• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    濕化學(xué)法合成LiNi1/3Mn1/3Co1/3O2及其表征

    2010-12-12 02:44:32張曉雨江衛(wèi)軍朱曉沛
    物理化學(xué)學(xué)報(bào) 2010年6期
    關(guān)鍵詞:化學(xué)系化學(xué)法工程學(xué)院

    張曉雨 江衛(wèi)軍 朱曉沛 其 魯,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院應(yīng)用化學(xué)系,北京 100871;2中信國安盟固利電源技術(shù)有限公司,北京 102200)

    Nowadays,lithium-ion batteries(LIB)have been widely used in portable power sources.Most LIB use LiCoO2as cathode material because of its simple synthesis,low irreversible capacity loss,and good cycling performance[1-2].However,due to high cost of LiCoO2,much effort has been made to develop other cheaper cathode materials and use them in price-sensitive and large-scale applications.Recently,a layer-structured compound LiNi1/3Mn1/3Co1/3O2(simplified as LNMCO),first introduced by Ohzuku′s group in 2001[3],has been considered as an attractive candidate of next-generation cathode material to replace LiCoO2due to its lower cost,more stable structure,larger capacity,and better thermal stability at charged state[4-6].The valence states of nickel,manganese,and cobalt ions in LNMCO powder are+2, +4,and+3,respectively,confirmed by X-ray photoelectron specctroscopy(XPS)study[7].For LNMCO,each transition metal plays its important role.The divalent nickel ions and trivalent cobalt ions are electroactive and the electrochemical reaction of lithium extraction/insertion takes place by oxidation/reduction of Ni2+/Ni4+and Co3+/Co4+ions depending on different cut-off voltages,while Mn4+remains inactive but maintains the structural stability[8].

    However,cation mixing still remains a big problem for this material,since the ionic radius of Ni2+(0.069 nm)is close to that of Li+(0.076 nm)[9].A partial occupation of Ni2+by Li+and Ni2+generates a disorder in the structure and this could restrict the motion of Li+ions within the layers of the oxide,which leads to the tendency for the capacity to fade during long cycling[10]. Therefore,one aim of this work is to decrease the cation mixing byadjusting different acid to metal ion molar ratios(R)during the synthesis through wet-chemical method.

    Moreover,It has been shown that magnetic experiment is quite a powerful tool to check the quality of samples and structural properties at nanoscopic scale,especially in the case of cathode materials for LIB[11-14]and it is possible to correlate the magnetic and structural properties of LNMCO[15-16].In particular, we have shown that the Ni2+ion in substitution for Li+on the 3b lattice site,Ni2+(3b)generates a ferromagnetic interaction with the Mn4+ions nearest neighbours on 3a sites,and this Ni2+(3b)-Mn4+(3a)ferromagnetic interaction is responsible for the formation of a ferromagnetic cluster centred on the Ni2+(3b)defect[17].The magnetic moment resulting from these ferromagnetic clusters can be detected from the magnetic measurements,from which the concentration of the Ni2+(3b)defects can be derived and compared with the concentration deduced from Rietveld refinement of XRD spectra.This correlation between magnetic and structural properties makes possible the determination of the concentration of Ni2+(3b)defects with very good accuracy[18].We then use the same procedure in this work.

    In addition,although wet-chemical method has been used to synthesize LNMCO,using different chelating agents,e.g.,citric acid and oxalic acid[19-23],and succinic acid is also one of the widely used chelating agents for the synthesis of oxides,the synthesis of LNMCO assisted by succinic acid and the effect of its content on magnetic properties,especially on the relationship between structural and magnetic properties of LNMCO,has not been reported to the best of our knowledge.Therefore,varying the succinic acid to metal ion molar ratio and this effect on the structural,morphological,electrochemical,particularly on the magnetic properties of LNMCO,are studied detailedly in this paper.

    1 Experimental

    1.1 Sample synthesis

    The synthesis occurred from metal acetates via inorganic polymerization reactions in the solution[24-26].This wet-chemical route was assisted by succinic acid(AR,Sigma-Aldrich product) as a polymeric agent,using appropriate molar ratios of lithium, nickel,manganese,and cobalt acetate as starting materials to synthesize LNMCO compound.Stoichiometric amounts of acetate hydrates ofLi(CH3COO)·2H2O(AR),Ni(CH3COO)2·4H2O(AR), Mn(CH3COO)2·4H2O(AR),and Co(CH3COO)2·4H2O(AR), Sigma-Aldrich products,were dissolved in distilled water and mixed homogenously with an aqueous solution of succinic acid, varying the molar ratio(R)of acid to metal-ion.The resulting solution was mixed by magnetic stirring at 80℃for 6 h to obtain a clear viscous gel.The gel was dried in an oven at 120℃for 12 h.The as-prepared precursor was pre-calcined at 450℃for 4 h to convert the metal carboxylates to oxides.After cooling down to room temperature,the obtained powder was grounded in an agate mortar and then sintered at 900℃in air for 15 h without pelleting to get the final LNMCO.

    1.2 Apparatus

    Thermogravity(TG)experiment was performed using a Q50 (TA,USA)instrument analyzer to monitor the mass loss/gain and heat treatment processes under a flow of dry air with a heating rate of 10℃·min-1.Measurements were carried out in the temperature range of 25℃≤T≤750℃.

    For structural analysis of LNMCO,samples were characterized with X-ray diffraction(XRD)on a Philips(Netherlands)X′Pert PRO MRD(PW3050)diffractometer equipped with a Cu anticathode(Cu Kαradiation,λ=0.154056 nm)at room temperature.XRD patterns were collected under Bragg-Brentano geometry at 2θ with a step of 0.02°in the range of 10°-80°and were refined by the Rietveld method using the GSAS/EXPGUI package[27].For morphology analysis of LNMCO,a scanning electron microscope(SEM)study of the samples was performed using a JEOL(Japan)JSM-5600LV electron microscope.

    The magnetic measurements (susceptibility and magnetization)were performed with a fully automated superconducting quantum interface device(SQUID)magnetometer(Quantum Design MPMS XL,USA)in the temperature range of 4-300 K. Powders were placed into small plastic vial,placed in a holder and finally inserted into the helium cryostat of the SQUID apparatus.The temperature dependence of the susceptibility data was recorded during heating of the sample using two modes:zero field cooling(ZFC)and field cooling(FC),to determine the mag-netic behavior.The procedure is based on performing two consecutive magnetization measurements:in ZFC the sample is first cooled down in the absence of magnetic field,then a magnetic field H=10 kOe is applied,and the ZFC magnetic susceptibility M(H)/H is measured where M is the magnetization measured upon heating.In the FC experiments,the same magnetic field is applied first at room temperature;the FC susceptibility is measured upon cooling.No difference,i.e.,no magnetic irreversibility effect has been detected between ZFC and FC measurements in anyofthe samples.Magnetic curves M(H)have been measured in an applied magnetic field in a range of 0-30 kOe.

    Charge-discharge tests were performed on coin type cell (CR2032).Composite positive electrode was prepared by thoroughly mixing the active material(90%(w,mass fraction))with carbon black(2%(w)),acetylene black(2%(w)),polyvinylidene fluoride(6%(w))in N-methyl-pyrrolidinone and spread onto aluminium foils then dried at 120℃for 24 h in vacuum.Cells were then assembled in an argon-filled glove box(Braun,Germany) using foils of Li metal as counter electrode and Celgard 2400 as separator.The electrolyte was 1.0 mol·L-1LiPF6in a mixture of ethylene carbonate(EC)and diethyl carbonate(DEC)(1:1,volume ratio).The cells were galvanostatically cycled at 0.2C (1C=160 mA·g-1)between 3.0 V and 4.3 V(versus Li/Li+)on a Land CT2001A battery tester(Wuhan Jinnuo Electronics Co., Ltd.,China)at room temperature.

    2 Results and discussion

    2.1 TG analysis of LNMCO precursor

    When acetate of an electropositive transition metal dissolves in succinic acid,there is a finite release of the acetate anion into solution.The basic species,acetate anion,can allow the dissolution of metal acetates.The formation of a chelation complex is important to prevent the segregation or precipitation of metal ions.The acetate ligand,succinic acid,has oxygen atoms and hydrogen atoms which can participate in hydrogen bonding.As a result,metal acetates are trapped in a glassy state by an extended network of hydrogen bonds.At the same time,succinic acid binds to the metal acetates and replaces the water of hydration in the complex to give acid-acetate species[28].Succinic acid also acts as fuel and provides local heat for the formation of compound during the decomposition process because of its selfigniting property,accelerating the decomposition of acetate ions. Therefore,varying the acid to metal ion molar ratio(R)can affect the decomposition/formation reaction.As an example,Fig.1 shows the TG analysis curve of the precursor of LNMCO synthesized via R=0.5.Several mass loss stages are observed in this TG curve.The first mass loss stage occurs at ca 223℃,which would be attributed to departure of residual water.After the departure of the remaining water molecule at ca 330℃,the anhydrous metal acetate can be decomposed into both metal oxide and gases such as carbon dioxide by further thermal treatment in air[29-30].It was reported that chelating agent(carboxylic-based acid)provoked decomposition during the synthesis of oxide powders and the gel precursor burned because the decomposed acetate ions acted as an oxidizer[24-26],so the mass loss in the third step is observed around 376℃which corresponds to the decomposition of succinic acid and acetate ions xerogel.After 450℃, there is little mass loss,so in this work,we choose 450℃as the heating temperature for pre-calcination.The reaction pathway can thus be given as follows:

    2.2 Structural and morphological analysis of LNMCO

    Fig.2 XRD patterns of LNMCO powders synthesized with different succinic acid to metal ion molar ratios(R)

    Fig.2 shows the XRD patterns of LNMCO materials synthesized by wet-chemistry with calcination at 900℃in air for 15 h via different R values.From now on,all the experiments in this work will be focussed on the optimization of the parameter R. The Bragg lines are well indexed in the R3m space group with the hexagonal sitting.No impurity phases are detected and the powders are well crystallized in the α-NaFeO2type structure.As seen in Fig.2,the(006)/(102)and(108)/(110)doublets are well separated,which indicates a good hexagonal ordering of LNMCO[31].The narrow diffraction peaks of the pattern indicate a high crystallinity of the LNMCO powder and suggest a homogeneous distribution of the cations within the structure.The lattice parameters were obtained by analysis of the XRD data and the results were summarized in Table 1.The lattice parameter,a,is related to average metal-metal intraslab distance,the lattice parameter,c,is related to the average metal-metal inter-slab distance;and the trigonal distortion,c/a,is related to the hexagonal structure disorder.For layered compounds,higher value of c/a is desirable for better hexagonal structure[7].The trigonal distortion c/a is the largest for LNMCO R=1,which is used as a criterion of optimized material.In addition,the integrated intensity ratio of(003)to(104)peak,I003/I104,has been considered as an indicator of the degree of cation mixing[32].The higher the ratio is, the lower the cation mixing is.It is also believed that the lower value of(I006+I102)/I101is another indicator of better hexagonal ordering[33-34].The lowest value of(I006+I102)/I101,together with the highest value of I103/I104is obtained for R=1,which suggests that this is the optimized value of this synthesis parameter.As a result,varying R value has a direct effect on the structural properties of LNMCO,since the self-igniting property of succinic acid can influence the oxygen partial pressure during synthesis.The sudden variation in the oxygen partial pressure,especially during the burning of the succinic acid,has an impact on LNMCO formation.When R value is low,it cannot provide enough local heat for the formation of precursor.However,when R value is too high,the local temperature increases too much in a short period of time and the partial pressure of oxygen decreases due to the increased CO2,which results in the insufficient oxidation of ions and ferromagnetic defects that can aggravate the cation mixing during the formation of LNMCO.

    The Rietveld refinement has been made with the constraints that the lithium ion and the nickel-manganese-cobalt ions occupy the 3b(0,0,0)and 3a(0,0,1/2)Wyckoff sites,respectively, while the oxygen anionsoccupythe 6c(0,0,zoxy)position(zoxywill be refined).In addition,we assume that each cationic site is fully occupied and the number of cations equals to that of anions,sothe overall charge neutrality is maintained.Furthermore,we assumed the existence of a small amount of nickel ions in the lithium sites,since the smaller difference in size between the Ni2+(0.069 nm)and the Li+ions(0.076 nm)in contrast with other cations(r(Mn4+)=0.053 nm,r(Co3+)=0.054 nm in an octahedral environment[9]).Therefore,we defined the formula as[Li1-yNiy]3b[LiyNi1/3-yMn1/3Co1/3]3aO2for Rietveld refinement:the occupancy parameter y of the Ni2+ions at the 3b sites was refined and constrained to be equal to that of Li+ions at the 3a sites,with the total nickel occupancy ratio constrained to 1/3.The results of the Rietveld refinement of the XRD patterns are also summarized in Table 1 as a function of R.Since the radius of Ni2+is smaller than that of Li+,Ni2+ions on 3b sites leads to an increase of the parameter a.Moreover,the presence of the Ni2+ions in lithium plane leads to the stronger electrostatic attraction between oxygen and Li+/Ni2+ions in the LiO2inter-slab plane,hence the decrease of the LiO2inter-slab space,I(LiO2),the correlated increase of the thickness S(MO2)of the MO2slabs,and the increase of c.

    Table 1 Structural data of the LiNi1/3Mn1/3Co1/3O2samples synthesized with different R values

    As seen from Table 1,we find a,c,S(MO2)are minimum and I(LiO2)is maximum for R=1,which confirms that this is the optimized value for this parameter.These correlated variations of a,c,S(MO2)and I(LiO2)are then additional proofs that R=1 is the optimized value for succinate route.Indeed,the amount of Li+/Ni2+cation mixing is the lowest in this case(y=1.85%),which is better than the results in Refs.[21,35].The Rietveld fit of the XRD pattern for this sample is shown in Fig.3.

    The morphologies of powders were investigated by SEM.Fig. 4(a-d)shows the SEM images of LNMCO compounds synthesized via succinic acid route with different R values.The SEM pictures also show that the primary particles are stuck into agglomerates.The sample synthesized via the optimal value R=1 (Fig.4b),with minimum cation mixing and optimum structural integrity,seems to have a more uniform size distribution of particlesthan the others,which can facilitate the diffusion oflithiumion,so higher specific capacity and better capacity retention can be expected.

    Fig.3 Rietveld refinement patterns of LNMCO synthesized at R=1 via wet-chemical methodThe cross marks show observed X-ray diffraction intensities and the solid line (in red on the web version)represents calculated intensities.The curve at the bottom(in blue on the web version)is the difference between the calculated and observed intensities on the same scale.

    Fig.4 SEM images of LNMCO synthesized with different R valuesR:(a)0.5,(b)1,(c)2,(d)3

    2.3 Magnetic properties of LNMCO

    Fig.5 Plots of the reciprocal magnetic susceptibility χ-1mfor samples synthesized with different R valuesData were collected with a magnetic field H=10 kOe.

    The temperature dependence of the reciprocal magnetic susceptibility,=H/M is presented in Fig.5 for all the samples. The magnetization curves are reported in Fig.6(a-d)for samples withthe“optimized”valueR=1,andtheotherthreesamples.Above 150 K,the curve-T shows a paramagnetic(PM)behavior and the magnetization is linear in field for all the samples,so thatis meaningful,i.e.,H/M=?H/?M.The quasi-linear variations ofwith T at the susceptibility can be described by a Curie-Weiss lawwith Θpthe Curie-Weiss temperature,and Cpthe Curie constant related to the effective magnetic moment μeffbythe relationwith kBthe Boltzmann constant and N the number of metal ions in one mole of product.The values of the two fitting parameters Θpand μeffobtained for the different acid to metal ion ratios R are reported in Table 2.Θpis negative in all the compounds and this is an intrinsic property due to the fact that intrinsic magnetic interactions are mainly the intra-layer superexchange interactions mediated via oxygen at 90°bonding angle,and they are dominantly antiferromagnetic(AFM)[14].Taking into account that the magnetic moments carried by Ni2+and Mn4+are 2.83μBand 3.87μB,respectively in this material while Co3+is diamagnetic[36-38],the theoreti-cal value of μeffin absence of Ni2+(3b)defects would be:

    Fig.6 Isothermal plots of the magnetization M(H)for the LNMCO sample synthesized with different R values

    Table 2 Magnetic properties of LNMCO synthesized with different R values

    The experimental value of μefffor the R=1 sample is close to this theoretical value.For the other samples,however,μeffis found to be larger.To understand this effect,we note that the magnetization curves are no longer linear below 80 K.Note in this case, H/M≠?H/?M,so that χ-1min Fig.6(a-d)does not have any physical meaning at these low temperatures.Nevertheless,we have reported the data in Fig.6(a-d)since it will be useful to the discussion.For the moment,we just note that these deviations from linearity are related to the onset of a remanent magnetization at low temperature,evidenced in the magnetization curves of the R=3 in Fig.6(d).Following the prior works[14-16],we attribute this feature to the Ni2+(3b)defects.The substitution of Li by Ni on a 3b site generates a 180°interlayer Mn4+(3a)-O-Ni2+(3b)superexchange interactions which is ferromagnetic(FM)after the Goodenough rules[17].This interaction is strong enough to generate a ferromagnetic spin freezing of the Mn4+(3a)-O-Ni2+(3b)pair that is responsible for the onset of remanent magnetization at low temperature.This interaction is actually strong enough to induce a ferromagnetic spin-freezing of such pairs at low temperature.We can then estimate the amount of Ni2+(3a)defects as the ratio of the magnetic moment at saturation(Ms)of the ferromagnetic component of the magnetization,to the moment at saturation that the sample would have if all the Mn and Ni ions were saturated ferromagnetically,namely(1/3)g·μB·(SMn+SNi)=(5/3)μB= 1.67μBper chemical formula,since the Mn4+and Ni2+carry a spin SMn=3/2 and SNi=1.The gyromagnetic factor g is 2,since the orbital momentum is quenched by crystal field effects,and the factor 1/3 comes from the fact that there is only 1/3 Ni-Mn pair per chemical formula.Mshas been estimated from the linear extrapolation to H→0 of the isothermal magnetization curve M(H) at T=4.2 K taken in the range 20 kOe<H<30 kOe.The lowest temperature and this range of the highest field available in the experiments have been chosen to be sure that the ferromagnetic component is saturated.Despite this precaution,it should be noticed that the curvature of the magnetic curves below 20 kOe does not guarantee that the full saturation of the ferromagnetic component has been achieved even at higher field,and even at 4.2 K.Nevertheless,the result for the estimation of the rate of substitution y deduced from this magnetic analysis reported in Table 2,is in remarkable agreement with the result deduced from Rietveld refinement for all the samples investigated,which validates the analysis.For instance,in the case of the sample with R=1,we find Ms=167 emu·mol-1(Fig.6(b)),which amounts to a magnetic moment per formula 0.03μB.So the concentration of Ni2+at 3b sites can be calculated as 0.03μB/1.67μB=1.80%, which is the lowest value among all the samples and agrees well with the results obtained from Rietveld refinement.In the paramagnetic regime,the ferromagnetic Mn4+(3a)-O-Ni2+(3b)pairing enhances the effective magnetic moment of the material.This is the reason for the increasing large value of μeffupon increasing departure of the parameter R from its optimized value R=1,i.e., upon increasing y.

    Fig.7 Initial charge-discharge profiles of LNMCO samples synthesized with different R values

    2.4 Electrochemical properties of LNMCO

    Fig.7 shows the initial charge-discharge curves of LNMCO cathode synthesized with different R values at 32 mA·g-1(0.2C) rate between 3.0 V and 4.3 V versus Li/Li+at room temperature. As shown in Fig.7,the prepared LNMCO materials display smooth charge-discharge curves without any plateaus,which indicates no spinel-related phases forming during cycling.As seen from Table 3,the initial discharge capacity of LNMCO samples are 155 mAh·g-1(R=0.5),161 mAh·g-1(R=1),149 mAh·g-1(R=2),and 141 mAh·g-1(R=3),respectively.The coulombic efficiencies are 90.6%(R=0.5),93.1%(R=1),90.3%(R=2),and 89.2%(R=3).

    Fig.8 shows the differential capacity(?Q/?E)vs cell potential (E)of the Li//LNMCO(R=1)coin cell calculated from data presented in Fig.7.Upon charging the cell displays a major oxidation peak at 3.79 V,while the reduction peak occurs at 3.68 V upon discharging.As reported many times in the literature,the oxidation peak at ca 3.8 V with the corresponding reduction peak at 3.7 V is typical for the Ni2+/Ni4+redox reaction in the Li-Ni-Mn-Co oxide lattice[5,14].However,the asymmetry toward the high potential side is due to the partial redox contribution from Co3+to Co4+that corresponds to the second electron transfer.

    The cycling performances of LNMCO samples are illustratedin Fig.9.The optimized sample(R=1)achieves higher initial discharge capacity(161 mAh·g-1)and its capacityretention is 91.3% after 50 cycles,which correspond well with the results from structural and magnetic analyses before.Higher structural integrity and less cation mixing result in better electrochemical performance,which can be compared with that of LNMCO synthesized by other wet-chemical methods[39-40],when using the same cut-off voltage(3.0-4.3 V)and current density(32 mA·g-1) for electrochemical characterization.

    Table 3 Electrochemical properties of LNMCO synthesized with different R values

    Fig.8 Differential capacity(?Q/?E)vs cell potential(E)of the Li//LNMCO(R=1)coin cell

    Fig.9 Cycling performance of LNMCO samples synthesized with different R values

    3 Conclusions

    The layered LNMCO was successfully synthesized via wetchemical route assisted by succinic acid with different R values. XRD,SQUID,and charge-discharge characterizations show that the structural,magnetic,and electrochemical profiles are sensitive to the synthetic conditions,i.e.,the R value that governs the cation mixing.The best performance of the LNMCO electrode has been obtained from an acid to metal ion ratio R=1 sintered at 900℃for 15 h.The amount of cation mixing estimated from the magnetization curve for R=1 is 1.80%,which agrees well with the Rietveld refinement result(1.85%).The LNMCO sample with R=1 shows the best reversibility with a coulombic efficiency of 93.1%for the first cycle.Its initial discharge capacity is 161 mAh·g-1and its capacity retention is 91.3%after 50 cycles in the cut-off voltage of 3.0-4.3 V.

    1 Nagamura,T.;Tazawa,K.Prog.Batteries Sol.Cells,1990,9:209

    2 Reimers,J.N.;Dahn,J.R.J.Electrochem.Soc.,1992,139:209

    3 Ohzuku,T.;Makimura,Y.Chem.Lett.,2001,30:642

    4 Yabuuchi,N.;Ohzuku,T.J.Power Sources,2003,119:171

    5 Belharouak,I.;Sun,Y.K.;Liu,J.;Amine,K.J.Power Sources, 2003,123:247

    6 Wang,J.;Qi,Y.J.;Li,Y.W.;Qi,L.Acta Phys.-Chim.Sin.,2007, 23(suppl.):46 [王 劍,祁毓俊,李永偉,其 魯.物理化學(xué)學(xué)報(bào),2007,23(增刊):46]

    7 Shaju,K.M.;Rao,G.V.S.;Chowdari,B.V.R.Electrochim.Acta, 2002,48:145

    8 Yoon,W.S.;Grey,C.P.;Balasubramanian,M.;Yang,X.Q.; Fischer,D.A.;McBreen,J.Electrochem.Solid-State Lett.,2004, 7:A53

    9 Shannon,R.D.Crystallogr.Acta A,1976,32:751

    10 Shaju,K.M.;Bruce,P.G.J.Power Sources,2007,174:1201

    11 Julien,C.M.;Ait-Salah,A.;Mauger,A.;Gendron,F.Ionics,2006, 12:21

    12 Amdouni,N.;Gendron,F.;Mauger,A.;Zarrouk,H.;Julien,C.M. Mater.Sci.Eng.B,2006,129:64

    13 Zaghib,K.;Ravet,N.;Gauthier,M.;Gendron,F.;Mauger,A.; Goodenough,J.B.;Julien,C.M.J.Power Sources,2006,163:560

    14 Abdel-Ghany,A.;Zaghib,K.;Gendron,F.;Mauger,A.;Julien,C. M.Electrochim.Acta,2007,52:4092

    15 Abdel-Ghany,A.;Mauger,A.;Gendron,F.;Zaghib,K.;Julien,C. M.ECS Trans.,2007,3:137

    16 Zhang,X.Y.;Mauger,A.;Gendron,F.;Qi,L.;Groult,H.; Perrigaud,L.;Julien,C.M.ECS Trans.,2009,16:11

    17 Goodenough,J.B.Phys.Rev.,1960,117:1442

    18 Zhang,X.Y.;Jiang,W.J.;Mauger,A.;Qi,L.;Gendron,F.;Julien, C.M.J.Power Sources,2010,195:1292

    19 Zhang,W.;Liu,H.X.;Hu,C.;Zhu,X.J.;Li,Y.X.Rare Metals, 2008,27:158

    20 Guo,H.J.;Liang,R.F.;Li,X.H.;Zhang,X.M.;Wang,Z.X.; Peng,W.J.;Wang,C.Trans.Nonferrous Met.Soc.China,2007, 17:1307

    21 Li,X.;Wei,Y.J.;Ehrenberg,H.;Du,F.;Wang,C.Z.;Chen,G. Solid State Ionics,2008,178:1969

    22 Liu,J.J.;Qiu,W.H.;Yu,L.Y.;Zhang,G.H.;Zhao,H.L.;Li,T. J.Power Sources,2007,174:701

    23 He,Y.S.;Pei,L.;Liao,X.Z.;Ma,Z.F.J.Fluorine Chem.,2007, 128:139

    24 Julien,C.M.;El-Farh,L.;Rangan,S.;Massot,M.J.Sol-Gel Sci. Technol.,1999,15:63

    25 Julien,C.M.;Michael,M.S.;Ziolkiewicz,S.Int.J.Inorg.Mater., 1999,1:29

    26 Julien,C.M.;Letranchant,C.;Rangan,S.;Lemal,M.;Ziolkiewicz, S.;Castro-Garcia,S.;El-Farh,L.;Benkaddour M.Mater.Sci.Eng. B,2000,76:145

    27 Toby,B.H.J.Appl.Cryst.,2001,34:210

    28 Wu,H.M.;Rao,C.V.;Rambabu,B.Mater.Chem.Phys.,2009, 116:532

    29 Lee,B.W.J.Power Sources,2002,109:220

    30 Caballero,A.;Cruz,M.;Hernán,L.;Melero,M.;Morales,J.; Castellón,E.R.J.Power Sources,2005,150:192

    31 Rougier,A.;Gravereau,P.;Delmas,C.J.Electrochem.Soc.,1996, 143:1168

    32 Ohzuku,T.;Ueda,A.;Nagayama,M.J.Electrochem.Soc.,1993, 140:1862

    33 Dahn,J.R.;von Sacken,U.;Michal,C.A.Solid State Ionics, 1990,44:87

    34 Reimers,J.N.;Rossen,E.;Jones,C.D.;Dahn,J.R.Solid State Ionics,1993,61:335

    35 Shin,Y.J.;Choi,W.J.;Hong,Y.S.;Yoon,S.;Ryu,K.S.;Chang, S.H.Solid State Ionics,2006,177:515

    36 Chernova,N.A.;Ma,M.M.;Xiao,J.;Whittingham,M.S.;Breger, J.;Grey,C.P.Chem.Mater.,2007,19:4682

    37 Ma,M.M.;Chernova,N.A.;Toby,B.H.;Zavalij,P.Y.; Whittingham,M.S.J.Power Sources,2007,165:517

    38 Xiao,J.;Chernova,N.A.;Whittingham,M.S.Chem.Mater., 2008,20:7454

    39 Park,S.H.;Yoon,C.S.;Kang,S.G.;Kim,H.S.;Moon,S.I.;Sun, Y.K.Electrochim.Acta,2004,49:557

    40 Liang,Y.G.;Han,X.Y.;Zhou,X.W.;Sun,J.T.;Zhou,Y.H. Electrochem.Commun.,2007,9:965

    猜你喜歡
    化學(xué)系化學(xué)法工程學(xué)院
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    福建工程學(xué)院
    福建工程學(xué)院
    濕化學(xué)法合成Ba(Mg(1-x)/3ZrxTa2(1-x)/3)O3納米粉體及半透明陶瓷的制備
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    福建工程學(xué)院
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    福建工程學(xué)院
    化學(xué)法處理電鍍廢水的研究進(jìn)展
    濕化學(xué)法合成羥基磷灰石晶體及其表征
    91老司机精品| 首页视频小说图片口味搜索| av欧美777| 日本 av在线| 丝袜美腿诱惑在线| a级毛片在线看网站| 中出人妻视频一区二区| 精品国产国语对白av| 久久精品91蜜桃| 久久精品aⅴ一区二区三区四区| 国产黄a三级三级三级人| 视频在线观看一区二区三区| 亚洲国产中文字幕在线视频| 在线十欧美十亚洲十日本专区| 婷婷精品国产亚洲av在线| 亚洲精品一区av在线观看| 欧美激情极品国产一区二区三区| 狂野欧美激情性xxxx| 日韩欧美在线二视频| 一本大道久久a久久精品| 亚洲 国产 在线| 欧美日本中文国产一区发布| 精品熟女少妇八av免费久了| 午夜免费鲁丝| 亚洲一区二区三区色噜噜 | 午夜免费成人在线视频| 亚洲成av片中文字幕在线观看| 日韩欧美免费精品| 成在线人永久免费视频| 久久精品国产清高在天天线| 他把我摸到了高潮在线观看| 欧美午夜高清在线| 久久婷婷成人综合色麻豆| 三上悠亚av全集在线观看| 亚洲自偷自拍图片 自拍| 久久久久久久久久久久大奶| 亚洲色图 男人天堂 中文字幕| www国产在线视频色| 精品国内亚洲2022精品成人| 午夜两性在线视频| 日韩精品免费视频一区二区三区| 久久中文字幕人妻熟女| 午夜精品在线福利| 可以免费在线观看a视频的电影网站| 午夜久久久在线观看| 日日爽夜夜爽网站| 亚洲成人免费电影在线观看| 人人妻,人人澡人人爽秒播| 欧美激情 高清一区二区三区| 久久中文字幕人妻熟女| 日本a在线网址| 一进一出抽搐动态| 精品久久久久久久久久免费视频 | www日本在线高清视频| 老熟妇乱子伦视频在线观看| www.熟女人妻精品国产| 久久草成人影院| 在线看a的网站| 91成年电影在线观看| 18禁国产床啪视频网站| 久久狼人影院| 一级a爱片免费观看的视频| 国产乱人伦免费视频| 美女国产高潮福利片在线看| 亚洲一区二区三区不卡视频| 在线十欧美十亚洲十日本专区| 国产乱人伦免费视频| 色哟哟哟哟哟哟| 欧美午夜高清在线| 中文字幕人妻熟女乱码| 韩国av一区二区三区四区| av天堂在线播放| 精品久久久久久久毛片微露脸| 在线观看日韩欧美| 国产成人免费无遮挡视频| 亚洲色图av天堂| 久久精品aⅴ一区二区三区四区| av超薄肉色丝袜交足视频| 男女高潮啪啪啪动态图| 亚洲一区中文字幕在线| 丰满的人妻完整版| 麻豆国产av国片精品| 看免费av毛片| 亚洲自拍偷在线| 少妇裸体淫交视频免费看高清 | 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| 久久久国产成人精品二区 | 嫁个100分男人电影在线观看| 两个人看的免费小视频| 91字幕亚洲| 午夜福利在线免费观看网站| 成人亚洲精品av一区二区 | 中出人妻视频一区二区| 久久久久国产精品人妻aⅴ院| 国产又色又爽无遮挡免费看| 一区二区三区精品91| 制服人妻中文乱码| 国产精品综合久久久久久久免费 | 久久中文字幕人妻熟女| 嫁个100分男人电影在线观看| 人人澡人人妻人| 老司机靠b影院| 国产精品一区二区三区四区久久 | 国产一区二区三区综合在线观看| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 国产成人系列免费观看| 精品免费久久久久久久清纯| 亚洲免费av在线视频| 日日爽夜夜爽网站| 岛国在线观看网站| 亚洲一区二区三区不卡视频| 欧美不卡视频在线免费观看 | 国产亚洲av高清不卡| 亚洲一区中文字幕在线| 亚洲欧美日韩另类电影网站| 97碰自拍视频| 18美女黄网站色大片免费观看| 一区在线观看完整版| 一级片'在线观看视频| 国产99久久九九免费精品| 亚洲欧美一区二区三区久久| 欧美 亚洲 国产 日韩一| 又黄又爽又免费观看的视频| 亚洲人成网站在线播放欧美日韩| 国产成人系列免费观看| 成年人免费黄色播放视频| 午夜福利免费观看在线| 亚洲人成电影免费在线| 久久久久久久久免费视频了| 美女国产高潮福利片在线看| 韩国精品一区二区三区| 国产亚洲精品第一综合不卡| 久99久视频精品免费| 国产精品爽爽va在线观看网站 | 亚洲av成人av| 一个人免费在线观看的高清视频| 制服诱惑二区| 午夜精品在线福利| √禁漫天堂资源中文www| 窝窝影院91人妻| 看黄色毛片网站| 热re99久久精品国产66热6| 人人妻,人人澡人人爽秒播| 久久国产乱子伦精品免费另类| 长腿黑丝高跟| www.www免费av| 在线观看免费日韩欧美大片| 日本撒尿小便嘘嘘汇集6| 精品高清国产在线一区| 亚洲 欧美 日韩 在线 免费| 天堂√8在线中文| 夜夜夜夜夜久久久久| 日韩精品中文字幕看吧| 宅男免费午夜| 日本wwww免费看| 欧美人与性动交α欧美软件| 99精品欧美一区二区三区四区| 1024视频免费在线观看| 伦理电影免费视频| 搡老熟女国产l中国老女人| 国产精品1区2区在线观看.| 午夜免费成人在线视频| 亚洲成人国产一区在线观看| 99国产精品免费福利视频| 一夜夜www| 国产黄色免费在线视频| 波多野结衣一区麻豆| 搡老乐熟女国产| 咕卡用的链子| 日韩国内少妇激情av| 免费在线观看影片大全网站| 国产一区二区在线av高清观看| 女生性感内裤真人,穿戴方法视频| 在线观看www视频免费| 亚洲成人久久性| 婷婷六月久久综合丁香| 露出奶头的视频| 热99re8久久精品国产| 9191精品国产免费久久| 男人舔女人的私密视频| 久久精品人人爽人人爽视色| 久久性视频一级片| 日本三级黄在线观看| 国产免费男女视频| 日本欧美视频一区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一欧美日韩一区二区三区| 亚洲av成人一区二区三| 18禁观看日本| 丝袜美腿诱惑在线| 首页视频小说图片口味搜索| 一本综合久久免费| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| 人妻久久中文字幕网| 搡老熟女国产l中国老女人| 日韩成人在线观看一区二区三区| 久久久水蜜桃国产精品网| 精品无人区乱码1区二区| 看免费av毛片| 久久久久久人人人人人| 久久精品国产清高在天天线| 在线免费观看的www视频| 男女之事视频高清在线观看| 操出白浆在线播放| 黄色毛片三级朝国网站| 美女国产高潮福利片在线看| 日韩 欧美 亚洲 中文字幕| 国产黄a三级三级三级人| 一区二区三区精品91| 91麻豆av在线| 99精品在免费线老司机午夜| 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| 国产精品香港三级国产av潘金莲| 免费av毛片视频| 交换朋友夫妻互换小说| 十分钟在线观看高清视频www| 侵犯人妻中文字幕一二三四区| 在线永久观看黄色视频| 极品人妻少妇av视频| 久热爱精品视频在线9| 成人免费观看视频高清| 9色porny在线观看| 日韩精品免费视频一区二区三区| 日本wwww免费看| 黑人巨大精品欧美一区二区mp4| 成人亚洲精品一区在线观看| 久久热在线av| 国产高清激情床上av| 免费在线观看黄色视频的| 成年版毛片免费区| 国产伦人伦偷精品视频| 成人精品一区二区免费| 18禁国产床啪视频网站| 午夜久久久在线观看| 在线观看免费视频日本深夜| 免费日韩欧美在线观看| av在线天堂中文字幕 | 亚洲成人精品中文字幕电影 | 99久久99久久久精品蜜桃| 涩涩av久久男人的天堂| 国产午夜精品久久久久久| 免费在线观看黄色视频的| 国产人伦9x9x在线观看| 好看av亚洲va欧美ⅴa在| ponron亚洲| 99国产精品免费福利视频| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 一区二区三区精品91| 少妇裸体淫交视频免费看高清 | 精品一区二区三卡| 长腿黑丝高跟| 99香蕉大伊视频| 色婷婷av一区二区三区视频| 一区二区三区激情视频| 国产精品久久视频播放| 一边摸一边抽搐一进一出视频| 亚洲中文av在线| 男女高潮啪啪啪动态图| 午夜福利欧美成人| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 中亚洲国语对白在线视频| 欧美日韩国产mv在线观看视频| 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 悠悠久久av| 一级片免费观看大全| 99久久99久久久精品蜜桃| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产| 国产主播在线观看一区二区| 中出人妻视频一区二区| 精品久久久久久,| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 18禁国产床啪视频网站| 黄色丝袜av网址大全| 成人三级黄色视频| 国产精品秋霞免费鲁丝片| 热re99久久精品国产66热6| 一个人观看的视频www高清免费观看 | 日日干狠狠操夜夜爽| 国产成人免费无遮挡视频| 99热只有精品国产| 搡老乐熟女国产| 国产又色又爽无遮挡免费看| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| bbb黄色大片| 一区二区三区激情视频| 高清毛片免费观看视频网站 | 免费高清在线观看日韩| 热re99久久国产66热| 99热只有精品国产| 成人18禁在线播放| 一区二区日韩欧美中文字幕| av网站在线播放免费| av中文乱码字幕在线| 男人操女人黄网站| 精品少妇一区二区三区视频日本电影| 亚洲av熟女| 欧美日韩国产mv在线观看视频| 黄色视频不卡| 日日摸夜夜添夜夜添小说| 亚洲第一青青草原| 欧美大码av| 精品人妻在线不人妻| 首页视频小说图片口味搜索| 国产成人欧美| 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 国产精品乱码一区二三区的特点 | 国产三级在线视频| 国产亚洲精品久久久久5区| 大码成人一级视频| av电影中文网址| 久久国产精品男人的天堂亚洲| 国产精品av久久久久免费| 男人的好看免费观看在线视频 | 一区二区三区国产精品乱码| 久久人人精品亚洲av| 最近最新中文字幕大全免费视频| 色综合婷婷激情| www.999成人在线观看| 91麻豆av在线| 男人舔女人下体高潮全视频| 欧美成人免费av一区二区三区| 亚洲自拍偷在线| 极品人妻少妇av视频| 亚洲全国av大片| 国产欧美日韩一区二区精品| 久久久久久人人人人人| 国产精品美女特级片免费视频播放器 | 日韩免费av在线播放| 国产精华一区二区三区| 日本黄色视频三级网站网址| 如日韩欧美国产精品一区二区三区| 亚洲中文字幕日韩| 欧美乱妇无乱码| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 无限看片的www在线观看| 国产精品av久久久久免费| 一本综合久久免费| 一本综合久久免费| 黄色女人牲交| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区精品91| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 亚洲熟妇中文字幕五十中出 | 欧美不卡视频在线免费观看 | 日本wwww免费看| 女同久久另类99精品国产91| 国产一区二区三区在线臀色熟女 | 亚洲视频免费观看视频| 国产麻豆69| 国产精品一区二区精品视频观看| 久久精品人人爽人人爽视色| www.熟女人妻精品国产| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 欧美乱色亚洲激情| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 精品一区二区三区视频在线观看免费 | 91av网站免费观看| 黄色a级毛片大全视频| 精品一区二区三卡| 日本一区二区免费在线视频| 亚洲av成人一区二区三| 91麻豆精品激情在线观看国产 | 神马国产精品三级电影在线观看 | 久久久久九九精品影院| 中文字幕高清在线视频| 黄色女人牲交| 国产亚洲欧美98| 亚洲精品成人av观看孕妇| 极品教师在线免费播放| 国产成人av激情在线播放| 精品一区二区三卡| 黄色片一级片一级黄色片| 国产精品亚洲一级av第二区| 久久中文字幕一级| √禁漫天堂资源中文www| 97碰自拍视频| 丝袜人妻中文字幕| 国产成+人综合+亚洲专区| 欧美黑人欧美精品刺激| 亚洲精品国产一区二区精华液| 成人国产一区最新在线观看| 欧美乱妇无乱码| 亚洲欧美激情在线| 啪啪无遮挡十八禁网站| 精品久久久精品久久久| 老汉色av国产亚洲站长工具| 久久午夜综合久久蜜桃| 亚洲国产精品sss在线观看 | 50天的宝宝边吃奶边哭怎么回事| 国产成人系列免费观看| tocl精华| 亚洲精品成人av观看孕妇| 黄频高清免费视频| 可以在线观看毛片的网站| 男女做爰动态图高潮gif福利片 | 两性夫妻黄色片| 国产精品98久久久久久宅男小说| 久久精品成人免费网站| 欧美日韩黄片免| 日韩有码中文字幕| 久久久国产欧美日韩av| 久久草成人影院| 欧美黑人精品巨大| 久久国产精品人妻蜜桃| 久久香蕉国产精品| 高清欧美精品videossex| 久久99一区二区三区| 黄色成人免费大全| 91国产中文字幕| 女人被躁到高潮嗷嗷叫费观| 国产区一区二久久| 男女下面进入的视频免费午夜 | 嫁个100分男人电影在线观看| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面| av在线播放免费不卡| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 国产极品粉嫩免费观看在线| 亚洲精品成人av观看孕妇| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 一夜夜www| 亚洲专区字幕在线| 亚洲中文av在线| 免费观看精品视频网站| 欧美老熟妇乱子伦牲交| 嫁个100分男人电影在线观看| 看黄色毛片网站| 19禁男女啪啪无遮挡网站| 久久人妻av系列| 午夜免费观看网址| 免费久久久久久久精品成人欧美视频| 欧美+亚洲+日韩+国产| 国产精品成人在线| 欧美人与性动交α欧美软件| 91成年电影在线观看| 人妻丰满熟妇av一区二区三区| 一进一出好大好爽视频| 高清av免费在线| 亚洲 国产 在线| 久99久视频精品免费| 每晚都被弄得嗷嗷叫到高潮| 日本免费a在线| 性少妇av在线| 亚洲一区二区三区色噜噜 | 女人被狂操c到高潮| 好男人电影高清在线观看| 久久九九热精品免费| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕一二三四区| 黑人操中国人逼视频| 欧美激情极品国产一区二区三区| 成人18禁在线播放| 在线观看一区二区三区| 亚洲人成伊人成综合网2020| 亚洲精品在线美女| 亚洲精华国产精华精| 精品国产国语对白av| 国产午夜精品久久久久久| 男女高潮啪啪啪动态图| 久久精品aⅴ一区二区三区四区| 欧美黄色淫秽网站| 亚洲精品一区av在线观看| 桃色一区二区三区在线观看| 国产欧美日韩一区二区三| 精品国产乱子伦一区二区三区| 午夜免费观看网址| 国产激情欧美一区二区| 满18在线观看网站| 天堂俺去俺来也www色官网| x7x7x7水蜜桃| 久久精品aⅴ一区二区三区四区| 亚洲精品久久午夜乱码| 18禁美女被吸乳视频| 精品福利观看| 中文字幕人妻熟女乱码| 国产xxxxx性猛交| 搡老乐熟女国产| 久久久久久大精品| 亚洲色图av天堂| 成人黄色视频免费在线看| 村上凉子中文字幕在线| 视频区图区小说| 在线观看一区二区三区| 啦啦啦在线免费观看视频4| 日本免费a在线| 黄网站色视频无遮挡免费观看| 国产精品秋霞免费鲁丝片| 日本 av在线| 国产99久久九九免费精品| 51午夜福利影视在线观看| 日韩中文字幕欧美一区二区| 夜夜夜夜夜久久久久| 午夜免费观看网址| 91九色精品人成在线观看| 又大又爽又粗| 99国产极品粉嫩在线观看| svipshipincom国产片| 亚洲精品美女久久久久99蜜臀| 脱女人内裤的视频| 久久久久久久精品吃奶| 三上悠亚av全集在线观看| 欧美一级毛片孕妇| 国产精品久久久人人做人人爽| 精品高清国产在线一区| 1024视频免费在线观看| 人人妻,人人澡人人爽秒播| 高清在线国产一区| 黑丝袜美女国产一区| 国产亚洲av高清不卡| 色婷婷av一区二区三区视频| 久久中文看片网| 亚洲一区二区三区不卡视频| 黄片大片在线免费观看| 亚洲国产毛片av蜜桃av| 怎么达到女性高潮| 在线看a的网站| 身体一侧抽搐| 精品日产1卡2卡| 国产91精品成人一区二区三区| 久久精品国产综合久久久| a在线观看视频网站| 99国产极品粉嫩在线观看| 搡老乐熟女国产| 日本黄色日本黄色录像| 色播在线永久视频| 国产精品爽爽va在线观看网站 | 欧美在线黄色| 多毛熟女@视频| 欧美午夜高清在线| 91老司机精品| 亚洲全国av大片| 国产精品久久久久久人妻精品电影| 国产精品1区2区在线观看.| 久久久久九九精品影院| 十分钟在线观看高清视频www| 国产蜜桃级精品一区二区三区| 国产在线精品亚洲第一网站| 亚洲成av片中文字幕在线观看| 91精品国产国语对白视频| 99热只有精品国产| 久久久久精品国产欧美久久久| 88av欧美| 国产1区2区3区精品| 亚洲欧美一区二区三区黑人| 少妇 在线观看| 欧美人与性动交α欧美精品济南到| 国产男靠女视频免费网站| 国产成人啪精品午夜网站| 亚洲第一青青草原| 久久 成人 亚洲| av有码第一页| 老司机深夜福利视频在线观看| 18美女黄网站色大片免费观看| 激情视频va一区二区三区| 别揉我奶头~嗯~啊~动态视频| 村上凉子中文字幕在线| 久久伊人香网站| 在线免费观看的www视频| 看片在线看免费视频| 少妇裸体淫交视频免费看高清 | 久久影院123| 大陆偷拍与自拍| 国产免费男女视频| 免费看十八禁软件| 在线观看免费视频日本深夜| 一级作爱视频免费观看| 欧美av亚洲av综合av国产av| 级片在线观看| 国产黄a三级三级三级人| 看片在线看免费视频| 99国产精品一区二区蜜桃av| 97人妻天天添夜夜摸| bbb黄色大片| 欧美黑人精品巨大| 一区二区三区国产精品乱码| 母亲3免费完整高清在线观看| 在线观看www视频免费| 69精品国产乱码久久久| 亚洲欧美日韩无卡精品| 黄片播放在线免费| 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看| 久久精品亚洲av国产电影网| 亚洲精品在线观看二区| 国产激情久久老熟女| 成年人免费黄色播放视频| 一边摸一边抽搐一进一出视频| av福利片在线| 村上凉子中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲中文字幕日韩|