• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    濕化學(xué)法合成LiNi1/3Mn1/3Co1/3O2及其表征

    2010-12-12 02:44:32張曉雨江衛(wèi)軍朱曉沛
    物理化學(xué)學(xué)報(bào) 2010年6期
    關(guān)鍵詞:化學(xué)系化學(xué)法工程學(xué)院

    張曉雨 江衛(wèi)軍 朱曉沛 其 魯,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院應(yīng)用化學(xué)系,北京 100871;2中信國安盟固利電源技術(shù)有限公司,北京 102200)

    Nowadays,lithium-ion batteries(LIB)have been widely used in portable power sources.Most LIB use LiCoO2as cathode material because of its simple synthesis,low irreversible capacity loss,and good cycling performance[1-2].However,due to high cost of LiCoO2,much effort has been made to develop other cheaper cathode materials and use them in price-sensitive and large-scale applications.Recently,a layer-structured compound LiNi1/3Mn1/3Co1/3O2(simplified as LNMCO),first introduced by Ohzuku′s group in 2001[3],has been considered as an attractive candidate of next-generation cathode material to replace LiCoO2due to its lower cost,more stable structure,larger capacity,and better thermal stability at charged state[4-6].The valence states of nickel,manganese,and cobalt ions in LNMCO powder are+2, +4,and+3,respectively,confirmed by X-ray photoelectron specctroscopy(XPS)study[7].For LNMCO,each transition metal plays its important role.The divalent nickel ions and trivalent cobalt ions are electroactive and the electrochemical reaction of lithium extraction/insertion takes place by oxidation/reduction of Ni2+/Ni4+and Co3+/Co4+ions depending on different cut-off voltages,while Mn4+remains inactive but maintains the structural stability[8].

    However,cation mixing still remains a big problem for this material,since the ionic radius of Ni2+(0.069 nm)is close to that of Li+(0.076 nm)[9].A partial occupation of Ni2+by Li+and Ni2+generates a disorder in the structure and this could restrict the motion of Li+ions within the layers of the oxide,which leads to the tendency for the capacity to fade during long cycling[10]. Therefore,one aim of this work is to decrease the cation mixing byadjusting different acid to metal ion molar ratios(R)during the synthesis through wet-chemical method.

    Moreover,It has been shown that magnetic experiment is quite a powerful tool to check the quality of samples and structural properties at nanoscopic scale,especially in the case of cathode materials for LIB[11-14]and it is possible to correlate the magnetic and structural properties of LNMCO[15-16].In particular, we have shown that the Ni2+ion in substitution for Li+on the 3b lattice site,Ni2+(3b)generates a ferromagnetic interaction with the Mn4+ions nearest neighbours on 3a sites,and this Ni2+(3b)-Mn4+(3a)ferromagnetic interaction is responsible for the formation of a ferromagnetic cluster centred on the Ni2+(3b)defect[17].The magnetic moment resulting from these ferromagnetic clusters can be detected from the magnetic measurements,from which the concentration of the Ni2+(3b)defects can be derived and compared with the concentration deduced from Rietveld refinement of XRD spectra.This correlation between magnetic and structural properties makes possible the determination of the concentration of Ni2+(3b)defects with very good accuracy[18].We then use the same procedure in this work.

    In addition,although wet-chemical method has been used to synthesize LNMCO,using different chelating agents,e.g.,citric acid and oxalic acid[19-23],and succinic acid is also one of the widely used chelating agents for the synthesis of oxides,the synthesis of LNMCO assisted by succinic acid and the effect of its content on magnetic properties,especially on the relationship between structural and magnetic properties of LNMCO,has not been reported to the best of our knowledge.Therefore,varying the succinic acid to metal ion molar ratio and this effect on the structural,morphological,electrochemical,particularly on the magnetic properties of LNMCO,are studied detailedly in this paper.

    1 Experimental

    1.1 Sample synthesis

    The synthesis occurred from metal acetates via inorganic polymerization reactions in the solution[24-26].This wet-chemical route was assisted by succinic acid(AR,Sigma-Aldrich product) as a polymeric agent,using appropriate molar ratios of lithium, nickel,manganese,and cobalt acetate as starting materials to synthesize LNMCO compound.Stoichiometric amounts of acetate hydrates ofLi(CH3COO)·2H2O(AR),Ni(CH3COO)2·4H2O(AR), Mn(CH3COO)2·4H2O(AR),and Co(CH3COO)2·4H2O(AR), Sigma-Aldrich products,were dissolved in distilled water and mixed homogenously with an aqueous solution of succinic acid, varying the molar ratio(R)of acid to metal-ion.The resulting solution was mixed by magnetic stirring at 80℃for 6 h to obtain a clear viscous gel.The gel was dried in an oven at 120℃for 12 h.The as-prepared precursor was pre-calcined at 450℃for 4 h to convert the metal carboxylates to oxides.After cooling down to room temperature,the obtained powder was grounded in an agate mortar and then sintered at 900℃in air for 15 h without pelleting to get the final LNMCO.

    1.2 Apparatus

    Thermogravity(TG)experiment was performed using a Q50 (TA,USA)instrument analyzer to monitor the mass loss/gain and heat treatment processes under a flow of dry air with a heating rate of 10℃·min-1.Measurements were carried out in the temperature range of 25℃≤T≤750℃.

    For structural analysis of LNMCO,samples were characterized with X-ray diffraction(XRD)on a Philips(Netherlands)X′Pert PRO MRD(PW3050)diffractometer equipped with a Cu anticathode(Cu Kαradiation,λ=0.154056 nm)at room temperature.XRD patterns were collected under Bragg-Brentano geometry at 2θ with a step of 0.02°in the range of 10°-80°and were refined by the Rietveld method using the GSAS/EXPGUI package[27].For morphology analysis of LNMCO,a scanning electron microscope(SEM)study of the samples was performed using a JEOL(Japan)JSM-5600LV electron microscope.

    The magnetic measurements (susceptibility and magnetization)were performed with a fully automated superconducting quantum interface device(SQUID)magnetometer(Quantum Design MPMS XL,USA)in the temperature range of 4-300 K. Powders were placed into small plastic vial,placed in a holder and finally inserted into the helium cryostat of the SQUID apparatus.The temperature dependence of the susceptibility data was recorded during heating of the sample using two modes:zero field cooling(ZFC)and field cooling(FC),to determine the mag-netic behavior.The procedure is based on performing two consecutive magnetization measurements:in ZFC the sample is first cooled down in the absence of magnetic field,then a magnetic field H=10 kOe is applied,and the ZFC magnetic susceptibility M(H)/H is measured where M is the magnetization measured upon heating.In the FC experiments,the same magnetic field is applied first at room temperature;the FC susceptibility is measured upon cooling.No difference,i.e.,no magnetic irreversibility effect has been detected between ZFC and FC measurements in anyofthe samples.Magnetic curves M(H)have been measured in an applied magnetic field in a range of 0-30 kOe.

    Charge-discharge tests were performed on coin type cell (CR2032).Composite positive electrode was prepared by thoroughly mixing the active material(90%(w,mass fraction))with carbon black(2%(w)),acetylene black(2%(w)),polyvinylidene fluoride(6%(w))in N-methyl-pyrrolidinone and spread onto aluminium foils then dried at 120℃for 24 h in vacuum.Cells were then assembled in an argon-filled glove box(Braun,Germany) using foils of Li metal as counter electrode and Celgard 2400 as separator.The electrolyte was 1.0 mol·L-1LiPF6in a mixture of ethylene carbonate(EC)and diethyl carbonate(DEC)(1:1,volume ratio).The cells were galvanostatically cycled at 0.2C (1C=160 mA·g-1)between 3.0 V and 4.3 V(versus Li/Li+)on a Land CT2001A battery tester(Wuhan Jinnuo Electronics Co., Ltd.,China)at room temperature.

    2 Results and discussion

    2.1 TG analysis of LNMCO precursor

    When acetate of an electropositive transition metal dissolves in succinic acid,there is a finite release of the acetate anion into solution.The basic species,acetate anion,can allow the dissolution of metal acetates.The formation of a chelation complex is important to prevent the segregation or precipitation of metal ions.The acetate ligand,succinic acid,has oxygen atoms and hydrogen atoms which can participate in hydrogen bonding.As a result,metal acetates are trapped in a glassy state by an extended network of hydrogen bonds.At the same time,succinic acid binds to the metal acetates and replaces the water of hydration in the complex to give acid-acetate species[28].Succinic acid also acts as fuel and provides local heat for the formation of compound during the decomposition process because of its selfigniting property,accelerating the decomposition of acetate ions. Therefore,varying the acid to metal ion molar ratio(R)can affect the decomposition/formation reaction.As an example,Fig.1 shows the TG analysis curve of the precursor of LNMCO synthesized via R=0.5.Several mass loss stages are observed in this TG curve.The first mass loss stage occurs at ca 223℃,which would be attributed to departure of residual water.After the departure of the remaining water molecule at ca 330℃,the anhydrous metal acetate can be decomposed into both metal oxide and gases such as carbon dioxide by further thermal treatment in air[29-30].It was reported that chelating agent(carboxylic-based acid)provoked decomposition during the synthesis of oxide powders and the gel precursor burned because the decomposed acetate ions acted as an oxidizer[24-26],so the mass loss in the third step is observed around 376℃which corresponds to the decomposition of succinic acid and acetate ions xerogel.After 450℃, there is little mass loss,so in this work,we choose 450℃as the heating temperature for pre-calcination.The reaction pathway can thus be given as follows:

    2.2 Structural and morphological analysis of LNMCO

    Fig.2 XRD patterns of LNMCO powders synthesized with different succinic acid to metal ion molar ratios(R)

    Fig.2 shows the XRD patterns of LNMCO materials synthesized by wet-chemistry with calcination at 900℃in air for 15 h via different R values.From now on,all the experiments in this work will be focussed on the optimization of the parameter R. The Bragg lines are well indexed in the R3m space group with the hexagonal sitting.No impurity phases are detected and the powders are well crystallized in the α-NaFeO2type structure.As seen in Fig.2,the(006)/(102)and(108)/(110)doublets are well separated,which indicates a good hexagonal ordering of LNMCO[31].The narrow diffraction peaks of the pattern indicate a high crystallinity of the LNMCO powder and suggest a homogeneous distribution of the cations within the structure.The lattice parameters were obtained by analysis of the XRD data and the results were summarized in Table 1.The lattice parameter,a,is related to average metal-metal intraslab distance,the lattice parameter,c,is related to the average metal-metal inter-slab distance;and the trigonal distortion,c/a,is related to the hexagonal structure disorder.For layered compounds,higher value of c/a is desirable for better hexagonal structure[7].The trigonal distortion c/a is the largest for LNMCO R=1,which is used as a criterion of optimized material.In addition,the integrated intensity ratio of(003)to(104)peak,I003/I104,has been considered as an indicator of the degree of cation mixing[32].The higher the ratio is, the lower the cation mixing is.It is also believed that the lower value of(I006+I102)/I101is another indicator of better hexagonal ordering[33-34].The lowest value of(I006+I102)/I101,together with the highest value of I103/I104is obtained for R=1,which suggests that this is the optimized value of this synthesis parameter.As a result,varying R value has a direct effect on the structural properties of LNMCO,since the self-igniting property of succinic acid can influence the oxygen partial pressure during synthesis.The sudden variation in the oxygen partial pressure,especially during the burning of the succinic acid,has an impact on LNMCO formation.When R value is low,it cannot provide enough local heat for the formation of precursor.However,when R value is too high,the local temperature increases too much in a short period of time and the partial pressure of oxygen decreases due to the increased CO2,which results in the insufficient oxidation of ions and ferromagnetic defects that can aggravate the cation mixing during the formation of LNMCO.

    The Rietveld refinement has been made with the constraints that the lithium ion and the nickel-manganese-cobalt ions occupy the 3b(0,0,0)and 3a(0,0,1/2)Wyckoff sites,respectively, while the oxygen anionsoccupythe 6c(0,0,zoxy)position(zoxywill be refined).In addition,we assume that each cationic site is fully occupied and the number of cations equals to that of anions,sothe overall charge neutrality is maintained.Furthermore,we assumed the existence of a small amount of nickel ions in the lithium sites,since the smaller difference in size between the Ni2+(0.069 nm)and the Li+ions(0.076 nm)in contrast with other cations(r(Mn4+)=0.053 nm,r(Co3+)=0.054 nm in an octahedral environment[9]).Therefore,we defined the formula as[Li1-yNiy]3b[LiyNi1/3-yMn1/3Co1/3]3aO2for Rietveld refinement:the occupancy parameter y of the Ni2+ions at the 3b sites was refined and constrained to be equal to that of Li+ions at the 3a sites,with the total nickel occupancy ratio constrained to 1/3.The results of the Rietveld refinement of the XRD patterns are also summarized in Table 1 as a function of R.Since the radius of Ni2+is smaller than that of Li+,Ni2+ions on 3b sites leads to an increase of the parameter a.Moreover,the presence of the Ni2+ions in lithium plane leads to the stronger electrostatic attraction between oxygen and Li+/Ni2+ions in the LiO2inter-slab plane,hence the decrease of the LiO2inter-slab space,I(LiO2),the correlated increase of the thickness S(MO2)of the MO2slabs,and the increase of c.

    Table 1 Structural data of the LiNi1/3Mn1/3Co1/3O2samples synthesized with different R values

    As seen from Table 1,we find a,c,S(MO2)are minimum and I(LiO2)is maximum for R=1,which confirms that this is the optimized value for this parameter.These correlated variations of a,c,S(MO2)and I(LiO2)are then additional proofs that R=1 is the optimized value for succinate route.Indeed,the amount of Li+/Ni2+cation mixing is the lowest in this case(y=1.85%),which is better than the results in Refs.[21,35].The Rietveld fit of the XRD pattern for this sample is shown in Fig.3.

    The morphologies of powders were investigated by SEM.Fig. 4(a-d)shows the SEM images of LNMCO compounds synthesized via succinic acid route with different R values.The SEM pictures also show that the primary particles are stuck into agglomerates.The sample synthesized via the optimal value R=1 (Fig.4b),with minimum cation mixing and optimum structural integrity,seems to have a more uniform size distribution of particlesthan the others,which can facilitate the diffusion oflithiumion,so higher specific capacity and better capacity retention can be expected.

    Fig.3 Rietveld refinement patterns of LNMCO synthesized at R=1 via wet-chemical methodThe cross marks show observed X-ray diffraction intensities and the solid line (in red on the web version)represents calculated intensities.The curve at the bottom(in blue on the web version)is the difference between the calculated and observed intensities on the same scale.

    Fig.4 SEM images of LNMCO synthesized with different R valuesR:(a)0.5,(b)1,(c)2,(d)3

    2.3 Magnetic properties of LNMCO

    Fig.5 Plots of the reciprocal magnetic susceptibility χ-1mfor samples synthesized with different R valuesData were collected with a magnetic field H=10 kOe.

    The temperature dependence of the reciprocal magnetic susceptibility,=H/M is presented in Fig.5 for all the samples. The magnetization curves are reported in Fig.6(a-d)for samples withthe“optimized”valueR=1,andtheotherthreesamples.Above 150 K,the curve-T shows a paramagnetic(PM)behavior and the magnetization is linear in field for all the samples,so thatis meaningful,i.e.,H/M=?H/?M.The quasi-linear variations ofwith T at the susceptibility can be described by a Curie-Weiss lawwith Θpthe Curie-Weiss temperature,and Cpthe Curie constant related to the effective magnetic moment μeffbythe relationwith kBthe Boltzmann constant and N the number of metal ions in one mole of product.The values of the two fitting parameters Θpand μeffobtained for the different acid to metal ion ratios R are reported in Table 2.Θpis negative in all the compounds and this is an intrinsic property due to the fact that intrinsic magnetic interactions are mainly the intra-layer superexchange interactions mediated via oxygen at 90°bonding angle,and they are dominantly antiferromagnetic(AFM)[14].Taking into account that the magnetic moments carried by Ni2+and Mn4+are 2.83μBand 3.87μB,respectively in this material while Co3+is diamagnetic[36-38],the theoreti-cal value of μeffin absence of Ni2+(3b)defects would be:

    Fig.6 Isothermal plots of the magnetization M(H)for the LNMCO sample synthesized with different R values

    Table 2 Magnetic properties of LNMCO synthesized with different R values

    The experimental value of μefffor the R=1 sample is close to this theoretical value.For the other samples,however,μeffis found to be larger.To understand this effect,we note that the magnetization curves are no longer linear below 80 K.Note in this case, H/M≠?H/?M,so that χ-1min Fig.6(a-d)does not have any physical meaning at these low temperatures.Nevertheless,we have reported the data in Fig.6(a-d)since it will be useful to the discussion.For the moment,we just note that these deviations from linearity are related to the onset of a remanent magnetization at low temperature,evidenced in the magnetization curves of the R=3 in Fig.6(d).Following the prior works[14-16],we attribute this feature to the Ni2+(3b)defects.The substitution of Li by Ni on a 3b site generates a 180°interlayer Mn4+(3a)-O-Ni2+(3b)superexchange interactions which is ferromagnetic(FM)after the Goodenough rules[17].This interaction is strong enough to generate a ferromagnetic spin freezing of the Mn4+(3a)-O-Ni2+(3b)pair that is responsible for the onset of remanent magnetization at low temperature.This interaction is actually strong enough to induce a ferromagnetic spin-freezing of such pairs at low temperature.We can then estimate the amount of Ni2+(3a)defects as the ratio of the magnetic moment at saturation(Ms)of the ferromagnetic component of the magnetization,to the moment at saturation that the sample would have if all the Mn and Ni ions were saturated ferromagnetically,namely(1/3)g·μB·(SMn+SNi)=(5/3)μB= 1.67μBper chemical formula,since the Mn4+and Ni2+carry a spin SMn=3/2 and SNi=1.The gyromagnetic factor g is 2,since the orbital momentum is quenched by crystal field effects,and the factor 1/3 comes from the fact that there is only 1/3 Ni-Mn pair per chemical formula.Mshas been estimated from the linear extrapolation to H→0 of the isothermal magnetization curve M(H) at T=4.2 K taken in the range 20 kOe<H<30 kOe.The lowest temperature and this range of the highest field available in the experiments have been chosen to be sure that the ferromagnetic component is saturated.Despite this precaution,it should be noticed that the curvature of the magnetic curves below 20 kOe does not guarantee that the full saturation of the ferromagnetic component has been achieved even at higher field,and even at 4.2 K.Nevertheless,the result for the estimation of the rate of substitution y deduced from this magnetic analysis reported in Table 2,is in remarkable agreement with the result deduced from Rietveld refinement for all the samples investigated,which validates the analysis.For instance,in the case of the sample with R=1,we find Ms=167 emu·mol-1(Fig.6(b)),which amounts to a magnetic moment per formula 0.03μB.So the concentration of Ni2+at 3b sites can be calculated as 0.03μB/1.67μB=1.80%, which is the lowest value among all the samples and agrees well with the results obtained from Rietveld refinement.In the paramagnetic regime,the ferromagnetic Mn4+(3a)-O-Ni2+(3b)pairing enhances the effective magnetic moment of the material.This is the reason for the increasing large value of μeffupon increasing departure of the parameter R from its optimized value R=1,i.e., upon increasing y.

    Fig.7 Initial charge-discharge profiles of LNMCO samples synthesized with different R values

    2.4 Electrochemical properties of LNMCO

    Fig.7 shows the initial charge-discharge curves of LNMCO cathode synthesized with different R values at 32 mA·g-1(0.2C) rate between 3.0 V and 4.3 V versus Li/Li+at room temperature. As shown in Fig.7,the prepared LNMCO materials display smooth charge-discharge curves without any plateaus,which indicates no spinel-related phases forming during cycling.As seen from Table 3,the initial discharge capacity of LNMCO samples are 155 mAh·g-1(R=0.5),161 mAh·g-1(R=1),149 mAh·g-1(R=2),and 141 mAh·g-1(R=3),respectively.The coulombic efficiencies are 90.6%(R=0.5),93.1%(R=1),90.3%(R=2),and 89.2%(R=3).

    Fig.8 shows the differential capacity(?Q/?E)vs cell potential (E)of the Li//LNMCO(R=1)coin cell calculated from data presented in Fig.7.Upon charging the cell displays a major oxidation peak at 3.79 V,while the reduction peak occurs at 3.68 V upon discharging.As reported many times in the literature,the oxidation peak at ca 3.8 V with the corresponding reduction peak at 3.7 V is typical for the Ni2+/Ni4+redox reaction in the Li-Ni-Mn-Co oxide lattice[5,14].However,the asymmetry toward the high potential side is due to the partial redox contribution from Co3+to Co4+that corresponds to the second electron transfer.

    The cycling performances of LNMCO samples are illustratedin Fig.9.The optimized sample(R=1)achieves higher initial discharge capacity(161 mAh·g-1)and its capacityretention is 91.3% after 50 cycles,which correspond well with the results from structural and magnetic analyses before.Higher structural integrity and less cation mixing result in better electrochemical performance,which can be compared with that of LNMCO synthesized by other wet-chemical methods[39-40],when using the same cut-off voltage(3.0-4.3 V)and current density(32 mA·g-1) for electrochemical characterization.

    Table 3 Electrochemical properties of LNMCO synthesized with different R values

    Fig.8 Differential capacity(?Q/?E)vs cell potential(E)of the Li//LNMCO(R=1)coin cell

    Fig.9 Cycling performance of LNMCO samples synthesized with different R values

    3 Conclusions

    The layered LNMCO was successfully synthesized via wetchemical route assisted by succinic acid with different R values. XRD,SQUID,and charge-discharge characterizations show that the structural,magnetic,and electrochemical profiles are sensitive to the synthetic conditions,i.e.,the R value that governs the cation mixing.The best performance of the LNMCO electrode has been obtained from an acid to metal ion ratio R=1 sintered at 900℃for 15 h.The amount of cation mixing estimated from the magnetization curve for R=1 is 1.80%,which agrees well with the Rietveld refinement result(1.85%).The LNMCO sample with R=1 shows the best reversibility with a coulombic efficiency of 93.1%for the first cycle.Its initial discharge capacity is 161 mAh·g-1and its capacity retention is 91.3%after 50 cycles in the cut-off voltage of 3.0-4.3 V.

    1 Nagamura,T.;Tazawa,K.Prog.Batteries Sol.Cells,1990,9:209

    2 Reimers,J.N.;Dahn,J.R.J.Electrochem.Soc.,1992,139:209

    3 Ohzuku,T.;Makimura,Y.Chem.Lett.,2001,30:642

    4 Yabuuchi,N.;Ohzuku,T.J.Power Sources,2003,119:171

    5 Belharouak,I.;Sun,Y.K.;Liu,J.;Amine,K.J.Power Sources, 2003,123:247

    6 Wang,J.;Qi,Y.J.;Li,Y.W.;Qi,L.Acta Phys.-Chim.Sin.,2007, 23(suppl.):46 [王 劍,祁毓俊,李永偉,其 魯.物理化學(xué)學(xué)報(bào),2007,23(增刊):46]

    7 Shaju,K.M.;Rao,G.V.S.;Chowdari,B.V.R.Electrochim.Acta, 2002,48:145

    8 Yoon,W.S.;Grey,C.P.;Balasubramanian,M.;Yang,X.Q.; Fischer,D.A.;McBreen,J.Electrochem.Solid-State Lett.,2004, 7:A53

    9 Shannon,R.D.Crystallogr.Acta A,1976,32:751

    10 Shaju,K.M.;Bruce,P.G.J.Power Sources,2007,174:1201

    11 Julien,C.M.;Ait-Salah,A.;Mauger,A.;Gendron,F.Ionics,2006, 12:21

    12 Amdouni,N.;Gendron,F.;Mauger,A.;Zarrouk,H.;Julien,C.M. Mater.Sci.Eng.B,2006,129:64

    13 Zaghib,K.;Ravet,N.;Gauthier,M.;Gendron,F.;Mauger,A.; Goodenough,J.B.;Julien,C.M.J.Power Sources,2006,163:560

    14 Abdel-Ghany,A.;Zaghib,K.;Gendron,F.;Mauger,A.;Julien,C. M.Electrochim.Acta,2007,52:4092

    15 Abdel-Ghany,A.;Mauger,A.;Gendron,F.;Zaghib,K.;Julien,C. M.ECS Trans.,2007,3:137

    16 Zhang,X.Y.;Mauger,A.;Gendron,F.;Qi,L.;Groult,H.; Perrigaud,L.;Julien,C.M.ECS Trans.,2009,16:11

    17 Goodenough,J.B.Phys.Rev.,1960,117:1442

    18 Zhang,X.Y.;Jiang,W.J.;Mauger,A.;Qi,L.;Gendron,F.;Julien, C.M.J.Power Sources,2010,195:1292

    19 Zhang,W.;Liu,H.X.;Hu,C.;Zhu,X.J.;Li,Y.X.Rare Metals, 2008,27:158

    20 Guo,H.J.;Liang,R.F.;Li,X.H.;Zhang,X.M.;Wang,Z.X.; Peng,W.J.;Wang,C.Trans.Nonferrous Met.Soc.China,2007, 17:1307

    21 Li,X.;Wei,Y.J.;Ehrenberg,H.;Du,F.;Wang,C.Z.;Chen,G. Solid State Ionics,2008,178:1969

    22 Liu,J.J.;Qiu,W.H.;Yu,L.Y.;Zhang,G.H.;Zhao,H.L.;Li,T. J.Power Sources,2007,174:701

    23 He,Y.S.;Pei,L.;Liao,X.Z.;Ma,Z.F.J.Fluorine Chem.,2007, 128:139

    24 Julien,C.M.;El-Farh,L.;Rangan,S.;Massot,M.J.Sol-Gel Sci. Technol.,1999,15:63

    25 Julien,C.M.;Michael,M.S.;Ziolkiewicz,S.Int.J.Inorg.Mater., 1999,1:29

    26 Julien,C.M.;Letranchant,C.;Rangan,S.;Lemal,M.;Ziolkiewicz, S.;Castro-Garcia,S.;El-Farh,L.;Benkaddour M.Mater.Sci.Eng. B,2000,76:145

    27 Toby,B.H.J.Appl.Cryst.,2001,34:210

    28 Wu,H.M.;Rao,C.V.;Rambabu,B.Mater.Chem.Phys.,2009, 116:532

    29 Lee,B.W.J.Power Sources,2002,109:220

    30 Caballero,A.;Cruz,M.;Hernán,L.;Melero,M.;Morales,J.; Castellón,E.R.J.Power Sources,2005,150:192

    31 Rougier,A.;Gravereau,P.;Delmas,C.J.Electrochem.Soc.,1996, 143:1168

    32 Ohzuku,T.;Ueda,A.;Nagayama,M.J.Electrochem.Soc.,1993, 140:1862

    33 Dahn,J.R.;von Sacken,U.;Michal,C.A.Solid State Ionics, 1990,44:87

    34 Reimers,J.N.;Rossen,E.;Jones,C.D.;Dahn,J.R.Solid State Ionics,1993,61:335

    35 Shin,Y.J.;Choi,W.J.;Hong,Y.S.;Yoon,S.;Ryu,K.S.;Chang, S.H.Solid State Ionics,2006,177:515

    36 Chernova,N.A.;Ma,M.M.;Xiao,J.;Whittingham,M.S.;Breger, J.;Grey,C.P.Chem.Mater.,2007,19:4682

    37 Ma,M.M.;Chernova,N.A.;Toby,B.H.;Zavalij,P.Y.; Whittingham,M.S.J.Power Sources,2007,165:517

    38 Xiao,J.;Chernova,N.A.;Whittingham,M.S.Chem.Mater., 2008,20:7454

    39 Park,S.H.;Yoon,C.S.;Kang,S.G.;Kim,H.S.;Moon,S.I.;Sun, Y.K.Electrochim.Acta,2004,49:557

    40 Liang,Y.G.;Han,X.Y.;Zhou,X.W.;Sun,J.T.;Zhou,Y.H. Electrochem.Commun.,2007,9:965

    猜你喜歡
    化學(xué)系化學(xué)法工程學(xué)院
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    福建工程學(xué)院
    福建工程學(xué)院
    濕化學(xué)法合成Ba(Mg(1-x)/3ZrxTa2(1-x)/3)O3納米粉體及半透明陶瓷的制備
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    福建工程學(xué)院
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    福建工程學(xué)院
    化學(xué)法處理電鍍廢水的研究進(jìn)展
    濕化學(xué)法合成羥基磷灰石晶體及其表征
    一边摸一边做爽爽视频免费| 不卡一级毛片| 国产片内射在线| 在线av久久热| 一夜夜www| 成人亚洲精品一区在线观看| 黄色女人牲交| 日韩制服丝袜自拍偷拍| 亚洲成人免费电影在线观看| 欧美乱色亚洲激情| 中亚洲国语对白在线视频| 一边摸一边抽搐一进一小说 | 免费在线观看亚洲国产| 色精品久久人妻99蜜桃| 1024香蕉在线观看| 亚洲国产精品sss在线观看 | aaaaa片日本免费| 亚洲精品自拍成人| 欧美日韩乱码在线| 大陆偷拍与自拍| 精品久久久久久,| 精品亚洲成国产av| 成人国产一区最新在线观看| 亚洲伊人色综图| 国产亚洲av高清不卡| 亚洲在线自拍视频| 午夜日韩欧美国产| 夜夜夜夜夜久久久久| 香蕉国产在线看| 国产精品美女特级片免费视频播放器 | 国产激情欧美一区二区| 成人18禁在线播放| 怎么达到女性高潮| 最近最新中文字幕大全电影3 | 久久天躁狠狠躁夜夜2o2o| www.999成人在线观看| 人人妻人人澡人人爽人人夜夜| 在线永久观看黄色视频| 村上凉子中文字幕在线| 亚洲国产精品合色在线| 日韩免费高清中文字幕av| 两个人看的免费小视频| 国产高清videossex| 老司机福利观看| 国产人伦9x9x在线观看| 国产精品欧美亚洲77777| 女人精品久久久久毛片| 欧美日韩亚洲综合一区二区三区_| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧美日韩在线播放| 美女福利国产在线| 人人妻人人澡人人看| av网站免费在线观看视频| 久久久国产精品麻豆| 欧美激情高清一区二区三区| 五月开心婷婷网| 国产精品香港三级国产av潘金莲| 搡老岳熟女国产| 欧美 日韩 精品 国产| 午夜免费鲁丝| 精品久久久久久久久久免费视频 | 99re6热这里在线精品视频| 午夜福利视频在线观看免费| 国产一区二区三区视频了| 欧美国产精品va在线观看不卡| 91麻豆av在线| 少妇的丰满在线观看| 性少妇av在线| 日本vs欧美在线观看视频| 久久人妻熟女aⅴ| 国产91精品成人一区二区三区| 午夜福利视频在线观看免费| 一进一出好大好爽视频| 精品一品国产午夜福利视频| 巨乳人妻的诱惑在线观看| 精品亚洲成a人片在线观看| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久精品古装| 每晚都被弄得嗷嗷叫到高潮| 精品国产亚洲在线| 亚洲三区欧美一区| 9热在线视频观看99| 精品久久久精品久久久| 久久国产亚洲av麻豆专区| 美女福利国产在线| 成人精品一区二区免费| 热re99久久国产66热| 国产成人免费无遮挡视频| 真人做人爱边吃奶动态| av线在线观看网站| 久久久久国产一级毛片高清牌| 超色免费av| 免费人成视频x8x8入口观看| 国产av又大| 99riav亚洲国产免费| 成人手机av| 极品人妻少妇av视频| 美女 人体艺术 gogo| 久久久精品国产亚洲av高清涩受| 美女扒开内裤让男人捅视频| 一级片'在线观看视频| 国产激情久久老熟女| 亚洲精品av麻豆狂野| 一级毛片女人18水好多| 久久青草综合色| 黄色怎么调成土黄色| 日韩免费高清中文字幕av| 久久精品亚洲熟妇少妇任你| 亚洲熟女毛片儿| 老司机亚洲免费影院| 手机成人av网站| 亚洲中文日韩欧美视频| 精品高清国产在线一区| 精品国内亚洲2022精品成人 | 亚洲国产欧美一区二区综合| 一夜夜www| 国产精品久久视频播放| 一边摸一边抽搐一进一小说 | 午夜激情av网站| 亚洲自偷自拍图片 自拍| 成年人午夜在线观看视频| 美女国产高潮福利片在线看| 老汉色∧v一级毛片| 国产一区二区三区视频了| 日韩免费av在线播放| 中文字幕制服av| 99久久人妻综合| 婷婷精品国产亚洲av在线 | 两性夫妻黄色片| 免费看十八禁软件| 精品国产乱码久久久久久男人| 欧美在线黄色| 一区福利在线观看| 他把我摸到了高潮在线观看| 高清视频免费观看一区二区| 日本精品一区二区三区蜜桃| 捣出白浆h1v1| videosex国产| 黄色视频,在线免费观看| 久久中文字幕人妻熟女| 欧美日韩成人在线一区二区| 欧美精品人与动牲交sv欧美| 18在线观看网站| 两性夫妻黄色片| 国产精品秋霞免费鲁丝片| 久久精品国产99精品国产亚洲性色 | 成人黄色视频免费在线看| 精品欧美一区二区三区在线| 91老司机精品| 一本大道久久a久久精品| 亚洲午夜理论影院| 日韩中文字幕欧美一区二区| 黄网站色视频无遮挡免费观看| 99久久人妻综合| 亚洲精品一二三| 香蕉丝袜av| 在线观看一区二区三区激情| 久久狼人影院| 一个人免费在线观看的高清视频| 国产欧美日韩精品亚洲av| 欧美黑人欧美精品刺激| 99在线人妻在线中文字幕 | 美女高潮喷水抽搐中文字幕| 国产精品久久久久久精品古装| 在线观看舔阴道视频| 黄色a级毛片大全视频| 久久国产精品人妻蜜桃| 两个人看的免费小视频| 午夜91福利影院| 成年版毛片免费区| 亚洲中文日韩欧美视频| 每晚都被弄得嗷嗷叫到高潮| 日本五十路高清| 一a级毛片在线观看| 免费在线观看完整版高清| 国产免费现黄频在线看| 极品教师在线免费播放| 久久久久久久久久久久大奶| 亚洲熟女精品中文字幕| 精品一区二区三区四区五区乱码| 99久久国产精品久久久| 亚洲五月婷婷丁香| 欧美成狂野欧美在线观看| 欧美精品一区二区免费开放| 国产欧美日韩综合在线一区二区| 久99久视频精品免费| 久久久久久亚洲精品国产蜜桃av| e午夜精品久久久久久久| 在线av久久热| 国产成人啪精品午夜网站| 国产aⅴ精品一区二区三区波| 脱女人内裤的视频| 欧美人与性动交α欧美软件| 少妇 在线观看| 久久久久久人人人人人| 久久久久久人人人人人| 新久久久久国产一级毛片| 午夜福利,免费看| 午夜福利免费观看在线| 国产成人精品久久二区二区91| 香蕉国产在线看| 色婷婷av一区二区三区视频| 老司机午夜福利在线观看视频| 国内久久婷婷六月综合欲色啪| 怎么达到女性高潮| 99国产精品一区二区三区| 手机成人av网站| 女人被躁到高潮嗷嗷叫费观| ponron亚洲| 午夜福利,免费看| 美女高潮到喷水免费观看| 成人亚洲精品一区在线观看| 91av网站免费观看| 中亚洲国语对白在线视频| 久久香蕉激情| 极品人妻少妇av视频| svipshipincom国产片| av国产精品久久久久影院| 一本大道久久a久久精品| 97人妻天天添夜夜摸| 国产日韩欧美亚洲二区| 久久亚洲精品不卡| 久久久久精品人妻al黑| 午夜亚洲福利在线播放| 日韩大码丰满熟妇| av片东京热男人的天堂| 国产精品 欧美亚洲| 免费在线观看日本一区| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频| 一进一出抽搐gif免费好疼 | 777米奇影视久久| netflix在线观看网站| 777久久人妻少妇嫩草av网站| 国产亚洲精品久久久久久毛片 | 好男人电影高清在线观看| 精品乱码久久久久久99久播| 国产成人精品在线电影| 五月开心婷婷网| 亚洲欧美一区二区三区黑人| 后天国语完整版免费观看| 十分钟在线观看高清视频www| 精品欧美一区二区三区在线| 脱女人内裤的视频| 纯流量卡能插随身wifi吗| 久久精品熟女亚洲av麻豆精品| 久久香蕉国产精品| 亚洲五月天丁香| 人人妻人人澡人人看| 久久草成人影院| 在线播放国产精品三级| 激情在线观看视频在线高清 | 在线永久观看黄色视频| 一区二区三区精品91| 青草久久国产| 精品久久久久久电影网| 怎么达到女性高潮| 亚洲色图av天堂| 嫩草影视91久久| 国产蜜桃级精品一区二区三区 | 成熟少妇高潮喷水视频| 人妻丰满熟妇av一区二区三区 | 飞空精品影院首页| 国产真人三级小视频在线观看| 亚洲熟妇熟女久久| 69av精品久久久久久| 久99久视频精品免费| 法律面前人人平等表现在哪些方面| 中文字幕av电影在线播放| 99国产精品一区二区三区| 一二三四在线观看免费中文在| 亚洲 国产 在线| 日韩精品免费视频一区二区三区| 男女床上黄色一级片免费看| 免费女性裸体啪啪无遮挡网站| 满18在线观看网站| av超薄肉色丝袜交足视频| 麻豆国产av国片精品| 亚洲免费av在线视频| 黄色丝袜av网址大全| 精品国内亚洲2022精品成人 | 亚洲精品av麻豆狂野| 不卡av一区二区三区| 黄网站色视频无遮挡免费观看| 欧美在线黄色| 深夜精品福利| 人成视频在线观看免费观看| 免费在线观看亚洲国产| 国产激情欧美一区二区| 变态另类成人亚洲欧美熟女 | 电影成人av| 免费在线观看亚洲国产| 日日摸夜夜添夜夜添小说| 黑人欧美特级aaaaaa片| 免费在线观看视频国产中文字幕亚洲| 动漫黄色视频在线观看| 精品人妻熟女毛片av久久网站| 最近最新免费中文字幕在线| 99久久精品国产亚洲精品| 亚洲色图综合在线观看| 国产男靠女视频免费网站| 岛国毛片在线播放| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 欧美性长视频在线观看| 丝袜在线中文字幕| 久久精品国产亚洲av香蕉五月 | 亚洲第一欧美日韩一区二区三区| 国产激情欧美一区二区| 999久久久精品免费观看国产| 日本欧美视频一区| 久久久国产精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 在线播放国产精品三级| 99国产精品一区二区三区| 婷婷精品国产亚洲av在线 | 欧美久久黑人一区二区| 伊人久久大香线蕉亚洲五| 男女免费视频国产| 人人澡人人妻人| av天堂在线播放| 免费人成视频x8x8入口观看| 操出白浆在线播放| 精品一区二区三区av网在线观看| 变态另类成人亚洲欧美熟女 | 亚洲中文av在线| 午夜福利在线观看吧| 国产97色在线日韩免费| 久久青草综合色| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 国产午夜精品久久久久久| 久久九九热精品免费| 久久久久精品国产欧美久久久| 曰老女人黄片| 亚洲国产精品sss在线观看 | 黑人操中国人逼视频| 久久久精品区二区三区| 欧美午夜高清在线| 亚洲国产欧美一区二区综合| 欧美黄色淫秽网站| 天天躁日日躁夜夜躁夜夜| 中文字幕制服av| 亚洲熟妇熟女久久| 69精品国产乱码久久久| 人人澡人人妻人| 动漫黄色视频在线观看| 深夜精品福利| 青草久久国产| 日韩免费高清中文字幕av| 久久中文看片网| 国产精品亚洲av一区麻豆| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| av一本久久久久| 一进一出抽搐gif免费好疼 | 在线看a的网站| 一级毛片女人18水好多| 亚洲精品久久成人aⅴ小说| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产精品合色在线| 亚洲精品国产精品久久久不卡| 国产精品免费大片| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看| 中文字幕av电影在线播放| 久热这里只有精品99| 免费不卡黄色视频| 麻豆乱淫一区二区| 黄色视频,在线免费观看| 成人影院久久| 黄色怎么调成土黄色| 天天躁狠狠躁夜夜躁狠狠躁| 国内毛片毛片毛片毛片毛片| 久久久国产成人免费| 99国产精品一区二区三区| 搡老岳熟女国产| 91av网站免费观看| 精品欧美一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线黄色| 男女下面插进去视频免费观看| 亚洲一区高清亚洲精品| 色综合婷婷激情| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女 | 久久人人97超碰香蕉20202| 亚洲av欧美aⅴ国产| www.精华液| 麻豆乱淫一区二区| 99精品欧美一区二区三区四区| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 亚洲欧美精品综合一区二区三区| 欧美精品高潮呻吟av久久| 免费女性裸体啪啪无遮挡网站| 夜夜夜夜夜久久久久| 亚洲国产欧美网| 搡老岳熟女国产| 久久精品国产亚洲av高清一级| 欧美丝袜亚洲另类 | 久久久国产一区二区| 欧美日韩av久久| 黄色女人牲交| 亚洲人成电影观看| 国产日韩一区二区三区精品不卡| 国产99白浆流出| 午夜福利,免费看| 亚洲人成电影免费在线| 啦啦啦视频在线资源免费观看| 国产精品久久久av美女十八| 麻豆国产av国片精品| 久久国产精品影院| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 91精品三级在线观看| 亚洲一码二码三码区别大吗| 国产精品二区激情视频| 久久久久久久午夜电影 | 中文字幕另类日韩欧美亚洲嫩草| 51午夜福利影视在线观看| 夜夜爽天天搞| 亚洲专区中文字幕在线| 丰满饥渴人妻一区二区三| 亚洲午夜精品一区,二区,三区| 黄片播放在线免费| 亚洲av熟女| 国产欧美日韩精品亚洲av| 巨乳人妻的诱惑在线观看| 三上悠亚av全集在线观看| 老司机在亚洲福利影院| 欧美精品啪啪一区二区三区| 国产亚洲精品一区二区www | 久久久久国产精品人妻aⅴ院 | 精品少妇一区二区三区视频日本电影| 一级毛片精品| 国产av又大| 又紧又爽又黄一区二区| 丝袜美足系列| 午夜久久久在线观看| 欧美日韩福利视频一区二区| 亚洲av熟女| 成人亚洲精品一区在线观看| 丝瓜视频免费看黄片| 国产精品久久久久久精品古装| 久久久精品区二区三区| 热re99久久精品国产66热6| www.自偷自拍.com| 日韩欧美一区二区三区在线观看 | 免费av中文字幕在线| 可以免费在线观看a视频的电影网站| 十分钟在线观看高清视频www| 99热网站在线观看| 亚洲免费av在线视频| 1024视频免费在线观看| 国产高清videossex| 波多野结衣av一区二区av| 69精品国产乱码久久久| 亚洲精品成人av观看孕妇| 国产伦人伦偷精品视频| 中文字幕高清在线视频| 精品乱码久久久久久99久播| 久久热在线av| av视频免费观看在线观看| 欧美激情 高清一区二区三区| 在线免费观看的www视频| av视频免费观看在线观看| 黄片小视频在线播放| 超碰97精品在线观看| 999久久久精品免费观看国产| 亚洲精品中文字幕在线视频| 国产成人欧美| 老熟女久久久| 天天影视国产精品| 在线免费观看的www视频| 五月开心婷婷网| 99国产综合亚洲精品| 国产成人精品久久二区二区91| 国产精品 国内视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品一区二区三区在线| 交换朋友夫妻互换小说| 岛国毛片在线播放| 国产在线观看jvid| 欧美激情 高清一区二区三区| 他把我摸到了高潮在线观看| 一级a爱片免费观看的视频| www.自偷自拍.com| 18禁美女被吸乳视频| 色老头精品视频在线观看| 国产又爽黄色视频| 欧美乱妇无乱码| 国产激情欧美一区二区| 亚洲专区国产一区二区| 亚洲久久久国产精品| 亚洲精品中文字幕一二三四区| 欧美成人免费av一区二区三区 | 精品福利观看| 日韩三级视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲一区二区三区不卡视频| 久久亚洲精品不卡| 亚洲人成电影免费在线| 欧美激情久久久久久爽电影 | 国产97色在线日韩免费| 国产亚洲av高清不卡| 极品教师在线免费播放| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看| 男人的好看免费观看在线视频 | 99在线人妻在线中文字幕 | 亚洲国产欧美日韩在线播放| 久久中文字幕一级| svipshipincom国产片| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 久久久久精品国产欧美久久久| 欧美日韩亚洲高清精品| 亚洲精品中文字幕一二三四区| 国产亚洲欧美98| 亚洲av片天天在线观看| www.自偷自拍.com| 视频区欧美日本亚洲| 欧美色视频一区免费| 91老司机精品| 美女视频免费永久观看网站| 午夜福利,免费看| 一区二区三区精品91| 正在播放国产对白刺激| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 99精国产麻豆久久婷婷| 久久久精品国产亚洲av高清涩受| 日日爽夜夜爽网站| 国产精品久久久久久精品古装| 亚洲,欧美精品.| cao死你这个sao货| 色综合欧美亚洲国产小说| 亚洲专区国产一区二区| 另类亚洲欧美激情| 亚洲av熟女| 精品久久蜜臀av无| 午夜福利影视在线免费观看| 极品少妇高潮喷水抽搐| 天天添夜夜摸| 亚洲欧洲精品一区二区精品久久久| 久久久国产欧美日韩av| 欧美日韩福利视频一区二区| 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| 欧美激情久久久久久爽电影 | 人人妻人人添人人爽欧美一区卜| 国产又色又爽无遮挡免费看| 女人精品久久久久毛片| 男人舔女人的私密视频| 久久精品亚洲av国产电影网| 水蜜桃什么品种好| 51午夜福利影视在线观看| 午夜日韩欧美国产| 啦啦啦 在线观看视频| 国产在线精品亚洲第一网站| 精品人妻在线不人妻| 中出人妻视频一区二区| 91字幕亚洲| 中文字幕人妻熟女乱码| 亚洲精品中文字幕在线视频| 国产黄色免费在线视频| 亚洲午夜精品一区,二区,三区| 亚洲av电影在线进入| 一级毛片精品| 成年人免费黄色播放视频| 黄色怎么调成土黄色| 精品国产美女av久久久久小说| 亚洲第一欧美日韩一区二区三区| 少妇粗大呻吟视频| 两性夫妻黄色片| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说 | 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 亚洲av美国av| 久久久久精品国产欧美久久久| 国产蜜桃级精品一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 亚洲色图 男人天堂 中文字幕| 国产精品免费视频内射| 99国产精品一区二区蜜桃av | 国产免费现黄频在线看| 欧美最黄视频在线播放免费 | 美女国产高潮福利片在线看| 国产亚洲精品久久久久5区| 91在线观看av| 91成年电影在线观看| 亚洲中文日韩欧美视频| 亚洲精品国产精品久久久不卡| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三| 免费av中文字幕在线| 在线观看免费视频网站a站| 91麻豆av在线| 国产精品久久久av美女十八| 成年女人毛片免费观看观看9 | 日韩精品免费视频一区二区三区| 欧美成人免费av一区二区三区 | 大陆偷拍与自拍| 色播在线永久视频| 90打野战视频偷拍视频| 亚洲欧美一区二区三区久久| 老司机影院毛片| 啦啦啦视频在线资源免费观看| 一二三四社区在线视频社区8| 男女高潮啪啪啪动态图| 日韩欧美一区视频在线观看| av一本久久久久| 亚洲,欧美精品.|