• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synergistic Interactions in Mixed Micelles of Cationic 14-s-14 Gemini with Conventional Surfactants:Spacer and Counterion Effects

    2010-12-12 02:43:26AZUMNavedNAQVIAndleebAKRAMMohdKABIRUDDIN
    物理化學(xué)學(xué)報 2010年6期

    AZUM Naved NAQVI Andleeb Z. AKRAM Mohd. KABIR-UD-DIN

    (Department of Chemistry,Aligarh Muslim University,Aligarh-202002,India)

    Gemini surfactants are a special class of surfactants[1-3],which contain each of hydrophobic and hydrophilic groups coupled together via a spacer of varied nature(hydrophobic,hydrophilic, flexible,or rigid)(Fig.1).These novel surfactants show many unexpected surface properties when compared with conventional counterparts(one hydrophobic and hydrophilic group),i.e.,lower critical micelle concentrations,much greater efficiency in reducing the surface tension of water,etc.Since these surfactants contain two hydrophobic tails per molecule,surface activity is enhanced and increases with increasing chain length.Gemini surfactants have manifold applications in the detergent and cosmetic industries due to their enhanced surface activity,emulsifying property,and mildness to skin.Noteworthy among geminis, cationic ones are used to a large extent in a number of pharmaceutical,biomedical,and personal care product applications[4](due to low mammalian toxicity).

    Fig.1 Schematic representation of the structure of the gemini surfactant

    As we know,commercially used surfactants are invariably mixtures of two or more types of surfactants.The mixtures have gained importance in the industrial,pharmaceutical,and biological fields due to their better performance and cost effectiveness over single surfactant.The mixed micelles have also been found to enhance the adsorption of various drugs in the human body[5]. Mixture of surfactants is used to facilitate the dissolution and improved tolerance of water hardness[6].All the above occur due to synergism observed between different components of mixtures.Synergism is defined as the condition in which the properties of a mixture are better than those attainable with the individual components separately.An important mixed system is that including ionic gemini and ionic conventional surfactants with the same charge.Cosmetic industries use mixture of surfactants inlowconcentrations(synergismincriticalmicelleconcentration) to avoid potential skin irritation[7].The synergism is also beneficial for the environment as it allows the amount of surfactants released and hence their impact to be substantially reduced[8].

    Because of better performance and low consumption of mixed systems than pure surfactants,considerable attention has been devoted towards understanding the detailed physicochemical behavior of amphiphiles in the recent years[9-10].Binary mixtures of surfactants have often been studied to investigate the micellar composition,aggregation number,molecular interactions,and free energy of micellization,interfacial adsorption,micro-polarity employing surface tension,electrical conductivity,solubilization,NMR,and fluorescence quenching methods.

    Many phenomenological models have been put forward for dealing with the mixed binary systems to evaluate the composition and interaction parameter among the components at the air/water interface and in the micellar phase.A phase separation model,which relates the mole fraction and critical micelle concentration of the ith component in an ideal mixture is known as Clint′s model[11-12].Rubingh[13]gave a theoretical model on the basis of regular solution theory(RST)that relates the monomer concentration to micellar concentration.This theory was criticized on thermodynamic grounds,although found to be satisfactory in many cases.Rosen et al.[14]extended Rubingh theory to monolayer at the air/water interface.Motomura et al.[15]proposed a mixed micellar model based on thermodynamic considerations.Blankschtein et al.[16-18]have developed a molecular thermodynamic theory to describe the binary and ternary mixed surfactant systems.Maeda[19]has proposed an approach for mixed micelle formation involving nonionic and ionic surfactants based on phase separation model.

    This paper aims to investigate molecular interaction in the mixed micellization of cationic gemini alkanediyl-α,ω-bis(tetradecyldimethylammonium bromide),referred to as 14-s-14 (s=4,5,6)and two conventional surfactants(cetylpyridinium bromide and cetylpyridinium chloride).The mixtures are characterized by their critical micelle concentration(cmc)at 303 K. The nature and strength of the interactions between surfactant mixtures were obtained by the calculating the values of their β parameters.To assist this experimental analysis,the theoretical model of ideal solutions(Clint′s model)and the regular solution approach(Rubingh′s model)have been used.

    1 Experimental

    1.1 Materials

    Gemini surfactants were synthesized by reacting a dibromoalkanes with tetradecyl dimethylamine[20]:

    The molar ratio was 2.1:1 and the mixture was refluxed in ethanol for 48 h.The solvent was removed and then the raw material was recrystallized in ethanol-ethyl acetate mixtures.The crystallization was normally repeated four times.All products were checked by1H NMR spectroscopy using CDCl3as solvent.

    Cetylpyridinium bromide(CPB)and cetylpyridinium chloride (CPC)were purchased from Merck and were used without further purification.All solutions were prepared in doubly-distilled water and experiments were performed at 303 K.

    1.2 Method

    The critical micelle concentration(cmc)was determined using conductivity method.The measurements were performed on an ELICO(type CM 82T)bridge equipped with platinized electrodes(cell constant is 1.02 cm-1).The experiments were carried out by adding progressively concentrated surfactant stock solution into the thermostated solvent.The critical micellar concentration of the surfactant used was obtained from the plots of specific conductivity(κ)as a function of the surfactant concentration.The cmc value was taken from the intersection of the two straight lines drawn before and after the intersection point in the κ vs surfactant concentration plot.Differential conductivity (dκ/dc)plots in all cases were also used to check the cmc;they are considered to give more accurate cmc values than the values evaluated only from κ plots.The degree of counterion binding (g)was obtained from the ratio of the slopes of the conductivity vs surfactant concentration plots above and below the cmc.

    2 Results

    It is well known that specific conductivity is linearly related to the surfactant concentration(c)in the both premicellar and postmicellar regions and that the intersection point between the two straight lines provides the cmc.Experimental values of specific conductivity(κ)are plotted as a function of total surfactant concentration(cT)at several constant values of mole fraction(α)(a selected example is shown in Fig.2).The cmc in each case was evaluated by taking the first derivative of the plot.The first derivative is of sigmoidal type and can be adequately described by using a Boltzmann type sigmoid,which has the following analytical expression:

    where,A1and A2represents the asymptotic value for small and large values of x,xorepresents the central point of the transition and Δx deals with the width of the transition.The degree of counterion binding of the micelle,g,can be obtained from the A2/A1ratio as g=(1-A2/A1).These values are reported in Tables 1 to 3.Tables 1-3 list the cmc values obtained at various mole ratios at 303 K,as well as the composition of each mixed system.The variation of cmc along with ideal cmc(cmc*)vs mole fraction of component 1(conventional surfactant)are recorded in Tables 1 to 3 and Figs.3,4 present the same graphically.The parameters(X1,,β,f1,f2,ΔGex),calculated using Rubingh and Motomura models to analyze the mixed micelle formation,are also compiled in Tables 1 to 3.

    3 Discussion

    Fig.2 Plots of specific conductivity(κ)and first derivative of specific conductivity(δκ/δc)of 14-4-14+CPB versus total surfactant concentration(cT)at αCPB=0.4

    Aqueous solutions of the conventional and gemini binary sys-tems have been characterized through conductivity.We have chosen conductivity because it seemed one of the most straightforward techniques used due to high sensitivity and reproducibility.The surfactants studied herein are cationic surfactants of different chain length and head group.According to Tanford′s model[21],the lengthening of surfactant tail by—CH2clearly affects micellar properties:i.e.,the cmc decreases approximately 50%,and the dissociation degree decreases around 25%.However,change in head group has little effect on micellar properties.The presence of two alkyl chains in 14-s-14 makes themolecule more hydrophobic.The greater the hydrophobicity of the molecule,the greater the distortion of the water structure and the greater the tendency to form micelles,hence the cmc of 14-s-14 isabout75%lessthan thatofCPB and 70%fromthatofCPC.

    Table 1 Various physicochemical parameters for 14-4-14+CPB/CPC mixed systems at 303 K (evaluated on the basis of conductivity measurements)

    Table 2 Various physicochemical parameters for 14-5-14+CPB/CPC mixed systems at 303 K (evaluated on the basis of conductivity measurements)

    Table 3 Various physicochemical parameters for 14-6-14+CPB/CPC mixed systems at 303 K (evaluated on the basis of conductivity measurements)

    When two or more types of surfactants are mixed together, they form aggregates,but the tendency of aggregation can be different from that of the pure surfactants.Both the ideal and nonideal mixed micelles are possible,the ideality/nonideality in the mixed micelle formation between the cationic gemini and cationic conventional surfactants can be evaluated by using Clint′s model[11-12],based upon pseudophase thermodynamic formulation.Clint′s equation can be used to relate the cmc values as

    where αiis the stoichiometric mole fraction in the mixture and cmc*is the ideal cmc value of the mixture.

    For two surfactants 1 and 2 with cmc values cmc1and cmc2,

    This is an idealization which neglects the interaction among different surfactants in the aggregated state and considers the cmc of the individual components reflecting their relative tendency toward micellization in the mixed state.The theory is,therefore, an oversimplification and can be applied only in fairly dilute solutions(systems with very low cmc).The theory is,however,a tool,divergence from which in the positive and negative side signifies antagonistic and synergistic behavior,respectively.It is clear from the data(Tables 1-3)that the cmc values of the mixture of gemini+conventional surfactants are intermediate to the component cmc at all mole fractions.This shows that the gemini surfactants can partition easily into the micelles of monomeric surfactants and strengthen the hydrophobic environment in the mixed state in comparison to pure state.Therefore,micellization takes place at lower concentrations as compared to the ideal state.One can see(Figs.3 and 4)that the cmc values are always smaller than the cmc*values and the difference between cmc and cmc*increases with the increase in mole fraction of the conventional surfactant.A lower cmc value than the corresponding cmc*indicates that mixed micellization is due to some sort of attractive interactions synergism operating between the two components of the mixtures.

    Fig.3 Critical micelle concentrations for binary mixtures of 14-s-14+CPBSolid lines represent experimental data(cmc)and dashed lines were calculated from Clint′s model(cmc*).

    Fig.4 Critical micelle concentrations for binary mixtures of 14-s-14+CPCSolid lines represent experimental data(cmc)and dashed lines were calculated from Clint′s model(cmc*).

    The fraction of counterions associated with the Stern part of the double layer is termed as counterion binding.Ionic micelles bind a considerable amount of counterions,which can be estimated by electrochemical measurements.All aggregation processes in aqueous solutions can be understood by the counterion binding.The degree of counterion binding depends on surface charge density and polarizibility.The counterion binding increases with increase in the polarizibility and charge density. The cmc of ionic surfactants is also affected by counterion binding,an increase in the cmc decreases the counterion binding. The counterion binding of the mixed systems decreases in all the caseswithincreasingthemolefractionofcomponent1(α1,Tables 1-3),which suggests loose micellar aggregates.

    In order to investigate the nature of interactions among the components,we calculated various other parameters,using Rubingh′s model[13].

    The Rubingh model is the first model developed for nonideal mixed systems.It is based on regular solution approach for the treatment of a nonideal mixing,and due to its simplicity,it has been mostly used,even after development of more complex models.The nonideality is introduced with the inclusion of the activity coefficients(fi)in equation(2),i.e.,

    where,in the case of a binary solution,

    and

    The β parameter can be interpreted in terms of an energetic parameter that represents the Gibbs excess free energy of mixing, which,according to the regular solution approximation,is true only in the case when the excess entropy of mixing is zero.The β parameter can be determined from experimental values of cmc using the following equations

    where X1is the micelle mole fraction of surfactant 1(i.e.,conventional)in the mixed micelle.Equation(8)was solved iteratively to obtain the values of X1.The mole fraction of a particular component in the micelle is lower than that of stoichiometric mole fraction of that component(Tables 1-3)indicating the low extent of transfer of that component from solution to micelle.The micelle mole fraction in the ideal state()was also evaluated by applying Motomura′s theory[15],which is based upon excess thermodynamic quantities,as

    It is clear from the data(Tables 1-3)that X1values are always more thanwhich means that,even in a low conventional surfactant region(i.e.,with low α1values),the mixed micelles are rich in conventional surfactants in comparison to that in ideal mixingstate(i.e.,).Further,asthelengthofspacer(s)increases from 4 to 6,the value of X1becomes larger and the difference between X1andvalues increases.This means that at the same mixture composition,as the spacer chain length changes from 4 to 6,the contribution of gemini surfactant decreases and gemini molecules contribute less as compared to their ideal state.

    The mixing of hydrophobic core to hydrophobic chain of a binary mixture leads to ideal process while electrostatic interaction between head groups leads to nonideal process.Therefore,even the monomer phase in micelle solution is considered to be ideal, the micellar phase may be nonideal.The nonideality can be expressed in terms of an interaction parameter β,which corepresents the free energy of mixing.For most of the systems where hydrocarbon chains mix inside the hydrophobic micelle core,β is negative.This means that the free energy is lowered when a hydrocarbon chain moves from the monomer phase to the micelle phase.A zero value indicates ideal mixing while positive values show less attraction after mixing than before mixing(antagonism).

    In our case,as can be seen from the data,the average values of interaction parameter,βav,come out to be-0.532/-1.280/ -1.600 and-0.264/-0.607/-1.149 for 14-4-14/14-5-14/14-6-14 geminis with CPB and CPC,respectively.All the values being negative indicate attractive interaction among the gemini and conventional surfactants in mixed micelles.Increase in spacer length also affects synergistic interactions,most likely due to the increase in hydrophobocity at the level of head group and the modification in the distance between head groups of amphiphiles in the micellar phase.Since there are two long hydrophobic chains in the geminis,too small a linkage(less hydrophobic)between the two head groups is not suitable for their packing and inhibits their interaction with other surfactants at the surface of the convex micelle and results in a low average value of β.

    The values of activity coefficients,f1and f2,calculated from equations(5)and(6),are found to be lessthan unityshowingnonideal behavior of the mixed systems.The activity coefficients were used to calculate excess free energy of mixing by the relation

    The negative ΔGexvalues thus obtained(Tables 1-3)suggest that the mixed micelles are more stable than the micelles of individual components.

    4 Conclusions

    Interaction between cationic gemini and cationic conventional surfactants was investigated at 303 K.The following conclusions were obtained:

    (1)The experimental cmc values of mixtures are lower than those predicted from Clint′s equation,indicating the presence of nonideality in the systems.

    (2)In this study,the mixed micelle is also interpreted theoretically.The mole fraction of a particular component in the micelle is lower than that of stoichiometric mole fraction of that component indicating the low extent of transfer of that component from solution to micelle.

    (3)The binary mixtures show synergism(negative β values). On increasing the hydrophobicity of the spacer the sysnergistic interaction also increases,it is also confirmed by the average excess free energy.

    1 Menger,F.M.;Littau,C.A.J.Am.Chem.Soc.,1991,113:1451

    2 Menger,F.M.;Littau,C.A.J.Am.Chem.Soc.,1993,115:10083

    3 Rosen,M.J.Chemtech,1993,23:30

    4 Junger,E.Cationic surfactants.New York:Marcel Dekker,1970

    5 Aungst,B.J.;Phang,S.Int.J.Pharm.,1995,117:95

    6 Abe,M.;Ogino,K.Mixed surfactant systems.New York:Marcel Dekker,1993

    7 Gracia,M.T.;Ribosa,I.;Leal,J.S.;Comelles,F.J.Am.Oil Chem. Soc.,1992,69:25

    8 Kibbey,T.C.G.;Hayes,K.F.Environ.Sci.Tech.,1997,3:1171

    9 Junquera,E.;Pea,L.;Aicart,E.Langmuir,1997,13:219

    10 Zhou,Q.;Rosen,M.J.Langmuir,2003,19:4555

    11 Clint,J.H.J.Chem.Soc.Faraday Trans.1,1975,71:1327

    12 Clint,J.H.Surfactant aggregation.New York:Chapman and Hall, 1992

    13 Holland,P.M.;Rubingh,D.N.J.Phys.Chem.,1983,87:1984

    14 Gu,B.;Rosen,M.J.J.Colloid Interface Sci.,1989,129:537

    15 Motomura,K.;Yamanaka,M.;Aratono,M.Colloid Polym.Sci., 1984,262:948

    16 Sarmoria,C.;Puvvada,S.;Blankschtein,D.Langmuir,1992,8: 2690

    17 Puvvada,S.;Blankschtein,D.J.Phys.Chem.,1992,96:5567

    18 Puvvada,S.;Blankschtein,D.J.Phys.Chem.,1992,96:5579

    19 Maeda,H.J.Colloid Interface Sci.,1995,98:172

    20 De,S.;Aswal,V.K.;Goyal,P.S.;Bhattacharya,S.J.Phys.Chem., 1996,100:11664

    21 Tanford,C.The hydrophobic effect:formation of micelles and biological membranes.New York:Wiley,1980

    如日韩欧美国产精品一区二区三区| 成人免费观看视频高清| 免费黄色在线免费观看| 丰满迷人的少妇在线观看| 国产精品人妻久久久影院| 91aial.com中文字幕在线观看| 亚洲精品日韩在线中文字幕| 久久免费观看电影| 女性生殖器流出的白浆| 亚洲第一青青草原| 亚洲视频免费观看视频| 日韩电影二区| 久久久久久久大尺度免费视频| 亚洲成人一二三区av| 黄网站色视频无遮挡免费观看| 午夜福利影视在线免费观看| 伦理电影免费视频| 成人国产av品久久久| 午夜免费鲁丝| 亚洲综合色网址| 各种免费的搞黄视频| 桃花免费在线播放| 精品一区二区三区四区五区乱码 | 国精品久久久久久国模美| 国产精品一区二区在线不卡| 五月伊人婷婷丁香| 大话2 男鬼变身卡| 国产xxxxx性猛交| 国产一级毛片在线| 午夜激情av网站| 午夜激情av网站| 亚洲精品第二区| 欧美 亚洲 国产 日韩一| 国产成人精品婷婷| 色婷婷av一区二区三区视频| 免费观看a级毛片全部| 亚洲精品久久久久久婷婷小说| 丝袜人妻中文字幕| 亚洲精品久久久久久婷婷小说| 1024香蕉在线观看| 久久久精品免费免费高清| av女优亚洲男人天堂| xxx大片免费视频| 久久这里只有精品19| 99香蕉大伊视频| 婷婷色综合大香蕉| 成人手机av| 狠狠婷婷综合久久久久久88av| 久久国产精品大桥未久av| 日本免费在线观看一区| 国产精品 国内视频| 国产一区二区三区av在线| 久久99精品国语久久久| 18在线观看网站| 亚洲精品视频女| 国产极品天堂在线| 久久99精品国语久久久| 香蕉国产在线看| 午夜av观看不卡| 街头女战士在线观看网站| 一级,二级,三级黄色视频| 午夜av观看不卡| 天天躁夜夜躁狠狠久久av| 欧美精品一区二区大全| 亚洲精品自拍成人| 在线观看免费日韩欧美大片| 久久久亚洲精品成人影院| 亚洲av日韩在线播放| 国产白丝娇喘喷水9色精品| 99精国产麻豆久久婷婷| 丝袜美腿诱惑在线| 人人妻人人澡人人爽人人夜夜| 亚洲中文av在线| 老司机影院毛片| 永久网站在线| 人成视频在线观看免费观看| a级毛片在线看网站| 亚洲国产看品久久| av在线app专区| 日韩视频在线欧美| 丝袜脚勾引网站| 精品久久久精品久久久| 日韩不卡一区二区三区视频在线| 国产精品秋霞免费鲁丝片| 极品人妻少妇av视频| 日韩三级伦理在线观看| 99热网站在线观看| 少妇人妻久久综合中文| av免费在线看不卡| 精品久久蜜臀av无| 爱豆传媒免费全集在线观看| 日日撸夜夜添| 国产成人精品婷婷| 97在线视频观看| √禁漫天堂资源中文www| 99久久中文字幕三级久久日本| 桃花免费在线播放| 久久久久视频综合| 99热网站在线观看| av免费在线看不卡| 亚洲av成人精品一二三区| 一区二区av电影网| 男人操女人黄网站| 最黄视频免费看| 亚洲av日韩在线播放| 黄片小视频在线播放| 一级,二级,三级黄色视频| h视频一区二区三区| 自线自在国产av| www.自偷自拍.com| 免费少妇av软件| 少妇被粗大的猛进出69影院| 人妻 亚洲 视频| 伊人久久国产一区二区| 国产成人欧美| 激情视频va一区二区三区| 国产日韩欧美视频二区| 中文乱码字字幕精品一区二区三区| 久久国内精品自在自线图片| 午夜老司机福利剧场| 亚洲精品国产av蜜桃| 国产精品免费视频内射| 亚洲精品国产av成人精品| 超碰成人久久| 青春草国产在线视频| 蜜桃国产av成人99| 婷婷色av中文字幕| 国产乱来视频区| 999精品在线视频| 亚洲图色成人| 男女无遮挡免费网站观看| 午夜福利,免费看| 性高湖久久久久久久久免费观看| 大香蕉久久网| av.在线天堂| 国产精品无大码| 18禁裸乳无遮挡动漫免费视频| 国产激情久久老熟女| 久久人人爽av亚洲精品天堂| 天美传媒精品一区二区| 久久国产亚洲av麻豆专区| 免费日韩欧美在线观看| 国产乱来视频区| videos熟女内射| 少妇的逼水好多| 亚洲久久久国产精品| 国产av码专区亚洲av| 大话2 男鬼变身卡| 亚洲色图 男人天堂 中文字幕| 性少妇av在线| 亚洲欧洲日产国产| 日本爱情动作片www.在线观看| 热re99久久国产66热| 日本欧美国产在线视频| 一级a爱视频在线免费观看| 国产精品国产三级国产专区5o| 婷婷色av中文字幕| 99久久人妻综合| 精品国产一区二区三区四区第35| 十八禁网站网址无遮挡| 国产成人午夜福利电影在线观看| 久久久久久久久久久免费av| 亚洲欧美一区二区三区黑人 | 亚洲色图 男人天堂 中文字幕| 国产成人免费观看mmmm| 午夜免费鲁丝| 美国免费a级毛片| 黄色视频在线播放观看不卡| 久久精品久久久久久久性| 免费少妇av软件| 老汉色av国产亚洲站长工具| 人体艺术视频欧美日本| 免费观看在线日韩| 美女大奶头黄色视频| 日韩一本色道免费dvd| 26uuu在线亚洲综合色| 国产激情久久老熟女| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区国产| 欧美 日韩 精品 国产| 国产成人精品一,二区| 国产免费现黄频在线看| 欧美xxⅹ黑人| 国产一区二区三区av在线| 久久影院123| 免费在线观看视频国产中文字幕亚洲 | 久久久欧美国产精品| 欧美日韩综合久久久久久| 午夜日本视频在线| 免费在线观看黄色视频的| 男女边吃奶边做爰视频| 91精品伊人久久大香线蕉| 亚洲精品第二区| 18禁动态无遮挡网站| 国产色婷婷99| 99re6热这里在线精品视频| 永久网站在线| 五月伊人婷婷丁香| 日本猛色少妇xxxxx猛交久久| xxxhd国产人妻xxx| 高清欧美精品videossex| 在线观看www视频免费| 欧美97在线视频| 五月开心婷婷网| 电影成人av| 亚洲国产av新网站| 国产片内射在线| 欧美日韩国产mv在线观看视频| 亚洲欧美精品综合一区二区三区 | 亚洲精品国产av蜜桃| 久久狼人影院| 亚洲成色77777| 欧美日韩一级在线毛片| 啦啦啦在线观看免费高清www| 丝袜美足系列| 下体分泌物呈黄色| 在线亚洲精品国产二区图片欧美| 国产av一区二区精品久久| 欧美激情高清一区二区三区 | 亚洲成国产人片在线观看| 中文字幕最新亚洲高清| 丰满少妇做爰视频| 久久精品久久久久久久性| 午夜影院在线不卡| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| 热re99久久国产66热| 麻豆精品久久久久久蜜桃| 久久国产精品男人的天堂亚洲| 欧美人与善性xxx| 亚洲欧美一区二区三区黑人 | 人妻系列 视频| 国产精品麻豆人妻色哟哟久久| 欧美日本中文国产一区发布| 电影成人av| 国产麻豆69| √禁漫天堂资源中文www| 一本久久精品| 国产亚洲一区二区精品| 国产精品香港三级国产av潘金莲 | 亚洲欧美清纯卡通| 纯流量卡能插随身wifi吗| 欧美97在线视频| 人人妻人人澡人人爽人人夜夜| 久久99精品国语久久久| 亚洲综合色网址| 老司机亚洲免费影院| 国产日韩欧美在线精品| 伦理电影大哥的女人| 亚洲天堂av无毛| 久久热在线av| 最近手机中文字幕大全| 另类精品久久| 免费看不卡的av| 男女边摸边吃奶| 丝袜人妻中文字幕| 视频在线观看一区二区三区| 久久免费观看电影| 精品福利永久在线观看| 国产免费福利视频在线观看| av.在线天堂| 永久网站在线| 国产免费现黄频在线看| 大香蕉久久网| 久久女婷五月综合色啪小说| 久久久久久久久久久免费av| 中文字幕人妻丝袜一区二区 | 少妇熟女欧美另类| 黄网站色视频无遮挡免费观看| 亚洲欧美精品综合一区二区三区 | 国产黄色视频一区二区在线观看| 97精品久久久久久久久久精品| 国产精品久久久久久精品电影小说| 九色亚洲精品在线播放| 亚洲欧美一区二区三区国产| 日韩中文字幕欧美一区二区 | 免费在线观看黄色视频的| 久久99热这里只频精品6学生| 人妻系列 视频| 欧美变态另类bdsm刘玥| a级毛片在线看网站| 大码成人一级视频| av电影中文网址| av在线老鸭窝| 国产精品av久久久久免费| 99热网站在线观看| 一本久久精品| 成年av动漫网址| 久久久久久久久久人人人人人人| 男人操女人黄网站| 色视频在线一区二区三区| 久久久久久免费高清国产稀缺| 亚洲精华国产精华液的使用体验| 国产精品 国内视频| 国产高清国产精品国产三级| 一边摸一边做爽爽视频免费| 国产又色又爽无遮挡免| 久久久亚洲精品成人影院| 国产视频首页在线观看| 少妇熟女欧美另类| 精品视频人人做人人爽| 视频在线观看一区二区三区| 色哟哟·www| 水蜜桃什么品种好| 一区二区日韩欧美中文字幕| 国产精品 国内视频| 色哟哟·www| 一级黄片播放器| 亚洲精华国产精华液的使用体验| 麻豆av在线久日| 一级毛片电影观看| 亚洲精品在线美女| 亚洲久久久国产精品| 日本av免费视频播放| 国产成人av激情在线播放| 久久久久久久国产电影| av有码第一页| 91国产中文字幕| 国产精品一区二区在线不卡| 久热久热在线精品观看| 久久精品国产亚洲av涩爱| 日韩伦理黄色片| 亚洲av免费高清在线观看| 亚洲人成网站在线观看播放| 中文天堂在线官网| 国产精品一区二区在线不卡| 天堂俺去俺来也www色官网| kizo精华| 午夜av观看不卡| 欧美少妇被猛烈插入视频| 女性被躁到高潮视频| 久久狼人影院| av网站免费在线观看视频| 青春草亚洲视频在线观看| 国产黄色视频一区二区在线观看| 免费看不卡的av| 男女边吃奶边做爰视频| 热99国产精品久久久久久7| 亚洲第一av免费看| 最近最新中文字幕大全免费视频 | 国产精品蜜桃在线观看| 国产成人精品福利久久| 日韩不卡一区二区三区视频在线| 2021少妇久久久久久久久久久| www.自偷自拍.com| 夫妻性生交免费视频一级片| 精品久久久久久电影网| 欧美精品亚洲一区二区| 一区二区日韩欧美中文字幕| 国产精品成人在线| 亚洲 欧美一区二区三区| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 777米奇影视久久| 欧美日韩精品网址| 人人妻人人爽人人添夜夜欢视频| 久久99蜜桃精品久久| xxxhd国产人妻xxx| 婷婷色av中文字幕| 国产精品av久久久久免费| 国产亚洲欧美精品永久| 欧美成人午夜精品| 18禁国产床啪视频网站| 日韩伦理黄色片| 性色avwww在线观看| 久久久久久久亚洲中文字幕| 亚洲人成电影观看| 亚洲情色 制服丝袜| 欧美日韩亚洲高清精品| 99精国产麻豆久久婷婷| 18禁裸乳无遮挡动漫免费视频| 久久久久网色| tube8黄色片| a级毛片在线看网站| 免费观看性生交大片5| 女人高潮潮喷娇喘18禁视频| 亚洲av欧美aⅴ国产| 国产高清国产精品国产三级| www.自偷自拍.com| 寂寞人妻少妇视频99o| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 日本黄色日本黄色录像| 成人国产av品久久久| 日本免费在线观看一区| 中国国产av一级| 韩国精品一区二区三区| 欧美精品一区二区大全| 人人妻人人添人人爽欧美一区卜| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 大片电影免费在线观看免费| 美女视频免费永久观看网站| 叶爱在线成人免费视频播放| 久久ye,这里只有精品| 晚上一个人看的免费电影| 国产女主播在线喷水免费视频网站| 成人漫画全彩无遮挡| 亚洲av在线观看美女高潮| 午夜福利网站1000一区二区三区| 观看美女的网站| 国产日韩欧美亚洲二区| 久久99一区二区三区| 青春草亚洲视频在线观看| 久久久a久久爽久久v久久| 欧美精品人与动牲交sv欧美| 高清不卡的av网站| 国产xxxxx性猛交| 永久免费av网站大全| 丰满迷人的少妇在线观看| av在线app专区| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区| 男人舔女人的私密视频| 满18在线观看网站| 午夜免费鲁丝| 女人高潮潮喷娇喘18禁视频| 国产黄色免费在线视频| 嫩草影院入口| 久热这里只有精品99| 国产一区二区在线观看av| 在线 av 中文字幕| 大香蕉久久网| 日本猛色少妇xxxxx猛交久久| 精品国产超薄肉色丝袜足j| 黄色配什么色好看| 可以免费在线观看a视频的电影网站 | 久久久久久伊人网av| 在线观看www视频免费| 亚洲国产精品一区二区三区在线| 综合色丁香网| 一个人免费看片子| 五月伊人婷婷丁香| a 毛片基地| 美女高潮到喷水免费观看| 一级毛片电影观看| 免费黄网站久久成人精品| 男女啪啪激烈高潮av片| 午夜福利视频精品| 欧美激情 高清一区二区三区| 十分钟在线观看高清视频www| 久久精品久久久久久久性| 亚洲男人天堂网一区| 成人手机av| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 日本黄色日本黄色录像| 欧美人与性动交α欧美精品济南到 | 国产福利在线免费观看视频| 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 精品人妻一区二区三区麻豆| 日韩熟女老妇一区二区性免费视频| 一区二区av电影网| 美国免费a级毛片| 波多野结衣av一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 中国三级夫妇交换| 咕卡用的链子| tube8黄色片| 纵有疾风起免费观看全集完整版| 国产成人精品婷婷| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 欧美精品一区二区免费开放| 啦啦啦视频在线资源免费观看| 伊人久久大香线蕉亚洲五| 日韩av在线免费看完整版不卡| 亚洲国产最新在线播放| 精品少妇黑人巨大在线播放| 久久影院123| 美女午夜性视频免费| 亚洲伊人久久精品综合| 免费看av在线观看网站| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人久久小说| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 日韩欧美一区视频在线观看| 九色亚洲精品在线播放| 一级毛片黄色毛片免费观看视频| 国产一区二区 视频在线| 国产精品麻豆人妻色哟哟久久| 国产精品无大码| 一二三四在线观看免费中文在| 欧美最新免费一区二区三区| 一区二区三区四区激情视频| 1024香蕉在线观看| 欧美日韩亚洲国产一区二区在线观看 | 一本大道久久a久久精品| 久久久久久久久久久免费av| av在线播放精品| 欧美+日韩+精品| 亚洲国产精品一区三区| 国产xxxxx性猛交| 久久久精品国产亚洲av高清涩受| 天堂俺去俺来也www色官网| 一级片免费观看大全| 一级毛片我不卡| 亚洲,欧美精品.| 激情五月婷婷亚洲| 男人添女人高潮全过程视频| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频| 亚洲人成电影观看| 中文乱码字字幕精品一区二区三区| 亚洲久久久国产精品| 一级毛片电影观看| 欧美av亚洲av综合av国产av | 国产成人91sexporn| 成人二区视频| 国产女主播在线喷水免费视频网站| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 免费播放大片免费观看视频在线观看| 人妻系列 视频| 亚洲国产精品一区二区三区在线| 色视频在线一区二区三区| 丝袜喷水一区| 亚洲天堂av无毛| 少妇 在线观看| 亚洲经典国产精华液单| 日本av手机在线免费观看| 亚洲av在线观看美女高潮| 精品福利永久在线观看| 亚洲成人手机| 一区福利在线观看| 亚洲熟女精品中文字幕| 欧美成人午夜精品| 亚洲欧美精品自产自拍| 精品国产国语对白av| 日韩,欧美,国产一区二区三区| 色吧在线观看| 伊人久久大香线蕉亚洲五| av福利片在线| 免费看av在线观看网站| 亚洲精品,欧美精品| 久久人人爽人人片av| 国产黄色免费在线视频| 少妇人妻精品综合一区二区| 在线看a的网站| 在线 av 中文字幕| 成年美女黄网站色视频大全免费| 亚洲综合精品二区| 中文字幕另类日韩欧美亚洲嫩草| 又黄又粗又硬又大视频| 国产男女超爽视频在线观看| 99久久综合免费| 女人久久www免费人成看片| 免费观看性生交大片5| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品卡一卡二卡四卡免费| 国产一区二区激情短视频 | 青春草国产在线视频| 只有这里有精品99| 99热全是精品| 2022亚洲国产成人精品| 一级a爱视频在线免费观看| 国产成人精品无人区| 男人爽女人下面视频在线观看| 大话2 男鬼变身卡| 午夜激情av网站| freevideosex欧美| 狂野欧美激情性bbbbbb| 汤姆久久久久久久影院中文字幕| 午夜激情av网站| 最新的欧美精品一区二区| 亚洲三区欧美一区| 国产精品无大码| 欧美日韩亚洲高清精品| 看非洲黑人一级黄片| 999久久久国产精品视频| 久久久精品国产亚洲av高清涩受| www.自偷自拍.com| 桃花免费在线播放| 亚洲国产毛片av蜜桃av| 国产成人免费观看mmmm| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 在线观看人妻少妇| 欧美精品国产亚洲| 亚洲欧美色中文字幕在线| xxx大片免费视频| 在线观看免费视频网站a站| av一本久久久久| 亚洲第一青青草原| 中文字幕av电影在线播放| 亚洲av电影在线进入| 春色校园在线视频观看| 久久精品国产亚洲av高清一级| 国产精品免费视频内射| 在线观看免费日韩欧美大片| 亚洲成人一二三区av| 亚洲天堂av无毛| 999久久久国产精品视频| 国产精品秋霞免费鲁丝片| 一级爰片在线观看| 男女边吃奶边做爰视频| 国产成人午夜福利电影在线观看| 久久热在线av| 国产一区二区激情短视频 | 亚洲欧美日韩另类电影网站| 国产精品无大码| 九九爱精品视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产淫语在线视频| 制服人妻中文乱码| 免费大片黄手机在线观看| 久久韩国三级中文字幕| 免费高清在线观看日韩| 99久国产av精品国产电影| 日韩人妻精品一区2区三区| 国产精品国产三级国产专区5o|