• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    濕化學(xué)法合成LiNi1/3Mn1/3Co1/3O2及其表征

    2010-12-12 02:44:32張曉雨江衛(wèi)軍朱曉沛
    物理化學(xué)學(xué)報(bào) 2010年6期
    關(guān)鍵詞:化學(xué)系化學(xué)法工程學(xué)院

    張曉雨 江衛(wèi)軍 朱曉沛 其 魯,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院應(yīng)用化學(xué)系,北京 100871;2中信國安盟固利電源技術(shù)有限公司,北京 102200)

    Nowadays,lithium-ion batteries(LIB)have been widely used in portable power sources.Most LIB use LiCoO2as cathode material because of its simple synthesis,low irreversible capacity loss,and good cycling performance[1-2].However,due to high cost of LiCoO2,much effort has been made to develop other cheaper cathode materials and use them in price-sensitive and large-scale applications.Recently,a layer-structured compound LiNi1/3Mn1/3Co1/3O2(simplified as LNMCO),first introduced by Ohzuku′s group in 2001[3],has been considered as an attractive candidate of next-generation cathode material to replace LiCoO2due to its lower cost,more stable structure,larger capacity,and better thermal stability at charged state[4-6].The valence states of nickel,manganese,and cobalt ions in LNMCO powder are+2, +4,and+3,respectively,confirmed by X-ray photoelectron specctroscopy(XPS)study[7].For LNMCO,each transition metal plays its important role.The divalent nickel ions and trivalent cobalt ions are electroactive and the electrochemical reaction of lithium extraction/insertion takes place by oxidation/reduction of Ni2+/Ni4+and Co3+/Co4+ions depending on different cut-off voltages,while Mn4+remains inactive but maintains the structural stability[8].

    However,cation mixing still remains a big problem for this material,since the ionic radius of Ni2+(0.069 nm)is close to that of Li+(0.076 nm)[9].A partial occupation of Ni2+by Li+and Ni2+generates a disorder in the structure and this could restrict the motion of Li+ions within the layers of the oxide,which leads to the tendency for the capacity to fade during long cycling[10]. Therefore,one aim of this work is to decrease the cation mixing byadjusting different acid to metal ion molar ratios(R)during the synthesis through wet-chemical method.

    Moreover,It has been shown that magnetic experiment is quite a powerful tool to check the quality of samples and structural properties at nanoscopic scale,especially in the case of cathode materials for LIB[11-14]and it is possible to correlate the magnetic and structural properties of LNMCO[15-16].In particular, we have shown that the Ni2+ion in substitution for Li+on the 3b lattice site,Ni2+(3b)generates a ferromagnetic interaction with the Mn4+ions nearest neighbours on 3a sites,and this Ni2+(3b)-Mn4+(3a)ferromagnetic interaction is responsible for the formation of a ferromagnetic cluster centred on the Ni2+(3b)defect[17].The magnetic moment resulting from these ferromagnetic clusters can be detected from the magnetic measurements,from which the concentration of the Ni2+(3b)defects can be derived and compared with the concentration deduced from Rietveld refinement of XRD spectra.This correlation between magnetic and structural properties makes possible the determination of the concentration of Ni2+(3b)defects with very good accuracy[18].We then use the same procedure in this work.

    In addition,although wet-chemical method has been used to synthesize LNMCO,using different chelating agents,e.g.,citric acid and oxalic acid[19-23],and succinic acid is also one of the widely used chelating agents for the synthesis of oxides,the synthesis of LNMCO assisted by succinic acid and the effect of its content on magnetic properties,especially on the relationship between structural and magnetic properties of LNMCO,has not been reported to the best of our knowledge.Therefore,varying the succinic acid to metal ion molar ratio and this effect on the structural,morphological,electrochemical,particularly on the magnetic properties of LNMCO,are studied detailedly in this paper.

    1 Experimental

    1.1 Sample synthesis

    The synthesis occurred from metal acetates via inorganic polymerization reactions in the solution[24-26].This wet-chemical route was assisted by succinic acid(AR,Sigma-Aldrich product) as a polymeric agent,using appropriate molar ratios of lithium, nickel,manganese,and cobalt acetate as starting materials to synthesize LNMCO compound.Stoichiometric amounts of acetate hydrates ofLi(CH3COO)·2H2O(AR),Ni(CH3COO)2·4H2O(AR), Mn(CH3COO)2·4H2O(AR),and Co(CH3COO)2·4H2O(AR), Sigma-Aldrich products,were dissolved in distilled water and mixed homogenously with an aqueous solution of succinic acid, varying the molar ratio(R)of acid to metal-ion.The resulting solution was mixed by magnetic stirring at 80℃for 6 h to obtain a clear viscous gel.The gel was dried in an oven at 120℃for 12 h.The as-prepared precursor was pre-calcined at 450℃for 4 h to convert the metal carboxylates to oxides.After cooling down to room temperature,the obtained powder was grounded in an agate mortar and then sintered at 900℃in air for 15 h without pelleting to get the final LNMCO.

    1.2 Apparatus

    Thermogravity(TG)experiment was performed using a Q50 (TA,USA)instrument analyzer to monitor the mass loss/gain and heat treatment processes under a flow of dry air with a heating rate of 10℃·min-1.Measurements were carried out in the temperature range of 25℃≤T≤750℃.

    For structural analysis of LNMCO,samples were characterized with X-ray diffraction(XRD)on a Philips(Netherlands)X′Pert PRO MRD(PW3050)diffractometer equipped with a Cu anticathode(Cu Kαradiation,λ=0.154056 nm)at room temperature.XRD patterns were collected under Bragg-Brentano geometry at 2θ with a step of 0.02°in the range of 10°-80°and were refined by the Rietveld method using the GSAS/EXPGUI package[27].For morphology analysis of LNMCO,a scanning electron microscope(SEM)study of the samples was performed using a JEOL(Japan)JSM-5600LV electron microscope.

    The magnetic measurements (susceptibility and magnetization)were performed with a fully automated superconducting quantum interface device(SQUID)magnetometer(Quantum Design MPMS XL,USA)in the temperature range of 4-300 K. Powders were placed into small plastic vial,placed in a holder and finally inserted into the helium cryostat of the SQUID apparatus.The temperature dependence of the susceptibility data was recorded during heating of the sample using two modes:zero field cooling(ZFC)and field cooling(FC),to determine the mag-netic behavior.The procedure is based on performing two consecutive magnetization measurements:in ZFC the sample is first cooled down in the absence of magnetic field,then a magnetic field H=10 kOe is applied,and the ZFC magnetic susceptibility M(H)/H is measured where M is the magnetization measured upon heating.In the FC experiments,the same magnetic field is applied first at room temperature;the FC susceptibility is measured upon cooling.No difference,i.e.,no magnetic irreversibility effect has been detected between ZFC and FC measurements in anyofthe samples.Magnetic curves M(H)have been measured in an applied magnetic field in a range of 0-30 kOe.

    Charge-discharge tests were performed on coin type cell (CR2032).Composite positive electrode was prepared by thoroughly mixing the active material(90%(w,mass fraction))with carbon black(2%(w)),acetylene black(2%(w)),polyvinylidene fluoride(6%(w))in N-methyl-pyrrolidinone and spread onto aluminium foils then dried at 120℃for 24 h in vacuum.Cells were then assembled in an argon-filled glove box(Braun,Germany) using foils of Li metal as counter electrode and Celgard 2400 as separator.The electrolyte was 1.0 mol·L-1LiPF6in a mixture of ethylene carbonate(EC)and diethyl carbonate(DEC)(1:1,volume ratio).The cells were galvanostatically cycled at 0.2C (1C=160 mA·g-1)between 3.0 V and 4.3 V(versus Li/Li+)on a Land CT2001A battery tester(Wuhan Jinnuo Electronics Co., Ltd.,China)at room temperature.

    2 Results and discussion

    2.1 TG analysis of LNMCO precursor

    When acetate of an electropositive transition metal dissolves in succinic acid,there is a finite release of the acetate anion into solution.The basic species,acetate anion,can allow the dissolution of metal acetates.The formation of a chelation complex is important to prevent the segregation or precipitation of metal ions.The acetate ligand,succinic acid,has oxygen atoms and hydrogen atoms which can participate in hydrogen bonding.As a result,metal acetates are trapped in a glassy state by an extended network of hydrogen bonds.At the same time,succinic acid binds to the metal acetates and replaces the water of hydration in the complex to give acid-acetate species[28].Succinic acid also acts as fuel and provides local heat for the formation of compound during the decomposition process because of its selfigniting property,accelerating the decomposition of acetate ions. Therefore,varying the acid to metal ion molar ratio(R)can affect the decomposition/formation reaction.As an example,Fig.1 shows the TG analysis curve of the precursor of LNMCO synthesized via R=0.5.Several mass loss stages are observed in this TG curve.The first mass loss stage occurs at ca 223℃,which would be attributed to departure of residual water.After the departure of the remaining water molecule at ca 330℃,the anhydrous metal acetate can be decomposed into both metal oxide and gases such as carbon dioxide by further thermal treatment in air[29-30].It was reported that chelating agent(carboxylic-based acid)provoked decomposition during the synthesis of oxide powders and the gel precursor burned because the decomposed acetate ions acted as an oxidizer[24-26],so the mass loss in the third step is observed around 376℃which corresponds to the decomposition of succinic acid and acetate ions xerogel.After 450℃, there is little mass loss,so in this work,we choose 450℃as the heating temperature for pre-calcination.The reaction pathway can thus be given as follows:

    2.2 Structural and morphological analysis of LNMCO

    Fig.2 XRD patterns of LNMCO powders synthesized with different succinic acid to metal ion molar ratios(R)

    Fig.2 shows the XRD patterns of LNMCO materials synthesized by wet-chemistry with calcination at 900℃in air for 15 h via different R values.From now on,all the experiments in this work will be focussed on the optimization of the parameter R. The Bragg lines are well indexed in the R3m space group with the hexagonal sitting.No impurity phases are detected and the powders are well crystallized in the α-NaFeO2type structure.As seen in Fig.2,the(006)/(102)and(108)/(110)doublets are well separated,which indicates a good hexagonal ordering of LNMCO[31].The narrow diffraction peaks of the pattern indicate a high crystallinity of the LNMCO powder and suggest a homogeneous distribution of the cations within the structure.The lattice parameters were obtained by analysis of the XRD data and the results were summarized in Table 1.The lattice parameter,a,is related to average metal-metal intraslab distance,the lattice parameter,c,is related to the average metal-metal inter-slab distance;and the trigonal distortion,c/a,is related to the hexagonal structure disorder.For layered compounds,higher value of c/a is desirable for better hexagonal structure[7].The trigonal distortion c/a is the largest for LNMCO R=1,which is used as a criterion of optimized material.In addition,the integrated intensity ratio of(003)to(104)peak,I003/I104,has been considered as an indicator of the degree of cation mixing[32].The higher the ratio is, the lower the cation mixing is.It is also believed that the lower value of(I006+I102)/I101is another indicator of better hexagonal ordering[33-34].The lowest value of(I006+I102)/I101,together with the highest value of I103/I104is obtained for R=1,which suggests that this is the optimized value of this synthesis parameter.As a result,varying R value has a direct effect on the structural properties of LNMCO,since the self-igniting property of succinic acid can influence the oxygen partial pressure during synthesis.The sudden variation in the oxygen partial pressure,especially during the burning of the succinic acid,has an impact on LNMCO formation.When R value is low,it cannot provide enough local heat for the formation of precursor.However,when R value is too high,the local temperature increases too much in a short period of time and the partial pressure of oxygen decreases due to the increased CO2,which results in the insufficient oxidation of ions and ferromagnetic defects that can aggravate the cation mixing during the formation of LNMCO.

    The Rietveld refinement has been made with the constraints that the lithium ion and the nickel-manganese-cobalt ions occupy the 3b(0,0,0)and 3a(0,0,1/2)Wyckoff sites,respectively, while the oxygen anionsoccupythe 6c(0,0,zoxy)position(zoxywill be refined).In addition,we assume that each cationic site is fully occupied and the number of cations equals to that of anions,sothe overall charge neutrality is maintained.Furthermore,we assumed the existence of a small amount of nickel ions in the lithium sites,since the smaller difference in size between the Ni2+(0.069 nm)and the Li+ions(0.076 nm)in contrast with other cations(r(Mn4+)=0.053 nm,r(Co3+)=0.054 nm in an octahedral environment[9]).Therefore,we defined the formula as[Li1-yNiy]3b[LiyNi1/3-yMn1/3Co1/3]3aO2for Rietveld refinement:the occupancy parameter y of the Ni2+ions at the 3b sites was refined and constrained to be equal to that of Li+ions at the 3a sites,with the total nickel occupancy ratio constrained to 1/3.The results of the Rietveld refinement of the XRD patterns are also summarized in Table 1 as a function of R.Since the radius of Ni2+is smaller than that of Li+,Ni2+ions on 3b sites leads to an increase of the parameter a.Moreover,the presence of the Ni2+ions in lithium plane leads to the stronger electrostatic attraction between oxygen and Li+/Ni2+ions in the LiO2inter-slab plane,hence the decrease of the LiO2inter-slab space,I(LiO2),the correlated increase of the thickness S(MO2)of the MO2slabs,and the increase of c.

    Table 1 Structural data of the LiNi1/3Mn1/3Co1/3O2samples synthesized with different R values

    As seen from Table 1,we find a,c,S(MO2)are minimum and I(LiO2)is maximum for R=1,which confirms that this is the optimized value for this parameter.These correlated variations of a,c,S(MO2)and I(LiO2)are then additional proofs that R=1 is the optimized value for succinate route.Indeed,the amount of Li+/Ni2+cation mixing is the lowest in this case(y=1.85%),which is better than the results in Refs.[21,35].The Rietveld fit of the XRD pattern for this sample is shown in Fig.3.

    The morphologies of powders were investigated by SEM.Fig. 4(a-d)shows the SEM images of LNMCO compounds synthesized via succinic acid route with different R values.The SEM pictures also show that the primary particles are stuck into agglomerates.The sample synthesized via the optimal value R=1 (Fig.4b),with minimum cation mixing and optimum structural integrity,seems to have a more uniform size distribution of particlesthan the others,which can facilitate the diffusion oflithiumion,so higher specific capacity and better capacity retention can be expected.

    Fig.3 Rietveld refinement patterns of LNMCO synthesized at R=1 via wet-chemical methodThe cross marks show observed X-ray diffraction intensities and the solid line (in red on the web version)represents calculated intensities.The curve at the bottom(in blue on the web version)is the difference between the calculated and observed intensities on the same scale.

    Fig.4 SEM images of LNMCO synthesized with different R valuesR:(a)0.5,(b)1,(c)2,(d)3

    2.3 Magnetic properties of LNMCO

    Fig.5 Plots of the reciprocal magnetic susceptibility χ-1mfor samples synthesized with different R valuesData were collected with a magnetic field H=10 kOe.

    The temperature dependence of the reciprocal magnetic susceptibility,=H/M is presented in Fig.5 for all the samples. The magnetization curves are reported in Fig.6(a-d)for samples withthe“optimized”valueR=1,andtheotherthreesamples.Above 150 K,the curve-T shows a paramagnetic(PM)behavior and the magnetization is linear in field for all the samples,so thatis meaningful,i.e.,H/M=?H/?M.The quasi-linear variations ofwith T at the susceptibility can be described by a Curie-Weiss lawwith Θpthe Curie-Weiss temperature,and Cpthe Curie constant related to the effective magnetic moment μeffbythe relationwith kBthe Boltzmann constant and N the number of metal ions in one mole of product.The values of the two fitting parameters Θpand μeffobtained for the different acid to metal ion ratios R are reported in Table 2.Θpis negative in all the compounds and this is an intrinsic property due to the fact that intrinsic magnetic interactions are mainly the intra-layer superexchange interactions mediated via oxygen at 90°bonding angle,and they are dominantly antiferromagnetic(AFM)[14].Taking into account that the magnetic moments carried by Ni2+and Mn4+are 2.83μBand 3.87μB,respectively in this material while Co3+is diamagnetic[36-38],the theoreti-cal value of μeffin absence of Ni2+(3b)defects would be:

    Fig.6 Isothermal plots of the magnetization M(H)for the LNMCO sample synthesized with different R values

    Table 2 Magnetic properties of LNMCO synthesized with different R values

    The experimental value of μefffor the R=1 sample is close to this theoretical value.For the other samples,however,μeffis found to be larger.To understand this effect,we note that the magnetization curves are no longer linear below 80 K.Note in this case, H/M≠?H/?M,so that χ-1min Fig.6(a-d)does not have any physical meaning at these low temperatures.Nevertheless,we have reported the data in Fig.6(a-d)since it will be useful to the discussion.For the moment,we just note that these deviations from linearity are related to the onset of a remanent magnetization at low temperature,evidenced in the magnetization curves of the R=3 in Fig.6(d).Following the prior works[14-16],we attribute this feature to the Ni2+(3b)defects.The substitution of Li by Ni on a 3b site generates a 180°interlayer Mn4+(3a)-O-Ni2+(3b)superexchange interactions which is ferromagnetic(FM)after the Goodenough rules[17].This interaction is strong enough to generate a ferromagnetic spin freezing of the Mn4+(3a)-O-Ni2+(3b)pair that is responsible for the onset of remanent magnetization at low temperature.This interaction is actually strong enough to induce a ferromagnetic spin-freezing of such pairs at low temperature.We can then estimate the amount of Ni2+(3a)defects as the ratio of the magnetic moment at saturation(Ms)of the ferromagnetic component of the magnetization,to the moment at saturation that the sample would have if all the Mn and Ni ions were saturated ferromagnetically,namely(1/3)g·μB·(SMn+SNi)=(5/3)μB= 1.67μBper chemical formula,since the Mn4+and Ni2+carry a spin SMn=3/2 and SNi=1.The gyromagnetic factor g is 2,since the orbital momentum is quenched by crystal field effects,and the factor 1/3 comes from the fact that there is only 1/3 Ni-Mn pair per chemical formula.Mshas been estimated from the linear extrapolation to H→0 of the isothermal magnetization curve M(H) at T=4.2 K taken in the range 20 kOe<H<30 kOe.The lowest temperature and this range of the highest field available in the experiments have been chosen to be sure that the ferromagnetic component is saturated.Despite this precaution,it should be noticed that the curvature of the magnetic curves below 20 kOe does not guarantee that the full saturation of the ferromagnetic component has been achieved even at higher field,and even at 4.2 K.Nevertheless,the result for the estimation of the rate of substitution y deduced from this magnetic analysis reported in Table 2,is in remarkable agreement with the result deduced from Rietveld refinement for all the samples investigated,which validates the analysis.For instance,in the case of the sample with R=1,we find Ms=167 emu·mol-1(Fig.6(b)),which amounts to a magnetic moment per formula 0.03μB.So the concentration of Ni2+at 3b sites can be calculated as 0.03μB/1.67μB=1.80%, which is the lowest value among all the samples and agrees well with the results obtained from Rietveld refinement.In the paramagnetic regime,the ferromagnetic Mn4+(3a)-O-Ni2+(3b)pairing enhances the effective magnetic moment of the material.This is the reason for the increasing large value of μeffupon increasing departure of the parameter R from its optimized value R=1,i.e., upon increasing y.

    Fig.7 Initial charge-discharge profiles of LNMCO samples synthesized with different R values

    2.4 Electrochemical properties of LNMCO

    Fig.7 shows the initial charge-discharge curves of LNMCO cathode synthesized with different R values at 32 mA·g-1(0.2C) rate between 3.0 V and 4.3 V versus Li/Li+at room temperature. As shown in Fig.7,the prepared LNMCO materials display smooth charge-discharge curves without any plateaus,which indicates no spinel-related phases forming during cycling.As seen from Table 3,the initial discharge capacity of LNMCO samples are 155 mAh·g-1(R=0.5),161 mAh·g-1(R=1),149 mAh·g-1(R=2),and 141 mAh·g-1(R=3),respectively.The coulombic efficiencies are 90.6%(R=0.5),93.1%(R=1),90.3%(R=2),and 89.2%(R=3).

    Fig.8 shows the differential capacity(?Q/?E)vs cell potential (E)of the Li//LNMCO(R=1)coin cell calculated from data presented in Fig.7.Upon charging the cell displays a major oxidation peak at 3.79 V,while the reduction peak occurs at 3.68 V upon discharging.As reported many times in the literature,the oxidation peak at ca 3.8 V with the corresponding reduction peak at 3.7 V is typical for the Ni2+/Ni4+redox reaction in the Li-Ni-Mn-Co oxide lattice[5,14].However,the asymmetry toward the high potential side is due to the partial redox contribution from Co3+to Co4+that corresponds to the second electron transfer.

    The cycling performances of LNMCO samples are illustratedin Fig.9.The optimized sample(R=1)achieves higher initial discharge capacity(161 mAh·g-1)and its capacityretention is 91.3% after 50 cycles,which correspond well with the results from structural and magnetic analyses before.Higher structural integrity and less cation mixing result in better electrochemical performance,which can be compared with that of LNMCO synthesized by other wet-chemical methods[39-40],when using the same cut-off voltage(3.0-4.3 V)and current density(32 mA·g-1) for electrochemical characterization.

    Table 3 Electrochemical properties of LNMCO synthesized with different R values

    Fig.8 Differential capacity(?Q/?E)vs cell potential(E)of the Li//LNMCO(R=1)coin cell

    Fig.9 Cycling performance of LNMCO samples synthesized with different R values

    3 Conclusions

    The layered LNMCO was successfully synthesized via wetchemical route assisted by succinic acid with different R values. XRD,SQUID,and charge-discharge characterizations show that the structural,magnetic,and electrochemical profiles are sensitive to the synthetic conditions,i.e.,the R value that governs the cation mixing.The best performance of the LNMCO electrode has been obtained from an acid to metal ion ratio R=1 sintered at 900℃for 15 h.The amount of cation mixing estimated from the magnetization curve for R=1 is 1.80%,which agrees well with the Rietveld refinement result(1.85%).The LNMCO sample with R=1 shows the best reversibility with a coulombic efficiency of 93.1%for the first cycle.Its initial discharge capacity is 161 mAh·g-1and its capacity retention is 91.3%after 50 cycles in the cut-off voltage of 3.0-4.3 V.

    1 Nagamura,T.;Tazawa,K.Prog.Batteries Sol.Cells,1990,9:209

    2 Reimers,J.N.;Dahn,J.R.J.Electrochem.Soc.,1992,139:209

    3 Ohzuku,T.;Makimura,Y.Chem.Lett.,2001,30:642

    4 Yabuuchi,N.;Ohzuku,T.J.Power Sources,2003,119:171

    5 Belharouak,I.;Sun,Y.K.;Liu,J.;Amine,K.J.Power Sources, 2003,123:247

    6 Wang,J.;Qi,Y.J.;Li,Y.W.;Qi,L.Acta Phys.-Chim.Sin.,2007, 23(suppl.):46 [王 劍,祁毓俊,李永偉,其 魯.物理化學(xué)學(xué)報(bào),2007,23(增刊):46]

    7 Shaju,K.M.;Rao,G.V.S.;Chowdari,B.V.R.Electrochim.Acta, 2002,48:145

    8 Yoon,W.S.;Grey,C.P.;Balasubramanian,M.;Yang,X.Q.; Fischer,D.A.;McBreen,J.Electrochem.Solid-State Lett.,2004, 7:A53

    9 Shannon,R.D.Crystallogr.Acta A,1976,32:751

    10 Shaju,K.M.;Bruce,P.G.J.Power Sources,2007,174:1201

    11 Julien,C.M.;Ait-Salah,A.;Mauger,A.;Gendron,F.Ionics,2006, 12:21

    12 Amdouni,N.;Gendron,F.;Mauger,A.;Zarrouk,H.;Julien,C.M. Mater.Sci.Eng.B,2006,129:64

    13 Zaghib,K.;Ravet,N.;Gauthier,M.;Gendron,F.;Mauger,A.; Goodenough,J.B.;Julien,C.M.J.Power Sources,2006,163:560

    14 Abdel-Ghany,A.;Zaghib,K.;Gendron,F.;Mauger,A.;Julien,C. M.Electrochim.Acta,2007,52:4092

    15 Abdel-Ghany,A.;Mauger,A.;Gendron,F.;Zaghib,K.;Julien,C. M.ECS Trans.,2007,3:137

    16 Zhang,X.Y.;Mauger,A.;Gendron,F.;Qi,L.;Groult,H.; Perrigaud,L.;Julien,C.M.ECS Trans.,2009,16:11

    17 Goodenough,J.B.Phys.Rev.,1960,117:1442

    18 Zhang,X.Y.;Jiang,W.J.;Mauger,A.;Qi,L.;Gendron,F.;Julien, C.M.J.Power Sources,2010,195:1292

    19 Zhang,W.;Liu,H.X.;Hu,C.;Zhu,X.J.;Li,Y.X.Rare Metals, 2008,27:158

    20 Guo,H.J.;Liang,R.F.;Li,X.H.;Zhang,X.M.;Wang,Z.X.; Peng,W.J.;Wang,C.Trans.Nonferrous Met.Soc.China,2007, 17:1307

    21 Li,X.;Wei,Y.J.;Ehrenberg,H.;Du,F.;Wang,C.Z.;Chen,G. Solid State Ionics,2008,178:1969

    22 Liu,J.J.;Qiu,W.H.;Yu,L.Y.;Zhang,G.H.;Zhao,H.L.;Li,T. J.Power Sources,2007,174:701

    23 He,Y.S.;Pei,L.;Liao,X.Z.;Ma,Z.F.J.Fluorine Chem.,2007, 128:139

    24 Julien,C.M.;El-Farh,L.;Rangan,S.;Massot,M.J.Sol-Gel Sci. Technol.,1999,15:63

    25 Julien,C.M.;Michael,M.S.;Ziolkiewicz,S.Int.J.Inorg.Mater., 1999,1:29

    26 Julien,C.M.;Letranchant,C.;Rangan,S.;Lemal,M.;Ziolkiewicz, S.;Castro-Garcia,S.;El-Farh,L.;Benkaddour M.Mater.Sci.Eng. B,2000,76:145

    27 Toby,B.H.J.Appl.Cryst.,2001,34:210

    28 Wu,H.M.;Rao,C.V.;Rambabu,B.Mater.Chem.Phys.,2009, 116:532

    29 Lee,B.W.J.Power Sources,2002,109:220

    30 Caballero,A.;Cruz,M.;Hernán,L.;Melero,M.;Morales,J.; Castellón,E.R.J.Power Sources,2005,150:192

    31 Rougier,A.;Gravereau,P.;Delmas,C.J.Electrochem.Soc.,1996, 143:1168

    32 Ohzuku,T.;Ueda,A.;Nagayama,M.J.Electrochem.Soc.,1993, 140:1862

    33 Dahn,J.R.;von Sacken,U.;Michal,C.A.Solid State Ionics, 1990,44:87

    34 Reimers,J.N.;Rossen,E.;Jones,C.D.;Dahn,J.R.Solid State Ionics,1993,61:335

    35 Shin,Y.J.;Choi,W.J.;Hong,Y.S.;Yoon,S.;Ryu,K.S.;Chang, S.H.Solid State Ionics,2006,177:515

    36 Chernova,N.A.;Ma,M.M.;Xiao,J.;Whittingham,M.S.;Breger, J.;Grey,C.P.Chem.Mater.,2007,19:4682

    37 Ma,M.M.;Chernova,N.A.;Toby,B.H.;Zavalij,P.Y.; Whittingham,M.S.J.Power Sources,2007,165:517

    38 Xiao,J.;Chernova,N.A.;Whittingham,M.S.Chem.Mater., 2008,20:7454

    39 Park,S.H.;Yoon,C.S.;Kang,S.G.;Kim,H.S.;Moon,S.I.;Sun, Y.K.Electrochim.Acta,2004,49:557

    40 Liang,Y.G.;Han,X.Y.;Zhou,X.W.;Sun,J.T.;Zhou,Y.H. Electrochem.Commun.,2007,9:965

    猜你喜歡
    化學(xué)系化學(xué)法工程學(xué)院
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    福建工程學(xué)院
    福建工程學(xué)院
    濕化學(xué)法合成Ba(Mg(1-x)/3ZrxTa2(1-x)/3)O3納米粉體及半透明陶瓷的制備
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    福建工程學(xué)院
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    福建工程學(xué)院
    化學(xué)法處理電鍍廢水的研究進(jìn)展
    濕化學(xué)法合成羥基磷灰石晶體及其表征
    丰满的人妻完整版| svipshipincom国产片| 99热这里只有精品一区 | 18美女黄网站色大片免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲欧洲精品一区二区精品久久久| 波多野结衣巨乳人妻| 久久久久国产精品人妻aⅴ院| 男人舔女人的私密视频| 亚洲精品美女久久久久99蜜臀| 欧美日韩乱码在线| 免费在线观看黄色视频的| 法律面前人人平等表现在哪些方面| 精品国产国语对白av| 成人特级黄色片久久久久久久| 美女免费视频网站| 国产亚洲精品久久久久5区| 欧美日韩福利视频一区二区| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 在线免费观看的www视频| 亚洲一码二码三码区别大吗| 精品久久久久久成人av| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美日韩无卡精品| 日韩欧美免费精品| 久久久久久亚洲精品国产蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 一进一出抽搐gif免费好疼| 欧美午夜高清在线| 老鸭窝网址在线观看| 可以免费在线观看a视频的电影网站| 中文字幕av电影在线播放| 成年版毛片免费区| 少妇被粗大的猛进出69影院| 视频在线观看一区二区三区| 国产av一区在线观看免费| 不卡av一区二区三区| 国产精品影院久久| 叶爱在线成人免费视频播放| 桃色一区二区三区在线观看| 国产成+人综合+亚洲专区| 国产精品综合久久久久久久免费| 国产精品九九99| 亚洲成av人片免费观看| 亚洲精品av麻豆狂野| 日韩中文字幕欧美一区二区| 亚洲第一青青草原| 久久午夜亚洲精品久久| 欧美最黄视频在线播放免费| 韩国精品一区二区三区| 久久中文字幕人妻熟女| 国产精品亚洲av一区麻豆| 久久久久久久久中文| 99久久久亚洲精品蜜臀av| 一进一出好大好爽视频| 国产亚洲av嫩草精品影院| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区mp4| 一区二区日韩欧美中文字幕| 一级片免费观看大全| 老司机午夜福利在线观看视频| 一区二区三区国产精品乱码| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 嫁个100分男人电影在线观看| 国产精品永久免费网站| 国产一区二区三区视频了| 免费在线观看完整版高清| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 成人av一区二区三区在线看| 十八禁网站免费在线| 国产色视频综合| 一本精品99久久精品77| 精品国产亚洲在线| 99在线人妻在线中文字幕| 久久性视频一级片| 黄色a级毛片大全视频| 欧美三级亚洲精品| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 午夜免费鲁丝| 日韩欧美 国产精品| 老汉色av国产亚洲站长工具| 热99re8久久精品国产| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 99国产综合亚洲精品| 成年免费大片在线观看| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出| 国产麻豆成人av免费视频| 亚洲 欧美一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 美国免费a级毛片| 国产男靠女视频免费网站| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 亚洲国产精品合色在线| 欧美黄色片欧美黄色片| 91国产中文字幕| 欧美大码av| 女同久久另类99精品国产91| 欧美激情极品国产一区二区三区| 两人在一起打扑克的视频| 中文字幕精品免费在线观看视频| 黄色女人牲交| 老鸭窝网址在线观看| 高清在线国产一区| 丝袜在线中文字幕| 制服丝袜大香蕉在线| 99久久综合精品五月天人人| 亚洲一区中文字幕在线| 久久久久久久久久黄片| 免费在线观看亚洲国产| 免费在线观看视频国产中文字幕亚洲| 国产欧美日韩一区二区三| a在线观看视频网站| 91老司机精品| 嫩草影视91久久| 免费高清在线观看日韩| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 可以免费在线观看a视频的电影网站| 丝袜在线中文字幕| 久久久国产精品麻豆| 国产日本99.免费观看| 一本综合久久免费| 一进一出好大好爽视频| 给我免费播放毛片高清在线观看| 免费观看精品视频网站| 色在线成人网| 亚洲国产欧美一区二区综合| 免费观看精品视频网站| 精华霜和精华液先用哪个| 老鸭窝网址在线观看| 成人18禁在线播放| 午夜福利高清视频| 免费高清在线观看日韩| www.熟女人妻精品国产| 男人舔女人的私密视频| 午夜亚洲福利在线播放| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 制服丝袜大香蕉在线| 欧美中文综合在线视频| 亚洲人成网站在线播放欧美日韩| 亚洲av日韩精品久久久久久密| 99久久精品国产亚洲精品| 欧美乱色亚洲激情| 久久99热这里只有精品18| 亚洲五月婷婷丁香| 亚洲午夜理论影院| 一进一出好大好爽视频| 免费在线观看成人毛片| 岛国在线观看网站| 欧美激情极品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| av免费在线观看网站| 日韩欧美三级三区| e午夜精品久久久久久久| 欧美精品啪啪一区二区三区| 1024香蕉在线观看| 在线观看免费午夜福利视频| 少妇熟女aⅴ在线视频| 在线永久观看黄色视频| 午夜激情福利司机影院| 少妇 在线观看| 男女床上黄色一级片免费看| 久久精品国产99精品国产亚洲性色| av免费在线观看网站| 天堂√8在线中文| 亚洲一区高清亚洲精品| 亚洲 欧美 日韩 在线 免费| 男女之事视频高清在线观看| 亚洲欧美日韩高清在线视频| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 人妻丰满熟妇av一区二区三区| 神马国产精品三级电影在线观看 | 成年免费大片在线观看| 亚洲精品国产区一区二| 狠狠狠狠99中文字幕| 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| 给我免费播放毛片高清在线观看| 天天一区二区日本电影三级| 亚洲成人国产一区在线观看| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| av在线天堂中文字幕| 国产精品 欧美亚洲| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 亚洲 欧美一区二区三区| 亚洲国产精品999在线| 日韩大码丰满熟妇| 搞女人的毛片| 哪里可以看免费的av片| 熟女少妇亚洲综合色aaa.| 身体一侧抽搐| 久久精品国产亚洲av高清一级| 人人澡人人妻人| 亚洲精品一区av在线观看| 夜夜爽天天搞| 成人精品一区二区免费| 日本 av在线| 国产欧美日韩一区二区精品| 国产精品免费视频内射| 久久中文字幕人妻熟女| 两个人看的免费小视频| 在线视频色国产色| 91国产中文字幕| 亚洲自偷自拍图片 自拍| 免费电影在线观看免费观看| 国产成人欧美在线观看| 97碰自拍视频| 国产亚洲av嫩草精品影院| 老司机深夜福利视频在线观看| 男女床上黄色一级片免费看| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆 | 成人国产综合亚洲| 天天添夜夜摸| 人妻丰满熟妇av一区二区三区| 国产一区在线观看成人免费| 亚洲人成伊人成综合网2020| 少妇粗大呻吟视频| 又大又爽又粗| 亚洲自偷自拍图片 自拍| 十八禁网站免费在线| 国产亚洲欧美精品永久| 国产三级在线视频| 欧美人与性动交α欧美精品济南到| 亚洲国产精品合色在线| 久久中文字幕一级| 看黄色毛片网站| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 看免费av毛片| 日韩欧美一区二区三区在线观看| 性欧美人与动物交配| 亚洲中文字幕一区二区三区有码在线看 | 欧美三级亚洲精品| 母亲3免费完整高清在线观看| 黄色毛片三级朝国网站| 日韩欧美三级三区| 伦理电影免费视频| 丁香欧美五月| 免费在线观看亚洲国产| 18禁观看日本| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 久久人妻福利社区极品人妻图片| 成人精品一区二区免费| 啦啦啦 在线观看视频| 高清在线国产一区| 国内揄拍国产精品人妻在线 | 亚洲人成网站在线播放欧美日韩| 一个人观看的视频www高清免费观看 | 亚洲精品久久成人aⅴ小说| 免费看十八禁软件| 无限看片的www在线观看| 村上凉子中文字幕在线| 欧美乱妇无乱码| 色老头精品视频在线观看| 中文字幕人妻丝袜一区二区| 欧美成狂野欧美在线观看| 日日摸夜夜添夜夜添小说| 男女做爰动态图高潮gif福利片| 久久这里只有精品19| 午夜两性在线视频| 俄罗斯特黄特色一大片| 日本一本二区三区精品| 欧美在线黄色| 成年免费大片在线观看| 老汉色∧v一级毛片| 深夜精品福利| 熟女少妇亚洲综合色aaa.| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 麻豆一二三区av精品| 色在线成人网| 久9热在线精品视频| 日本成人三级电影网站| 露出奶头的视频| √禁漫天堂资源中文www| 2021天堂中文幕一二区在线观 | 亚洲成人免费电影在线观看| 黄频高清免费视频| 国产高清videossex| 此物有八面人人有两片| 桃红色精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 亚洲欧美日韩无卡精品| 在线观看免费午夜福利视频| 夜夜看夜夜爽夜夜摸| 国产精品精品国产色婷婷| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片 | 老熟妇仑乱视频hdxx| 18禁裸乳无遮挡免费网站照片 | 男女下面进入的视频免费午夜 | 怎么达到女性高潮| 亚洲第一青青草原| 成熟少妇高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 中亚洲国语对白在线视频| 国产亚洲精品综合一区在线观看 | 黄网站色视频无遮挡免费观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产日韩欧美精品在线观看 | 非洲黑人性xxxx精品又粗又长| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区| 亚洲精品国产一区二区精华液| ponron亚洲| 母亲3免费完整高清在线观看| 一区二区三区国产精品乱码| 91成年电影在线观看| 成人18禁在线播放| 97人妻精品一区二区三区麻豆 | 欧美精品亚洲一区二区| 91av网站免费观看| 窝窝影院91人妻| 免费在线观看完整版高清| 性欧美人与动物交配| 在线观看www视频免费| 在线观看午夜福利视频| 日韩国内少妇激情av| 国产成年人精品一区二区| 国产日本99.免费观看| 成人国产一区最新在线观看| 国产精华一区二区三区| 婷婷亚洲欧美| 国产成人精品久久二区二区91| 国产精品电影一区二区三区| 国产av一区二区精品久久| 一卡2卡三卡四卡精品乱码亚洲| 好男人电影高清在线观看| 丝袜人妻中文字幕| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放 | 999久久久精品免费观看国产| www.www免费av| 国产伦一二天堂av在线观看| 国产精品日韩av在线免费观看| 国产亚洲欧美精品永久| 亚洲国产精品999在线| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 国产精华一区二区三区| 亚洲国产精品合色在线| 淫秽高清视频在线观看| 精品久久久久久久人妻蜜臀av| 国产欧美日韩一区二区三| 国产成人欧美在线观看| 一a级毛片在线观看| bbb黄色大片| 变态另类成人亚洲欧美熟女| 黑丝袜美女国产一区| 午夜日韩欧美国产| 女生性感内裤真人,穿戴方法视频| 欧美国产日韩亚洲一区| 久久婷婷人人爽人人干人人爱| 最新在线观看一区二区三区| 午夜福利高清视频| 18禁黄网站禁片午夜丰满| 麻豆成人av在线观看| 久久中文字幕一级| 欧美一级a爱片免费观看看 | 999久久久国产精品视频| 亚洲人成电影免费在线| 在线观看66精品国产| 91av网站免费观看| 亚洲专区字幕在线| 日韩三级视频一区二区三区| 九色国产91popny在线| ponron亚洲| 黄色片一级片一级黄色片| 国产亚洲精品久久久久久毛片| 制服丝袜大香蕉在线| 成人一区二区视频在线观看| 在线天堂中文资源库| 黄色丝袜av网址大全| 免费av毛片视频| 婷婷丁香在线五月| 波多野结衣av一区二区av| 久久香蕉激情| 自线自在国产av| 最近在线观看免费完整版| 女同久久另类99精品国产91| 俺也久久电影网| 亚洲一区中文字幕在线| 男女之事视频高清在线观看| 岛国在线观看网站| 欧美日韩亚洲综合一区二区三区_| 一卡2卡三卡四卡精品乱码亚洲| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看 | 成人手机av| 色老头精品视频在线观看| 搡老妇女老女人老熟妇| 日本熟妇午夜| 国产伦人伦偷精品视频| 黄色a级毛片大全视频| 久久久水蜜桃国产精品网| 成人18禁高潮啪啪吃奶动态图| 2021天堂中文幕一二区在线观 | 精品电影一区二区在线| 久久性视频一级片| 成人av一区二区三区在线看| 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区色噜噜| 在线观看免费日韩欧美大片| 侵犯人妻中文字幕一二三四区| 久久性视频一级片| 一边摸一边做爽爽视频免费| 在线视频色国产色| 国产v大片淫在线免费观看| 亚洲av第一区精品v没综合| 在线国产一区二区在线| 亚洲av电影在线进入| 国产亚洲精品av在线| 久久香蕉国产精品| 狂野欧美激情性xxxx| 美女午夜性视频免费| e午夜精品久久久久久久| 欧美又色又爽又黄视频| 国产成人欧美在线观看| 日韩成人在线观看一区二区三区| 老司机午夜十八禁免费视频| 久久久国产欧美日韩av| 国产视频内射| 天天躁夜夜躁狠狠躁躁| 女人被狂操c到高潮| 此物有八面人人有两片| 91麻豆av在线| 一级a爱片免费观看的视频| 亚洲免费av在线视频| 99re在线观看精品视频| 精品久久蜜臀av无| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人av教育| 国内少妇人妻偷人精品xxx网站 | 神马国产精品三级电影在线观看 | 亚洲 欧美一区二区三区| 亚洲av美国av| 伦理电影免费视频| 天堂√8在线中文| 夜夜躁狠狠躁天天躁| 国产91精品成人一区二区三区| 亚洲 欧美一区二区三区| 国产欧美日韩精品亚洲av| 黄片播放在线免费| 深夜精品福利| 怎么达到女性高潮| 亚洲男人天堂网一区| 丁香六月欧美| 国产黄a三级三级三级人| av电影中文网址| 欧美日韩亚洲综合一区二区三区_| 国产熟女xx| 久久久久久大精品| 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全免费视频| 岛国在线观看网站| 一本一本综合久久| 黄色 视频免费看| 最新在线观看一区二区三区| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 亚洲精品久久成人aⅴ小说| 日韩欧美在线二视频| 亚洲熟妇中文字幕五十中出| 窝窝影院91人妻| 亚洲精品粉嫩美女一区| 色播在线永久视频| 国产精品精品国产色婷婷| 亚洲专区字幕在线| 亚洲精品久久国产高清桃花| 久久国产精品影院| 桃红色精品国产亚洲av| 嫩草影视91久久| 免费在线观看成人毛片| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 久久久精品国产亚洲av高清涩受| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品国产一区二区精华液| av欧美777| 校园春色视频在线观看| 久久久久久九九精品二区国产 | 18禁黄网站禁片午夜丰满| 国产精品久久久久久亚洲av鲁大| 亚洲男人的天堂狠狠| 少妇被粗大的猛进出69影院| 午夜久久久在线观看| 久久精品国产清高在天天线| 国产成人av激情在线播放| 日韩欧美免费精品| 日韩精品中文字幕看吧| 欧美色视频一区免费| 999久久久国产精品视频| 老司机午夜十八禁免费视频| 日韩欧美一区二区三区在线观看| 黑人欧美特级aaaaaa片| 日韩视频一区二区在线观看| 亚洲自偷自拍图片 自拍| 99国产精品一区二区蜜桃av| 国产午夜福利久久久久久| 别揉我奶头~嗯~啊~动态视频| 18禁黄网站禁片免费观看直播| 99热这里只有精品一区 | 久久久久久久久免费视频了| 国产成年人精品一区二区| 搡老熟女国产l中国老女人| 国产亚洲精品久久久久5区| 日本黄色视频三级网站网址| 日本一区二区免费在线视频| www.自偷自拍.com| 日本在线视频免费播放| 久久中文看片网| 天堂影院成人在线观看| АⅤ资源中文在线天堂| 9191精品国产免费久久| 欧美成人性av电影在线观看| 国产伦一二天堂av在线观看| 又大又爽又粗| 老汉色∧v一级毛片| 免费在线观看亚洲国产| 男人舔女人下体高潮全视频| 国产成人欧美在线观看| 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区免费| 国产精品 国内视频| 国产一级毛片七仙女欲春2 | 精品少妇一区二区三区视频日本电影| 可以在线观看的亚洲视频| 婷婷精品国产亚洲av在线| 亚洲免费av在线视频| 免费在线观看完整版高清| 日日爽夜夜爽网站| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 一本一本综合久久| 午夜福利欧美成人| 国产精品一区二区免费欧美| 亚洲精品中文字幕一二三四区| 亚洲色图av天堂| 视频在线观看一区二区三区| 国产野战对白在线观看| 国产精品永久免费网站| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 欧美日韩一级在线毛片| 女人高潮潮喷娇喘18禁视频| 无人区码免费观看不卡| 亚洲第一av免费看| 精品无人区乱码1区二区| 国产私拍福利视频在线观看| 窝窝影院91人妻| 亚洲精华国产精华精| 老汉色∧v一级毛片| 美女扒开内裤让男人捅视频| 欧美黄色片欧美黄色片| 亚洲av中文字字幕乱码综合 | 国产精品一区二区精品视频观看| 人人妻人人澡人人看| 亚洲美女黄片视频| 国产亚洲欧美精品永久| 成人免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区在线av高清观看| 91在线观看av| 久久性视频一级片| 成人国产一区最新在线观看| 最近最新中文字幕大全电影3 | 后天国语完整版免费观看| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 亚洲国产高清在线一区二区三 | 亚洲精品av麻豆狂野| av在线天堂中文字幕| 丝袜在线中文字幕| 欧美黄色淫秽网站| 国产黄a三级三级三级人| 国产免费男女视频| 一级作爱视频免费观看| 午夜福利18| 日韩大尺度精品在线看网址| 99国产综合亚洲精品| 国产亚洲精品综合一区在线观看 | 精品欧美国产一区二区三| www.自偷自拍.com| 操出白浆在线播放| 欧美午夜高清在线| 精品久久久久久久人妻蜜臀av| 黄片大片在线免费观看| 午夜福利在线在线|