• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    正交鋪設(shè)陶瓷基復(fù)合材料基體裂紋演化研究

    2011-04-19 10:38:16楊福樹孫志剛李龍彪宋迎東
    關(guān)鍵詞:孫志剛南京航空航天大學(xué)鋪設(shè)

    楊福樹 孫志剛 李龍彪 宋迎東

    (南京航空航天大學(xué)能源與動(dòng)力學(xué)院,南京,210016,中國(guó))

    INTRODUCTION

    Ceramic matrix composites are one of the most promising candidates for aero components as they show many attractive properties over traditionalceramics: higher tensile and flexural strength,enhanced fracture toughness and impact resistance,lower density and no or less cooling requirements[1-3].

    Knowledge of matrix crack evolution is very important for the development of fiber reinforced ceramic matrix composites[4].In particular,it is necessary to study the sequence of such microscopic damages up to the final fractures to ensure the damage tolerance capability.Zok and Spearing[5-6]calculated the strain energy release rates for matrix crack growth with interference from neighboring crack slip zones in unidirectional ceramic composites.Curtin[7]presented a theory to describe the evolution of multiple cracking in brittle matrix composites.A full statistical treatment ofthe matrix crack evolution and associated stress-strain behaviors in unidirectional ceramic composites has been developed[8].However,the damage evolution in cross-ply laminates is more complex as the matrix cracks occur in both 0°and 90°plies.Kuo[9]classified the damage modes of a cross-ply ceramic composite into five types(as shown in Fig.1),and theoretically derived the cracking stress of each mode by the energy balance approach.However,it did not consider the interaction between different modes[10]. Daniel et al.[11]observed and predicted the type and sequence of failure mechanisms and their interaction by the micro-mechanics of brittle matrix single layers and the macro-mechanics of a cross-ply laminate.Takeda[12]investigated the matrix crack evolution in SiC fiber-reinforced glass-matrix cross-ply laminates both experimentally and theoretically from a micro-mechanical viewpoint.

    Although cross-ply laminates are most important in practical applications of ceramic matrix composites,the microscopic damage evolution has not been well characterized yet.The purpose of this paper is to characterize the matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading theoretically from a micro-mechanical viewpoint.The effects of ply thickness,fiber volume fraction,interface shear stress and interface debonding energy on cracking stress and matrix crack evolution are discussed.

    Fig.1 Classification of damage states in brittle matrix cross-ply laminates

    1 ENERGY BALANCE CRITERION FORMATRIXCRACK EVOLUTION

    The observed damages are classified into 13 patterns,considering the neighboring damage modes.Each damage pattern can be divided into one or more repeated elements.For one crack in each repeated element,ΔU is defined as a function of debonding length Ls,crack spacing s,and applied stressec.

    where W is the work done by an external load and Uallis the sum of energy terms.

    where Ucis the crack surface energy,Udbthe interface debonding energy,and Usthe energy loss due to interface friction.Ufand Umare the strain energies in fibers and matrix in 0°plies,respectively.U2is strain energy in 90°plies.The energy terms in Eq.(3)are written as

    where b and d are the half thickness of 0°and 90° plies,respectively.Ef,Em,and E2the Young′s modulus of fiber,matrix,and 90°ply,respectively.

    From the energy balance with each repeated unit before and after a damage growth,the critical stress for such damage growth can be determined using the following formula

    where superscripts i and f denote before and after the damage growth,respectively.The summation is made over all cracks in the repeated unit.

    2 MATRIX CRACK EVOLUTION PATTERNS

    According to the experiments for SiC/CAS cross-ply composites tested under tensile loading, transverse cracks were observed to appear first in 90°ply[13].As the transverse crack density increases with the loading to a critical level,the matrix cracks bridged by fiber appear in 0°plies. With further investigation on SiC/CAS cross-ply composite[10],it is found that the initial cracking stress of mode 3 is the lowest among the four matrix cracking models,the following one is mode 5.Based on these results,mode 3 and mode 5 damages occur between existing mode 1 damages are investigated in this part.

    2.1 Pattern 1:mode 3 damage occurs between existing mode 1 damages

    2.1.1 Stress analysis and debonding length prediction

    By consideration the equilibrium condition with the external load,the axial stresses satisfy (b+ d)ec=bVfef(x)+ bVmem(x)+ det(x)(6) where ecdenotes a remote uniform external load worked on composite;ef(x),em(x),and et(x) denote the fiber,matrix stress in the 0°ply,and stress in the 90°ply,respectively;Vf,Vm(=1-Vf)the volume fraction of fiber and matrix in the 0°ply composite.

    Fig.2 shows the matrix crack evolution of pattern 1.In the case,the mode 3 damage appears between transverse cracks. Taking the symmetry of the stresses into consideration,it is only to focus on the stresse distribution in half crack spacing s.And the stresses before the mode 3 crack appears are given by[10]

    where x is the distance from the crack plane,as shown in Fig.2.The superscripts of estand for the damage state.The shear-lag constant λis derived in Ref.[10].

    Fig.2 Schematic representation of pattern 1

    When the mode 3 damage appears(as shown in Fig.2),it is assumed that the stress in the 90° ply has no effect on the stress in the 0°ply,and the stress in the 90°ply can be found as

    In debonded regions,the relationship between the interface shear stress fiand the axial stress in a fiberefis given by

    where rois the fiber radius.In the case,it is assumed that the interface shear stress is a constant in the debonded region.And the boundary conditions at the crack plane are

    Combined Eqs.(6,8-10),the axial stress of the fiber in the interface debonded region is obtained as

    The axial stress of the matrix in the debonded region is obtained as

    The stresses distribution in the bonded regions(x>Ls)are found as

    For x≥Ls,the fiber/matrix interface ceases to slide,and the stresses approach those of the no damage state(mode 0).From the stress equilibrium of a fiber

    the interface debonding length can be found as

    2.1.2 Cracking stress for pattern 1

    Taking the symmetry of the stresses in the crack spacing 2s into consideration,it is just necessary to focus on the energy changes ranging from x=0 to x=s.Before the mode 3 damage appears,the surface energy Uc=0,Udb=0,Us=0. Substituting Eq.(7)into Eqs.(2,4),other energy terms can be obtained.

    As the mode 3 damage appears,the crack surface energy Uc=0.5bVmVm+ 0.5dVt,and the interface debonding energy Udb=2 bVfLs/ro,where VmandVtare the surface energy per unit area in the 0°ply and 90°ply,respectively.Substituting Eqs.(8,11-13)into Eqs.(2,4),other energy terms ranging from x=0 to x=s can also be obtained.Combining Eq.(15)and Eq.(5),the cracking stress can be found.

    2.2 Pattern 2:mode 5 damage occurs between existing mode 1 damages

    2.2.1 Stress analysis and debonding length prediction

    Fig.3 shows the mode 5 damage occurrs between transverse cracks.In this case,it is assumed that the stress in 90°ply is the same as the stress in mode 0,that is

    Boundary condition at the crack plane is

    Combined Eqs.(6,9,16,17),the axial stress of the fiber in the debonded region can be found as

    In the debonded regions,the axial stress of the matrix is

    In the bonded zone(x>Ls),the stresses distribution are

    In the bonded zone,the fiber/matrix interface ceases to slide,and the stresses approach those of the mode 0.From the stress equilibrium of a fiber

    the interface debonded length is given as

    Fig.3 Schematic representation of pattern 2

    2.2.2 Cracking stress for pattern 2

    For matrix crack evolution of pattern 2,the energy terms before the mode 5 damage occurrs are the same as those calculated in pattern 1.And it is just necessary to focus on the condition as the mode 5damage occurs.Here the crack surface energy Uc=0.5 bVmVm,the interface debonding energy Udb= 2 bVfLs/ro.Substituting Eqs.(16,18-20) into Eq.(4),other energy changes ranging from x=0 to x=s can be obtained.Combining Eqs. (5,22),the cracking stress is determined.

    2.3 Numerical results

    Numerical results for the prediction of critical stresses for the matrix cracking are obtained for matrix crack evolution of pattern 1 and pattern 2.The calculations are performed based on the material properties of the SiC/CAS composite listed in Table 1.In order to simplify the calculation,the effect of the thermal residual stress is not considered.

    Table 1 Material properities of SiC/CAS ceramic composites[10]

    2.3.1 Effect of ply thickness

    Fig.4 Relationship of crack spacing and stress changing with ply thickness(b=0.517 mm)

    The effect of ply thickness on critical stress of pattern 1 and pattern 2 is show n in Fig.4.As the 90°ply thickness approaches zero(Fig.4(a)), the solutions of the two patterns converge to one line,which coincide with the predicted critical stress for the unidirectional composites.As the 90°ply thickness increases,Figs.4(a,b)show that mode 3 damage is more likely to appear first between existing mode 1 damages compared with the mode 5 damage.The result is well explained by two aspects.On the one hand,the mode 5 damage appears in a lower matrix crack spacing than the mode 3 damage.It implies that the lower the crack spacing is,the more energy it will be cost.On the other hand,an increase in transverse ply thickness results in a decrease cracking stress of mode 3.While an increase in transverse ply thickness leads to an increase of cracking stress in mode 5.The reason lies in that there is no crack in 90°ply in mode 5.So the 90°ply can share more loads.

    2.3.2 Effect of fiber volume fraction

    Fig.5 shows the effect of fiber volume fraction on critical stress for crack evolution pattern 1 and pattern 2.Both mode 3 and mode 5 cracking stress increase as the fiber volume fraction increases.But the mode 5 cracking stress grows more quickly than the mode 3 cracking stress.In other words,it is the mode 3 damage that may occur first between existing mode 1 damages as the fiber volume fraction increases.

    Fig.5 Relationship of crack spacing and stress changing with fiber volume fraction

    3 MULTIPLE CRACK EVOLUTION OF MODE 3

    From the results above,it is obvious that the mode 3 damage is more likely to occur between existing mode 1 damages than the mode 5 damage.So in this part,multiple crack evolution of mode 3 is investigated.Fig.6 shows this kind of crack evolution pattern.In order to distinguish the difference of interface debonding length before and afterthe mode 3 crack appears,Lsand Lndenote the interface debonding length before and after the new crack appears,respectively.

    Fig.6 Schematic of multiple crack evolution configuration

    3.1 Stress analysis

    Similar to the stress analysis of patterns 1 and 2,it is just necessary to focus on the stresses in the section ranging from x=0 to x=s.Before the mode 3damage appears the stress distribution is given by Eqs.(8,11-13),where the coordinate x is shown in Fig.6(a).

    When the new damage(mode 3)appears,it is found that the stress distribution ranging from x=0 to x=s is symmetrical.And the stresses are given by Eqs.(8,11-13).x varies from 0 to s/2. Here,the coordinate x is shown in Fig.6(b).

    3.2 Cracking stress for multiple matrix crack evolution of mode 3

    In the half crack spacing s,the surface energy Uc= 0,and the interface debonding energy Udb=2bVfLs/ro.Substituting Eqs.(8,11-13)into Eq.(4),other energy terms before the new crack appears can be found.As the mode 3 crack appears, the surface energy Uc= 0.5 bVmVm+ 0.5dVt,and the interface debonding energy Udb= 2 bVfLs/ro.Substituting the corresponding stress-es into Eqs.(2,4),other energy terms can be obtained.Combining Eqs.(5,15),the cracking stress can be determined.

    3.3 Numerical results

    Take the[03/90/03]-SiC/CAS for example. In order to simplify the calculation,the effect of the thermal residual stress is not considered.

    3.3.1 Effect of interface shear stress on matrix crack spacing

    Fig.7 shows the effect of interface shear stress on matrix crack spacing.It shows that the matrix crack spacing decreases with the increase of interface shear stress at the same stress level. The reason is that the loads work at the fiber/matrix interfacial area increase as the interface shear stress increases,so the matrix should bear more loads.According to the critical matrix strain energy criterion[14],the crack spacing will decrease as the matrix strain energy reaches the critical value.

    Fig.7 Matrix crack spacing and stress at different interface shear stress

    3.3.2 Effect of interface debonding energy on matrix crack spacing

    As is shown in Fig.8,the matrix crack spacing decreases with the increase ofinterface debonding energy at the same stress level.The reason is that an increase of energy dissipation is required as the interface debonding energy increases.It results in the decrease of the debonding length. The decrease ofinterface debonding length leads to an increase of load acted on the matrix,causing the decrease of the matrix crack spacing as the matrix strain energy reaches the critical value.

    Fig.8 Matrix crack spacing and stress at different interface debonding energy

    3.3.3 Effect of ply thickness on matrix crack spacing

    Fig.9 shows the effect of ply thickness on matrix crack spacing.It shows that the matrix crack spacing increases with the increase of 90° ply thickness,here b=0.517 mm.The reason is that if the external load is given,there is an decrease of loads acted on the matrix as the 90°ply thickness increases.This leads to an increase of crack spacing as the matrix strain energy reaches the critical value.

    Fig.9 Matrix crack spacing and stress at different ply thickness(b=0.517 mm)

    3.3.4 Effect of fiber volume fraction on matrix crack spacing

    As is shown in Fig.10,the matrix cracking spacing decreases with the increase of fiber volume fraction at the same stress level.The reason is that the area of the matrix decreases as the fiber volume fraction increases.In other words, there will be an increase of the stress of the matrix when the external load is given.It will lead to an decrease of crack spacing as the matrix strain energy reaches the critical value.

    Fig.10 Matrix crack spacing and stress at different fiber volume fraction

    4 CONCLUSIONS

    (1)Matrix crack evolution of cross-ply ceramic matrix composites under uniaxial tensile loading is investigated by micro-mechanics approach.

    (2)The crack mode 3 and mode 5 appearing between transverse cracks is investigated.It is found that the mode 3 is more likely to appear.

    (3)The matrix crack evolution of mode 3 is investigated.It is found that the matrix crack spacing decreases with the increase of interface shear stress,interface debonding energy and fiber volume fraction,while the matrix crack spacing increases with the increase of transverse ply thickness.

    [1] Li Longbiao,Song Yingdong,Sun Zhigang.Uniaxial tensile behavior of cross-ply ceramic matrix composites[J].Acta Materiae Compositae Sinica,2011, 28(1):1-8.(in Chinese)

    [2] Li Longbiao,Song Yingdong,Sun Zhigang.Uniaxial tensile behavior of unidirectional fiber reinforced ceramic matrix composites[J].Acta Material Compositae Sinica,2008,25(4):154-160.(in Chinese)

    [3] Fantozzi G,Reynaud P.Mechanical hysteresis in ceramic matrix composites[J].Materials Science and Engineering,2009(521/522):18-23.

    [4] Marshall D B,Evans A G.Failure mechanisms in ceramic-fiber/ceramic-matrix composites[J].Journal of the American Ceramic Society,1985,68(5):231-255.

    [5] Zok F W,Spearing S M.Matrix crack spacing in brittle matrix composites[J].Acta Metallurgica et Materialia,1992,40(8):2033-2034.

    [6] Spearing S M,Zok F W.Stochastic aspects of matrix cracking in brittle matrix composites[J].Journal of Engineering Materials and Technology,1993,115 (3):314-318.

    [7] Curtin W A.Multiple matrix cracking in brittle matrix composites[J].Acta Metallurgica et Materialia, 1993,41(5):1369-1377.

    [8] Ahn B K,Curtin W A.Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites[J]. Journal of theMechanics and Physics Solids,1997,45(2):177-209.

    [9] Kuo W S.Damage of multi-directionally reinforced ceramic-matrix composites[D].Newark: DepartmentofMechanicalEngineering, University of Delaware,1992.

    [10]Kuo W S,Chou T W.Multiple cracking of unidirectional and cross-ply ceramic matrix composites[J]. Journal of the American Ceramic Society,1995,78 (3):745-755.

    [11]Daniel I M,Anastassopoulos G.Failure mechanisms and damage evolution in cross-ply ceramic-matrix composites[J].International Journal of Solids and Structures,1995,32(3/4):341-355.

    [12]Takeda N,Kiriyama M.Matrix crack evolution in SiC fiber/glass matrix cross-ply laminates[J].Composites Part A:Applied Science and Manufacturing, 1999,30(4):593-597.

    [13]KarandikarP,Chou T W.Characterization and modeling of micro-cracking the elastic moduli changes in Nicalon-CAS composites[J].Composites Science and Technology,1993,46(3):253-264.

    [14]Robertson D D,Solti J P,Mall S.Modeling of matrix failure in ceramic matrix composites[J].Journal of Composites Technology and Research,1997,19 (1):29-40.

    猜你喜歡
    孫志剛南京航空航天大學(xué)鋪設(shè)
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)機(jī)電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實(shí)驗(yàn)室
    孫志剛案:推動(dòng)廢除收容制度
    方圓(2019年19期)2019-10-18 05:02:48
    CRTSⅢ型板式道岔鋪設(shè)施工技術(shù)
    深基坑混凝土環(huán)梁支撐靜力無(wú)損切割技術(shù)分析
    隆力奇 鋪設(shè)全球發(fā)展之路
    【最低調(diào)的“老將”】孫志剛
    黨史天地(2016年2期)2016-06-11 12:54:52
    深水鋼懸鏈立管J型鋪設(shè)研究
    a级毛色黄片| 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 免费在线观看影片大全网站| 国产精品久久久久久久电影| 亚洲欧美精品自产自拍| 久久热精品热| 久久欧美精品欧美久久欧美| av在线观看视频网站免费| 欧美日韩在线观看h| 九九久久精品国产亚洲av麻豆| 国产亚洲91精品色在线| 偷拍熟女少妇极品色| 一区二区三区四区激情视频 | 尤物成人国产欧美一区二区三区| 免费在线观看成人毛片| 亚洲va在线va天堂va国产| 亚洲av免费高清在线观看| 少妇人妻精品综合一区二区 | 精品99又大又爽又粗少妇毛片| 欧美高清成人免费视频www| 国产老妇女一区| 成人国产麻豆网| 99九九线精品视频在线观看视频| 麻豆乱淫一区二区| 国产午夜精品论理片| 亚洲激情五月婷婷啪啪| 哪里可以看免费的av片| 精品欧美国产一区二区三| 国内久久婷婷六月综合欲色啪| 亚洲国产精品合色在线| www日本黄色视频网| or卡值多少钱| 韩国av在线不卡| 国产精品电影一区二区三区| 日本黄大片高清| 日韩欧美一区二区三区在线观看| 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 人妻夜夜爽99麻豆av| 日日撸夜夜添| 午夜福利视频1000在线观看| 国产老妇女一区| 波多野结衣高清无吗| 天堂√8在线中文| 俺也久久电影网| 日韩大尺度精品在线看网址| av黄色大香蕉| 国产高清不卡午夜福利| 精华霜和精华液先用哪个| 淫秽高清视频在线观看| 亚洲人与动物交配视频| 国产亚洲欧美98| 亚洲国产精品久久男人天堂| 国产精品久久电影中文字幕| 级片在线观看| 中文在线观看免费www的网站| 久久久a久久爽久久v久久| 一卡2卡三卡四卡精品乱码亚洲| 国产综合懂色| 少妇的逼水好多| 一个人看的www免费观看视频| av.在线天堂| 日本黄大片高清| avwww免费| 国国产精品蜜臀av免费| 插阴视频在线观看视频| 国产69精品久久久久777片| 午夜精品在线福利| 五月玫瑰六月丁香| 校园人妻丝袜中文字幕| 最近2019中文字幕mv第一页| 一级黄片播放器| 三级毛片av免费| 成人鲁丝片一二三区免费| 欧美成人免费av一区二区三区| 直男gayav资源| 国产 一区 欧美 日韩| 色av中文字幕| 国产精品一二三区在线看| 美女cb高潮喷水在线观看| 亚洲欧美清纯卡通| 久久6这里有精品| 五月玫瑰六月丁香| 丰满的人妻完整版| 精品乱码久久久久久99久播| 黄片wwwwww| 亚洲美女黄片视频| 免费在线观看影片大全网站| 欧美区成人在线视频| 日韩国内少妇激情av| 91狼人影院| 国产精品不卡视频一区二区| .国产精品久久| 天天躁夜夜躁狠狠久久av| 亚洲激情五月婷婷啪啪| 婷婷精品国产亚洲av在线| 亚洲精品日韩av片在线观看| 99久久中文字幕三级久久日本| 淫秽高清视频在线观看| 欧美成人a在线观看| 精品无人区乱码1区二区| 中文在线观看免费www的网站| 熟妇人妻久久中文字幕3abv| 亚洲中文字幕一区二区三区有码在线看| 日本五十路高清| 日本精品一区二区三区蜜桃| 日本a在线网址| 精品人妻熟女av久视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美高清成人免费视频www| 国产一级毛片七仙女欲春2| 天堂√8在线中文| 精品人妻熟女av久视频| 亚洲最大成人中文| 国内揄拍国产精品人妻在线| 好男人在线观看高清免费视频| 看片在线看免费视频| 亚洲精品在线观看二区| 亚洲欧美日韩卡通动漫| 乱码一卡2卡4卡精品| 成年女人看的毛片在线观看| 欧美一区二区国产精品久久精品| 最新在线观看一区二区三区| 婷婷精品国产亚洲av| 久久久久久久久久黄片| 在线免费观看不下载黄p国产| 尾随美女入室| 久久99热这里只有精品18| 最近手机中文字幕大全| 国产av麻豆久久久久久久| 婷婷亚洲欧美| 精品人妻偷拍中文字幕| 亚洲自拍偷在线| 国产男人的电影天堂91| 亚洲内射少妇av| 女的被弄到高潮叫床怎么办| 久久久精品94久久精品| 欧美xxxx黑人xx丫x性爽| 美女内射精品一级片tv| 天天躁日日操中文字幕| 97热精品久久久久久| 在线a可以看的网站| 欧美性感艳星| 俺也久久电影网| 欧美中文日本在线观看视频| 成人欧美大片| 美女免费视频网站| 禁无遮挡网站| 欧美人与善性xxx| 亚洲欧美成人综合另类久久久 | 午夜a级毛片| 性色avwww在线观看| 成人欧美大片| 成人国产麻豆网| 久久午夜亚洲精品久久| 国产免费男女视频| 长腿黑丝高跟| 国产91av在线免费观看| 国产熟女欧美一区二区| 深爱激情五月婷婷| 观看免费一级毛片| 免费看a级黄色片| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 麻豆乱淫一区二区| 亚洲国产高清在线一区二区三| 国国产精品蜜臀av免费| 在现免费观看毛片| 欧美日韩综合久久久久久| 99热这里只有精品一区| 亚洲欧美成人精品一区二区| 中文资源天堂在线| 插逼视频在线观看| 日韩av不卡免费在线播放| 日韩欧美在线乱码| 国内少妇人妻偷人精品xxx网站| 人人妻人人澡欧美一区二区| 国产精品爽爽va在线观看网站| 99久国产av精品国产电影| 校园春色视频在线观看| 亚洲中文日韩欧美视频| 国产精品久久久久久久电影| 久久精品91蜜桃| 日韩中字成人| 深爱激情五月婷婷| 一区福利在线观看| 欧美bdsm另类| 国产黄色小视频在线观看| 最近在线观看免费完整版| 在线播放无遮挡| 一区福利在线观看| 久久99热6这里只有精品| 日韩精品中文字幕看吧| 欧美一区二区国产精品久久精品| 老师上课跳d突然被开到最大视频| 全区人妻精品视频| 久久久久久久久大av| 18禁黄网站禁片免费观看直播| 欧美激情久久久久久爽电影| 免费无遮挡裸体视频| av天堂在线播放| 亚洲av成人av| 美女cb高潮喷水在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品亚洲一级av第二区| a级毛片a级免费在线| 成年女人毛片免费观看观看9| 变态另类成人亚洲欧美熟女| 一级毛片久久久久久久久女| 观看免费一级毛片| 最新中文字幕久久久久| 国产亚洲欧美98| 国产白丝娇喘喷水9色精品| 久久国产乱子免费精品| 亚洲熟妇熟女久久| 校园人妻丝袜中文字幕| 久99久视频精品免费| 国产v大片淫在线免费观看| 别揉我奶头 嗯啊视频| 日日摸夜夜添夜夜添av毛片| 一进一出抽搐gif免费好疼| av免费在线看不卡| 六月丁香七月| 成人精品一区二区免费| 一区福利在线观看| 69人妻影院| 午夜免费激情av| 最近的中文字幕免费完整| 九九爱精品视频在线观看| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| 国产综合懂色| 国产一区二区在线观看日韩| 亚洲成a人片在线一区二区| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影视91久久| 成人国产麻豆网| 嫩草影院新地址| 精品久久久久久久久久久久久| 亚洲av中文av极速乱| 久久午夜福利片| 免费av观看视频| 最新中文字幕久久久久| 性色avwww在线观看| 最近2019中文字幕mv第一页| 老司机午夜福利在线观看视频| 男女那种视频在线观看| 久久久久久久久久久丰满| 亚洲av不卡在线观看| 最近最新中文字幕大全电影3| 国产熟女欧美一区二区| 亚洲av熟女| av专区在线播放| 一a级毛片在线观看| 久99久视频精品免费| 久久人妻av系列| 亚洲欧美日韩东京热| 一进一出抽搐gif免费好疼| 日韩中字成人| 国产一区二区在线av高清观看| 日本黄色片子视频| 国产三级中文精品| 亚洲av免费高清在线观看| 久久鲁丝午夜福利片| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 国产免费一级a男人的天堂| 日本精品一区二区三区蜜桃| 久久久久国内视频| 直男gayav资源| 欧美绝顶高潮抽搐喷水| 国产午夜精品久久久久久一区二区三区 | 久久中文看片网| 欧美丝袜亚洲另类| 精品不卡国产一区二区三区| 少妇猛男粗大的猛烈进出视频 | 久久精品国产亚洲网站| 久久久精品大字幕| 中文亚洲av片在线观看爽| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 黄色欧美视频在线观看| 男女做爰动态图高潮gif福利片| 在线看三级毛片| 国产老妇女一区| 日日干狠狠操夜夜爽| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 亚州av有码| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 精华霜和精华液先用哪个| 久99久视频精品免费| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 亚洲国产日韩欧美精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 深爱激情五月婷婷| 亚洲一区高清亚洲精品| 免费看光身美女| 国产精品久久久久久亚洲av鲁大| 俄罗斯特黄特色一大片| 少妇的逼水好多| 美女黄网站色视频| 又爽又黄a免费视频| 久久国产乱子免费精品| 亚洲精品久久国产高清桃花| 精品久久久久久久久久久久久| 一级黄色大片毛片| 精品久久久久久久久亚洲| av天堂在线播放| 一个人免费在线观看电影| 精品久久久噜噜| 亚洲美女视频黄频| 欧美中文日本在线观看视频| 91午夜精品亚洲一区二区三区| 俄罗斯特黄特色一大片| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 悠悠久久av| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久| 色综合色国产| 99国产精品一区二区蜜桃av| 99久久九九国产精品国产免费| 综合色丁香网| 久久久久免费精品人妻一区二区| 狂野欧美激情性xxxx在线观看| 男女那种视频在线观看| 国产成人91sexporn| 男人和女人高潮做爰伦理| 欧洲精品卡2卡3卡4卡5卡区| 精品福利观看| 色吧在线观看| 亚洲欧美日韩高清专用| av专区在线播放| 国产成人91sexporn| 午夜精品国产一区二区电影 | 精品国产三级普通话版| 成人二区视频| 国产精品一区二区三区四区免费观看 | 亚洲18禁久久av| 毛片女人毛片| 淫妇啪啪啪对白视频| 色在线成人网| 欧美3d第一页| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| 亚洲精品在线观看二区| 国产精品一二三区在线看| 日韩精品青青久久久久久| 亚洲人与动物交配视频| 久久精品人妻少妇| 丝袜美腿在线中文| 成人鲁丝片一二三区免费| 亚洲最大成人中文| 国产精品av视频在线免费观看| 久久久色成人| 白带黄色成豆腐渣| 男女视频在线观看网站免费| 在线观看66精品国产| 一夜夜www| 波多野结衣巨乳人妻| 天堂√8在线中文| 真实男女啪啪啪动态图| 长腿黑丝高跟| 真人做人爱边吃奶动态| 亚洲18禁久久av| 色视频www国产| 少妇熟女aⅴ在线视频| 一进一出好大好爽视频| 99在线视频只有这里精品首页| 成人精品一区二区免费| 国国产精品蜜臀av免费| 国产在线男女| 亚洲性夜色夜夜综合| 看黄色毛片网站| 久久精品综合一区二区三区| 久久久久免费精品人妻一区二区| 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 精品少妇黑人巨大在线播放 | 亚洲久久久久久中文字幕| 村上凉子中文字幕在线| 精品午夜福利视频在线观看一区| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 美女黄网站色视频| 成人一区二区视频在线观看| 日韩强制内射视频| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女| 日韩,欧美,国产一区二区三区 | 亚洲欧美日韩高清在线视频| 精品人妻偷拍中文字幕| 亚洲av熟女| 中文字幕av在线有码专区| 有码 亚洲区| 天堂av国产一区二区熟女人妻| 亚洲精品国产成人久久av| 97超碰精品成人国产| 深爱激情五月婷婷| 白带黄色成豆腐渣| 一本久久中文字幕| 久久久久久九九精品二区国产| 最近的中文字幕免费完整| 成人av一区二区三区在线看| 欧美zozozo另类| 午夜精品一区二区三区免费看| 国产av在哪里看| 亚洲五月天丁香| 久久久久久久久中文| 麻豆国产97在线/欧美| 99久久精品一区二区三区| 亚洲无线在线观看| 伦精品一区二区三区| 成人午夜高清在线视频| 在线观看66精品国产| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| 午夜激情欧美在线| 18禁黄网站禁片免费观看直播| 中出人妻视频一区二区| 久久热精品热| 久久午夜福利片| 精品久久久久久久人妻蜜臀av| 最新中文字幕久久久久| 久久精品夜色国产| 亚洲中文字幕日韩| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 极品教师在线视频| www.色视频.com| 国产高清三级在线| a级毛片a级免费在线| 欧美绝顶高潮抽搐喷水| 97热精品久久久久久| 日本黄大片高清| 欧美xxxx性猛交bbbb| 无遮挡黄片免费观看| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲一级av第二区| 成人漫画全彩无遮挡| 国产色婷婷99| 在线观看一区二区三区| 亚洲一区高清亚洲精品| 日韩精品有码人妻一区| 久久久a久久爽久久v久久| 色哟哟·www| 亚洲成av人片在线播放无| 嫩草影院新地址| 一级黄色大片毛片| 熟女人妻精品中文字幕| 国产一区二区三区av在线 | 白带黄色成豆腐渣| 午夜老司机福利剧场| 色综合色国产| 免费看美女性在线毛片视频| 真实男女啪啪啪动态图| 看非洲黑人一级黄片| 国产精品一二三区在线看| 中文字幕av成人在线电影| 久久99热6这里只有精品| 一区福利在线观看| 天堂网av新在线| 激情 狠狠 欧美| 婷婷亚洲欧美| 国产欧美日韩一区二区精品| 久久人人精品亚洲av| 亚洲精品乱码久久久v下载方式| 五月玫瑰六月丁香| 狠狠狠狠99中文字幕| 偷拍熟女少妇极品色| 亚洲久久久久久中文字幕| 日本五十路高清| 精品一区二区三区视频在线| 国产亚洲精品综合一区在线观看| 亚洲国产欧美人成| 日韩精品中文字幕看吧| 好男人在线观看高清免费视频| av在线观看视频网站免费| 亚洲美女搞黄在线观看 | 97超碰精品成人国产| 免费搜索国产男女视频| 亚洲成人久久性| 又爽又黄无遮挡网站| 99久久精品热视频| 国产 一区 欧美 日韩| 国产伦精品一区二区三区视频9| 性欧美人与动物交配| 日产精品乱码卡一卡2卡三| 人妻少妇偷人精品九色| 熟女电影av网| 亚洲精品久久国产高清桃花| 久久精品人妻少妇| 内地一区二区视频在线| 床上黄色一级片| 国产精品亚洲美女久久久| 一边摸一边抽搐一进一小说| 波多野结衣高清无吗| 免费黄网站久久成人精品| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 久久午夜亚洲精品久久| 久久国产乱子免费精品| 淫妇啪啪啪对白视频| 亚洲无线在线观看| 国产亚洲精品综合一区在线观看| 九九热线精品视视频播放| 免费人成在线观看视频色| 亚州av有码| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区在线观看日韩| 国产91av在线免费观看| 精品久久久久久久久av| 成人高潮视频无遮挡免费网站| 国内精品宾馆在线| 午夜福利18| 亚洲天堂国产精品一区在线| 狂野欧美激情性xxxx在线观看| 亚洲av二区三区四区| 最近2019中文字幕mv第一页| 国产精品av视频在线免费观看| 国产伦精品一区二区三区四那| 丝袜美腿在线中文| 12—13女人毛片做爰片一| 少妇熟女欧美另类| 嫩草影视91久久| 国产麻豆成人av免费视频| 22中文网久久字幕| 精品人妻熟女av久视频| 日本免费一区二区三区高清不卡| 欧美丝袜亚洲另类| 我的女老师完整版在线观看| 欧美日韩国产亚洲二区| 99久国产av精品国产电影| 久久国产乱子免费精品| 联通29元200g的流量卡| 国产高清有码在线观看视频| 两个人的视频大全免费| 国产69精品久久久久777片| 久久人人精品亚洲av| 99热这里只有是精品在线观看| 人人妻,人人澡人人爽秒播| 最近2019中文字幕mv第一页| 国产精品综合久久久久久久免费| 熟女人妻精品中文字幕| 亚洲乱码一区二区免费版| 直男gayav资源| 激情 狠狠 欧美| 国产精品久久久久久久电影| 久久精品国产99精品国产亚洲性色| 亚洲18禁久久av| 国内精品一区二区在线观看| 日韩 亚洲 欧美在线| 亚洲美女黄片视频| 亚洲精品乱码久久久v下载方式| 国产精品免费一区二区三区在线| 99精品在免费线老司机午夜| 欧美性猛交╳xxx乱大交人| 免费看光身美女| 欧美成人一区二区免费高清观看| 免费观看在线日韩| 欧美xxxx性猛交bbbb| 欧美日本亚洲视频在线播放| 亚洲精品456在线播放app| 日韩欧美一区二区三区在线观看| 国内精品久久久久精免费| 丰满乱子伦码专区| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频 | 国产精品久久视频播放| 精品一区二区三区视频在线观看免费| 国产片特级美女逼逼视频| 国产免费一级a男人的天堂| 能在线免费观看的黄片| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 久久亚洲国产成人精品v| 中文字幕熟女人妻在线| 不卡视频在线观看欧美| 一级毛片我不卡| 免费在线观看影片大全网站| 国产视频内射| 男女做爰动态图高潮gif福利片| 亚洲在线观看片| 91久久精品国产一区二区三区| 久久鲁丝午夜福利片| 最近手机中文字幕大全| 嫩草影视91久久| 在线免费观看不下载黄p国产| 久久精品91蜜桃| 中国美女看黄片| 欧美激情国产日韩精品一区| 哪里可以看免费的av片| 亚洲第一电影网av| 亚洲乱码一区二区免费版| 亚洲成人久久爱视频| 精品人妻偷拍中文字幕| 亚洲精品456在线播放app| 国产精品一及| 免费一级毛片在线播放高清视频| 搡老妇女老女人老熟妇| 九九在线视频观看精品| 亚洲成人久久爱视频| 黄片wwwwww| 天堂网av新在线|