• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Derivation A lgebra of the Schrdinger-Viraso ro Lie A lgebra*

    2010-12-25 06:48:40WANGXiaopingGAOShoulan
    關(guān)鍵詞:子代數(shù)導(dǎo)子理學(xué)院

    WANG Xiao-ping,GAO Shou-lan

    (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

    The Derivation A lgebra of the Schrdinger-Viraso ro Lie A lgebra*

    WANG Xiao-ping,GAO Shou-lan

    (Faculty of Science,Huzhou Teachers College,Huzhou 313000,China)

    Fo r the perfect Lie algebra w ith one-dimensional center at lest,there is not a general result about the relationship between its derivation algebra and that of its universal central extension.In this paper,we determine the derivation algebra of the Schr?dinger-Viraso ro Lie algebra L,w hich is the universal central extension of the Schrdinger-Virasoro Lie algebraw ith one-dimensional center.It is p roved that L has only one outer derivation,w hilehas three outer derivations[1].Hence,we get one examp le that the derivation algebra of the universal central extension of a Lie algebra,the center of w hich is not zero,is not isomorphism to that of the Lie algebra.

    Schrdinger-Virasoro algebra;central extension;derivation

    MSC 2000:17B40

    0 In troduction

    The Schr?dinger-Viraso ro Lie algebra,o riginally introduced by M.Henkel in[2]during his study on the invariance of the free Schr?dinger equation,is a vecto r space over the comp lex field C w ith a basisand the Lie brackets:

    for all m,n∈Z.Due to its important app lications in many areas of Mathematics and Physics,the structure and rep resentation theory ofhave been extensively studied.For examp le,M.Henkel investigated thathasone-dimensional universal central extension in[2].C.Roger and J.Unterberger p resented a detailed cohomological study and determinedhas three outer derivations[1].And the automorphism group ofis determined in[3].Nowadays,extensions and generalizations related to the Schr?dinger-Virasoro algebra have appeared and their structure and rep resentation theory have been extensively studied,such as[4]~[6].

    The derivation algebra of a centerless perfect Lie algebra is isomorphism to that of the universal central extension of the Lie algebra[7].While for the perfect Lie algebra w ith one-dimensional center at lest,there is not a general result about the relationship between its derivation algebra and that of its universal central extension.In this paper,we determine the derivation algebra of the Schr?dinger-Virasoro Lie algebra L,w hich is the universal central extension of the Schr?dinger-Virasoro Lie algebraw ithone-dimensional center.It show s that L has only one outer derivation,w hilehas three outer derivation[1].Therefo re,the derivation algebra of L is not isomo rphism to that of.

    Throughout the paper,we denote by Z and C*the set of integers and the set of non-zero comp lex numbers respectively,and all the vector spaces are assumed over the comp lex field C.

    1 The Derivation Algebra of L

    [1]ROGER C,UN TERBERGER J.The Schrdinger-Viraso ro Lie group and algebra:Rep resentation theo ry and cohomological study[J].Annales Henri Poincar,2006(7~8):1477~1529.

    [2]HENKEL M.Schrodinger invariance and strongly anisotropic critical systems[J].J Stat Phys,1994,75:1023~1061.

    [3]GAO S.The automorphism group of the Schr?dinger-Virasoro Lie algebra[J].Journal of Huzhou Teachers College,2010,32:1:6~10.

    [4]GAO S,JIANG C,PEI Y.Structure of the extended Schr?dinger-Viraso ro Lie algebra[J].A lgebra Colloq,2009,16:4 549~566.

    [5]L IJ,SU Y.Rep resentations of the Schrodinger-Viraso ro algebras[J].J Math Phys,2008,49,053512:14.

    [6]UNTERBERGER J.On vertex algebra rep resentations of the Schr?dinger-Viraso ro Lie algebra[EB/OL].[2007-03-21].arXiv:cond-mat/0703214v2.

    [7]BEN KART G,MOODY R.Derivations,central extensions and affine Lie algebras[J].A lgebras Groups Geom,1986,3(4):456~492.

    [8]FARNSTEINER R.Derivations and extensions of finitely generated graded Lie algebras[J].J Algebra,1988,118(1):34~45.

    MSC 2000:17B40

    王曉萍,高壽蘭

    (湖州師范學(xué)院理學(xué)院,浙江湖州313000)

    對(duì)于中心非零的perfect李代數(shù),關(guān)于它的泛中心擴(kuò)張的導(dǎo)子代數(shù)與它本身的導(dǎo)子代數(shù)之間的關(guān)系尚未有一個(gè)一般的結(jié)論.通過(guò)計(jì)算帶有一維中心的 Schr?dinger-Virasoro李代數(shù)的泛中心擴(kuò)張L的導(dǎo)子,證明了L只有一個(gè)外導(dǎo)子,而由文獻(xiàn)[1]知有三個(gè)外導(dǎo)子,從而得到了一個(gè)中心非零的perfect李代數(shù)的導(dǎo)子代數(shù)與其泛中心擴(kuò)張的導(dǎo)子代數(shù)不同構(gòu)的例子.

    Schrodinger-V iraso ro李代數(shù);中心擴(kuò)張;導(dǎo)子

    O152.5

    O152.5 Document code:A Article ID:1009-1734(2010)02-0022-05

    date:2010-01-21

    Biography:WANG Xiao-ping,Undergraduate student of grade 2006,Faculty of Science,Huzhou Teachers College,

    Research Interests:Lie algebra.

    猜你喜歡
    子代數(shù)導(dǎo)子理學(xué)院
    素*-環(huán)上可乘混合斜Lie(Jordan)導(dǎo)子的可加性
    昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
    昆明理工大學(xué)理學(xué)院簡(jiǎn)介
    *-代數(shù)上ξ-*-Jordan-型非線性導(dǎo)子
    擴(kuò)張的圈Schr?dinger-Virasoro代數(shù)的導(dǎo)子
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    四元數(shù)辛李代數(shù)MAD子代數(shù)的共軛性
    Cartan型李代數(shù)W(n;m)的一類Borel子代數(shù)
    n-李代數(shù)的廣義Frattini子代數(shù)及其擴(kuò)張
    R0代數(shù)的直覺(jué)模糊子代數(shù)
    万年县| 德阳市| 栾城县| 涟水县| 宁陕县| 漳州市| 普兰县| 依安县| 安乡县| 武强县| 南安市| 岗巴县| 汽车| 商都县| 广安市| 天水市| 汝阳县| 莆田市| 峡江县| 中方县| 应城市| 营口市| 德惠市| 阜宁县| 那曲县| 营山县| 阳山县| 桦南县| 徐汇区| 嘉善县| 营口市| 长岛县| 句容市| 朔州市| 肃北| 洛隆县| 长宁县| 察雅县| 吉木萨尔县| 乌兰县| 驻马店市|