity is an important rheological parameter for polymers. As the solvent contributions to the total viscosity of the liquid are negligible, we set it to zero and the value ofpis equal to the zero-shear viscosity. Different zero-shear viscosities are selected in numerical simulation and we compare the extrudate swell ratio at the outlet surface, as shown in Fig. 7. The swell ratio decreases from 0.433 to 0.425 as the zero-shear viscosity increases from 10000 Pa·s to 50000 Pa·s, but the change of extrudate swell ratio is slight.

    5.5 Effect of volumetric flow rate

    Figure 7 Effect of zero-shear viscosity on swell ratio

    (Volumetric flow rate: 1.0×10-5m3·s-1)

    (a) Volumetric flow rate of 1.0×10-5m3·s-1

    (b) Volumetric flow rate of 3.0×10-5m3·s-1

    (c) Volumetric flow rate of 5.0×10-5m3·s-1

    Figure 9 Effect of volumetric flow rate on swell ratio (Zero-shear viscosity: 1.0×104Pa·s)

    volumetric flow rate/m3·s-1:□?1.0×10-5;○?3.0×10-5;△?5.0×10-5

    5.6 Effect of relax time

    From the stand point of rheology, relax time is a characteristic parameter that reflects elasticity of polymers. When relax time increases from 0.1 s to 1.0 s, the extrudate swell ratio at the outlet surface changes from 0.43 to 0.95, as shown in Fig. 10. It is known that relax time has much to do with polymer elasticity and the increase of relax time results in the increases of polymer elasticity.

    Figure 10 Fitting curves of swell ratio-coordinate with different relax times (volumetric flow rate: 1.0×10-5m3·s-1; zero-shear viscosity: 1.0×104Pa·s)

    relax time/s:□?0.1;○?0.5;△?1.0

    5.7 Effect of elongation parameter ε

    The material parameterin PTT constitutive equation adopted in present paper controls elongation viscosity. Usually, elongation viscosity is 102-103times of shear viscosity. Shear viscosity is of shear thinning while the variation of elongation with shear rate is complex. As the parameterincreases, the extrudate swell ratio decreases, but the change is slight, as shown in Fig. 11. The variation of extrudate swell ratio withis similar with the variation of extrudate swell ratio with zero-shear viscosity.

    Figure 11 Effect ofon swell ratio

    (volumetric flow rate: 1.0×10-5m3·s-1; zero-shear viscosity: 1.0×104Pa·s)

    5.8 Effect of the shape of die

    Considering the effect of the die shape, annulus and elliptical ring dies with the same cross area are adopted to calculate extrudate swell ratio. It can be seen from Fig. 12 that the extrudate swell ratio of elliptical ring die is higher than that of annulus die taking the same parameters except for the geometry. For elliptical die, on the ends of longer axis the curvature is relatively big which goes against forming fully developed flow. Thus, more elastic deformation is produced inside the die and the extrudate swell ratio is higher as a result.

    Figure 12 Effect of the shape of the die on swell ratio (volumetric flow rate: 1.0×10-5m3·s-1; zero-shear viscosity: 1.0×104Pa·s)

    die shape:□?annulus;○?elliptical ring

    5.9 Comparison with other works

    It is necessary to compare the results of our work with that of others. With the parameters taken by Huang. [27], extrudate swell simulation is executed with our computer code. As shown in Table 3, when the shearing rate is low, the simulation results obtained by Huang. were similar with their experimental results, but when the shearing rate is high, the deviation became obvious. It is considered that the wall slip was neglected at high shearing rate, which led to higher simulation results. The tendency of simulation results obtained in our work is the same as Huang’s simulation results. As the shearing rate increases, our simulation results are slightly lower than Huang’s.

    Table 3 Comparison of swell ratio with other work [27]

    6 CONCLUSIONS

    In this study, a mathematical model of 3D viscoelastic flow through elliptical ring die for polymer extrusion swell was investigated. Location of free surface was updated with streamline equation in a decoupled method which is simpler and needs less memory space than Gandharv Bhatara’s method adopted by Guo. Numerical simulation was executed with different technological and material parameters. Extrudate swell ratio reduces with the increase of zero-shear viscosity and the material parameterin the PTT constitutive equation. But the influence of zero-shear viscosity andon extrudate swell ratio is slight. Higher volumetric flow rate leads to higher extrudate swell ratio. As the relax time increases, elasticity of polymers increases and higher extrudate swell ratio is obtained. At the same average flow rate, it is found that more elasticity deformation is generated in elliptical die than annulus die and the extrudate swell ratio is higher as a result. Finally, we compared our numerical results with that of others using the same parameters, and the results agreed well. The results show that the method for free surface update adopted was suitable to obtain accurate numerical result. And further more, calculation time was reduced as less memory space was needed.

    In this paper, we only compared our numerical results with other’s experimental results due to the limitation of present experimental situation. In the future, more experiments will be carried out in succession to verify the feasibility and effectiveness of our numerical simulation method.

    NOMENCLATURE

    swell ratio

    helement characteristic lengths in thedirection, m

    helement characteristic lengths in thedirection, m

    helement characteristic lengths in thedirection, m

    unit tensor

    unit normal vector to the surface of fluid

    pressure, Pa

    vvolumetric flow rate, m3·s-1

    cross-sectional area of the extrudate, m2

    0cross-sectional area of the die, m2

    unit tangential vector to the surface of fluid

    velocity vector, m·s-1

    uvelocity components in thedirection, m·s-1

    uvelocity components in thedirection, m·s-1

    uvelocity components in thedirection, m·s-1

    uvelocity components at the element center in thedirection, m·s-1

    uvelocity components at the element center in thedirection, m·s-1

    uvelocity components at the element center in thedirection, m·s-1

    parameter limiting the elongational viscosity of the fluid

    rreference viscosity, Pa·s

    ssolvent contributions to the total viscosity of the liquid, Pa·s

    0zero-shear viscosity, Pa·s

    relaxation time, s

    ppenalty constant

    ,,local coordinates

    pslip parameter which determines the shear behavior of the model

    extra stress tensor, Pa

    eelement region

    1 Sombatsompop, N., O-Charoen, N., “Extrudate swell behavior of PS and LLDPE melts in a dual die with mixed circular/slit flow channels in an extrusion rheometer”,..., 14, 699-710 (2003).

    2 Sombatsompop, N., Intawong, N., “Extrudate swell and ?ow analysis of polystyrene melt flowing in an electro-magnetized die in a single screw extruder”,..., 16, 505-514 (2005).

    3 Carneiro de Araujo, J.H., Ruas, V., “A stable finite element method for the axisymmetric three-field Stokes system”,...., 164, 267-286 (1998).

    4 Tome, M.F., Grossi, L., Castelo, A., Cuminato, J.A., McKee, S., Walters, K., “Die-swell, splashing drop and a numerical technique for solving the Oldroyd-B model for axisymmetric free surface flows”,..., 141,148-166 (2007).

    5 Tome, M.F., Castelo, A., Ferreira, V.G., McKee, S., “A finite difference technique for solving the Oldroyd-B model for 3D-unsteady free surface ?ows”,..., 154, 179-206 (2008).

    6 Huang, X., Phan-Thien, N., Tanner, R.I., “Viscoelastic ?ow between eccentric rotating cylinders: Unstructured control volume method”,..., 64, 71-92 (1996).

    7 Eleni, T., Georgios, C.G., Evan, M., “Numerical simulation of the extrusion of strongly compressible Newtonian liquids”,., 47, 49-62 (2008).

    8 Beris, A.N., Armstrong, R.C., Brown, R.A., “Spectral finite-element calculations of the ?ow of a Maxwell fluid between excentric rotating cylinders”,..., 22, 129-167 (1987).

    9 Fan, X.J., Phan-Thien, N., Zheng, R., “A direct simulation of ?bre suspensions”,..., 74, 113-135 (1998).

    10 George, K., John, T., “Steady extrusion of viscoelastic materials from an annular die”,..., 154, 136-152 (2008).

    11 Mitsoulis, E., Heng, F.L., “Extrudate swell of Newtonian fluids from converging and diverging annular dies”,., 26, 414-417 (1987).

    12 Garcia-Rejon, A., DiRaddo, R.W., Ryan, M.E., “Effect of die geometry and flow characteristics on viscoelastic annular swell”,..., 60, 107-128 (1995).

    13 Mitsoulis, E., “Annular extrudate swell of pseudoplastic and viscoplastic fluids”,..., 141, 138-147 (2007).

    14 Ganvir, V., Lele, A., Thaokar, R., Gautham, B.P., “Prediction of extrudate swell in polymer melt extrusion using an Arbitrary Lagrangian Eulerian (ALE) based finite element method”,..., 156, 21-28 (2009).

    15 Intawong, N-T., Sombatsompop, N., “Experimental studies on radial extrudate swell and velocity profiles of flowing PS melt in an electro-magnetized die of an extrusion rheometer”,..., 44 (12), 2298-2307 (2004).

    16 Guo, J.L., Zhou, G.F., Zhou, Y.F., Yan, L., “The full three dimensional isothermal viscoelastic numerical simulation on the extrusion die swell of polymer profile”,(), 29 (1), 4-8 (2007). (in Chinese)

    17 Siddiqui, A.M., Mahmood, R., Ghori, Q.K., “Some exact solutions for the thin ?lm ?ow of a PTT ?uid”,.., 356, 353-356 (2006).

    18 Takehiro, Y., Masakazu, I., Masaki, N., Kiyoji, N., Noriyasu, M., “Three-dimensional viscoelastic ?ows through a rectangular channel with a cavity”,..., 114, 13-31 (2003).

    19 Paulo, G.S.de, Tome, M.F., McKee, S., “A marker-and-cell approach to viscoelastic free surface flows using the PTT model”,..., 147, 149-174 (2007).

    20 Mitsoulis, E., “Annular extrudate swell of pseudoplastic and viscoplastic fluids”,, 141, 138-147 (2007).

    21 Ki, B.S., Seung, J.P., Seong, J.L., Kyung, H.A., Seung, J.L., “Numerical simulation of three-dimensional viscoelastic flow using the open boundary condition method in coextrusion process”,, 99, 125-144 (2001).

    22 Beverly, C.R., Tanner, R.I., “Numerical analysis of three-dimensional Newtonian extrudate swell”,., 30, 341-356 (1991).

    23 Gifford, W.A., “A three-dimensional analysis of coextrusion”,..., 37 (2), 315-320 (1997).

    24 Qin, S.X., Zhao, G.Q., Mu, Y., Xu, X.M., “Numerical simulation of driven and pressure flow in compound shaped part of co-extrusion process of polymer with metal insert”,.., 392-394, 299-303 (2009).

    25 Sun, J., Smith, M.D., Armstrong, R.C., Brown, R.A., “Finite element method for viscoelastic flows based on the discrete adaptive viscoelastic stress splitting and the discontinuous Galerkin method: DAVSS-G/DG”,..., 86, 281-307 (1999).

    26 Sun, J.S., Phan-Thien, N., Tanner, R.I., “An adaptive viscoelastic stresssplitting scheme and its applications: AVSS/SI and AVSS/SUPG”,..., 65, 75-91 (1996).

    27 Huang, S.H., Jiang, T.Q., Lu, C.J., Huang, J., “Experiments and numerical simulation of die swell for LDPE melt”,, 37 (4), 535-640 (2003). (in Chinese)

    ** To whom correspondence should be addressed. E-mail: zhaogq@sdu.edu.cn

    2009-12-13,

    2010-12-12.

    the National Science Foundation for Distinguished Young Scholars of China (50425517) and the Shandong Province Natural Science Foundation (Y2007F59).

    猜你喜歡
    王威趙國升學(xué)
    《無題》
    《蜉蝣》
    為子女升學(xué)攢資歷
    英語文摘(2019年9期)2019-11-26 00:56:26
    師與書·趙國華
    江蘇教育(2017年45期)2017-07-05 11:31:34
    古法奇觀
    別讓熬夜毀了升學(xué)夢
    特種部隊(duì)小貼士(一)
    輕兵器(2016年15期)2016-08-11 17:22:08
    升學(xué)啦
    步兵班前進(jìn)第二季
    輕兵器(2016年1期)2016-01-08 11:20:55
    211381 Microsurgical resection of bilateral falcine meningiomas in central gyrus region
    亚洲国产毛片av蜜桃av| 久久天堂一区二区三区四区| 成年人午夜在线观看视频| 国产老妇伦熟女老妇高清| 国产无遮挡羞羞视频在线观看| 亚洲欧美中文字幕日韩二区| 一级a爱视频在线免费观看| 日韩免费高清中文字幕av| www日本在线高清视频| 免费黄色在线免费观看| 天堂俺去俺来也www色官网| 在线免费观看不下载黄p国产| 999精品在线视频| 丝瓜视频免费看黄片| 国产日韩欧美在线精品| 老熟女久久久| 免费黄网站久久成人精品| 妹子高潮喷水视频| 国产精品一区二区精品视频观看| 9191精品国产免费久久| 精品卡一卡二卡四卡免费| av卡一久久| 一区二区三区四区激情视频| 一区二区三区乱码不卡18| 下体分泌物呈黄色| 国产黄色视频一区二区在线观看| 男人爽女人下面视频在线观看| av女优亚洲男人天堂| 97精品久久久久久久久久精品| 亚洲欧美日韩另类电影网站| 女人被躁到高潮嗷嗷叫费观| 美女午夜性视频免费| 久久久国产精品麻豆| 黄片无遮挡物在线观看| 精品一区二区三区av网在线观看 | 韩国av在线不卡| 久久久国产欧美日韩av| 国产av精品麻豆| 国产极品粉嫩免费观看在线| av卡一久久| 亚洲国产欧美日韩在线播放| 啦啦啦 在线观看视频| 国产精品国产三级专区第一集| 色综合欧美亚洲国产小说| 99九九在线精品视频| 亚洲国产成人一精品久久久| 久久精品人人爽人人爽视色| 成人国产麻豆网| 天美传媒精品一区二区| 久久久精品区二区三区| 99国产精品免费福利视频| 1024视频免费在线观看| 制服人妻中文乱码| 超碰97精品在线观看| 国产成人午夜福利电影在线观看| 精品人妻熟女毛片av久久网站| 丝袜美腿诱惑在线| 99精品久久久久人妻精品| 午夜免费鲁丝| 18禁动态无遮挡网站| 人人妻人人爽人人添夜夜欢视频| 日本午夜av视频| 午夜免费鲁丝| 亚洲专区中文字幕在线 | netflix在线观看网站| 伊人久久大香线蕉亚洲五| 老汉色av国产亚洲站长工具| 亚洲精品,欧美精品| 在线观看三级黄色| 欧美精品亚洲一区二区| a级片在线免费高清观看视频| 天天躁夜夜躁狠狠久久av| 美女扒开内裤让男人捅视频| a 毛片基地| 国产深夜福利视频在线观看| 精品少妇黑人巨大在线播放| 男女之事视频高清在线观看 | 亚洲精品aⅴ在线观看| 久久精品久久久久久噜噜老黄| 国产精品欧美亚洲77777| 一区二区三区四区激情视频| 国产 精品1| 男女午夜视频在线观看| 亚洲精华国产精华液的使用体验| 国产成人精品久久久久久| 别揉我奶头~嗯~啊~动态视频 | 高清视频免费观看一区二区| 丝袜美腿诱惑在线| 日韩大码丰满熟妇| 国产极品粉嫩免费观看在线| 极品人妻少妇av视频| 大片电影免费在线观看免费| 最近中文字幕高清免费大全6| netflix在线观看网站| 欧美日韩精品网址| 在线观看www视频免费| 亚洲av综合色区一区| 韩国精品一区二区三区| 国产日韩欧美在线精品| 91精品三级在线观看| 国产伦人伦偷精品视频| 婷婷色麻豆天堂久久| 日韩不卡一区二区三区视频在线| 亚洲精品乱久久久久久| 久久热在线av| 丰满少妇做爰视频| 在线免费观看不下载黄p国产| 国产xxxxx性猛交| 中文字幕av电影在线播放| 久热爱精品视频在线9| 国产精品久久久久久精品古装| 精品人妻一区二区三区麻豆| 欧美日韩综合久久久久久| 亚洲伊人久久精品综合| 欧美日韩国产mv在线观看视频| 亚洲图色成人| 国产精品.久久久| 人人妻人人澡人人看| 美女福利国产在线| 在线观看人妻少妇| 亚洲av日韩精品久久久久久密 | 99精品久久久久人妻精品| 国产av国产精品国产| 老熟女久久久| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 一本色道久久久久久精品综合| 精品久久久精品久久久| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久人妻精品电影 | 嫩草影院入口| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 午夜福利视频精品| tube8黄色片| 亚洲一码二码三码区别大吗| 9色porny在线观看| av线在线观看网站| 欧美精品一区二区大全| 日韩成人av中文字幕在线观看| 久久久久久人妻| 欧美日韩综合久久久久久| 在线观看三级黄色| 欧美亚洲日本最大视频资源| 国产有黄有色有爽视频| 中国国产av一级| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 性少妇av在线| 日韩 亚洲 欧美在线| 熟女av电影| 欧美日韩福利视频一区二区| 99久国产av精品国产电影| 国产av一区二区精品久久| 国产黄色免费在线视频| 美女福利国产在线| 考比视频在线观看| 精品一区二区免费观看| www日本在线高清视频| 成人午夜精彩视频在线观看| 99精品久久久久人妻精品| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 99香蕉大伊视频| 好男人视频免费观看在线| 欧美精品高潮呻吟av久久| a级毛片在线看网站| 人人澡人人妻人| 日韩制服丝袜自拍偷拍| 成人毛片60女人毛片免费| 国产日韩一区二区三区精品不卡| 国产乱人偷精品视频| 满18在线观看网站| 久久久久久久久免费视频了| 日日啪夜夜爽| 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产淫语在线视频| 69精品国产乱码久久久| 在线观看免费高清a一片| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区大全| 综合色丁香网| 免费少妇av软件| av在线观看视频网站免费| 国精品久久久久久国模美| av在线老鸭窝| 免费观看a级毛片全部| 亚洲综合精品二区| 中文字幕人妻丝袜一区二区 | 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 国语对白做爰xxxⅹ性视频网站| 两个人免费观看高清视频| 午夜av观看不卡| 亚洲,一卡二卡三卡| 丁香六月天网| 国产精品无大码| 天天躁日日躁夜夜躁夜夜| 日韩一区二区视频免费看| 欧美精品一区二区免费开放| 我要看黄色一级片免费的| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 天天躁日日躁夜夜躁夜夜| 久久精品aⅴ一区二区三区四区| 一区在线观看完整版| 国语对白做爰xxxⅹ性视频网站| 少妇被粗大的猛进出69影院| 色吧在线观看| 日韩一区二区三区影片| 大话2 男鬼变身卡| av卡一久久| 亚洲视频免费观看视频| 精品午夜福利在线看| 飞空精品影院首页| 亚洲精品日韩在线中文字幕| 亚洲精品日本国产第一区| 老汉色av国产亚洲站长工具| 国产视频首页在线观看| tube8黄色片| 哪个播放器可以免费观看大片| av不卡在线播放| 日本黄色日本黄色录像| 亚洲欧洲精品一区二区精品久久久 | 黄色视频不卡| 中国国产av一级| 天天躁狠狠躁夜夜躁狠狠躁| 国产国语露脸激情在线看| 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 欧美精品av麻豆av| 美女午夜性视频免费| 在线观看免费午夜福利视频| 在线观看www视频免费| 男女免费视频国产| 国产免费视频播放在线视频| 久久天堂一区二区三区四区| 美女扒开内裤让男人捅视频| 国产一区有黄有色的免费视频| 制服诱惑二区| 国产乱来视频区| 中文字幕另类日韩欧美亚洲嫩草| 校园人妻丝袜中文字幕| 国产精品国产av在线观看| 国产精品亚洲av一区麻豆 | 桃花免费在线播放| 久久久精品区二区三区| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区久久| 性高湖久久久久久久久免费观看| 制服诱惑二区| 国产精品99久久99久久久不卡 | 啦啦啦在线免费观看视频4| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久久久99蜜臀 | 亚洲综合色网址| 91精品伊人久久大香线蕉| 久久久久网色| 国产淫语在线视频| 欧美人与性动交α欧美精品济南到| 大片免费播放器 马上看| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 午夜免费鲁丝| 伊人久久国产一区二区| 色精品久久人妻99蜜桃| 一区二区三区四区激情视频| 亚洲精品国产区一区二| 夫妻性生交免费视频一级片| 成人国产av品久久久| 无遮挡黄片免费观看| 51午夜福利影视在线观看| 亚洲中文av在线| 国产精品一区二区在线观看99| 纵有疾风起免费观看全集完整版| 黄片小视频在线播放| 久久精品国产亚洲av涩爱| 午夜免费男女啪啪视频观看| 熟女av电影| 国产在线视频一区二区| 亚洲第一av免费看| 伦理电影大哥的女人| av有码第一页| 成人亚洲欧美一区二区av| 别揉我奶头~嗯~啊~动态视频 | 久久久久久久久久久免费av| 一级毛片黄色毛片免费观看视频| 丁香六月天网| 两个人免费观看高清视频| 欧美老熟妇乱子伦牲交| 久久精品熟女亚洲av麻豆精品| 国产免费现黄频在线看| 老司机影院毛片| 在线天堂最新版资源| 国产伦人伦偷精品视频| 午夜日本视频在线| 国产成人啪精品午夜网站| 欧美久久黑人一区二区| 国产精品 欧美亚洲| 国产亚洲最大av| 91精品伊人久久大香线蕉| 亚洲成人一二三区av| 极品少妇高潮喷水抽搐| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 亚洲av中文av极速乱| 欧美日韩视频高清一区二区三区二| 一本久久精品| 美女视频免费永久观看网站| a级片在线免费高清观看视频| 久久av网站| 国产高清不卡午夜福利| 免费高清在线观看视频在线观看| 大香蕉久久成人网| 十分钟在线观看高清视频www| 青春草亚洲视频在线观看| 亚洲情色 制服丝袜| 在现免费观看毛片| 久久久精品区二区三区| 精品亚洲成a人片在线观看| 日韩制服丝袜自拍偷拍| 一本一本久久a久久精品综合妖精| 亚洲成色77777| 看免费成人av毛片| 秋霞伦理黄片| 国产亚洲av高清不卡| 中文字幕av电影在线播放| 人人妻人人添人人爽欧美一区卜| 曰老女人黄片| 免费黄网站久久成人精品| 久久女婷五月综合色啪小说| 国产精品av久久久久免费| 免费观看人在逋| 这个男人来自地球电影免费观看 | 日本色播在线视频| 一级,二级,三级黄色视频| 不卡视频在线观看欧美| 老司机影院毛片| 永久免费av网站大全| 成人国产av品久久久| 亚洲欧美色中文字幕在线| 国产xxxxx性猛交| 51午夜福利影视在线观看| 欧美日韩一级在线毛片| 国产成人91sexporn| av天堂久久9| 毛片一级片免费看久久久久| 精品少妇久久久久久888优播| 丝袜美足系列| 97人妻天天添夜夜摸| 亚洲av在线观看美女高潮| 飞空精品影院首页| 999久久久国产精品视频| 午夜福利乱码中文字幕| 看免费成人av毛片| 欧美日韩综合久久久久久| 电影成人av| 多毛熟女@视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲熟女毛片儿| 在线观看一区二区三区激情| 你懂的网址亚洲精品在线观看| 成年女人毛片免费观看观看9 | 婷婷色综合大香蕉| 日韩不卡一区二区三区视频在线| 国产亚洲最大av| 亚洲三区欧美一区| 久久婷婷青草| 男女床上黄色一级片免费看| 亚洲精品,欧美精品| 成人手机av| 不卡视频在线观看欧美| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲国产一区二区在线观看 | 精品国产乱码久久久久久小说| 国产精品三级大全| 丰满少妇做爰视频| 黑人巨大精品欧美一区二区蜜桃| 国产成人一区二区在线| 国产精品成人在线| 国产男人的电影天堂91| 国产av国产精品国产| 午夜激情av网站| 欧美激情 高清一区二区三区| 肉色欧美久久久久久久蜜桃| a级毛片在线看网站| 中国国产av一级| 免费日韩欧美在线观看| 亚洲美女搞黄在线观看| 午夜福利免费观看在线| 汤姆久久久久久久影院中文字幕| av片东京热男人的天堂| 超碰成人久久| 丝瓜视频免费看黄片| 午夜福利乱码中文字幕| 亚洲精品自拍成人| 成人国产av品久久久| 性高湖久久久久久久久免费观看| 欧美精品一区二区免费开放| 免费av中文字幕在线| 欧美人与性动交α欧美软件| 国产精品二区激情视频| 久久精品久久久久久噜噜老黄| 亚洲 欧美一区二区三区| 国产精品国产av在线观看| 在线观看免费日韩欧美大片| 好男人视频免费观看在线| 飞空精品影院首页| 午夜福利免费观看在线| 十八禁人妻一区二区| 多毛熟女@视频| 看免费av毛片| 亚洲av在线观看美女高潮| 国产探花极品一区二区| 国产黄色免费在线视频| 啦啦啦视频在线资源免费观看| 亚洲精品国产区一区二| 亚洲,欧美精品.| 日本色播在线视频| 两个人看的免费小视频| 国产一区二区激情短视频 | 精品一品国产午夜福利视频| 夫妻性生交免费视频一级片| 狂野欧美激情性xxxx| 丝袜美足系列| 国产欧美日韩一区二区三区在线| av有码第一页| 国产欧美日韩综合在线一区二区| 亚洲图色成人| 搡老岳熟女国产| 90打野战视频偷拍视频| 香蕉国产在线看| 欧美精品av麻豆av| 人妻人人澡人人爽人人| 亚洲国产欧美日韩在线播放| 考比视频在线观看| 观看av在线不卡| 天美传媒精品一区二区| 日韩一区二区三区影片| 18禁国产床啪视频网站| 黄色一级大片看看| 精品国产乱码久久久久久小说| 亚洲欧美成人综合另类久久久| 国产高清国产精品国产三级| 欧美成人午夜精品| 人人妻人人澡人人爽人人夜夜| 人成视频在线观看免费观看| 亚洲美女视频黄频| 女人爽到高潮嗷嗷叫在线视频| 久久精品久久久久久久性| 亚洲中文av在线| 美女主播在线视频| 男女高潮啪啪啪动态图| 亚洲国产欧美日韩在线播放| 捣出白浆h1v1| 高清av免费在线| 中文字幕精品免费在线观看视频| 久久久久久久国产电影| 制服丝袜香蕉在线| 成人三级做爰电影| 又黄又粗又硬又大视频| 人人妻人人爽人人添夜夜欢视频| 中文字幕色久视频| 成年人午夜在线观看视频| 无遮挡黄片免费观看| 欧美精品一区二区免费开放| 欧美精品av麻豆av| 建设人人有责人人尽责人人享有的| 99国产精品免费福利视频| 精品国产露脸久久av麻豆| 18在线观看网站| 人人妻人人添人人爽欧美一区卜| 美国免费a级毛片| 一个人免费看片子| 51午夜福利影视在线观看| 国产日韩一区二区三区精品不卡| 少妇 在线观看| 午夜福利,免费看| 精品国产乱码久久久久久小说| 久久久久精品性色| 久热这里只有精品99| 麻豆av在线久日| 男女边吃奶边做爰视频| 国产 精品1| 久热爱精品视频在线9| 在线观看一区二区三区激情| 老司机影院毛片| 欧美中文综合在线视频| 18禁观看日本| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 香蕉国产在线看| 免费黄色在线免费观看| 欧美在线黄色| 大话2 男鬼变身卡| 久久久精品94久久精品| 老司机深夜福利视频在线观看 | 女人爽到高潮嗷嗷叫在线视频| 国产日韩欧美视频二区| 精品国产一区二区三区久久久樱花| 日本一区二区免费在线视频| 一二三四中文在线观看免费高清| 9色porny在线观看| 秋霞在线观看毛片| 欧美97在线视频| 亚洲国产欧美一区二区综合| 国产免费一区二区三区四区乱码| 日日啪夜夜爽| 一级片免费观看大全| 丝袜美足系列| 成年人免费黄色播放视频| 操出白浆在线播放| 久久精品久久久久久久性| 国产探花极品一区二区| 中文字幕最新亚洲高清| 激情视频va一区二区三区| 交换朋友夫妻互换小说| 国产亚洲最大av| 精品国产一区二区三区四区第35| 国产极品天堂在线| 少妇的丰满在线观看| 国产精品99久久99久久久不卡 | 国产无遮挡羞羞视频在线观看| 国产在线视频一区二区| 国产片内射在线| 婷婷成人精品国产| 亚洲精品自拍成人| 一边摸一边抽搐一进一出视频| 国产伦理片在线播放av一区| 国产激情久久老熟女| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人| 亚洲av电影在线观看一区二区三区| 九九爱精品视频在线观看| 国产精品av久久久久免费| 国产精品欧美亚洲77777| 男人舔女人的私密视频| 黄片无遮挡物在线观看| 亚洲视频免费观看视频| 色综合欧美亚洲国产小说| 亚洲精品成人av观看孕妇| 亚洲国产日韩一区二区| 操出白浆在线播放| 一二三四中文在线观看免费高清| 丰满饥渴人妻一区二区三| 人妻一区二区av| 精品国产乱码久久久久久小说| 一本久久精品| 秋霞伦理黄片| 免费在线观看黄色视频的| 99热全是精品| 久久av网站| 哪个播放器可以免费观看大片| 国产成人91sexporn| 久久午夜综合久久蜜桃| 我的亚洲天堂| 欧美成人精品欧美一级黄| 午夜免费观看性视频| 大陆偷拍与自拍| 国产97色在线日韩免费| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 视频在线观看一区二区三区| 亚洲精品久久午夜乱码| 中文字幕制服av| 久久精品人人爽人人爽视色| 国产成人免费观看mmmm| 美国免费a级毛片| 欧美精品高潮呻吟av久久| 国产黄频视频在线观看| √禁漫天堂资源中文www| 一区二区三区四区激情视频| 伊人久久国产一区二区| 男女免费视频国产| 亚洲精品国产一区二区精华液| www日本在线高清视频| 日韩制服丝袜自拍偷拍| 亚洲欧美成人精品一区二区| av片东京热男人的天堂| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 国产精品无大码| 丰满少妇做爰视频| 日韩 欧美 亚洲 中文字幕| 波野结衣二区三区在线| 日本wwww免费看| av在线播放精品| 少妇精品久久久久久久| 欧美人与善性xxx| 亚洲av日韩在线播放| www.熟女人妻精品国产| 超碰97精品在线观看| 亚洲第一区二区三区不卡| 综合色丁香网| 日韩精品免费视频一区二区三区| 最近中文字幕2019免费版| 各种免费的搞黄视频| 999精品在线视频| 大陆偷拍与自拍| 亚洲欧洲国产日韩| 国产老妇伦熟女老妇高清| 国产精品久久久人人做人人爽| av在线观看视频网站免费| 久久人人爽av亚洲精品天堂| 欧美人与善性xxx| 在线观看三级黄色| 亚洲欧美一区二区三区国产| 午夜福利,免费看| 青草久久国产| av国产久精品久网站免费入址|