• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PbmTen(m+n≤6)團簇的結(jié)構(gòu)與穩(wěn)定性

    2010-12-12 02:45:02龔曉霞杜際廣
    物理化學(xué)學(xué)報 2010年6期
    關(guān)鍵詞:物理化學(xué)學(xué)報

    龔曉霞 杜際廣 蔣 剛

    (四川大學(xué)原子與分子物理研究所,成都 610065)

    Lead telluride is a very important narrow-gap semiconductor, and it is widely used as infrared detector.It has some interesting characteristics,such as small energy gaps,low resistivities,large carrier mobilities,and unusually high dielectric constants.In recent years,more and more research interests are focused on its material properties for thermoelectric power generation.But for the lead,it is well known as the toxic metal which poses a great threat to the environment and human life,especially for children′s neurological and physical development.The lead compounds should be an important topic in the lead pollution.The study of lead telluride cluster might provide useful information for material investigate and pollution control.

    There are many theoretical[1-6]and experimental[7-10]studies on the lead telluride.Nabi[11]and Hevine[12]et al.proved that lead telluride is narrow gap semiconductor.Lachhab et al.[13]used the full potential linearized augmented plane wave(LAPW)method to study the electronic structure of the PbTe compound. Grabecki et al.[14]pointed out that PbTe had broad application prospects in nanostructure physics.Mazzone[15]studied the fragmentation of Pb clusters with size N≤24 employing the timedependent Hartree-Fock method.Rajesh et al.[16]investigated the geometric and electronic structure of Pbn(n=2-15)clusters using the ab initio molecular dynamics simulation.Wang et al.[17]used DFT with Becke-Lee-Yang-Parr(BLYP)gradient correction to obtain the lowest-energy structures and electronic properties of the Pbn(n=2-22)clusters.Gingerich et al.[18]got the structure parameter of Pb2,Pb3and Pb4by mass spectrometry.Balasubramanian et al.[19]investigated the geometries and electronic states of Pb5. Liu et al.[20]studied the geometrical structures and stabilities of small PbmOn(m=1-4,n=1-2m)clusters using the hybrid B3LYP functional.Xing et al.[21]studied the PbnSnclusters(n=1-9)by using DFT method.The pure Te clusters have been studied extensively.Goddard[22]and Balasubramanian[23]et al.investigated the geometries,vibrational frequencies,and electronic characters of Te3by using DFT method.In the experiment,Hassanzadeh et al.[24]found the frequencies and low energy structures of Ten(n=2-4)clusters.Pan[25]obtained the geometric structures,electronic properties,and vibrational frequencies of tellurium clusters(n≤8)by using DFT method.The DFT method is widely used to investigate the structures and stabilities of the mixed cluster[26-27].

    In spite of the abundant reports data above have been found, the investigations on the PbTe clusters are far from adequate.In order to understand the evolution of their physical and chemical properties with size,it is essential to study their stabilities and structural properties.In this article,heteronuclear PbmTen(m+n≤6)and homonuclear Pbn,Ten(n=2-6)clusters have been investigated using DFT[28-29]method.

    1 Computational method

    The present work is based on the Gaussian 03 package[30].The Becke three parameters hybrid functional with the Lee-Yang-Parr correlation functional(B3LYP)[31-32]has been adopted in our DFT calculation.Furthermore,the test computations with CEP-121G、LANL2DZ and SDD sets are performed for dimers(Pb2, Te2,and PbTe)to demonstrate which basis set is rational.The comparison results between the calculated values and experimental data[17,24,33]are given in Table 1.Note that the SDD basis set predicts bond lengths and frequencies of PbTe and Te2dimers to be slightly more close to experimental values.Therefore,the SDD employed in our calculation is successful to describe the clusters involving Pb,Te atoms.

    During the geometry optimizations,to find the stable structures,the possible original structures and the spin states are systematically considered,the requested convergence on energy is 10-6a.u..In general,clusters with higher symmetry are expected to be more stable.Therefore,according to a structure with a known symmetry,the initial geometry is constructed by superposing the smaller building blocks.In addition,we can often simply add or subtract an atom from a cluster of size n to obtain geometry for a cluster of size n+1 or n-1.Moreover,we have consulted the geometric structure of pure Pb[16-17,26]clusters and Te[25,34]clusters.For mixed clusters,we have generated a numberof possible isomers that are adopted from the other semiconductor compound clusters like PbO[20]and ZnTe[34].

    Table 1 Calculated bond length(R)and vibrational frequency(ω)for the ground state of Pb2,PbTe,and Te2 using CEP-121G,LANL2DZ,and SDD basis sets

    The geometry optimization is performed without any symmetry constraints.The vibrational frequency calculations are also carried out to ensure whether the obtained structures correspond to local minima on the potential surface.The average binding energy per atom(Eb)is calculated by Eb=[E(PbmTen)-mE(Pb)-nE(Te)]/(m+n),where E are the total energies of corresponding systems.The dissociation energy is defined as ΔEd=EB+EC-EA, EB,EC,and EAare the total energies of B,C,and A clusters,respectively;it represents the dissociation channel that cluster A is dissociated into B and C congeries.

    2 Results and discussion

    2.1 Geometric structures

    2.1.1 Homonuclear Pb clusters

    The discussions on pure Pbnand Ten(n≤6)clusters will be simplified in the present paper due to our main attention on the mixed Pb-Te clusters.For the Pb2dimer,the present calculations predict the bond length and Ebto be 0.278 nm and 0.875 eV,respectively.They are found to be fitted well with experimental results(0.293 nm and 0.86 eV[17]).The global minimum structure of Pb3is an equilateral triangle with D3hsymmetry,the side length(0.303 nm)is close to the previous theoretical results (0.301 nm[16,26]).The ground state of Pb4cluster is a planar rhombus structure(D2h),the optimized side length(0.299 nm)is in agreement with previous theoretical results(0.298 nm[16],0.311 nm[17],0.304 nm[35]),Eb(1.81 eV)is a little larger than the calculation data(Eb=1.66 eV)obtained by Wang et al.[17].For Pb5cluster,the triangular bipyramid structure with D3hsymmetry is found to be the ground state,the side length(0.300 nm)is comparable with the theoretical results(0.297 nm[16],0.311 nm[17],0.30 nm[19]).In the case of Pb6,the crossed rhombus with D4hsymmetry is the lowest energy structure with the Pb—Pb distance of 0.310 nm.Rajesh et al.[16]predicted that the minimum energy structure is D4hsymmetry with the side length of 0.306 nm.

    2.1.2 Homonuclear Te clusters

    For Te2,we predict the bond length and the vibration frequency to be 0.265 nm and 227.9 cm-1,they are 0.009 nm larger for bond length and 12.1 cm-1lower for frequency with respect to the experimental results[24].For Te3cluster,the equilateral triangle structure with D3hsymmetry is the lowest energy structure, the Te—Te bond length(0.289 nm)is in accordance with the previoustheoreticalvalues(0.283nm[23]and0.28nm[22]).Themaximum vibrational frequency(200.9 cm-1)is also in accordance with the prediction value(198.5 cm-1)[34]and experiment result (232 cm-1)[24].The ground state of Te4cluster is the trapezoid structure with C2vsymmetry,and the maximum frequency(218.5 cm-1)is lower than the experimental result(233.9 cm-1)[24].The most stable structure of Te5cluster is an envelope structure with Cssymmetry,the shortest side length and the maximum frequency are 0.281 nm and 171.2 cm-1,respectively,theyare close to the theoreticalresult[34].For Te6cluster,we have found that the struc-ture with C2vsymmetry is the ground state structure.Pan[25]found that the lowest energy structure was a distorted hexagon with D3dsymmetry.The difference between the present results and Pan′s results could be due to the difference in basis set.

    2.1.3 Heteronuclear PbTe clusters

    The lowest-energy and low-lying structures of(PbTe)n(n=1-3)clusters are shown in Fig.1.For PbTe,the calculated bond length,vibrational frequency and the Ebare 0.262 nm,212.2 cm-1and 1.86 eV,respectively.In experiment,Huber and Herzberg[33]found the bond length of PbTe to be 0.259 nm.The global minimum structure of Pb2Te2is a rhombic structure with C2vsymmetry,and the structure is quite similar to the lowest-energy structure of Pb2O2cluster[20].For Pb3Te3,there are as many as thirteen stable structures,the distort hexagon structure with C2vsymmetry is the most stable one.

    The Pb-rich clusters are shown in Fig.2(for PbnTe,n=2-5)and Fig.3(for PbnTe2,n=3-4).The ground state of the Pb2Te cluster is an acute isosceles triangle structure(C2v).The low-lying isomers have isosceles triangle structure with C2vsymmetry and linear structure with C∞vsymmetry.For Pb3Te,the butterly-like geometry structure with Cssymmetry is preferred cluster among all the low-lying isomers.The lowest-energy structure of Pb4Te is a capped bent rhombic structure(C2v).The ground state of Pb5Te is C4vsymmetry,and the other seven kinds of isomers have been shown.The most stable structure of Pb3Te2is similar to the Pb3Te,with adding bridged Te atom in the opposite site of the preexistent Te atom.For Pb4Te2,eight kinds of stable isomers have been gotten,the configuration of the lowest energy with Cssymmetry is similar to the ground-state structure of Pb4O2cluster[20].

    Fig.1 Stable geometries of(PbTe)n(n=1-3)clustersThe bond lengths(in nm),spin multiplicity(M),point group(PG)symmetry,and relative energy(relative to the ground state structures,ΔE)of these isomers are shown.

    Fig.2 Stable geometries of PbnTe(n=2-5)clusters

    Fig.3 Stable geometries of PbnTe2(n=3-4)clusters

    The stable structures of PbTen(n=2-5)and Pb2Ten(n=3-4)are shown in Fig.4 and Fig.5.For PbTe2,the most stable isomer is corresponding to an isosceles triangle structure with C2vsymmetry.The next stable linear TePbTe structure is 0.69 eV higher in energy than the most stable one.The lowest energy of PbTe3cluster is a plane geometry with C2vsymmetry,another stable structure with C1symmetry is found to be 0.2 eV higher in energy.The most stable structure of the PbTe4cluster is a pentagon structure with C2symmetry.For PbTe5,the lowest energy structure with C1symmetry is 0.13 eV lower in energy than another stable isomer(PbTe5-b).In the eight kinds of isomers,the pentagon structure(C2v)is found to be the ground state structure of Pb2Te3cluster.The ground state of Pb2Te4is the distort hexagon (Pb2Te4-a)structure with Cssymmetry.

    Fig.4 Stable geometries of PbTen(n=2-5)clusters

    Fig.5 Stable geometries of Pb2Ten(n=3-4)clusters

    2.2 Average binding energy per atom

    The Ebof PbmTen(m+n≤6)clusters are given in Table 2.For Pb-rich clusters with one Te atom,the Ebincreases as the size of atoms increase,and the change trend of the Pb-rich clusters with two Te atoms is the same.On the contrary,for the Te-rich clusters with one Pb atom,the Ebdecreases with increasing the number of atoms,the Ebof Te-rich clusters with two Pb atoms decreases too.Compared the Ebof PbnTe with that of PbTen(n=2-5),the former are larger than the latter.The Ebof PbnTe2clusters are also larger than that of Pb2Tenclusters.It is shown that the Pb-rich clusters are more stable than Te-rich clusters.

    2.3 Dissociation channels,dissociation energies and Mulliken charge populations

    The stability of lead telluride clusters with different sizes and stoichiometries is required to illustrate the growth pattern of various nanostructures and to understand the pristine lead clusters. On the other hand,the study of the stability is helpful in finding the candidates of the building block of the cluster-assembled materials.In general,the cluster with large positive dissociation energy(ΔEd)has great stability[36].Therefore,in the following, we evaluate the ΔEdof the clusters.In our work,the possible dissociation channels have been carried out.The most probable ones with the corresponding ΔEdare presented in Table 3.

    For the homonuclear Pbn(n=2-6)clusters,they prefer to dissociate one by one,the Pb atom is the popular fragment,while the homonuclear Ten(n=3-6)clusters are dissociated as dimers.In general,the dissociation energies of pure Pb clusters are larger than those of pure Te clusters,except the dimer.

    Table 2 Calculated HOMO,LUMO energies(in a.u.), HOMO-LUMO gap energies(Eg,in eV),Eb(in eV)for the most stable structures of the PbmTenclusters,and the the average Mulliken charge populations of Pb atoms(QPb,in e)

    Table 3 The most favorable dissociation channels(DCs)and dissociation energies(ΔEd,in eV)for the most stable structures of the Pbn,Ten,PbmTen(m+n≤6)clusters

    For the Pb-rich clusters,Pb atom prefers to dissociate first in many dissociation channels.However,for the dissociation channels of Pb4Te and Pb5Te clusters,the PbTe dimer is the favorable fragment.As for the most Te-rich clusters,it is found that Te2is the popular fragment,but for PbTe2and Pb2Te3clusters,the favorable dissociation products are PbTe and Pb2Te2,respectively. The(PbTe)n(n=1-3)clusters have the larger ΔEdamong the clusters with the same number of lead atoms.It is shown that the (PbTe)n(n=1-3)clusters have great stabilities,especially for the PbTe,the ΔEdis as large as 3.73 eV.Furthermore,PbTe and Pb2Te2clusters are generally the favorable dissociation fragments for most Pb-Te mixed clusters.The ΔEdof the PbnTe clusters(n=2-5)are larger than those of PbTen(n=2-5)clusters,and the ΔEdof PbnTe2(n=3-4)clusters are also larger than those of Pb2Ten(n=3-4)clusters.Therefore,the Pb-rich clusters(PbnTe, PbnTe2)are more stable than the corresponding Te-rich clusters (PbTen,Pb2Ten),this conclusion agrees well with the Ebanalysis.

    In Table 2,the average Mulliken charge populations of Pb atoms are also presented,it can be seen that the Pb atoms exhibit positive charges,as electron donators.There is a degree of charge transfers from Pb to Te atoms in Pb-Te clusters due to the difference of electronegativities between them.According to Sanderson electronegativity[37],the value of Pb is 2.29,smaller than that of Te(2.62).The charge transfers can contribute to the stability of Pb-Te clusters.In the previous investigations,Chen et al.[38]found that the stability of Ag-core/Au-surface-segregated nanoalloys comes from a directional charge transfer induced by the icosahedral structural order,which is additional to that induced by the electronegativity difference between Au(2.4)and Ag(1.9)atoms.

    2.4 HOMO-LUMO gap

    The HOMO-LUMO gap can be used to characterize the stabilities and electronic properties of the clusters.The HOMOs, LUMOs and the HOMO-LUMO gaps of the mixed PbmTenclusters are listed in Table 2.It is obvious to discover that gaps of the studied clusters are in the range of 1.87-3.55 eV,which suggests that the mixed Pb-Te clusters present the semiconductorlike character.The PbTe cluster has the largest gaps(3.55 eV), also supporting its huge stability.Among clusters with the same number of lead atoms,the(PbTe)n(n=1-3)clusters have obvious large HOMO-LUMO gaps,it indicates that the(PbTe)nclusters have great stabilities,in agreement with the dissociation energies analysis.The 3D plots of HOMO and LUMO orbitals of (PbTe)nclusters are shown in Fig.6.As shown in Fig.6,the HOMO orbital of PbTe dimer presents π character derived from pzorbitals of Pb and Te atoms,as for the π*antibonding orbital (LUMO),it is mainly constructed with pzorbitals of Pb atom along with a small quantity of Te(pz).The bonding π HOMO orbital is responsible to the stability of PbTe dimer.In Pb2Te2cluster,the HOMO orbital presents π*character,which is completely originated from Pb 6p.The components of LUMO orbital are Pb(6p)and Te(5p).We can find the hybridization between two Pb 6p orbitals in the LUMO,however,the orbital overlap is not presented between Te and Pb atoms.The HOMO orbital of Pb3Te3cluster is completely derived from the 5p orbitals of three Te atoms,as for LUMO,the 6p atomic orbital of one limbic Pb mostly contributes the electron density.

    Fig.6 3D plots of HOMO(H)and LUMO(L)of the(PbTe)n(n=1-3)clusters

    3 Conclusions

    In this work,the DFT with hybrid B3LYP functional and SDD basis set have been employed to investigate the geometrical structures and stabilities of small PbmTen(m+n≤6)clusters. Our conclusions can be summarized as follows.

    (1)Based on the extensive search,the lowest energy structures and low-lying stable isomers have been found.

    (2)The Eband ΔEdanalysis indicate that the Pbnand Pb-rich clusters are more stable than the Tenand Te-rich clusters,respectively.

    (3)The HOMO-LUMO gaps of the studied PbmTenclusters are evidently moderate,in the range of 1.87-3.55 eV,suggesting the semiconductor-like behavior.

    (4)The ΔEdanalysis indicates that the(PbTe)n(n=1-3)clusters have great stabilities,suggesting that they might be used as candidates of the building block of cluster-assembled materials,and that the PbTe cluster possesses the stronger stabilities relative to the other mixed PbmTenclusters.

    1 Bailey,P.T.Phys.Rev.,1968,170:723

    2 Martinez,G.;Schluter,M.;Cohen,M.L.Phys.Rev.B,1975,11: 651

    3 Tung,Y.W.;Cohen,M.L.Phys.Rev.,1969,180:823

    4 Mitchell,D.L.;Wallis,R.F.Phys.Rev.,1966,151:581

    5 Rabii,S.Phys.Rev.,1968,167:801

    6 Wei,S.H.;Zunger,A.Phys.Rev.B,1997,55:13605

    7 Preier,H.Appl.Phys.,1979,20:189

    8 Weinberg,I.J.Chem.Phys.,1963,39:492

    9 Weinberg,I.J.Chem.Phys.,1962,36:1112

    10 Baleva,M.;Mateeva,E.Phys.Rev.B,1994,50:8893

    11 Nabi,Z.;Abbar,B.;Mé?abih,S.;Khalf?,A.;Amrane,N.Comp. Mater.Sci.,2000,18:127

    12 Hevine,Z.H.;Allan,D.C.Phys.Rev.Lett.,1989,63:1719

    13 Lach-hab,M.;Papaconstantopoulos,D.A.;Mehl,M.J.J.Phys. Chem.Solids,2002,63:833

    14 Grabecki,G.;Wróbel,J.;Zagrajek,P.;Fronc,K.;Aleszkiewicz, M.;Dietl,T.;Papis,E.;Kamińska,E.;Piotrowska,A.;Springholz, G.;Bauer,G.Physica E,2006,35:332

    15 Mazzone,A.M.Comp.Mater.Sci.,2000,18:185

    16 Rajesh,C.;Majumder,C.;Rajan,M.G.R.;Kulshreshtha,S.K. Phys.Rev.B,2005,72:235411

    17 Wang,B.L.;Zhao,J.J.;Chen,X.S.;Shi,D.N.;Wang,G.H.Phys. Rev.A,2005,71:033201

    18 Gingerich,K.A.;Cocke,D.L.;Miller,F.J.Chem.Phys.,1976, 64:4027

    19 Dai,D.;Balasubramanian,K.Chem.Phys.Lett.,1997,271:118

    20 Liu,H.T.;Wang,S.Y.;Zhou,G.;Wu,J.;Duan,W.H.J.Chem. Phys.,2007,126:134705

    21 Xing,H.Z.;Xu,S.L.;Ding,Z.L.;Huang,Y.;Chen,X.S.;Wang, J.Q.;Shi,Y.Phys.Lett.A,2008,372:4694

    22 Goddard,J.D.;Chen,X.Q.;Orlova,G.J.Phys.Chem.A,1999, 103:4078

    23 Balasubramanian,K.;Dai,D.J.Chem.Phys.,1993,99:5239

    24 Hassanzadeh,P.;Thompson,C.;Andrews,L.J.Phys.Chem., 1992,96:8246

    25 Pan,B.C.Phys.Rev.B,2002,65:085407

    26 Zhao,G.F.;Sun,J.M.;Liu,X.;Guo,L.J.;Luo,Y.H.J.Mol. Struct.-Theochem,2008,851:348

    27 Ma,W.J.;Wu,H.S.Acta Phys.-Chim.Sin.,2004,20:290 [馬文瑾,武海順.物理化學(xué)學(xué)報,2004,20:290]

    28 Hohenberg,P.;Kohn,W.Phys.Rev.,1964,136:B864

    29 Kohn,W.;Sham,L.J.Phys.Rev.,1965,140:A1133

    30 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision B.02.Pittsburgh,PA:Gaussian Inc.,2003

    31 Becke,A.D.J.Chem.Phys.,1993,98:5648

    32 Lee,C.;Yang,W.T.;Parr,R.G.Phys.Rev.B,1988,37:785

    33 Huber,K.P.;Herzberg,G.Molecular spectra and molecular structure IV.Constants of diatomic molecules.New York:Van Nostrand Reinhold Company Press,1979:530-531

    34 Pek?z,R.;Erko?,S,.Physica E,2008,40:2921

    35 Dai,D.;Balasubramanian,K.J.Chem.Phys.,1992,96:8345

    36 Lei,X.L.;Zhu,H.J.;Wang,X.M.;Luo,Y.H.Acta Phys.-Chim. Sin.,2008,24:1655 [雷雪玲,祝恒江,王先明,羅有華.物理化學(xué)學(xué)報,2008,24:1655]

    37 Sanderson,R.T.J.Chem.Educ.,1988,65:112

    38 Chen,F.Y.;Johnston,R.L.Acta Materialia,2008,56:2374

    猜你喜歡
    物理化學(xué)學(xué)報
    提高物理化學(xué)實驗技能的探討
    云南化工(2021年11期)2022-01-12 06:06:56
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報40年
    Chemical Concepts from Density Functional Theory
    學(xué)報簡介
    學(xué)報簡介
    《深空探測學(xué)報》
    Effects of Experimental Conditions on The Morphology and Photocurrent Density of TiO2 Nanorods
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    精品国产一区二区久久| 国产精品久久久av美女十八| 99久久精品国产国产毛片| 精品久久蜜臀av无| 日本色播在线视频| 美女大奶头黄色视频| 日韩在线高清观看一区二区三区| 国产欧美日韩一区二区三区在线| 国产一级毛片在线| 亚洲人与动物交配视频| 91精品国产国语对白视频| 国精品久久久久久国模美| 亚洲av中文av极速乱| 成人18禁高潮啪啪吃奶动态图| 99香蕉大伊视频| 两性夫妻黄色片 | 日韩av免费高清视频| 亚洲av中文av极速乱| 在线观看www视频免费| 寂寞人妻少妇视频99o| 国产色婷婷99| 如何舔出高潮| 国产精品一二三区在线看| 好男人视频免费观看在线| 亚洲欧美成人综合另类久久久| 日本91视频免费播放| 精品一区二区免费观看| 成人毛片60女人毛片免费| 亚洲精品一二三| 人人妻人人澡人人看| 只有这里有精品99| 这个男人来自地球电影免费观看 | 国产xxxxx性猛交| 免费黄网站久久成人精品| 女的被弄到高潮叫床怎么办| 国产黄色视频一区二区在线观看| 狂野欧美激情性bbbbbb| 日韩大片免费观看网站| 亚洲国产毛片av蜜桃av| 精品国产一区二区三区四区第35| 成年人免费黄色播放视频| 男的添女的下面高潮视频| 波多野结衣一区麻豆| 国产一区二区在线观看av| 久久精品国产自在天天线| 国产成人免费观看mmmm| 青青草视频在线视频观看| av国产久精品久网站免费入址| 午夜福利视频精品| 欧美日韩国产mv在线观看视频| 人妻少妇偷人精品九色| 久久精品国产鲁丝片午夜精品| 日本欧美视频一区| 99热网站在线观看| 午夜免费观看性视频| 久久狼人影院| 男人添女人高潮全过程视频| av黄色大香蕉| 一二三四在线观看免费中文在 | 中文天堂在线官网| 1024视频免费在线观看| 国产在线免费精品| 黄色一级大片看看| 老女人水多毛片| 亚洲国产色片| 午夜免费鲁丝| 国产一区二区在线观看av| 国产69精品久久久久777片| 久久精品国产综合久久久 | 国产精品免费大片| 大香蕉久久网| 男人舔女人的私密视频| 久久精品国产a三级三级三级| 国产精品一区二区在线不卡| 亚洲精品aⅴ在线观看| 岛国毛片在线播放| 精品第一国产精品| 在线观看免费日韩欧美大片| 尾随美女入室| 男女午夜视频在线观看 | 熟妇人妻不卡中文字幕| 大香蕉97超碰在线| 国产精品久久久久久精品电影小说| 中文字幕精品免费在线观看视频 | 丰满少妇做爰视频| 夫妻午夜视频| 国产一区亚洲一区在线观看| 一级片'在线观看视频| 精品少妇久久久久久888优播| 成人影院久久| 国产 一区精品| 欧美激情 高清一区二区三区| 大陆偷拍与自拍| 久久亚洲国产成人精品v| 久久精品aⅴ一区二区三区四区 | 久久这里有精品视频免费| 久久久精品区二区三区| 国产片特级美女逼逼视频| 欧美日韩av久久| 五月天丁香电影| 最近最新中文字幕大全免费视频 | 91aial.com中文字幕在线观看| 亚洲经典国产精华液单| 国产亚洲精品第一综合不卡 | 高清在线视频一区二区三区| 九色亚洲精品在线播放| 一本大道久久a久久精品| 王馨瑶露胸无遮挡在线观看| 亚洲色图综合在线观看| 亚洲av欧美aⅴ国产| 国语对白做爰xxxⅹ性视频网站| 精品一区在线观看国产| 亚洲欧美成人综合另类久久久| av.在线天堂| 久久久a久久爽久久v久久| av在线app专区| 欧美xxxx性猛交bbbb| 99九九在线精品视频| 国产国拍精品亚洲av在线观看| 久久久久久伊人网av| 我的女老师完整版在线观看| 最新中文字幕久久久久| 91午夜精品亚洲一区二区三区| 黄色配什么色好看| 精品人妻在线不人妻| 天堂俺去俺来也www色官网| 亚洲精品国产av成人精品| 国产av国产精品国产| av电影中文网址| 日本欧美国产在线视频| 五月天丁香电影| 一级毛片 在线播放| 男人添女人高潮全过程视频| 最后的刺客免费高清国语| 日韩成人av中文字幕在线观看| 国产成人免费观看mmmm| 国产综合精华液| 最近手机中文字幕大全| a级毛色黄片| 亚洲精品中文字幕在线视频| 毛片一级片免费看久久久久| 春色校园在线视频观看| 国产精品99久久99久久久不卡 | 秋霞在线观看毛片| 人妻人人澡人人爽人人| av在线播放精品| 精品一区二区三区四区五区乱码 | 亚洲美女搞黄在线观看| 高清欧美精品videossex| 嫩草影院入口| 看免费av毛片| 99久久综合免费| 人妻人人澡人人爽人人| av电影中文网址| 国产精品嫩草影院av在线观看| a 毛片基地| a级毛片黄视频| 妹子高潮喷水视频| 亚洲综合精品二区| 欧美国产精品va在线观看不卡| 曰老女人黄片| 免费看av在线观看网站| 免费看av在线观看网站| 婷婷成人精品国产| 最黄视频免费看| 欧美日韩精品成人综合77777| 人成视频在线观看免费观看| 久久久亚洲精品成人影院| 最黄视频免费看| 亚洲av福利一区| 精品一区二区三区四区五区乱码 | 久久久国产欧美日韩av| 亚洲成人一二三区av| 一区二区三区乱码不卡18| 久久国产亚洲av麻豆专区| 黄色视频在线播放观看不卡| 婷婷色综合www| 精品国产国语对白av| videossex国产| 国产日韩欧美视频二区| 婷婷成人精品国产| 九九爱精品视频在线观看| 国产一区二区三区综合在线观看 | 在线观看免费高清a一片| 啦啦啦啦在线视频资源| 久久人人97超碰香蕉20202| 王馨瑶露胸无遮挡在线观看| 国产亚洲一区二区精品| 亚洲三级黄色毛片| 亚洲成人av在线免费| 国产成人精品久久久久久| 在线观看美女被高潮喷水网站| 日韩av免费高清视频| 久久久精品94久久精品| www.熟女人妻精品国产 | 视频在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 欧美精品国产亚洲| 久久人人爽人人爽人人片va| 一级片'在线观看视频| 国产精品免费大片| 高清av免费在线| 在线观看三级黄色| 成人午夜精彩视频在线观看| 老司机亚洲免费影院| 国产高清国产精品国产三级| 制服人妻中文乱码| 国产免费视频播放在线视频| 亚洲四区av| 久久久久久人人人人人| 日本91视频免费播放| 国产成人午夜福利电影在线观看| 国产精品.久久久| 高清黄色对白视频在线免费看| 69精品国产乱码久久久| 午夜久久久在线观看| av一本久久久久| 9热在线视频观看99| 热99国产精品久久久久久7| 精品一区二区三区四区五区乱码 | 国产深夜福利视频在线观看| 国产精品久久久av美女十八| 精品人妻在线不人妻| 女性生殖器流出的白浆| 只有这里有精品99| 最近最新中文字幕免费大全7| 欧美精品av麻豆av| 日韩成人av中文字幕在线观看| 看免费av毛片| 三级国产精品片| 91久久精品国产一区二区三区| 777米奇影视久久| 人人妻人人澡人人看| 日本av免费视频播放| 欧美老熟妇乱子伦牲交| 飞空精品影院首页| 久久精品久久久久久久性| a 毛片基地| 国产精品久久久久久精品古装| 18禁观看日本| 久久婷婷青草| 丁香六月天网| 黑人巨大精品欧美一区二区蜜桃 | 成年人午夜在线观看视频| 亚洲成人一二三区av| av在线app专区| 国产无遮挡羞羞视频在线观看| 一个人免费看片子| 18禁国产床啪视频网站| 亚洲第一区二区三区不卡| 久久99一区二区三区| 爱豆传媒免费全集在线观看| 亚洲国产最新在线播放| 男男h啪啪无遮挡| 国产精品一二三区在线看| 亚洲第一av免费看| 免费在线观看完整版高清| 内地一区二区视频在线| 久久99一区二区三区| 精品国产一区二区三区久久久樱花| 精品国产一区二区三区久久久樱花| 精品国产乱码久久久久久小说| 国产亚洲欧美精品永久| 制服人妻中文乱码| 校园人妻丝袜中文字幕| 9191精品国产免费久久| 9191精品国产免费久久| 中文乱码字字幕精品一区二区三区| 中文字幕制服av| av线在线观看网站| 欧美变态另类bdsm刘玥| 捣出白浆h1v1| 亚洲精品aⅴ在线观看| 中文欧美无线码| 日韩三级伦理在线观看| 人人妻人人添人人爽欧美一区卜| 国产老妇伦熟女老妇高清| 97精品久久久久久久久久精品| 亚洲伊人色综图| 亚洲精华国产精华液的使用体验| www日本在线高清视频| 亚洲综合色网址| 人人妻人人添人人爽欧美一区卜| 国产精品99久久99久久久不卡 | 日韩一区二区视频免费看| 亚洲情色 制服丝袜| 美国免费a级毛片| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区二区三区在线| 2018国产大陆天天弄谢| 久久国产亚洲av麻豆专区| 乱人伦中国视频| 国产高清不卡午夜福利| 啦啦啦在线观看免费高清www| 狂野欧美激情性bbbbbb| 欧美人与善性xxx| 国产成人91sexporn| 成人二区视频| 只有这里有精品99| 日韩一区二区三区影片| 午夜日本视频在线| 最近的中文字幕免费完整| 久久精品人人爽人人爽视色| av国产精品久久久久影院| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| 国产日韩欧美在线精品| 爱豆传媒免费全集在线观看| 国产色爽女视频免费观看| 中文字幕人妻熟女乱码| 黄色 视频免费看| 日韩av在线免费看完整版不卡| 久久国内精品自在自线图片| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 久久精品人人爽人人爽视色| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 午夜免费鲁丝| 欧美人与善性xxx| 欧美精品av麻豆av| 在线天堂最新版资源| 成人影院久久| 国产午夜精品一二区理论片| 国产男女内射视频| 日韩电影二区| 亚洲一级一片aⅴ在线观看| 亚洲图色成人| 少妇人妻 视频| 999精品在线视频| 亚洲av国产av综合av卡| 狂野欧美激情性bbbbbb| 亚洲精品日韩在线中文字幕| 欧美xxxx性猛交bbbb| 大话2 男鬼变身卡| 2021少妇久久久久久久久久久| 亚洲人成77777在线视频| 精品少妇久久久久久888优播| 熟女av电影| 狂野欧美激情性xxxx在线观看| 午夜福利乱码中文字幕| 国产国拍精品亚洲av在线观看| 国产亚洲av片在线观看秒播厂| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 国产黄色免费在线视频| a级毛色黄片| freevideosex欧美| 秋霞在线观看毛片| 天天操日日干夜夜撸| 99久久精品国产国产毛片| 亚洲人成77777在线视频| 在线观看免费高清a一片| 岛国毛片在线播放| 国产精品久久久久久av不卡| 亚洲成色77777| 欧美日韩视频高清一区二区三区二| 亚洲精品一二三| 国产男人的电影天堂91| 天天躁夜夜躁狠狠躁躁| 宅男免费午夜| 欧美精品亚洲一区二区| 色5月婷婷丁香| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影小说| 捣出白浆h1v1| 免费播放大片免费观看视频在线观看| 99久久综合免费| 亚洲三级黄色毛片| 18在线观看网站| 国产精品女同一区二区软件| 内地一区二区视频在线| 日本-黄色视频高清免费观看| 少妇的逼好多水| 免费看av在线观看网站| 看免费成人av毛片| 黑人高潮一二区| 超碰97精品在线观看| 波野结衣二区三区在线| 中文精品一卡2卡3卡4更新| 蜜桃国产av成人99| 精品人妻熟女毛片av久久网站| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级国产专区5o| 日本免费在线观看一区| 亚洲国产精品一区三区| tube8黄色片| 日韩大片免费观看网站| 男女无遮挡免费网站观看| 大片电影免费在线观看免费| 亚洲精品久久成人aⅴ小说| 又粗又硬又长又爽又黄的视频| 亚洲第一av免费看| 97在线视频观看| 另类亚洲欧美激情| 久久综合国产亚洲精品| 少妇高潮的动态图| 精品国产国语对白av| 熟女电影av网| 丝袜脚勾引网站| 日韩人妻精品一区2区三区| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠久久av| 最近2019中文字幕mv第一页| 日产精品乱码卡一卡2卡三| 欧美丝袜亚洲另类| 最新中文字幕久久久久| 国产亚洲精品第一综合不卡 | 欧美丝袜亚洲另类| 久久精品久久久久久噜噜老黄| 99久久人妻综合| www.色视频.com| 又黄又爽又刺激的免费视频.| 五月玫瑰六月丁香| 日韩欧美一区视频在线观看| 亚洲情色 制服丝袜| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区二区在线不卡| 国产一区二区三区综合在线观看 | 色94色欧美一区二区| 久久 成人 亚洲| 精品人妻在线不人妻| 日韩一本色道免费dvd| 免费av不卡在线播放| 最近最新中文字幕免费大全7| 最近2019中文字幕mv第一页| 国产亚洲最大av| 女性被躁到高潮视频| 日韩,欧美,国产一区二区三区| 久久久久视频综合| 三上悠亚av全集在线观看| 成人毛片a级毛片在线播放| 亚洲色图综合在线观看| 日韩在线高清观看一区二区三区| xxx大片免费视频| 亚洲美女搞黄在线观看| 丝袜人妻中文字幕| 国产免费一区二区三区四区乱码| 国产精品.久久久| 久久97久久精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美 日韩 精品 国产| 大陆偷拍与自拍| 女人精品久久久久毛片| 亚洲四区av| 免费在线观看完整版高清| 亚洲av.av天堂| 免费日韩欧美在线观看| 欧美激情极品国产一区二区三区 | 午夜精品国产一区二区电影| 99视频精品全部免费 在线| 久久久久久久精品精品| 免费少妇av软件| 亚洲国产成人一精品久久久| a级毛片在线看网站| 激情视频va一区二区三区| 日本色播在线视频| 国产在线一区二区三区精| 亚洲国产欧美在线一区| 久久久欧美国产精品| 校园人妻丝袜中文字幕| 久久国产精品大桥未久av| 亚洲精品日本国产第一区| 汤姆久久久久久久影院中文字幕| 18禁动态无遮挡网站| 99久久中文字幕三级久久日本| 亚洲丝袜综合中文字幕| 日本av手机在线免费观看| 国产高清不卡午夜福利| a级毛片黄视频| 日本与韩国留学比较| 免费黄网站久久成人精品| 美女国产视频在线观看| 国产av一区二区精品久久| 天美传媒精品一区二区| 全区人妻精品视频| 秋霞在线观看毛片| 少妇人妻 视频| 夜夜爽夜夜爽视频| 丰满迷人的少妇在线观看| 欧美激情极品国产一区二区三区 | 最新的欧美精品一区二区| 久久久久久久大尺度免费视频| 一级毛片 在线播放| 人妻 亚洲 视频| av国产精品久久久久影院| 在线天堂最新版资源| 久久久久国产精品人妻一区二区| 国产熟女午夜一区二区三区| 丝袜喷水一区| 国产日韩一区二区三区精品不卡| 免费大片黄手机在线观看| 日韩免费高清中文字幕av| 精品人妻偷拍中文字幕| 三上悠亚av全集在线观看| 久久精品国产自在天天线| 免费看av在线观看网站| 80岁老熟妇乱子伦牲交| 十八禁网站网址无遮挡| 女人精品久久久久毛片| 亚洲图色成人| 国产精品免费大片| 国产欧美亚洲国产| 五月天丁香电影| 蜜臀久久99精品久久宅男| 久久精品国产亚洲av天美| 国产成人精品婷婷| 日本黄色日本黄色录像| 天美传媒精品一区二区| 久久人妻熟女aⅴ| 久久人人爽人人片av| 国产麻豆69| 一区二区日韩欧美中文字幕 | 最近最新中文字幕免费大全7| 久久精品熟女亚洲av麻豆精品| 久久99热这里只频精品6学生| 久久久久国产网址| av不卡在线播放| 91aial.com中文字幕在线观看| 国产在线一区二区三区精| 免费av中文字幕在线| 性高湖久久久久久久久免费观看| 黄色视频在线播放观看不卡| 欧美日韩视频精品一区| 老女人水多毛片| 91久久精品国产一区二区三区| 日韩熟女老妇一区二区性免费视频| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 久久久国产欧美日韩av| 成人漫画全彩无遮挡| 90打野战视频偷拍视频| 男人爽女人下面视频在线观看| 只有这里有精品99| 久久久国产欧美日韩av| 天堂8中文在线网| 人体艺术视频欧美日本| 免费黄色在线免费观看| 色婷婷av一区二区三区视频| 亚洲精华国产精华液的使用体验| 最后的刺客免费高清国语| 蜜臀久久99精品久久宅男| 国产日韩欧美亚洲二区| 国产亚洲最大av| 亚洲成人av在线免费| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 久久av网站| 一级毛片我不卡| av播播在线观看一区| 欧美精品高潮呻吟av久久| 青青草视频在线视频观看| 欧美xxⅹ黑人| 久久久久久久大尺度免费视频| 有码 亚洲区| 亚洲经典国产精华液单| 麻豆乱淫一区二区| 女人精品久久久久毛片| 欧美激情国产日韩精品一区| 久久国内精品自在自线图片| 日本色播在线视频| 久久婷婷青草| 大片免费播放器 马上看| 2022亚洲国产成人精品| 亚洲美女搞黄在线观看| 国产精品一区二区在线不卡| 肉色欧美久久久久久久蜜桃| 成人二区视频| 国产精品免费大片| 欧美最新免费一区二区三区| 韩国av在线不卡| 亚洲国产av影院在线观看| 久久亚洲国产成人精品v| 春色校园在线视频观看| 国产一区二区三区av在线| 在线观看一区二区三区激情| 日韩成人av中文字幕在线观看| 午夜福利网站1000一区二区三区| 成年av动漫网址| 成人影院久久| 欧美xxⅹ黑人| 熟妇人妻不卡中文字幕| 黑人猛操日本美女一级片| 亚洲成人av在线免费| 国产无遮挡羞羞视频在线观看| 午夜激情久久久久久久| 大香蕉久久网| 51国产日韩欧美| 少妇人妻久久综合中文| 亚洲成av片中文字幕在线观看 | 少妇熟女欧美另类| 亚洲成国产人片在线观看| 九草在线视频观看| 一级黄片播放器| 亚洲精品色激情综合| 黄色一级大片看看| 免费黄色在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 久久鲁丝午夜福利片| 侵犯人妻中文字幕一二三四区| 亚洲国产精品专区欧美| 国产探花极品一区二区| 一二三四在线观看免费中文在 | 九九爱精品视频在线观看| 91久久精品国产一区二区三区| 免费观看在线日韩| 天天躁夜夜躁狠狠躁躁| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品一区二区三区在线| 日韩制服丝袜自拍偷拍| 亚洲av电影在线观看一区二区三区| 在线看a的网站| 国产在线一区二区三区精| 国产成人av激情在线播放|