• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    空氣系統(tǒng)引氣對壓氣機(jī)性能影響的數(shù)值研究

    2011-04-19 10:38:14李紹斌李秋實(shí)
    關(guān)鍵詞:北京航空航天大學(xué)壓氣機(jī)熱力

    趙 斌 李紹斌 李秋實(shí) 周 盛

    (北京航空航天大學(xué)航空發(fā)動(dòng)機(jī)氣動(dòng)熱力科技重點(diǎn)實(shí)驗(yàn)室,北京,100191,中國)

    INTRODUCTION

    Air system is essential to the safe and reliable operation of aircraft engines.Air with proper pressure and temperature is used for cabin air conditioning,engine inlet anti-ice and cooling of high temperature components[1].Ref.[2]showed that the bleed air from the high pressure compressor took up 3%—5%of the main flow.Although the percentage is relatively small,the air coming from such an important part of the engine generates the great impact on the compressor performance[3-6].

    During recent years,the aspirated technology is widely applied to the turbo-machinery for flow control,and offers a new approach to study the impact of air system bleeding on compressor performance. Refs.[7-9]improved the blade loaded by controlling the blade surface and the end-wall separation through the boundary layer suction.Ref.[10]performed a numerical simulation on a transonic fan rotor ATS-2 and proved that the boundary layer bleeding could greatly enhance the pressure ratio and efficiency.Ref.[11] showed that boundary layer bleeding was an effective solution for separation and stall of the cascade with large turning angles.It can be concluded from the previous studies that it is very likely to improve compressor performance by studying air system bleeding.

    Current studies in this field mainly focus on how high temperature components make efficient use of mass flow in the air system for cooling, and analytical calculation on the loss along air system network.Very few of them touched on the influence of air bleeding on compressor performance.However,the air is bled from such an essential part of the engine and there must be continuous and enough air supply for the engine to run normally.Therefore,this paper tries to explore the impact of different bleeding rates and structures on the compressor totalpressure increase and stability margin.

    1 ANALYSIS OF BLEEDING MECHANISMS

    Air bleeding improves the compressor performance through removing the low-energy fluid from critical regions of blades and altering the incidence angle of blades.The former one has been widely used in the external and internal flow control since Prandtl′s boundary suction experiment in 1904.This section mainly analyzes how bleeding influences the blade incidence angle.

    Fabri′s experiment summarized the features of bleed flow,as shown in Fig.1.The main upstream flow in the bleeding slot flows faster under the suction of bleeding; The main downstream flow slows down after the main flow decreases in air bleeding.In Fig.2,the air flows into the rotor in the axial direction with a velocity of V0.In the case that bleeding slot is located upstream of blade leading edge,the inlet axial velocity of blade increases to V1,the rotation speed U remains the same after bleeding,and the inlet flow angle Uis smaller.There is a smaller blade incidence angle when the stagger angle is constant. On the other hand,if the blade leading edge is located downstream of the bleeding slot,the inlet axial velocity of blade decreases to V2after bleeding and the blade incidence angle increases.The case is also applies to stators.Therefore,the influence mechanism of bleeding on the main flow can be concluded as:the blade incidence angle can be changed by altering the relative position of bleeding slot to the blade leading edge.

    Fig.2 Influence on inlet air angle by axial velocity changes

    For the transonic and subsonic compressor rotors,most of the blade passage losses result from the blockage caused by the interaction of tip leakage flow and end-wall boundary layer,and stall usually starts from the blade tips.When air is extracted from the rotor casing,the main flow rate upstream increases,and the incidence angle and blockage from tip clearance leakage can be reduced[12-13].The stator performance is mainly restrained by the blockage on the end-wall near suction surface[14-15].Bleeding in the stator end-wall area can increase the stator inlet flow rate,decrease the incidence angle,and remove the lowenergy fluid from the end-wall area.Blockage can be reduced by end-wall bleeding for stators.The analysis above indicates that the compressor performance is very likely to be improved by bleeding.For stators with large separation in the corner,how do end-wall bleeding location and rate influence the compressor performance?Is there an optimum value for bleeding location and rate? This paper takes the low-speed single-stage compressor in Beijing University of Aeronautics and Astronautics(BUAA)as the research object,and builds a stator flow field with large separation in the corner.Six air bleeding structures are presented,one of which is numerically studied under five bleeding rates.

    2 NUMERICAL ANALYSIS PLAN

    2.1 Low-speed single-stage compressor

    The low-speed single-stage compressor in BUAAis used in this experiment.Its structure is shown in Fig.3.The design mass flow rate is 2.80 m3/s at a rotational speed of 3 000 r/min, thus providing a total pressure increase of 1 500 Pa.Details of the compressor geometry,the op-erating conditions,and the experimental data can be found in Ref.[16].Information on the compressor stage is listed in Table 1.

    Fig.3 Schematic layout of test rig

    Table 1 Design performance of low speed axial compressor

    2.2 Numerical model and reliability analysis

    The experimental measurement sections at the inlet and outlet of compressor are selected for the calculation field boundary. The space discretization of the compressor mesh is generated by the pre-processing module AutoGrid5.The calculation is performed on a single rotor and stator passage.The total mesh point number is about 600 000.Simulations of the steady 3-D viscous flow field are carried out on the compressor by using the 3-D CFD package Numeca Fine Turbo.A cell-centered second-order finite volume discretisation is employed.The turbulence model is Spallart-Almaras.Perfect air is selected as working substance.In order to ensure the simulation accuracy,the simulation is amended by low Mach number flow.The atmospheric pressure and the temperature ofexperimental environments are 102 510 Pa and 285.15 K,respectively,held as inlet boundary condition.Concerning the radial equilibrium equation,the static pressure at the mean radius is held as outlet boundary condition. During the simulation,the main operating point of the compressor characteristic curves is obtained by changing the static pressure at the outlet.

    The definition of numerical stall point in this paper is basically the same as that in Refs.[17-18].When the back pressure increases in the compressor outlet to obtain near stall characteristics,even by 0.01% of the inlet total pressure, the mass flow rate,the pressure ratio and the efficiency of compressor keep on decreasing with the number of iterations increasing,and numerical calculation cannot converge.Therefore,it can be concluded that the calculation is divergent.So the last convergence solution before divergence corresponds to the near-stall condition. The Surge Margin calculation formula is as follows

    where SMis short forSurge Margin,Msand ΔPs*are the flow rate and the total pressure increase at the near-stall point,MdandΔPd*the flow rate and the total pressure increase at design point.

    Fig.4 shows a comparison between the numerical simulation and the experimentally measured value over the 100% speedline of the lowspeed axial compressorcharacteristics without bleeding.In this paper,compressor characteristics of numerical calculations and experiment are conducted non-dimensionalized by a reference value:the abscissaOis the inlet flow coefficient Vx/ Um,and the ordinate jis the total pressure increase coefficient ΔP*/d Um2. On the design point,the simulation matches well with the experimental data of jwith a relativeerror of 1.2%. At the near-stall point,flow range in the simulation is smaller than the experimentally measured value because of the single passage steady simulation.Fig.5 shows the comparison of the radial distributions of total pressure increase at the outlet of the compressor between the simulation and the experimentally measured value on the design point(O=0.538).It is clear th at the simulation values agree well with the measured average values obtained from the four total pressure combs with circumferential averaged-distribution in the experiment.The above analysis shows that simulation calculation results are very close to the experimentlly measured results.In other words, the numerical calculation can approximatively reproduce the experimental results,and the numerical simulation is a reliable way to study the influence of bleeding on the compressor overall performance.

    Fig.5 Radial distributions of total pressure increase on design point at outlet of compressor

    2.3 Building and analysis of stators with large corner separation

    The stall is induced by the leakage of the rotor blade tip of the compressor above.In order to study the influence of bleeding structure,location and rate on the stator corner separation,another compressor is needed where there is large separation in the near-stall stator corner.Therefore, based on the reliability of the numerical method, a new compressor is built with large separation in the stator corner on the near-stall point.The ratio of rotors to stators is modified into 18∶ 12, and the stator inlet setting angle is cut by 2°.The new compressor is used as the baseline,upon which all numerical studies below are conducted.

    Fig.6 shows the skin friction line on the blade suction surface of the baseline at near-stall point. There are serious separations on stator corners.On stator suction surface,two obvious separating lines roll up from boundary layer of the suction surface and grow into the shedding vortex,thus taking along a large number of low-energy fluid to the downstream.It aggravates the stator losses.The separation on the upper half of the stator starts from 15% of the chord,and the outlet separation covers up 40% to 100% of the stator radial range.It is a typical closed form of separation.In the lower half of the stator,there is obvious separation and the radial flow.Fig.7 shows that there is the contours of the total pressure increase coefficient at stator outlet,where SS means the suction surface and PS the pressure surface.The location and the trend of corner separation at stator suction surface match well with those shown in Fig.6.The separation in the upper half of the stator outlet covers about 35% of the pitch range in circumferential.

    Fig.6 Skin friction line on stator suction surface of baseline approaching stall point

    Fig.7 Stator exit total pressure increase coefficient contours of baseline approaching stall point

    The complicated stator cornerseparations cause a huge increase in the loss.It is the most likely cause of the decrease in the compressor performance under the low flow rate condition.In this case,can these bleeding structures and rates effectively control the stator flow? And what influence does each plan have on the compressor performance?Answers are given in the comparative analysis on numerical calculation results of each bleeding plan below.

    3 INFLUENCES OF BLEEDING STRUCTURES

    3.1 Bleeding structure plans

    Six air bleeding structure plans are presented in this paper according to the bleeding mechanisms above.In each plan,bleeding slots are located downstream of the leading edge of stator blades.Information on the plans is given in Table 2,and Fig.8 shows the structure of bleeding slots.In plans a and b,the bleeding slot is about 5% chord of stator and located at 10% and 20% chord from leading edge in the casing.The bleeding location in plan c is at the trailing edge in the casing,about 5% chord of stator.In plan d,the bleeding slot is rectangle-shaped,and located near the suction surface in the casing.The length is about 59% of the stator chord,and the width is about 15% of the stator chord.The bleeding location of plan e is at the stator suction surface near the hub.The air is bled out from the casing through the internal cavity of the stator.The plan f is basically a combination of plans d and e. It controls the flow in both the casing corner and the hub corner at the same time.From plan a to plan e,2.5% of the main flow is bled out.In plan f,1% of the main flow is bled from the casing and the blade suction surface.

    Table 2 Bleeding location plans

    Fig.8 Structure of bleeding location plans

    3.2 Influence on total pressure increase and surge margin

    Figs.9,10 show the overall characteristics of total pressure increase in each bleeding plan.And Table 3 lists out different surge margins in each plan.The surge margin in the calculation of the baseline is 30.3%.It can be seen from Figs.9,10 and Table 3,only plan f manages to enhance both the total pressure increase and the surge margin, and improves the flow condition at the near-stall point.In this plan,the total pressure increase grows by 5.88% than the baseline,the mass flow range expands by 4.25%,and surge margin reaches 44.12%,which is a 45.47% increase on the baseline.In plans a and b,there is only the total pressure with a tiny increase.Two SMin both plans enhance very little,only by 2.52% and 4.06%,respectively.In plans c and d,the mass flow range is expanded at the cost of a reduction in the total pressure increase,but the surge margin decreases by 2.68% and 1.73% respectively.In plan e,the total pressure increase rises a little at near stall point,but the mass flow range decreases,so the relative surge margin reduces by 1.31%.

    Fig.9 Performance of total pressure increase in each bleeding location plan

    Fig.10 Performance of total pressure increase in plan f

    Table3 Relative increment of stability margin in each bleeding location plan %

    3.3 Influence on stator flow field

    Fig.11 shows the total pressure increase coefficient contours near stall(O=0.425)at stator outlet in each bleeding plan,where LE means the leading edge and TE the traling edge.In plan f, bleeding on the casing effectively removes a large number of low-energy fluid accumulation in the casing corner.Meanwhile,bleeding at the stator suction surface near hub eliminates the separation from the local small region,and effectively weakenes the radial flow caused by casing bleeding in the main flow.The stator flow obtains an overall improvement.The plans a and b both extract air at the entrance of stator leading edge.They reduce the incidence angle in the tip region,push back the starting location of the boundary layer separation near the casing,and reduce the large separation region on the stator casing in the radial and circumferential scale,but the large local separation of the casing still cannot be completely eliminated.In plans c and d,the large separation in the casing suction surface corner is completely removed,and the tip blockage is alleviated.However,the reduction of tip blockage and the suction effect cause the strong radial flow in the hub region.Under these influences,a large separation comes about in the suction surface corner near hub region.It indicates that there is an optimal value of bleeding rate to control the stator casing corner separation.The influence of bleeding rate on the main flow field is explored afterwards. The plan e only controls the flow in suction surface near hub region,and the large separation in the shroud corner still exists.

    Fig.11 Stator exit total pressure increase coefficient contours near stall in each bleeding location plan

    Fig.12 Radial distributions of stator total loss coefficient near stall in each bleeding location plan

    Fig.12 shows the radial distribution of the near-stall statortotal loss coefficient in each plan.In the equation of the total loss coefficients of the stators,P*inand Pinare the inlet total pressure and the static pressure of the stators,P*outis the outlet total pressure.In plan f,it is apparent that there is a great reduction in the flow loss in the areas above 40% of the blade span,and the losses in the area below 20%of the blade span are under better control.The removal of the separation and the decrease in the loss greatly improves the stator flow.

    It can be concluded that both flow mechanisms can effectively reduce the corner separation,and enhance the compressor performance. During the research,reducing the incidence angle alone cannot completely remove the large separation area near the casing.It only pushes back the starting location of the boundary layer separation on the tips near the casing and reduces the scale of separation. The compressorsurge margin hardly has any improvement. However,if the low-energy fluid in the critical area can be eliminated at the same time when the incidence angle is reduced,there is a better stator flow as the lowenergy fluid is removed and the separation is inhibited.The compressor has a comprehensive improvement in total pressure increase and surge margin.The research also indicates that too large bleeding rates bring about intensive radial flow, destruct the main flow,and increase the risk of large separation in hub region.In other words, there is an optimum value in the bleeding rate controlling the stator casing corner separation.

    4 INFLUENCES OF BLEEDING RATES

    There are different stator flow fields in plans d and f due to different bleeding rates in the analysis above.What are the similarities and dissimilarities in the stator flow field under different bleeding rates? What is the optimum bleeding rate?In order to explore the influence of different bleeding rates on the stator flow field and the performance,5 bleeding plans are presented with the same bleeding structure and location of plan d. These plans are referred to as d1—d5,and corresponding bleeding rates are 0.3%,0.6%,1%, 2% and 3%,respectively.

    4.1 Influence on total pressure increase

    Table 4 lists out the total pressure increase coefficient in each bleeding rate plan at the design point.In plan d1,the total pressure increase coefficient rises by 0.75% under a bleeding rate of 0.3%.The coefficient rises by 0.65% in plan d2 where the bleeding rate increases to 0.6%.In plan d3,the coefficient grows only by 0.15% while the bleeding rate reaches 1.0%.In plans d4 and d5,the coefficients decrease by 0.59% and 1.5% respectively when the bleeding rates keep increasing.In conclusion,there is increase in the coefficient when the bleeding rate is under 1.0%. The coefficient starts to decrease when the bleeding rate exceeds 1%.Therefore,there is an optimum value in the bleeding rates,and it is not the more the better.

    Table4 Relative value of total pressure increase coefficient in each bleeding rate plan at design point

    4.2 Influence on stator flow field

    Fig.13 presents the skin friction on the stator suction surface at the design point in each plan.Fig.14 shows the stator exit total pressure increase coefficient contours at the design point in each plan.With the bleeding rate increasing,the casing separation area starts to shrink along the radial and circumferential direction.The casing corner separation is under better control in plan d3.Its radial range is cut to 90% to 100% of the blade span,and the circumferential range also shrinks.However,the radial flow in the hub region starts to intensify and the separation area also expands when the bleeding rate grows.In plan d3,the radial range of the separation area increases to 60% of the blade span,compared to 20% of the blade span in the baseline.The circumferential influence covers up 20% of the pitch range.When the bleeding rates reach and exceed 1%,the casing corner separation gradually disappears,and the separation and the radial flow in the hub intensify.In plan d5,the casing separation completely disappears under the 3% of the bleeding rate,but larger hub separation appears and grows to 75% of the blade span.

    Fig.13 Skin friction on stator suction surface at design point in each plan

    Fig.14 Stator exit total pressure increase coefficient contours at design point in each bleeding rate plan

    Fig.15 shows the radial distributions of the stator total loss coefficient at the design point in each plan.The stator total loss coefficient in the upper half of the blade span apparently decreases with an increase in the casing bleeding rate.At the 90% of the blade span,the loss coefficient in plan d1 decreases to 0.1 from 0.3 in baseline. However,there is no significant decrease in the loss coefficient when the bleeding rate continues to grow.The loss coefficient in the lower half of the blade span increase together with the bleeding rates.The bleeding rate influences the stator total loss coefficient in the same way that stator flow field changes as shown in Figs.13,14.They both reflect how bleeding rate influences the stator flow field,and explain why the total pressure increase changes on the design points of each plan.

    Fig.15 Radial distributions of stator total loss coefficient at design point in each bleeding rate plan

    In conclusion, too much bleeding brings about intensive radial flow when removing the local separation.Furthermore,when there is large incidence angle in stators or separationin hub corner,large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.Therefore,there is an optimum value in the bleeding rate controlling the stator casing corner separation.The value depends on the flow of the stator flow field.

    5 CONCLUSIONS

    (1)In both mechanisms about how bleeding improves the compressor performance,the elimination of low-energy fluid by bleeding plays a dominant role.The influence of bleeding on the blades incidence angle can determine the location of bleeding device.The compressor has a much better performance if both mechanisms are taken into consideration during design.

    (2)A joint bleeding structure plan bleeds 1% of the air from both the stator casing near suction side and the stator suction surface near the hub region.This plan succeeds in rising both the total pressure increase and the surge margin of compressor at the same time.Compared with the baseline condition,the total pressure increase rises by 5.88%, the flow range expands by 4.25% and the overall surge margin increases by 45.47%.

    (3)There is an optimum value in the bleeding rate controlling the stator casing corner separation.Too much bleeding brings about intensive radial flow when removing the local separation. Furthermore,when there is the large incidence angle in stators or the separation in hub corner, large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.

    [1] Yang Yansheng,Wu Xiangyu,Lu Haiying,et al. Design manual of aircraft engine,16th volumes:Air systems and analysis of heat transfer[M].Beijing: Aviation Industry Press,2001:1-11.(in Chinese)

    [2] Zhao Bin,Li Shaobin,Hou Anpin,et al.The research on air bleed of air system in aero-engine[C]// Academic ExchangingMeeting of 15th Turbomachinery Committee of Aviation Institute.China: CSAA,2009:190-198.(in Chinese)

    [3] Andrew JY,Ronald J R.Effects of bleed air extraction on thrust level of the F404-GE-400 turbofan engine[R].NASA TM-104247,1992.

    [4] Alison B E.The effects of compressor seventh-stage bleed air extraction on performance of the F100-PW-220 afterburning turbofan engine[R].N ASA CR-179447,1991.

    [5] Wellborn S R,Michael L K.Bleed flow interactions with an axial-flow compressor powerstream[R]. AIAA Paper 2002-4057,2002.

    [6] Kerrcbroek J L,Reijnan D P,Ziminsky W S,et al. Aspirated compressors[R].ASM E Paper,GT-97-525,1997.

    [7] Merchant A A,Drela M,Kerrebrock J L,et al. Aerodynamic design and analysis of a high pressure ratio aspirated compressor stage[R].ASM E Paper, GT-2000-619,2000.

    [8] Zhou Hai,Li Qiushi,Lu Yajun.Prospects of numerical analysis of an aspirated transonic fan rotor [J].Journal of Aerospace Power,2004,19(3):408-412.(in Chinese)

    [9] Wang Songtao,Qian Jiru,Feng Guotai,et al.The research about loss reduction and separation suppress by wall suction[J].Journal of Engineering Thermophysics,2006,27(1):48-50.(in Chinese)

    [10]Conan F,Savarese S,Moteurs S.Bleed airflow CFD modeling in areodynamics simulations of jet engine compressors[R].ASM E Paper,GT-2001-0544, 2001.

    [11]Saathoff H,Stark U.Tip clearance flow in a low speed compressor and cascade[C]//Fourth European Conference on Turbomachinery.Firenze,Italy:[s. n.],2001:81-91.

    [12]Gummer V,Swoboda M,Goller M,et al.The impact of rotor tip sweep on the three-dimensional flow in a highly-loaded single stage low-speed axial compressor— Part1:design and numerical analysis[C]// Fifth European Conference on Turbomachinery. Prague,Czech Republic:[s.n.],2003.

    [13]Zhao Bin,Li Shaobin,Li Qiushi,et al.Unsteady numerical research into the impact of bleeding on axialcompressorperformance[C]//Proceeding of ASME2010 3rd Joint US-European Fluids Engineering Summer Meeting.Montreal,Canada: [s.n.], 2010:FEDSM-ICNMM2010-30228.

    [14]Joslyn H D,Dring R P. Axial compressor stator aerodynamics[J].ASM E Journal of Heat Transfer, 1985(107):485-493.

    [15]Kang S,Hirsch C.Three dimensional flow in a linear compressor cascade at design condition[R]. ASME Paper,GT91-114,1991.

    [16]Li Zhiping,Li Qiushi,Yuan Wei,et al.The experimental research on a new method for extending the axial-compressors stallmargin[J]. Journalof Aerospace Power, 2006,21(3): 485-491.(in Chinese)

    [17]Hall E J,Crook A J,Delancy R A.Aerodynamic analysis of compressor casing treatment with a3-D navier-stokes solver[R]. AIAA Paper 94-2796, 1994.

    [18]Yang H,Nuernberger D,Nicke E A.Numerical investigation of casing treatment mechanisms with a conservative mix-cell approach[R].ASM E Paper, GT-2003-28483,2003.

    猜你喜歡
    北京航空航天大學(xué)壓氣機(jī)熱力
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    熱力工程造價(jià)控制的影響因素及解決
    軸流壓氣機(jī)效率評定方法
    熱力站設(shè)備評測分析
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    重型燃?xì)廨啓C(jī)壓氣機(jī)第一級轉(zhuǎn)子葉片斷裂分析
    壓氣機(jī)緊湊S形過渡段內(nèi)周向彎靜子性能數(shù)值計(jì)算
    周六福520愛跑節(jié)1000人登陸西安城墻 熱力開跑
    中國寶玉石(2018年3期)2018-07-09 03:13:52
    久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 午夜福利在线观看吧| 欧美丝袜亚洲另类 | 99久久无色码亚洲精品果冻| 十分钟在线观看高清视频www| 怎么达到女性高潮| 亚洲国产欧美日韩在线播放| 18禁国产床啪视频网站| 青草久久国产| 级片在线观看| 久久国产精品影院| 久久中文看片网| 欧美黑人巨大hd| 91麻豆av在线| 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| 日本精品一区二区三区蜜桃| 操出白浆在线播放| 一级毛片高清免费大全| 成人国产一区最新在线观看| av在线天堂中文字幕| 黄色片一级片一级黄色片| 免费观看精品视频网站| 国产爱豆传媒在线观看 | 好男人在线观看高清免费视频 | 黄色视频不卡| 国产真实乱freesex| 黄片播放在线免费| 久久久久久九九精品二区国产 | av福利片在线| 亚洲 欧美一区二区三区| 亚洲 欧美 日韩 在线 免费| 88av欧美| 可以在线观看的亚洲视频| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 老鸭窝网址在线观看| 老司机福利观看| 免费在线观看视频国产中文字幕亚洲| avwww免费| 亚洲七黄色美女视频| 国产单亲对白刺激| 亚洲色图av天堂| 99re在线观看精品视频| av超薄肉色丝袜交足视频| 成人亚洲精品av一区二区| 在线十欧美十亚洲十日本专区| 天天躁狠狠躁夜夜躁狠狠躁| 母亲3免费完整高清在线观看| 成人亚洲精品av一区二区| 又黄又爽又免费观看的视频| 亚洲激情在线av| www.www免费av| 黄色丝袜av网址大全| 国产乱人伦免费视频| 一区福利在线观看| 69av精品久久久久久| 成人亚洲精品av一区二区| 色老头精品视频在线观看| 亚洲国产看品久久| 俺也久久电影网| 中文字幕最新亚洲高清| 国产成人欧美| 天天添夜夜摸| 精品欧美一区二区三区在线| 精品少妇一区二区三区视频日本电影| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 免费一级毛片在线播放高清视频| av中文乱码字幕在线| 国产精品爽爽va在线观看网站 | 色哟哟哟哟哟哟| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 亚洲人成77777在线视频| aaaaa片日本免费| 国产熟女xx| 精品久久久久久,| 日本a在线网址| 美女扒开内裤让男人捅视频| 亚洲人成网站在线播放欧美日韩| www.999成人在线观看| 99在线视频只有这里精品首页| 国产99久久九九免费精品| 12—13女人毛片做爰片一| 琪琪午夜伦伦电影理论片6080| 人人妻人人澡人人看| 国产亚洲精品综合一区在线观看 | 国产伦人伦偷精品视频| 欧美一级毛片孕妇| 亚洲国产高清在线一区二区三 | 伦理电影免费视频| 亚洲 欧美 日韩 在线 免费| 亚洲性夜色夜夜综合| 亚洲成国产人片在线观看| 757午夜福利合集在线观看| 男人舔女人下体高潮全视频| 日韩大码丰满熟妇| 成人精品一区二区免费| 国产又爽黄色视频| 一本久久中文字幕| 国产亚洲精品综合一区在线观看 | 国产成人精品无人区| 国产久久久一区二区三区| 亚洲专区国产一区二区| 亚洲精品国产精品久久久不卡| x7x7x7水蜜桃| 久久 成人 亚洲| 日本成人三级电影网站| 人人妻人人澡欧美一区二区| 免费av毛片视频| 亚洲男人天堂网一区| 黄色成人免费大全| 99久久久亚洲精品蜜臀av| 精品欧美国产一区二区三| 国产真实乱freesex| 亚洲免费av在线视频| 制服人妻中文乱码| 搡老熟女国产l中国老女人| 中文亚洲av片在线观看爽| 999久久久国产精品视频| 亚洲国产看品久久| 黑丝袜美女国产一区| 母亲3免费完整高清在线观看| 精品一区二区三区四区五区乱码| 欧美久久黑人一区二区| 成人永久免费在线观看视频| 日韩免费av在线播放| 宅男免费午夜| 免费在线观看亚洲国产| 欧美国产精品va在线观看不卡| 国产高清激情床上av| 禁无遮挡网站| 无限看片的www在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 日韩 欧美 亚洲 中文字幕| 女生性感内裤真人,穿戴方法视频| 一级片免费观看大全| 国产精品一区二区免费欧美| 无遮挡黄片免费观看| 国产精品久久视频播放| 最近最新中文字幕大全电影3 | 欧美午夜高清在线| 国产91精品成人一区二区三区| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 99热6这里只有精品| 黄色毛片三级朝国网站| 伊人久久大香线蕉亚洲五| 亚洲中文av在线| 在线观看免费午夜福利视频| 法律面前人人平等表现在哪些方面| 一本大道久久a久久精品| 免费看a级黄色片| 91av网站免费观看| 成人国语在线视频| 曰老女人黄片| 色综合亚洲欧美另类图片| 国产精品 国内视频| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 日韩三级视频一区二区三区| 国产av又大| 国内精品久久久久精免费| 亚洲三区欧美一区| 久久99热这里只有精品18| 嫩草影院精品99| 一进一出抽搐动态| 亚洲第一电影网av| 亚洲国产精品合色在线| 国产一区二区三区视频了| 日韩 欧美 亚洲 中文字幕| 久久中文字幕人妻熟女| 老鸭窝网址在线观看| av片东京热男人的天堂| 亚洲人成网站高清观看| 变态另类成人亚洲欧美熟女| 村上凉子中文字幕在线| 国产三级黄色录像| 亚洲国产精品成人综合色| 欧美黄色淫秽网站| 在线十欧美十亚洲十日本专区| 久久久久久久久久黄片| 成年免费大片在线观看| 亚洲一区二区三区色噜噜| 欧美日韩亚洲综合一区二区三区_| 亚洲第一电影网av| 久久欧美精品欧美久久欧美| 久久精品成人免费网站| 麻豆一二三区av精品| 一a级毛片在线观看| 欧美色视频一区免费| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮喷水抽搐中文字幕| 特大巨黑吊av在线直播 | 这个男人来自地球电影免费观看| 国产伦在线观看视频一区| 在线永久观看黄色视频| 国产单亲对白刺激| 男人舔奶头视频| 麻豆av在线久日| 午夜日韩欧美国产| 国产精品二区激情视频| www.精华液| 男人舔女人的私密视频| 久久九九热精品免费| 国产伦在线观看视频一区| 欧美黄色片欧美黄色片| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 亚洲五月天丁香| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久 | 日本免费一区二区三区高清不卡| 日韩高清综合在线| 久久精品亚洲精品国产色婷小说| 亚洲精品国产精品久久久不卡| 国产激情久久老熟女| 韩国精品一区二区三区| 1024手机看黄色片| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 正在播放国产对白刺激| 99re在线观看精品视频| 十分钟在线观看高清视频www| 精品国产超薄肉色丝袜足j| 18禁美女被吸乳视频| 欧美一级a爱片免费观看看 | 18禁裸乳无遮挡免费网站照片 | 国产三级黄色录像| 精品久久久久久久久久免费视频| 欧美在线黄色| xxxwww97欧美| 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 9191精品国产免费久久| 午夜影院日韩av| 成人国产综合亚洲| 18禁观看日本| 久久精品影院6| 国产亚洲av嫩草精品影院| 我的亚洲天堂| 每晚都被弄得嗷嗷叫到高潮| 一二三四社区在线视频社区8| www.www免费av| 伦理电影免费视频| 亚洲成人免费电影在线观看| 午夜影院日韩av| 国产精品自产拍在线观看55亚洲| 老司机午夜十八禁免费视频| 国产熟女xx| 美女午夜性视频免费| а√天堂www在线а√下载| 亚洲成国产人片在线观看| 少妇熟女aⅴ在线视频| 一a级毛片在线观看| av超薄肉色丝袜交足视频| 制服人妻中文乱码| 大型黄色视频在线免费观看| 午夜福利视频1000在线观看| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看 | 日韩成人在线观看一区二区三区| 午夜精品久久久久久毛片777| 亚洲自偷自拍图片 自拍| 亚洲精品国产精品久久久不卡| 级片在线观看| 日韩欧美一区二区三区在线观看| 久久久国产成人精品二区| 午夜福利高清视频| 欧美色视频一区免费| 少妇 在线观看| 国产黄色小视频在线观看| 免费一级毛片在线播放高清视频| 日韩欧美三级三区| 日本三级黄在线观看| 91成人精品电影| 免费在线观看黄色视频的| 欧美成人午夜精品| 最近最新免费中文字幕在线| 美女国产高潮福利片在线看| 亚洲九九香蕉| 女人爽到高潮嗷嗷叫在线视频| АⅤ资源中文在线天堂| 高潮久久久久久久久久久不卡| 男女下面进入的视频免费午夜 | 久久婷婷成人综合色麻豆| 欧美黑人巨大hd| 欧美 亚洲 国产 日韩一| 久久久久久久午夜电影| 亚洲 欧美一区二区三区| 久久中文看片网| 法律面前人人平等表现在哪些方面| 午夜影院日韩av| 人人妻人人澡人人看| 999久久久精品免费观看国产| 老鸭窝网址在线观看| 日韩国内少妇激情av| 91成年电影在线观看| 啦啦啦韩国在线观看视频| 久久精品国产清高在天天线| 日韩欧美国产在线观看| 一进一出好大好爽视频| 日韩欧美国产在线观看| 欧美午夜高清在线| 欧美大码av| 草草在线视频免费看| 老司机午夜福利在线观看视频| 亚洲精品一区av在线观看| 免费在线观看黄色视频的| 不卡一级毛片| 99在线视频只有这里精品首页| 亚洲中文字幕日韩| 国产成人影院久久av| 亚洲色图av天堂| 亚洲七黄色美女视频| 国产伦一二天堂av在线观看| 亚洲无线在线观看| 黑人操中国人逼视频| 久久久水蜜桃国产精品网| 黄片播放在线免费| 长腿黑丝高跟| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 亚洲精品av麻豆狂野| www.999成人在线观看| 久久热在线av| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 国产免费av片在线观看野外av| 美女扒开内裤让男人捅视频| 日韩精品免费视频一区二区三区| 亚洲国产精品久久男人天堂| 国产一区在线观看成人免费| 国产精品久久电影中文字幕| 18禁黄网站禁片免费观看直播| 夜夜夜夜夜久久久久| 此物有八面人人有两片| 非洲黑人性xxxx精品又粗又长| 天天躁夜夜躁狠狠躁躁| 99久久国产精品久久久| 欧美又色又爽又黄视频| 日韩一卡2卡3卡4卡2021年| 亚洲 国产 在线| 一进一出抽搐动态| av天堂在线播放| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区精品| 精品电影一区二区在线| 精品一区二区三区四区五区乱码| 男女午夜视频在线观看| 老司机午夜福利在线观看视频| 波多野结衣av一区二区av| 成人国语在线视频| 精品国产一区二区三区四区第35| 校园春色视频在线观看| 午夜福利一区二区在线看| √禁漫天堂资源中文www| 精华霜和精华液先用哪个| 可以免费在线观看a视频的电影网站| 女人高潮潮喷娇喘18禁视频| 国产单亲对白刺激| 一区福利在线观看| √禁漫天堂资源中文www| 日韩欧美一区视频在线观看| 亚洲欧洲精品一区二区精品久久久| 国产蜜桃级精品一区二区三区| 国产精品 欧美亚洲| 亚洲精品久久成人aⅴ小说| 亚洲国产精品久久男人天堂| 国产精品,欧美在线| 中文字幕最新亚洲高清| 十八禁网站免费在线| 中文字幕久久专区| 90打野战视频偷拍视频| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 国产伦一二天堂av在线观看| 99国产精品一区二区蜜桃av| 久热爱精品视频在线9| 午夜福利在线观看吧| 国产亚洲精品久久久久久毛片| 俺也久久电影网| 国产午夜福利久久久久久| 91国产中文字幕| 久久精品91蜜桃| 99riav亚洲国产免费| 一区二区三区激情视频| 好男人在线观看高清免费视频 | 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| xxx96com| 国产亚洲欧美在线一区二区| 国产伦一二天堂av在线观看| 国产高清有码在线观看视频 | 久久精品成人免费网站| 国产午夜福利久久久久久| 久久香蕉激情| 神马国产精品三级电影在线观看 | 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 黄色成人免费大全| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美日韩在线播放| 久久久精品国产亚洲av高清涩受| 丁香欧美五月| 级片在线观看| 亚洲熟妇熟女久久| 女人爽到高潮嗷嗷叫在线视频| 国产黄色小视频在线观看| 手机成人av网站| 免费看十八禁软件| 日韩欧美 国产精品| 人人妻人人澡人人看| 男女午夜视频在线观看| 国产激情久久老熟女| 91麻豆精品激情在线观看国产| 黄片播放在线免费| 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 亚洲国产精品成人综合色| 国产亚洲av高清不卡| 国产色视频综合| 日韩免费av在线播放| aaaaa片日本免费| 精华霜和精华液先用哪个| 成人18禁在线播放| 哪里可以看免费的av片| 中文资源天堂在线| 18禁国产床啪视频网站| 国产精品电影一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 每晚都被弄得嗷嗷叫到高潮| 久久久久久亚洲精品国产蜜桃av| 国产亚洲欧美精品永久| 久久婷婷人人爽人人干人人爱| 久久热在线av| 午夜福利免费观看在线| 又黄又爽又免费观看的视频| 在线观看免费日韩欧美大片| 自线自在国产av| 狂野欧美激情性xxxx| 午夜a级毛片| 亚洲人成网站高清观看| 嫩草影院精品99| 岛国在线观看网站| 国产色视频综合| 97碰自拍视频| 精品午夜福利视频在线观看一区| 国产91精品成人一区二区三区| 成人一区二区视频在线观看| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| 真人一进一出gif抽搐免费| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品综合久久99| 午夜免费观看网址| 亚洲中文日韩欧美视频| 欧美在线一区亚洲| 国产一区二区三区视频了| 亚洲人成伊人成综合网2020| 男女下面进入的视频免费午夜 | 草草在线视频免费看| 久久久久久久久免费视频了| 淫秽高清视频在线观看| 白带黄色成豆腐渣| 欧美乱妇无乱码| 婷婷精品国产亚洲av在线| 亚洲avbb在线观看| 天堂动漫精品| 国产伦在线观看视频一区| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 十分钟在线观看高清视频www| 两个人免费观看高清视频| 精品国产乱子伦一区二区三区| 露出奶头的视频| 亚洲午夜精品一区,二区,三区| 午夜免费激情av| 成人国产一区最新在线观看| 亚洲精品国产一区二区精华液| 欧美黑人欧美精品刺激| 美国免费a级毛片| 一级片免费观看大全| 免费在线观看影片大全网站| 亚洲成国产人片在线观看| 欧美午夜高清在线| 亚洲av片天天在线观看| 免费搜索国产男女视频| 一区二区三区高清视频在线| 特大巨黑吊av在线直播 | 久久精品亚洲精品国产色婷小说| 日韩大码丰满熟妇| 99国产极品粉嫩在线观看| 亚洲男人的天堂狠狠| 国产av不卡久久| 99国产精品一区二区三区| 嫁个100分男人电影在线观看| 国产精品久久久久久亚洲av鲁大| 日本在线视频免费播放| 午夜福利免费观看在线| 国产精品免费视频内射| 久久久精品国产亚洲av高清涩受| 久久婷婷人人爽人人干人人爱| 丁香六月欧美| 日韩av在线大香蕉| 国产精品综合久久久久久久免费| 国产v大片淫在线免费观看| 88av欧美| 99国产精品一区二区三区| 久久九九热精品免费| 无遮挡黄片免费观看| 九色国产91popny在线| av在线天堂中文字幕| 国产视频一区二区在线看| 很黄的视频免费| 他把我摸到了高潮在线观看| 黑人操中国人逼视频| 一边摸一边抽搐一进一小说| av天堂在线播放| 级片在线观看| 久久中文字幕一级| 在线观看www视频免费| 首页视频小说图片口味搜索| 国产私拍福利视频在线观看| 好看av亚洲va欧美ⅴa在| 高清毛片免费观看视频网站| 亚洲美女黄片视频| 91老司机精品| 欧美成人性av电影在线观看| 少妇粗大呻吟视频| 欧美中文综合在线视频| 午夜福利免费观看在线| 在线观看免费视频日本深夜| 最新在线观看一区二区三区| 免费电影在线观看免费观看| 久久久久免费精品人妻一区二区 | 精品福利观看| 无人区码免费观看不卡| 色综合亚洲欧美另类图片| 9191精品国产免费久久| 男人的好看免费观看在线视频 | 亚洲精品中文字幕一二三四区| 色哟哟哟哟哟哟| 成人三级做爰电影| 国产精品九九99| 欧美精品亚洲一区二区| 日韩一卡2卡3卡4卡2021年| 久久中文看片网| 熟妇人妻久久中文字幕3abv| 麻豆国产av国片精品| 久久狼人影院| 麻豆一二三区av精品| 在线观看午夜福利视频| 亚洲自拍偷在线| 亚洲av电影不卡..在线观看| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 我的亚洲天堂| 欧美激情极品国产一区二区三区| 中文字幕av电影在线播放| 国产午夜精品久久久久久| 午夜免费鲁丝| 成人免费观看视频高清| 超碰成人久久| 十八禁人妻一区二区| 欧美国产精品va在线观看不卡| 亚洲av第一区精品v没综合| 岛国在线观看网站| 18美女黄网站色大片免费观看| 熟女电影av网| 成人手机av| 韩国精品一区二区三区| 欧美丝袜亚洲另类 | 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| av视频在线观看入口| 侵犯人妻中文字幕一二三四区| 亚洲成av人片免费观看| 精品电影一区二区在线| 国产区一区二久久| 欧美黑人精品巨大| 黄片播放在线免费| 天天添夜夜摸| 欧美亚洲日本最大视频资源| √禁漫天堂资源中文www| 99国产综合亚洲精品| 黄色 视频免费看| svipshipincom国产片| 香蕉丝袜av| 午夜福利高清视频| 久久午夜综合久久蜜桃| 国产高清有码在线观看视频 | 日韩欧美一区视频在线观看| 黑人操中国人逼视频| 国产欧美日韩一区二区精品| 国产蜜桃级精品一区二区三区| 成人永久免费在线观看视频| 欧美日韩一级在线毛片| 国产私拍福利视频在线观看| 欧美日韩瑟瑟在线播放| 人人妻人人澡人人看| 88av欧美| 国产精品1区2区在线观看.| 国产精品亚洲av一区麻豆| 啦啦啦 在线观看视频| 熟女电影av网| 亚洲精品国产一区二区精华液|