• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PbmTen(m+n≤6)團簇的結(jié)構(gòu)與穩(wěn)定性

    2010-12-12 02:45:02龔曉霞杜際廣
    物理化學(xué)學(xué)報 2010年6期
    關(guān)鍵詞:物理化學(xué)學(xué)報

    龔曉霞 杜際廣 蔣 剛

    (四川大學(xué)原子與分子物理研究所,成都 610065)

    Lead telluride is a very important narrow-gap semiconductor, and it is widely used as infrared detector.It has some interesting characteristics,such as small energy gaps,low resistivities,large carrier mobilities,and unusually high dielectric constants.In recent years,more and more research interests are focused on its material properties for thermoelectric power generation.But for the lead,it is well known as the toxic metal which poses a great threat to the environment and human life,especially for children′s neurological and physical development.The lead compounds should be an important topic in the lead pollution.The study of lead telluride cluster might provide useful information for material investigate and pollution control.

    There are many theoretical[1-6]and experimental[7-10]studies on the lead telluride.Nabi[11]and Hevine[12]et al.proved that lead telluride is narrow gap semiconductor.Lachhab et al.[13]used the full potential linearized augmented plane wave(LAPW)method to study the electronic structure of the PbTe compound. Grabecki et al.[14]pointed out that PbTe had broad application prospects in nanostructure physics.Mazzone[15]studied the fragmentation of Pb clusters with size N≤24 employing the timedependent Hartree-Fock method.Rajesh et al.[16]investigated the geometric and electronic structure of Pbn(n=2-15)clusters using the ab initio molecular dynamics simulation.Wang et al.[17]used DFT with Becke-Lee-Yang-Parr(BLYP)gradient correction to obtain the lowest-energy structures and electronic properties of the Pbn(n=2-22)clusters.Gingerich et al.[18]got the structure parameter of Pb2,Pb3and Pb4by mass spectrometry.Balasubramanian et al.[19]investigated the geometries and electronic states of Pb5. Liu et al.[20]studied the geometrical structures and stabilities of small PbmOn(m=1-4,n=1-2m)clusters using the hybrid B3LYP functional.Xing et al.[21]studied the PbnSnclusters(n=1-9)by using DFT method.The pure Te clusters have been studied extensively.Goddard[22]and Balasubramanian[23]et al.investigated the geometries,vibrational frequencies,and electronic characters of Te3by using DFT method.In the experiment,Hassanzadeh et al.[24]found the frequencies and low energy structures of Ten(n=2-4)clusters.Pan[25]obtained the geometric structures,electronic properties,and vibrational frequencies of tellurium clusters(n≤8)by using DFT method.The DFT method is widely used to investigate the structures and stabilities of the mixed cluster[26-27].

    In spite of the abundant reports data above have been found, the investigations on the PbTe clusters are far from adequate.In order to understand the evolution of their physical and chemical properties with size,it is essential to study their stabilities and structural properties.In this article,heteronuclear PbmTen(m+n≤6)and homonuclear Pbn,Ten(n=2-6)clusters have been investigated using DFT[28-29]method.

    1 Computational method

    The present work is based on the Gaussian 03 package[30].The Becke three parameters hybrid functional with the Lee-Yang-Parr correlation functional(B3LYP)[31-32]has been adopted in our DFT calculation.Furthermore,the test computations with CEP-121G、LANL2DZ and SDD sets are performed for dimers(Pb2, Te2,and PbTe)to demonstrate which basis set is rational.The comparison results between the calculated values and experimental data[17,24,33]are given in Table 1.Note that the SDD basis set predicts bond lengths and frequencies of PbTe and Te2dimers to be slightly more close to experimental values.Therefore,the SDD employed in our calculation is successful to describe the clusters involving Pb,Te atoms.

    During the geometry optimizations,to find the stable structures,the possible original structures and the spin states are systematically considered,the requested convergence on energy is 10-6a.u..In general,clusters with higher symmetry are expected to be more stable.Therefore,according to a structure with a known symmetry,the initial geometry is constructed by superposing the smaller building blocks.In addition,we can often simply add or subtract an atom from a cluster of size n to obtain geometry for a cluster of size n+1 or n-1.Moreover,we have consulted the geometric structure of pure Pb[16-17,26]clusters and Te[25,34]clusters.For mixed clusters,we have generated a numberof possible isomers that are adopted from the other semiconductor compound clusters like PbO[20]and ZnTe[34].

    Table 1 Calculated bond length(R)and vibrational frequency(ω)for the ground state of Pb2,PbTe,and Te2 using CEP-121G,LANL2DZ,and SDD basis sets

    The geometry optimization is performed without any symmetry constraints.The vibrational frequency calculations are also carried out to ensure whether the obtained structures correspond to local minima on the potential surface.The average binding energy per atom(Eb)is calculated by Eb=[E(PbmTen)-mE(Pb)-nE(Te)]/(m+n),where E are the total energies of corresponding systems.The dissociation energy is defined as ΔEd=EB+EC-EA, EB,EC,and EAare the total energies of B,C,and A clusters,respectively;it represents the dissociation channel that cluster A is dissociated into B and C congeries.

    2 Results and discussion

    2.1 Geometric structures

    2.1.1 Homonuclear Pb clusters

    The discussions on pure Pbnand Ten(n≤6)clusters will be simplified in the present paper due to our main attention on the mixed Pb-Te clusters.For the Pb2dimer,the present calculations predict the bond length and Ebto be 0.278 nm and 0.875 eV,respectively.They are found to be fitted well with experimental results(0.293 nm and 0.86 eV[17]).The global minimum structure of Pb3is an equilateral triangle with D3hsymmetry,the side length(0.303 nm)is close to the previous theoretical results (0.301 nm[16,26]).The ground state of Pb4cluster is a planar rhombus structure(D2h),the optimized side length(0.299 nm)is in agreement with previous theoretical results(0.298 nm[16],0.311 nm[17],0.304 nm[35]),Eb(1.81 eV)is a little larger than the calculation data(Eb=1.66 eV)obtained by Wang et al.[17].For Pb5cluster,the triangular bipyramid structure with D3hsymmetry is found to be the ground state,the side length(0.300 nm)is comparable with the theoretical results(0.297 nm[16],0.311 nm[17],0.30 nm[19]).In the case of Pb6,the crossed rhombus with D4hsymmetry is the lowest energy structure with the Pb—Pb distance of 0.310 nm.Rajesh et al.[16]predicted that the minimum energy structure is D4hsymmetry with the side length of 0.306 nm.

    2.1.2 Homonuclear Te clusters

    For Te2,we predict the bond length and the vibration frequency to be 0.265 nm and 227.9 cm-1,they are 0.009 nm larger for bond length and 12.1 cm-1lower for frequency with respect to the experimental results[24].For Te3cluster,the equilateral triangle structure with D3hsymmetry is the lowest energy structure, the Te—Te bond length(0.289 nm)is in accordance with the previoustheoreticalvalues(0.283nm[23]and0.28nm[22]).Themaximum vibrational frequency(200.9 cm-1)is also in accordance with the prediction value(198.5 cm-1)[34]and experiment result (232 cm-1)[24].The ground state of Te4cluster is the trapezoid structure with C2vsymmetry,and the maximum frequency(218.5 cm-1)is lower than the experimental result(233.9 cm-1)[24].The most stable structure of Te5cluster is an envelope structure with Cssymmetry,the shortest side length and the maximum frequency are 0.281 nm and 171.2 cm-1,respectively,theyare close to the theoreticalresult[34].For Te6cluster,we have found that the struc-ture with C2vsymmetry is the ground state structure.Pan[25]found that the lowest energy structure was a distorted hexagon with D3dsymmetry.The difference between the present results and Pan′s results could be due to the difference in basis set.

    2.1.3 Heteronuclear PbTe clusters

    The lowest-energy and low-lying structures of(PbTe)n(n=1-3)clusters are shown in Fig.1.For PbTe,the calculated bond length,vibrational frequency and the Ebare 0.262 nm,212.2 cm-1and 1.86 eV,respectively.In experiment,Huber and Herzberg[33]found the bond length of PbTe to be 0.259 nm.The global minimum structure of Pb2Te2is a rhombic structure with C2vsymmetry,and the structure is quite similar to the lowest-energy structure of Pb2O2cluster[20].For Pb3Te3,there are as many as thirteen stable structures,the distort hexagon structure with C2vsymmetry is the most stable one.

    The Pb-rich clusters are shown in Fig.2(for PbnTe,n=2-5)and Fig.3(for PbnTe2,n=3-4).The ground state of the Pb2Te cluster is an acute isosceles triangle structure(C2v).The low-lying isomers have isosceles triangle structure with C2vsymmetry and linear structure with C∞vsymmetry.For Pb3Te,the butterly-like geometry structure with Cssymmetry is preferred cluster among all the low-lying isomers.The lowest-energy structure of Pb4Te is a capped bent rhombic structure(C2v).The ground state of Pb5Te is C4vsymmetry,and the other seven kinds of isomers have been shown.The most stable structure of Pb3Te2is similar to the Pb3Te,with adding bridged Te atom in the opposite site of the preexistent Te atom.For Pb4Te2,eight kinds of stable isomers have been gotten,the configuration of the lowest energy with Cssymmetry is similar to the ground-state structure of Pb4O2cluster[20].

    Fig.1 Stable geometries of(PbTe)n(n=1-3)clustersThe bond lengths(in nm),spin multiplicity(M),point group(PG)symmetry,and relative energy(relative to the ground state structures,ΔE)of these isomers are shown.

    Fig.2 Stable geometries of PbnTe(n=2-5)clusters

    Fig.3 Stable geometries of PbnTe2(n=3-4)clusters

    The stable structures of PbTen(n=2-5)and Pb2Ten(n=3-4)are shown in Fig.4 and Fig.5.For PbTe2,the most stable isomer is corresponding to an isosceles triangle structure with C2vsymmetry.The next stable linear TePbTe structure is 0.69 eV higher in energy than the most stable one.The lowest energy of PbTe3cluster is a plane geometry with C2vsymmetry,another stable structure with C1symmetry is found to be 0.2 eV higher in energy.The most stable structure of the PbTe4cluster is a pentagon structure with C2symmetry.For PbTe5,the lowest energy structure with C1symmetry is 0.13 eV lower in energy than another stable isomer(PbTe5-b).In the eight kinds of isomers,the pentagon structure(C2v)is found to be the ground state structure of Pb2Te3cluster.The ground state of Pb2Te4is the distort hexagon (Pb2Te4-a)structure with Cssymmetry.

    Fig.4 Stable geometries of PbTen(n=2-5)clusters

    Fig.5 Stable geometries of Pb2Ten(n=3-4)clusters

    2.2 Average binding energy per atom

    The Ebof PbmTen(m+n≤6)clusters are given in Table 2.For Pb-rich clusters with one Te atom,the Ebincreases as the size of atoms increase,and the change trend of the Pb-rich clusters with two Te atoms is the same.On the contrary,for the Te-rich clusters with one Pb atom,the Ebdecreases with increasing the number of atoms,the Ebof Te-rich clusters with two Pb atoms decreases too.Compared the Ebof PbnTe with that of PbTen(n=2-5),the former are larger than the latter.The Ebof PbnTe2clusters are also larger than that of Pb2Tenclusters.It is shown that the Pb-rich clusters are more stable than Te-rich clusters.

    2.3 Dissociation channels,dissociation energies and Mulliken charge populations

    The stability of lead telluride clusters with different sizes and stoichiometries is required to illustrate the growth pattern of various nanostructures and to understand the pristine lead clusters. On the other hand,the study of the stability is helpful in finding the candidates of the building block of the cluster-assembled materials.In general,the cluster with large positive dissociation energy(ΔEd)has great stability[36].Therefore,in the following, we evaluate the ΔEdof the clusters.In our work,the possible dissociation channels have been carried out.The most probable ones with the corresponding ΔEdare presented in Table 3.

    For the homonuclear Pbn(n=2-6)clusters,they prefer to dissociate one by one,the Pb atom is the popular fragment,while the homonuclear Ten(n=3-6)clusters are dissociated as dimers.In general,the dissociation energies of pure Pb clusters are larger than those of pure Te clusters,except the dimer.

    Table 2 Calculated HOMO,LUMO energies(in a.u.), HOMO-LUMO gap energies(Eg,in eV),Eb(in eV)for the most stable structures of the PbmTenclusters,and the the average Mulliken charge populations of Pb atoms(QPb,in e)

    Table 3 The most favorable dissociation channels(DCs)and dissociation energies(ΔEd,in eV)for the most stable structures of the Pbn,Ten,PbmTen(m+n≤6)clusters

    For the Pb-rich clusters,Pb atom prefers to dissociate first in many dissociation channels.However,for the dissociation channels of Pb4Te and Pb5Te clusters,the PbTe dimer is the favorable fragment.As for the most Te-rich clusters,it is found that Te2is the popular fragment,but for PbTe2and Pb2Te3clusters,the favorable dissociation products are PbTe and Pb2Te2,respectively. The(PbTe)n(n=1-3)clusters have the larger ΔEdamong the clusters with the same number of lead atoms.It is shown that the (PbTe)n(n=1-3)clusters have great stabilities,especially for the PbTe,the ΔEdis as large as 3.73 eV.Furthermore,PbTe and Pb2Te2clusters are generally the favorable dissociation fragments for most Pb-Te mixed clusters.The ΔEdof the PbnTe clusters(n=2-5)are larger than those of PbTen(n=2-5)clusters,and the ΔEdof PbnTe2(n=3-4)clusters are also larger than those of Pb2Ten(n=3-4)clusters.Therefore,the Pb-rich clusters(PbnTe, PbnTe2)are more stable than the corresponding Te-rich clusters (PbTen,Pb2Ten),this conclusion agrees well with the Ebanalysis.

    In Table 2,the average Mulliken charge populations of Pb atoms are also presented,it can be seen that the Pb atoms exhibit positive charges,as electron donators.There is a degree of charge transfers from Pb to Te atoms in Pb-Te clusters due to the difference of electronegativities between them.According to Sanderson electronegativity[37],the value of Pb is 2.29,smaller than that of Te(2.62).The charge transfers can contribute to the stability of Pb-Te clusters.In the previous investigations,Chen et al.[38]found that the stability of Ag-core/Au-surface-segregated nanoalloys comes from a directional charge transfer induced by the icosahedral structural order,which is additional to that induced by the electronegativity difference between Au(2.4)and Ag(1.9)atoms.

    2.4 HOMO-LUMO gap

    The HOMO-LUMO gap can be used to characterize the stabilities and electronic properties of the clusters.The HOMOs, LUMOs and the HOMO-LUMO gaps of the mixed PbmTenclusters are listed in Table 2.It is obvious to discover that gaps of the studied clusters are in the range of 1.87-3.55 eV,which suggests that the mixed Pb-Te clusters present the semiconductorlike character.The PbTe cluster has the largest gaps(3.55 eV), also supporting its huge stability.Among clusters with the same number of lead atoms,the(PbTe)n(n=1-3)clusters have obvious large HOMO-LUMO gaps,it indicates that the(PbTe)nclusters have great stabilities,in agreement with the dissociation energies analysis.The 3D plots of HOMO and LUMO orbitals of (PbTe)nclusters are shown in Fig.6.As shown in Fig.6,the HOMO orbital of PbTe dimer presents π character derived from pzorbitals of Pb and Te atoms,as for the π*antibonding orbital (LUMO),it is mainly constructed with pzorbitals of Pb atom along with a small quantity of Te(pz).The bonding π HOMO orbital is responsible to the stability of PbTe dimer.In Pb2Te2cluster,the HOMO orbital presents π*character,which is completely originated from Pb 6p.The components of LUMO orbital are Pb(6p)and Te(5p).We can find the hybridization between two Pb 6p orbitals in the LUMO,however,the orbital overlap is not presented between Te and Pb atoms.The HOMO orbital of Pb3Te3cluster is completely derived from the 5p orbitals of three Te atoms,as for LUMO,the 6p atomic orbital of one limbic Pb mostly contributes the electron density.

    Fig.6 3D plots of HOMO(H)and LUMO(L)of the(PbTe)n(n=1-3)clusters

    3 Conclusions

    In this work,the DFT with hybrid B3LYP functional and SDD basis set have been employed to investigate the geometrical structures and stabilities of small PbmTen(m+n≤6)clusters. Our conclusions can be summarized as follows.

    (1)Based on the extensive search,the lowest energy structures and low-lying stable isomers have been found.

    (2)The Eband ΔEdanalysis indicate that the Pbnand Pb-rich clusters are more stable than the Tenand Te-rich clusters,respectively.

    (3)The HOMO-LUMO gaps of the studied PbmTenclusters are evidently moderate,in the range of 1.87-3.55 eV,suggesting the semiconductor-like behavior.

    (4)The ΔEdanalysis indicates that the(PbTe)n(n=1-3)clusters have great stabilities,suggesting that they might be used as candidates of the building block of cluster-assembled materials,and that the PbTe cluster possesses the stronger stabilities relative to the other mixed PbmTenclusters.

    1 Bailey,P.T.Phys.Rev.,1968,170:723

    2 Martinez,G.;Schluter,M.;Cohen,M.L.Phys.Rev.B,1975,11: 651

    3 Tung,Y.W.;Cohen,M.L.Phys.Rev.,1969,180:823

    4 Mitchell,D.L.;Wallis,R.F.Phys.Rev.,1966,151:581

    5 Rabii,S.Phys.Rev.,1968,167:801

    6 Wei,S.H.;Zunger,A.Phys.Rev.B,1997,55:13605

    7 Preier,H.Appl.Phys.,1979,20:189

    8 Weinberg,I.J.Chem.Phys.,1963,39:492

    9 Weinberg,I.J.Chem.Phys.,1962,36:1112

    10 Baleva,M.;Mateeva,E.Phys.Rev.B,1994,50:8893

    11 Nabi,Z.;Abbar,B.;Mé?abih,S.;Khalf?,A.;Amrane,N.Comp. Mater.Sci.,2000,18:127

    12 Hevine,Z.H.;Allan,D.C.Phys.Rev.Lett.,1989,63:1719

    13 Lach-hab,M.;Papaconstantopoulos,D.A.;Mehl,M.J.J.Phys. Chem.Solids,2002,63:833

    14 Grabecki,G.;Wróbel,J.;Zagrajek,P.;Fronc,K.;Aleszkiewicz, M.;Dietl,T.;Papis,E.;Kamińska,E.;Piotrowska,A.;Springholz, G.;Bauer,G.Physica E,2006,35:332

    15 Mazzone,A.M.Comp.Mater.Sci.,2000,18:185

    16 Rajesh,C.;Majumder,C.;Rajan,M.G.R.;Kulshreshtha,S.K. Phys.Rev.B,2005,72:235411

    17 Wang,B.L.;Zhao,J.J.;Chen,X.S.;Shi,D.N.;Wang,G.H.Phys. Rev.A,2005,71:033201

    18 Gingerich,K.A.;Cocke,D.L.;Miller,F.J.Chem.Phys.,1976, 64:4027

    19 Dai,D.;Balasubramanian,K.Chem.Phys.Lett.,1997,271:118

    20 Liu,H.T.;Wang,S.Y.;Zhou,G.;Wu,J.;Duan,W.H.J.Chem. Phys.,2007,126:134705

    21 Xing,H.Z.;Xu,S.L.;Ding,Z.L.;Huang,Y.;Chen,X.S.;Wang, J.Q.;Shi,Y.Phys.Lett.A,2008,372:4694

    22 Goddard,J.D.;Chen,X.Q.;Orlova,G.J.Phys.Chem.A,1999, 103:4078

    23 Balasubramanian,K.;Dai,D.J.Chem.Phys.,1993,99:5239

    24 Hassanzadeh,P.;Thompson,C.;Andrews,L.J.Phys.Chem., 1992,96:8246

    25 Pan,B.C.Phys.Rev.B,2002,65:085407

    26 Zhao,G.F.;Sun,J.M.;Liu,X.;Guo,L.J.;Luo,Y.H.J.Mol. Struct.-Theochem,2008,851:348

    27 Ma,W.J.;Wu,H.S.Acta Phys.-Chim.Sin.,2004,20:290 [馬文瑾,武海順.物理化學(xué)學(xué)報,2004,20:290]

    28 Hohenberg,P.;Kohn,W.Phys.Rev.,1964,136:B864

    29 Kohn,W.;Sham,L.J.Phys.Rev.,1965,140:A1133

    30 Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03. Revision B.02.Pittsburgh,PA:Gaussian Inc.,2003

    31 Becke,A.D.J.Chem.Phys.,1993,98:5648

    32 Lee,C.;Yang,W.T.;Parr,R.G.Phys.Rev.B,1988,37:785

    33 Huber,K.P.;Herzberg,G.Molecular spectra and molecular structure IV.Constants of diatomic molecules.New York:Van Nostrand Reinhold Company Press,1979:530-531

    34 Pek?z,R.;Erko?,S,.Physica E,2008,40:2921

    35 Dai,D.;Balasubramanian,K.J.Chem.Phys.,1992,96:8345

    36 Lei,X.L.;Zhu,H.J.;Wang,X.M.;Luo,Y.H.Acta Phys.-Chim. Sin.,2008,24:1655 [雷雪玲,祝恒江,王先明,羅有華.物理化學(xué)學(xué)報,2008,24:1655]

    37 Sanderson,R.T.J.Chem.Educ.,1988,65:112

    38 Chen,F.Y.;Johnston,R.L.Acta Materialia,2008,56:2374

    猜你喜歡
    物理化學(xué)學(xué)報
    提高物理化學(xué)實驗技能的探討
    云南化工(2021年11期)2022-01-12 06:06:56
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報40年
    Chemical Concepts from Density Functional Theory
    學(xué)報簡介
    學(xué)報簡介
    《深空探測學(xué)報》
    Effects of Experimental Conditions on The Morphology and Photocurrent Density of TiO2 Nanorods
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    亚洲国产欧美人成| 成人特级av手机在线观看| 久久国产乱子免费精品| 少妇被粗大猛烈的视频| 欧美日韩视频高清一区二区三区二| 狂野欧美激情性xxxx在线观看| 美女内射精品一级片tv| 久久精品国产鲁丝片午夜精品| 搞女人的毛片| 国内精品美女久久久久久| 国产精品福利在线免费观看| 狂野欧美激情性xxxx在线观看| 午夜爱爱视频在线播放| 久久久a久久爽久久v久久| 特级一级黄色大片| 天天躁夜夜躁狠狠久久av| 亚洲一级一片aⅴ在线观看| 在线观看免费高清a一片| 色视频www国产| 波多野结衣巨乳人妻| 亚洲第一区二区三区不卡| 又大又黄又爽视频免费| 大片免费播放器 马上看| 美女视频免费永久观看网站| 日本熟妇午夜| 又大又黄又爽视频免费| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 国产精品久久久久久久电影| 大码成人一级视频| 一本一本综合久久| 男女那种视频在线观看| av天堂中文字幕网| 爱豆传媒免费全集在线观看| 精品久久久精品久久久| 精品一区二区三卡| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 亚洲综合精品二区| 夜夜爽夜夜爽视频| 国产女主播在线喷水免费视频网站| 一级毛片 在线播放| 欧美xxxx黑人xx丫x性爽| 成人亚洲精品av一区二区| 欧美激情国产日韩精品一区| 成人亚洲欧美一区二区av| 国产成人一区二区在线| 99久久中文字幕三级久久日本| 亚洲精品自拍成人| 午夜福利在线观看免费完整高清在| 国产极品天堂在线| 成人国产麻豆网| 成人亚洲精品一区在线观看 | 一区二区三区乱码不卡18| 久久久久精品久久久久真实原创| 美女高潮的动态| 在线观看美女被高潮喷水网站| 中国国产av一级| 亚洲最大成人av| 国产男女内射视频| 成人黄色视频免费在线看| 国产久久久一区二区三区| 久久精品国产亚洲av天美| 午夜精品一区二区三区免费看| 国产伦理片在线播放av一区| 欧美区成人在线视频| 男女啪啪激烈高潮av片| 精品午夜福利在线看| 少妇猛男粗大的猛烈进出视频 | 亚洲,欧美,日韩| 成年版毛片免费区| 成人免费观看视频高清| 赤兔流量卡办理| 欧美变态另类bdsm刘玥| 午夜免费观看性视频| 日日啪夜夜爽| 国产一区有黄有色的免费视频| 日本一本二区三区精品| 国产探花在线观看一区二区| 真实男女啪啪啪动态图| 男女那种视频在线观看| 欧美变态另类bdsm刘玥| 99精国产麻豆久久婷婷| 成人亚洲精品一区在线观看 | 最近中文字幕2019免费版| 国产成人freesex在线| 成人毛片60女人毛片免费| 夫妻性生交免费视频一级片| 黄色配什么色好看| 十八禁网站网址无遮挡 | 五月天丁香电影| 性插视频无遮挡在线免费观看| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av成人精品| 人妻少妇偷人精品九色| 天堂俺去俺来也www色官网| 内地一区二区视频在线| 日本一本二区三区精品| 中国美白少妇内射xxxbb| 欧美日韩一区二区视频在线观看视频在线 | 在线播放无遮挡| 国产精品国产三级专区第一集| 久久影院123| 少妇熟女欧美另类| 黄色一级大片看看| 日韩大片免费观看网站| 国产美女午夜福利| kizo精华| 亚洲精品日韩av片在线观看| 国产成人a∨麻豆精品| 中文在线观看免费www的网站| 全区人妻精品视频| 日本猛色少妇xxxxx猛交久久| 亚洲人与动物交配视频| 日韩国内少妇激情av| 欧美bdsm另类| 国内精品宾馆在线| 搞女人的毛片| 精品久久久久久电影网| 国产黄色视频一区二区在线观看| 国产精品人妻久久久久久| 久久99精品国语久久久| 亚洲精品久久午夜乱码| 亚洲图色成人| 高清视频免费观看一区二区| 久久久久国产网址| 91精品伊人久久大香线蕉| 日韩强制内射视频| 国产精品无大码| 少妇的逼好多水| 99热网站在线观看| 日韩大片免费观看网站| 国产一区二区亚洲精品在线观看| 中国国产av一级| 日本av手机在线免费观看| 男人和女人高潮做爰伦理| 日韩一区二区三区影片| 日日啪夜夜爽| 熟女av电影| 人人妻人人看人人澡| 三级男女做爰猛烈吃奶摸视频| 欧美三级亚洲精品| 久久久亚洲精品成人影院| 成人特级av手机在线观看| 一级av片app| 国产成人精品福利久久| 亚洲av福利一区| 狂野欧美激情性bbbbbb| 亚洲国产精品999| 亚洲欧洲国产日韩| 午夜爱爱视频在线播放| 国产精品.久久久| 国产精品一及| 久久99热6这里只有精品| 看十八女毛片水多多多| 国产男女内射视频| 免费黄网站久久成人精品| 亚洲欧美一区二区三区黑人 | 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 丝瓜视频免费看黄片| 成人亚洲欧美一区二区av| 一边亲一边摸免费视频| 男人爽女人下面视频在线观看| 狠狠精品人妻久久久久久综合| 99久久九九国产精品国产免费| 午夜日本视频在线| 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲高清精品| 永久免费av网站大全| 国产av不卡久久| 三级国产精品片| 精品酒店卫生间| 爱豆传媒免费全集在线观看| 99热这里只有是精品在线观看| 国产毛片a区久久久久| 高清日韩中文字幕在线| 最近的中文字幕免费完整| 特级一级黄色大片| 国产成人福利小说| 久久精品国产a三级三级三级| 交换朋友夫妻互换小说| 精品久久久久久久末码| kizo精华| 国产男人的电影天堂91| 中文字幕制服av| 一级毛片黄色毛片免费观看视频| 国产综合精华液| 国产久久久一区二区三区| 日本黄大片高清| av在线天堂中文字幕| 亚洲精品一区蜜桃| 国产亚洲5aaaaa淫片| 久久久精品94久久精品| 极品少妇高潮喷水抽搐| 97人妻精品一区二区三区麻豆| 18禁在线无遮挡免费观看视频| 国产欧美日韩精品一区二区| 99热网站在线观看| 如何舔出高潮| 全区人妻精品视频| 一二三四中文在线观看免费高清| 国产成人精品一,二区| av在线观看视频网站免费| 午夜老司机福利剧场| 少妇的逼水好多| 少妇丰满av| 国产人妻一区二区三区在| 午夜免费男女啪啪视频观看| 亚洲国产av新网站| 国产乱来视频区| 少妇高潮的动态图| 一级二级三级毛片免费看| 老师上课跳d突然被开到最大视频| 性插视频无遮挡在线免费观看| 涩涩av久久男人的天堂| 男女边摸边吃奶| 嫩草影院入口| 人妻一区二区av| 国产精品一及| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| av在线天堂中文字幕| 观看免费一级毛片| 婷婷色综合大香蕉| 在线免费观看不下载黄p国产| 国产欧美亚洲国产| 欧美精品国产亚洲| 久久久久久久国产电影| 蜜臀久久99精品久久宅男| 嫩草影院入口| 亚洲欧美日韩东京热| 一边亲一边摸免费视频| 观看免费一级毛片| 国产一区二区三区av在线| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 国国产精品蜜臀av免费| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在| 久久久久久久精品精品| 免费少妇av软件| 美女主播在线视频| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 一区二区三区四区激情视频| 18+在线观看网站| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 亚洲第一区二区三区不卡| 国产黄片视频在线免费观看| 国产欧美日韩精品一区二区| 亚洲一级一片aⅴ在线观看| 国产一级毛片在线| 国产黄频视频在线观看| 乱系列少妇在线播放| 成人亚洲精品一区在线观看 | 亚洲aⅴ乱码一区二区在线播放| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 亚洲av欧美aⅴ国产| 91精品伊人久久大香线蕉| 97超碰精品成人国产| 高清日韩中文字幕在线| 亚洲图色成人| 日韩伦理黄色片| 久久精品国产亚洲网站| 欧美精品一区二区大全| 丰满少妇做爰视频| 五月开心婷婷网| 综合色av麻豆| 国产成人精品一,二区| 国内揄拍国产精品人妻在线| 成人二区视频| 中文欧美无线码| 老司机影院成人| 岛国毛片在线播放| 久久久久久久久大av| 免费大片18禁| 色综合色国产| 日本-黄色视频高清免费观看| 一区二区av电影网| 啦啦啦在线观看免费高清www| 成人无遮挡网站| 涩涩av久久男人的天堂| 国产午夜福利久久久久久| 欧美另类一区| 欧美潮喷喷水| 一级片'在线观看视频| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 日本免费在线观看一区| 亚洲va在线va天堂va国产| 99re6热这里在线精品视频| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 国产亚洲91精品色在线| av在线老鸭窝| 爱豆传媒免费全集在线观看| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 国产乱人视频| 在现免费观看毛片| 波野结衣二区三区在线| 大片免费播放器 马上看| av在线亚洲专区| 九色成人免费人妻av| 久久久a久久爽久久v久久| 亚洲国产av新网站| 久久精品国产a三级三级三级| av国产免费在线观看| 午夜激情福利司机影院| 中文字幕av成人在线电影| 一本一本综合久久| 亚洲欧美一区二区三区黑人 | 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 自拍偷自拍亚洲精品老妇| 午夜爱爱视频在线播放| 久久久久久九九精品二区国产| 国内精品宾馆在线| 大话2 男鬼变身卡| 春色校园在线视频观看| 日本-黄色视频高清免费观看| videossex国产| 女人久久www免费人成看片| 日韩成人av中文字幕在线观看| 亚洲av中文字字幕乱码综合| 激情五月婷婷亚洲| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| 国产欧美另类精品又又久久亚洲欧美| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产自在天天线| 国产精品一二三区在线看| 亚洲av国产av综合av卡| 51国产日韩欧美| 国产精品一区二区性色av| 免费观看的影片在线观看| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| 伦精品一区二区三区| 亚洲精品国产成人久久av| 国产伦精品一区二区三区四那| 亚州av有码| 亚洲精品国产av蜜桃| 蜜臀久久99精品久久宅男| 在线免费观看不下载黄p国产| 国产永久视频网站| 亚洲国产色片| 中文天堂在线官网| 人妻少妇偷人精品九色| 午夜日本视频在线| 成年免费大片在线观看| 亚洲成人精品中文字幕电影| 欧美 日韩 精品 国产| 免费看a级黄色片| 午夜激情福利司机影院| 国产精品偷伦视频观看了| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 国产成人aa在线观看| 精品国产一区二区三区久久久樱花 | 男人舔奶头视频| 亚洲精品国产色婷婷电影| 青春草国产在线视频| 欧美区成人在线视频| 嫩草影院精品99| 成人亚洲精品av一区二区| 成人毛片60女人毛片免费| 国产精品熟女久久久久浪| 日本-黄色视频高清免费观看| 99久久精品国产国产毛片| 九九在线视频观看精品| 国产在视频线精品| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久久久按摩| 水蜜桃什么品种好| 久久99精品国语久久久| 极品教师在线视频| 亚洲怡红院男人天堂| 晚上一个人看的免费电影| 欧美bdsm另类| 精品人妻一区二区三区麻豆| 大码成人一级视频| 午夜视频国产福利| 久久ye,这里只有精品| 久久久欧美国产精品| 精品一区在线观看国产| 亚洲人成网站在线观看播放| 国产av不卡久久| 秋霞伦理黄片| 欧美性猛交╳xxx乱大交人| 国产成人一区二区在线| 日日摸夜夜添夜夜爱| 精品酒店卫生间| 嫩草影院入口| 欧美xxⅹ黑人| 51国产日韩欧美| 蜜臀久久99精品久久宅男| 色视频www国产| 亚洲天堂av无毛| 极品教师在线视频| 国产精品久久久久久精品电影| 观看免费一级毛片| 国产精品三级大全| 91精品一卡2卡3卡4卡| 青春草亚洲视频在线观看| 欧美日本视频| av国产精品久久久久影院| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 制服丝袜香蕉在线| 亚洲精品第二区| 免费高清在线观看视频在线观看| 又爽又黄无遮挡网站| av免费观看日本| 欧美极品一区二区三区四区| 丰满人妻一区二区三区视频av| 日韩视频在线欧美| 舔av片在线| 国产成人一区二区在线| av卡一久久| 老司机影院毛片| 国产在视频线精品| 日韩一本色道免费dvd| 亚洲欧美日韩另类电影网站 | av播播在线观看一区| 日本黄色片子视频| 日韩不卡一区二区三区视频在线| 99热这里只有是精品50| 国产精品三级大全| 在线精品无人区一区二区三 | 亚洲美女搞黄在线观看| 免费av毛片视频| 日韩视频在线欧美| 欧美性猛交╳xxx乱大交人| 成人高潮视频无遮挡免费网站| 91久久精品国产一区二区成人| 人体艺术视频欧美日本| 乱系列少妇在线播放| 久久99蜜桃精品久久| 亚洲人成网站在线播| 亚洲综合色惰| 成人午夜精彩视频在线观看| 在线观看美女被高潮喷水网站| 国产精品.久久久| 高清欧美精品videossex| 男的添女的下面高潮视频| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 干丝袜人妻中文字幕| 亚洲美女视频黄频| 久久久久久久亚洲中文字幕| 欧美另类一区| 黄色配什么色好看| 2021少妇久久久久久久久久久| 久久精品人妻少妇| 国产精品伦人一区二区| 精品一区二区免费观看| 美女被艹到高潮喷水动态| 舔av片在线| 国产毛片a区久久久久| 最近手机中文字幕大全| 国产黄色免费在线视频| 亚洲人成网站在线播| 亚州av有码| 国产成人午夜福利电影在线观看| 国产成人免费无遮挡视频| 色网站视频免费| 丝袜脚勾引网站| 久久久亚洲精品成人影院| 婷婷色av中文字幕| 久久久成人免费电影| 国产成人精品一,二区| 搡老乐熟女国产| 国产精品.久久久| 男人和女人高潮做爰伦理| 汤姆久久久久久久影院中文字幕| 国产欧美日韩一区二区三区在线 | 国产免费又黄又爽又色| 久久人人爽av亚洲精品天堂 | 国产精品久久久久久精品电影| 男女无遮挡免费网站观看| 舔av片在线| 亚洲av二区三区四区| 日韩免费高清中文字幕av| av网站免费在线观看视频| 国产精品伦人一区二区| 亚洲av免费在线观看| 国产午夜精品一二区理论片| 一区二区三区四区激情视频| 国产成人精品久久久久久| 亚洲精品第二区| 最新中文字幕久久久久| 男女那种视频在线观看| 国产精品女同一区二区软件| .国产精品久久| 熟女人妻精品中文字幕| 在线观看一区二区三区| 久久久a久久爽久久v久久| 国产高清国产精品国产三级 | 久久99热这里只有精品18| 成人欧美大片| 一二三四中文在线观看免费高清| 亚洲精品aⅴ在线观看| 男人狂女人下面高潮的视频| 亚洲av免费在线观看| 色5月婷婷丁香| 亚洲婷婷狠狠爱综合网| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 国产亚洲午夜精品一区二区久久 | 国产在视频线精品| 欧美亚洲 丝袜 人妻 在线| 九九爱精品视频在线观看| 日本猛色少妇xxxxx猛交久久| 看免费成人av毛片| 国产片特级美女逼逼视频| 免费观看a级毛片全部| 国产 一区 欧美 日韩| 我要看日韩黄色一级片| 三级经典国产精品| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人综合另类久久久| 日韩视频在线欧美| av在线播放精品| 国产免费一级a男人的天堂| 亚洲精品456在线播放app| 日韩三级伦理在线观看| 久久精品国产亚洲av涩爱| 亚洲精品国产av成人精品| 2021天堂中文幕一二区在线观| 亚洲av在线观看美女高潮| 色哟哟·www| 看十八女毛片水多多多| 51国产日韩欧美| 久久99热这里只有精品18| 亚洲人成网站在线观看播放| av国产精品久久久久影院| 两个人的视频大全免费| 中文字幕免费在线视频6| 美女国产视频在线观看| 亚洲无线观看免费| 日韩欧美精品免费久久| av播播在线观看一区| 一级爰片在线观看| 色视频在线一区二区三区| 亚洲电影在线观看av| 韩国高清视频一区二区三区| 我的女老师完整版在线观看| 日韩成人伦理影院| 99久久精品国产国产毛片| 成人黄色视频免费在线看| 亚洲三级黄色毛片| av国产精品久久久久影院| 日韩欧美 国产精品| 免费黄网站久久成人精品| 激情五月婷婷亚洲| 欧美区成人在线视频| 美女高潮的动态| 在线观看三级黄色| 伦理电影大哥的女人| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 国产伦理片在线播放av一区| 亚洲综合精品二区| av免费观看日本| 久久这里有精品视频免费| 好男人视频免费观看在线| 一区二区三区精品91| 免费少妇av软件| 免费观看无遮挡的男女| 欧美日韩一区二区视频在线观看视频在线 | 男人添女人高潮全过程视频| 久久精品久久精品一区二区三区| 久久久久久九九精品二区国产| 99久久人妻综合| 深爱激情五月婷婷| 人妻夜夜爽99麻豆av| 久久99热这里只频精品6学生| 三级国产精品欧美在线观看| 欧美日韩亚洲高清精品| 欧美少妇被猛烈插入视频| 免费av不卡在线播放| 少妇熟女欧美另类| 五月玫瑰六月丁香| 国产精品.久久久| 麻豆乱淫一区二区| 亚洲国产欧美在线一区| 色综合色国产| 国产乱来视频区| 自拍欧美九色日韩亚洲蝌蚪91 | 成人午夜精彩视频在线观看| 精品久久久精品久久久| av免费观看日本| 赤兔流量卡办理| 高清欧美精品videossex| 国产一区二区在线观看日韩| 免费看不卡的av| 热99国产精品久久久久久7| 免费播放大片免费观看视频在线观看| 赤兔流量卡办理| 国产亚洲av嫩草精品影院| 亚洲精品日韩av片在线观看| 精品久久久久久久人妻蜜臀av| 丰满少妇做爰视频| 亚洲精品日韩av片在线观看|