• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synergistic Interactions in Mixed Micelles of Cationic 14-s-14 Gemini with Conventional Surfactants:Spacer and Counterion Effects

    2010-12-12 02:43:26AZUMNavedNAQVIAndleebAKRAMMohdKABIRUDDIN
    物理化學(xué)學(xué)報 2010年6期

    AZUM Naved NAQVI Andleeb Z. AKRAM Mohd. KABIR-UD-DIN

    (Department of Chemistry,Aligarh Muslim University,Aligarh-202002,India)

    Gemini surfactants are a special class of surfactants[1-3],which contain each of hydrophobic and hydrophilic groups coupled together via a spacer of varied nature(hydrophobic,hydrophilic, flexible,or rigid)(Fig.1).These novel surfactants show many unexpected surface properties when compared with conventional counterparts(one hydrophobic and hydrophilic group),i.e.,lower critical micelle concentrations,much greater efficiency in reducing the surface tension of water,etc.Since these surfactants contain two hydrophobic tails per molecule,surface activity is enhanced and increases with increasing chain length.Gemini surfactants have manifold applications in the detergent and cosmetic industries due to their enhanced surface activity,emulsifying property,and mildness to skin.Noteworthy among geminis, cationic ones are used to a large extent in a number of pharmaceutical,biomedical,and personal care product applications[4](due to low mammalian toxicity).

    Fig.1 Schematic representation of the structure of the gemini surfactant

    As we know,commercially used surfactants are invariably mixtures of two or more types of surfactants.The mixtures have gained importance in the industrial,pharmaceutical,and biological fields due to their better performance and cost effectiveness over single surfactant.The mixed micelles have also been found to enhance the adsorption of various drugs in the human body[5]. Mixture of surfactants is used to facilitate the dissolution and improved tolerance of water hardness[6].All the above occur due to synergism observed between different components of mixtures.Synergism is defined as the condition in which the properties of a mixture are better than those attainable with the individual components separately.An important mixed system is that including ionic gemini and ionic conventional surfactants with the same charge.Cosmetic industries use mixture of surfactants inlowconcentrations(synergismincriticalmicelleconcentration) to avoid potential skin irritation[7].The synergism is also beneficial for the environment as it allows the amount of surfactants released and hence their impact to be substantially reduced[8].

    Because of better performance and low consumption of mixed systems than pure surfactants,considerable attention has been devoted towards understanding the detailed physicochemical behavior of amphiphiles in the recent years[9-10].Binary mixtures of surfactants have often been studied to investigate the micellar composition,aggregation number,molecular interactions,and free energy of micellization,interfacial adsorption,micro-polarity employing surface tension,electrical conductivity,solubilization,NMR,and fluorescence quenching methods.

    Many phenomenological models have been put forward for dealing with the mixed binary systems to evaluate the composition and interaction parameter among the components at the air/water interface and in the micellar phase.A phase separation model,which relates the mole fraction and critical micelle concentration of the ith component in an ideal mixture is known as Clint′s model[11-12].Rubingh[13]gave a theoretical model on the basis of regular solution theory(RST)that relates the monomer concentration to micellar concentration.This theory was criticized on thermodynamic grounds,although found to be satisfactory in many cases.Rosen et al.[14]extended Rubingh theory to monolayer at the air/water interface.Motomura et al.[15]proposed a mixed micellar model based on thermodynamic considerations.Blankschtein et al.[16-18]have developed a molecular thermodynamic theory to describe the binary and ternary mixed surfactant systems.Maeda[19]has proposed an approach for mixed micelle formation involving nonionic and ionic surfactants based on phase separation model.

    This paper aims to investigate molecular interaction in the mixed micellization of cationic gemini alkanediyl-α,ω-bis(tetradecyldimethylammonium bromide),referred to as 14-s-14 (s=4,5,6)and two conventional surfactants(cetylpyridinium bromide and cetylpyridinium chloride).The mixtures are characterized by their critical micelle concentration(cmc)at 303 K. The nature and strength of the interactions between surfactant mixtures were obtained by the calculating the values of their β parameters.To assist this experimental analysis,the theoretical model of ideal solutions(Clint′s model)and the regular solution approach(Rubingh′s model)have been used.

    1 Experimental

    1.1 Materials

    Gemini surfactants were synthesized by reacting a dibromoalkanes with tetradecyl dimethylamine[20]:

    The molar ratio was 2.1:1 and the mixture was refluxed in ethanol for 48 h.The solvent was removed and then the raw material was recrystallized in ethanol-ethyl acetate mixtures.The crystallization was normally repeated four times.All products were checked by1H NMR spectroscopy using CDCl3as solvent.

    Cetylpyridinium bromide(CPB)and cetylpyridinium chloride (CPC)were purchased from Merck and were used without further purification.All solutions were prepared in doubly-distilled water and experiments were performed at 303 K.

    1.2 Method

    The critical micelle concentration(cmc)was determined using conductivity method.The measurements were performed on an ELICO(type CM 82T)bridge equipped with platinized electrodes(cell constant is 1.02 cm-1).The experiments were carried out by adding progressively concentrated surfactant stock solution into the thermostated solvent.The critical micellar concentration of the surfactant used was obtained from the plots of specific conductivity(κ)as a function of the surfactant concentration.The cmc value was taken from the intersection of the two straight lines drawn before and after the intersection point in the κ vs surfactant concentration plot.Differential conductivity (dκ/dc)plots in all cases were also used to check the cmc;they are considered to give more accurate cmc values than the values evaluated only from κ plots.The degree of counterion binding (g)was obtained from the ratio of the slopes of the conductivity vs surfactant concentration plots above and below the cmc.

    2 Results

    It is well known that specific conductivity is linearly related to the surfactant concentration(c)in the both premicellar and postmicellar regions and that the intersection point between the two straight lines provides the cmc.Experimental values of specific conductivity(κ)are plotted as a function of total surfactant concentration(cT)at several constant values of mole fraction(α)(a selected example is shown in Fig.2).The cmc in each case was evaluated by taking the first derivative of the plot.The first derivative is of sigmoidal type and can be adequately described by using a Boltzmann type sigmoid,which has the following analytical expression:

    where,A1and A2represents the asymptotic value for small and large values of x,xorepresents the central point of the transition and Δx deals with the width of the transition.The degree of counterion binding of the micelle,g,can be obtained from the A2/A1ratio as g=(1-A2/A1).These values are reported in Tables 1 to 3.Tables 1-3 list the cmc values obtained at various mole ratios at 303 K,as well as the composition of each mixed system.The variation of cmc along with ideal cmc(cmc*)vs mole fraction of component 1(conventional surfactant)are recorded in Tables 1 to 3 and Figs.3,4 present the same graphically.The parameters(X1,,β,f1,f2,ΔGex),calculated using Rubingh and Motomura models to analyze the mixed micelle formation,are also compiled in Tables 1 to 3.

    3 Discussion

    Fig.2 Plots of specific conductivity(κ)and first derivative of specific conductivity(δκ/δc)of 14-4-14+CPB versus total surfactant concentration(cT)at αCPB=0.4

    Aqueous solutions of the conventional and gemini binary sys-tems have been characterized through conductivity.We have chosen conductivity because it seemed one of the most straightforward techniques used due to high sensitivity and reproducibility.The surfactants studied herein are cationic surfactants of different chain length and head group.According to Tanford′s model[21],the lengthening of surfactant tail by—CH2clearly affects micellar properties:i.e.,the cmc decreases approximately 50%,and the dissociation degree decreases around 25%.However,change in head group has little effect on micellar properties.The presence of two alkyl chains in 14-s-14 makes themolecule more hydrophobic.The greater the hydrophobicity of the molecule,the greater the distortion of the water structure and the greater the tendency to form micelles,hence the cmc of 14-s-14 isabout75%lessthan thatofCPB and 70%fromthatofCPC.

    Table 1 Various physicochemical parameters for 14-4-14+CPB/CPC mixed systems at 303 K (evaluated on the basis of conductivity measurements)

    Table 2 Various physicochemical parameters for 14-5-14+CPB/CPC mixed systems at 303 K (evaluated on the basis of conductivity measurements)

    Table 3 Various physicochemical parameters for 14-6-14+CPB/CPC mixed systems at 303 K (evaluated on the basis of conductivity measurements)

    When two or more types of surfactants are mixed together, they form aggregates,but the tendency of aggregation can be different from that of the pure surfactants.Both the ideal and nonideal mixed micelles are possible,the ideality/nonideality in the mixed micelle formation between the cationic gemini and cationic conventional surfactants can be evaluated by using Clint′s model[11-12],based upon pseudophase thermodynamic formulation.Clint′s equation can be used to relate the cmc values as

    where αiis the stoichiometric mole fraction in the mixture and cmc*is the ideal cmc value of the mixture.

    For two surfactants 1 and 2 with cmc values cmc1and cmc2,

    This is an idealization which neglects the interaction among different surfactants in the aggregated state and considers the cmc of the individual components reflecting their relative tendency toward micellization in the mixed state.The theory is,therefore, an oversimplification and can be applied only in fairly dilute solutions(systems with very low cmc).The theory is,however,a tool,divergence from which in the positive and negative side signifies antagonistic and synergistic behavior,respectively.It is clear from the data(Tables 1-3)that the cmc values of the mixture of gemini+conventional surfactants are intermediate to the component cmc at all mole fractions.This shows that the gemini surfactants can partition easily into the micelles of monomeric surfactants and strengthen the hydrophobic environment in the mixed state in comparison to pure state.Therefore,micellization takes place at lower concentrations as compared to the ideal state.One can see(Figs.3 and 4)that the cmc values are always smaller than the cmc*values and the difference between cmc and cmc*increases with the increase in mole fraction of the conventional surfactant.A lower cmc value than the corresponding cmc*indicates that mixed micellization is due to some sort of attractive interactions synergism operating between the two components of the mixtures.

    Fig.3 Critical micelle concentrations for binary mixtures of 14-s-14+CPBSolid lines represent experimental data(cmc)and dashed lines were calculated from Clint′s model(cmc*).

    Fig.4 Critical micelle concentrations for binary mixtures of 14-s-14+CPCSolid lines represent experimental data(cmc)and dashed lines were calculated from Clint′s model(cmc*).

    The fraction of counterions associated with the Stern part of the double layer is termed as counterion binding.Ionic micelles bind a considerable amount of counterions,which can be estimated by electrochemical measurements.All aggregation processes in aqueous solutions can be understood by the counterion binding.The degree of counterion binding depends on surface charge density and polarizibility.The counterion binding increases with increase in the polarizibility and charge density. The cmc of ionic surfactants is also affected by counterion binding,an increase in the cmc decreases the counterion binding. The counterion binding of the mixed systems decreases in all the caseswithincreasingthemolefractionofcomponent1(α1,Tables 1-3),which suggests loose micellar aggregates.

    In order to investigate the nature of interactions among the components,we calculated various other parameters,using Rubingh′s model[13].

    The Rubingh model is the first model developed for nonideal mixed systems.It is based on regular solution approach for the treatment of a nonideal mixing,and due to its simplicity,it has been mostly used,even after development of more complex models.The nonideality is introduced with the inclusion of the activity coefficients(fi)in equation(2),i.e.,

    where,in the case of a binary solution,

    and

    The β parameter can be interpreted in terms of an energetic parameter that represents the Gibbs excess free energy of mixing, which,according to the regular solution approximation,is true only in the case when the excess entropy of mixing is zero.The β parameter can be determined from experimental values of cmc using the following equations

    where X1is the micelle mole fraction of surfactant 1(i.e.,conventional)in the mixed micelle.Equation(8)was solved iteratively to obtain the values of X1.The mole fraction of a particular component in the micelle is lower than that of stoichiometric mole fraction of that component(Tables 1-3)indicating the low extent of transfer of that component from solution to micelle.The micelle mole fraction in the ideal state()was also evaluated by applying Motomura′s theory[15],which is based upon excess thermodynamic quantities,as

    It is clear from the data(Tables 1-3)that X1values are always more thanwhich means that,even in a low conventional surfactant region(i.e.,with low α1values),the mixed micelles are rich in conventional surfactants in comparison to that in ideal mixingstate(i.e.,).Further,asthelengthofspacer(s)increases from 4 to 6,the value of X1becomes larger and the difference between X1andvalues increases.This means that at the same mixture composition,as the spacer chain length changes from 4 to 6,the contribution of gemini surfactant decreases and gemini molecules contribute less as compared to their ideal state.

    The mixing of hydrophobic core to hydrophobic chain of a binary mixture leads to ideal process while electrostatic interaction between head groups leads to nonideal process.Therefore,even the monomer phase in micelle solution is considered to be ideal, the micellar phase may be nonideal.The nonideality can be expressed in terms of an interaction parameter β,which corepresents the free energy of mixing.For most of the systems where hydrocarbon chains mix inside the hydrophobic micelle core,β is negative.This means that the free energy is lowered when a hydrocarbon chain moves from the monomer phase to the micelle phase.A zero value indicates ideal mixing while positive values show less attraction after mixing than before mixing(antagonism).

    In our case,as can be seen from the data,the average values of interaction parameter,βav,come out to be-0.532/-1.280/ -1.600 and-0.264/-0.607/-1.149 for 14-4-14/14-5-14/14-6-14 geminis with CPB and CPC,respectively.All the values being negative indicate attractive interaction among the gemini and conventional surfactants in mixed micelles.Increase in spacer length also affects synergistic interactions,most likely due to the increase in hydrophobocity at the level of head group and the modification in the distance between head groups of amphiphiles in the micellar phase.Since there are two long hydrophobic chains in the geminis,too small a linkage(less hydrophobic)between the two head groups is not suitable for their packing and inhibits their interaction with other surfactants at the surface of the convex micelle and results in a low average value of β.

    The values of activity coefficients,f1and f2,calculated from equations(5)and(6),are found to be lessthan unityshowingnonideal behavior of the mixed systems.The activity coefficients were used to calculate excess free energy of mixing by the relation

    The negative ΔGexvalues thus obtained(Tables 1-3)suggest that the mixed micelles are more stable than the micelles of individual components.

    4 Conclusions

    Interaction between cationic gemini and cationic conventional surfactants was investigated at 303 K.The following conclusions were obtained:

    (1)The experimental cmc values of mixtures are lower than those predicted from Clint′s equation,indicating the presence of nonideality in the systems.

    (2)In this study,the mixed micelle is also interpreted theoretically.The mole fraction of a particular component in the micelle is lower than that of stoichiometric mole fraction of that component indicating the low extent of transfer of that component from solution to micelle.

    (3)The binary mixtures show synergism(negative β values). On increasing the hydrophobicity of the spacer the sysnergistic interaction also increases,it is also confirmed by the average excess free energy.

    1 Menger,F.M.;Littau,C.A.J.Am.Chem.Soc.,1991,113:1451

    2 Menger,F.M.;Littau,C.A.J.Am.Chem.Soc.,1993,115:10083

    3 Rosen,M.J.Chemtech,1993,23:30

    4 Junger,E.Cationic surfactants.New York:Marcel Dekker,1970

    5 Aungst,B.J.;Phang,S.Int.J.Pharm.,1995,117:95

    6 Abe,M.;Ogino,K.Mixed surfactant systems.New York:Marcel Dekker,1993

    7 Gracia,M.T.;Ribosa,I.;Leal,J.S.;Comelles,F.J.Am.Oil Chem. Soc.,1992,69:25

    8 Kibbey,T.C.G.;Hayes,K.F.Environ.Sci.Tech.,1997,3:1171

    9 Junquera,E.;Pea,L.;Aicart,E.Langmuir,1997,13:219

    10 Zhou,Q.;Rosen,M.J.Langmuir,2003,19:4555

    11 Clint,J.H.J.Chem.Soc.Faraday Trans.1,1975,71:1327

    12 Clint,J.H.Surfactant aggregation.New York:Chapman and Hall, 1992

    13 Holland,P.M.;Rubingh,D.N.J.Phys.Chem.,1983,87:1984

    14 Gu,B.;Rosen,M.J.J.Colloid Interface Sci.,1989,129:537

    15 Motomura,K.;Yamanaka,M.;Aratono,M.Colloid Polym.Sci., 1984,262:948

    16 Sarmoria,C.;Puvvada,S.;Blankschtein,D.Langmuir,1992,8: 2690

    17 Puvvada,S.;Blankschtein,D.J.Phys.Chem.,1992,96:5567

    18 Puvvada,S.;Blankschtein,D.J.Phys.Chem.,1992,96:5579

    19 Maeda,H.J.Colloid Interface Sci.,1995,98:172

    20 De,S.;Aswal,V.K.;Goyal,P.S.;Bhattacharya,S.J.Phys.Chem., 1996,100:11664

    21 Tanford,C.The hydrophobic effect:formation of micelles and biological membranes.New York:Wiley,1980

    在线观看一区二区三区激情| 久久久久网色| 乱人伦中国视频| 亚洲精品久久成人aⅴ小说| 国产欧美亚洲国产| 99香蕉大伊视频| 熟女少妇亚洲综合色aaa.| 国产1区2区3区精品| 高清欧美精品videossex| 每晚都被弄得嗷嗷叫到高潮| 欧美日本中文国产一区发布| 国产av又大| 欧美国产精品一级二级三级| 97人妻天天添夜夜摸| 亚洲 国产 在线| 亚洲av美国av| 精品福利永久在线观看| 在线av久久热| 搡老熟女国产l中国老女人| 中文字幕制服av| 精品人妻在线不人妻| 久久女婷五月综合色啪小说| 菩萨蛮人人尽说江南好唐韦庄| 久久青草综合色| 国产精品国产三级国产专区5o| 成年动漫av网址| 亚洲成人国产一区在线观看| 久久狼人影院| 国产av国产精品国产| 王馨瑶露胸无遮挡在线观看| 一边摸一边抽搐一进一出视频| 欧美日韩av久久| 免费日韩欧美在线观看| 久久精品亚洲熟妇少妇任你| 国产老妇伦熟女老妇高清| 午夜两性在线视频| 老熟妇仑乱视频hdxx| 亚洲国产成人一精品久久久| 国产野战对白在线观看| 涩涩av久久男人的天堂| 亚洲欧美色中文字幕在线| 建设人人有责人人尽责人人享有的| 精品国产超薄肉色丝袜足j| 十八禁高潮呻吟视频| 国产淫语在线视频| 深夜精品福利| www.av在线官网国产| 日韩三级视频一区二区三区| 老鸭窝网址在线观看| 欧美日韩福利视频一区二区| 国产97色在线日韩免费| 老司机午夜福利在线观看视频 | 可以免费在线观看a视频的电影网站| 日本撒尿小便嘘嘘汇集6| 俄罗斯特黄特色一大片| 亚洲国产日韩一区二区| 国产一区有黄有色的免费视频| 久久精品熟女亚洲av麻豆精品| 天堂8中文在线网| 成人黄色视频免费在线看| 免费在线观看完整版高清| 亚洲av美国av| 亚洲男人天堂网一区| 久久久久精品人妻al黑| 一级黄色大片毛片| 一本综合久久免费| 丁香六月欧美| 亚洲中文日韩欧美视频| 又黄又粗又硬又大视频| 国产成+人综合+亚洲专区| 我要看黄色一级片免费的| 9热在线视频观看99| 久热爱精品视频在线9| 韩国高清视频一区二区三区| 欧美人与性动交α欧美软件| 脱女人内裤的视频| netflix在线观看网站| 日韩免费高清中文字幕av| 久久国产精品影院| 一区二区三区激情视频| 女人被躁到高潮嗷嗷叫费观| 啦啦啦啦在线视频资源| 成人av一区二区三区在线看 | 精品国产一区二区久久| 婷婷丁香在线五月| 天堂8中文在线网| videos熟女内射| kizo精华| 90打野战视频偷拍视频| 午夜福利在线观看吧| 精品国产一区二区久久| 久久人人爽av亚洲精品天堂| 下体分泌物呈黄色| 国产老妇伦熟女老妇高清| 999久久久精品免费观看国产| avwww免费| 日本a在线网址| 精品久久蜜臀av无| 久久久久国产精品人妻一区二区| 久久久欧美国产精品| 桃红色精品国产亚洲av| 91精品伊人久久大香线蕉| 嫩草影视91久久| 性高湖久久久久久久久免费观看| 夜夜夜夜夜久久久久| 又黄又粗又硬又大视频| 他把我摸到了高潮在线观看 | 亚洲国产欧美在线一区| 欧美精品亚洲一区二区| 99re6热这里在线精品视频| 99香蕉大伊视频| 啦啦啦视频在线资源免费观看| 免费在线观看影片大全网站| 国产av精品麻豆| 爱豆传媒免费全集在线观看| 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 欧美日韩视频精品一区| 丁香六月欧美| 国产xxxxx性猛交| 在线看a的网站| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 一二三四社区在线视频社区8| 免费人妻精品一区二区三区视频| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| videosex国产| 高清av免费在线| 水蜜桃什么品种好| 日本精品一区二区三区蜜桃| 日韩制服骚丝袜av| 黄色视频在线播放观看不卡| 国产欧美日韩精品亚洲av| 99热国产这里只有精品6| 色播在线永久视频| h视频一区二区三区| 这个男人来自地球电影免费观看| 91精品国产国语对白视频| 亚洲欧美一区二区三区久久| 老汉色∧v一级毛片| 欧美97在线视频| 午夜福利在线免费观看网站| 成在线人永久免费视频| 男人爽女人下面视频在线观看| 亚洲国产欧美日韩在线播放| 日韩,欧美,国产一区二区三区| 国产一区二区三区av在线| 高潮久久久久久久久久久不卡| 亚洲精品第二区| 一区二区日韩欧美中文字幕| 国产一区二区三区综合在线观看| 一级,二级,三级黄色视频| 精品久久蜜臀av无| 久久99热这里只频精品6学生| 999精品在线视频| 国产精品一区二区精品视频观看| 精品亚洲成国产av| 久久人人97超碰香蕉20202| 啦啦啦免费观看视频1| 成在线人永久免费视频| 中文字幕人妻熟女乱码| 欧美大码av| 777久久人妻少妇嫩草av网站| 精品亚洲成国产av| 亚洲第一av免费看| 国产男女超爽视频在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品av麻豆狂野| 国产高清视频在线播放一区 | 爱豆传媒免费全集在线观看| 精品国产国语对白av| 曰老女人黄片| videos熟女内射| 国产一区二区三区综合在线观看| 男女边摸边吃奶| 成人三级做爰电影| 一本综合久久免费| 精品亚洲乱码少妇综合久久| 免费在线观看完整版高清| 国产欧美亚洲国产| 91麻豆精品激情在线观看国产 | 色老头精品视频在线观看| 国产精品影院久久| 午夜福利,免费看| 欧美激情高清一区二区三区| 欧美日韩福利视频一区二区| 午夜激情久久久久久久| 一本大道久久a久久精品| www.自偷自拍.com| 岛国毛片在线播放| 国产成人一区二区三区免费视频网站| 99九九在线精品视频| 老熟妇仑乱视频hdxx| 午夜福利免费观看在线| 99久久国产精品久久久| 午夜福利视频精品| 亚洲国产成人一精品久久久| 亚洲精品美女久久久久99蜜臀| 免费人妻精品一区二区三区视频| 久久久精品94久久精品| av在线播放精品| 丰满饥渴人妻一区二区三| av欧美777| 色94色欧美一区二区| 国产欧美日韩一区二区精品| 久久久久精品国产欧美久久久 | 久久久久久久久久久久大奶| 日本wwww免费看| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 亚洲欧美色中文字幕在线| 国产福利在线免费观看视频| 国产97色在线日韩免费| 一进一出抽搐动态| 成人18禁高潮啪啪吃奶动态图| 我要看黄色一级片免费的| 国产精品麻豆人妻色哟哟久久| 少妇裸体淫交视频免费看高清 | 777久久人妻少妇嫩草av网站| 亚洲欧美色中文字幕在线| 国产三级黄色录像| 天天添夜夜摸| 午夜福利在线观看吧| 爱豆传媒免费全集在线观看| 国产一区二区 视频在线| 国产日韩欧美视频二区| 国产一区有黄有色的免费视频| 久久人妻福利社区极品人妻图片| 18禁裸乳无遮挡动漫免费视频| 夜夜骑夜夜射夜夜干| 国产在线一区二区三区精| 90打野战视频偷拍视频| 久久这里只有精品19| 99久久综合免费| 亚洲av成人不卡在线观看播放网 | 亚洲欧洲精品一区二区精品久久久| 水蜜桃什么品种好| 日韩 欧美 亚洲 中文字幕| 肉色欧美久久久久久久蜜桃| 少妇的丰满在线观看| 国产精品熟女久久久久浪| 日韩视频在线欧美| 男女之事视频高清在线观看| 精品欧美一区二区三区在线| 美女国产高潮福利片在线看| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 国产一区二区 视频在线| 激情视频va一区二区三区| 欧美黑人精品巨大| 亚洲五月婷婷丁香| 中国美女看黄片| 亚洲精品国产色婷婷电影| 水蜜桃什么品种好| 99re6热这里在线精品视频| 国产av又大| 啦啦啦在线免费观看视频4| 黑人巨大精品欧美一区二区蜜桃| 黄色视频,在线免费观看| 国产精品自产拍在线观看55亚洲 | 天天躁夜夜躁狠狠躁躁| 国产91精品成人一区二区三区 | 国产在线免费精品| 亚洲第一欧美日韩一区二区三区 | 国产av国产精品国产| 国产在线观看jvid| 两性夫妻黄色片| 国产免费现黄频在线看| 国产精品亚洲av一区麻豆| 久久久久国产精品人妻一区二区| videosex国产| 成年女人毛片免费观看观看9 | 国产欧美日韩一区二区三 | 亚洲成人手机| 少妇精品久久久久久久| 最新的欧美精品一区二区| 精品第一国产精品| 精品亚洲乱码少妇综合久久| 久久久久久久久久久久大奶| 丁香六月欧美| 麻豆乱淫一区二区| 99精品欧美一区二区三区四区| 国产精品偷伦视频观看了| 国产精品久久久久成人av| 国产日韩欧美亚洲二区| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 9热在线视频观看99| 啦啦啦免费观看视频1| 亚洲七黄色美女视频| 18禁黄网站禁片午夜丰满| 精品国产国语对白av| av在线老鸭窝| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 亚洲欧美精品综合一区二区三区| 亚洲成人国产一区在线观看| 亚洲av国产av综合av卡| xxxhd国产人妻xxx| 午夜视频精品福利| av有码第一页| 国产区一区二久久| 亚洲精品第二区| 国产精品九九99| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| 国产高清国产精品国产三级| 久久久精品94久久精品| 一区二区三区乱码不卡18| 99国产精品一区二区三区| 天堂俺去俺来也www色官网| 久久久久久久国产电影| 99re6热这里在线精品视频| 中国美女看黄片| 国产日韩一区二区三区精品不卡| 亚洲欧美日韩高清在线视频 | 日本av手机在线免费观看| 乱人伦中国视频| 午夜福利在线免费观看网站| 99久久精品国产亚洲精品| 亚洲欧美一区二区三区久久| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 在线观看免费午夜福利视频| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 欧美日韩一级在线毛片| 丁香六月欧美| h视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 丁香六月欧美| 男女午夜视频在线观看| 操出白浆在线播放| 另类精品久久| 免费观看av网站的网址| 午夜91福利影院| 亚洲,欧美精品.| 黑人猛操日本美女一级片| www.自偷自拍.com| 最新的欧美精品一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 最近中文字幕2019免费版| 国产高清videossex| 悠悠久久av| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 国产伦理片在线播放av一区| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 人成视频在线观看免费观看| 一二三四在线观看免费中文在| 亚洲视频免费观看视频| 欧美另类一区| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区精品| 五月天丁香电影| 最近最新中文字幕大全免费视频| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 法律面前人人平等表现在哪些方面 | 日韩一卡2卡3卡4卡2021年| 亚洲成人免费电影在线观看| 嫁个100分男人电影在线观看| 国产在视频线精品| 日本黄色日本黄色录像| 一级毛片女人18水好多| 国产不卡av网站在线观看| 国产一区二区在线观看av| 国产高清视频在线播放一区 | 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 国产精品免费视频内射| 满18在线观看网站| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频 | 丰满人妻熟妇乱又伦精品不卡| 欧美97在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 人妻人人澡人人爽人人| 黄频高清免费视频| 中文字幕最新亚洲高清| 亚洲成人国产一区在线观看| 欧美日韩亚洲国产一区二区在线观看 | av欧美777| 日本vs欧美在线观看视频| 热re99久久精品国产66热6| 国产黄频视频在线观看| 亚洲午夜精品一区,二区,三区| 国产欧美亚洲国产| 午夜福利视频精品| 久久久水蜜桃国产精品网| 黄色毛片三级朝国网站| 精品人妻熟女毛片av久久网站| 在线av久久热| 亚洲精品成人av观看孕妇| 国产黄频视频在线观看| 欧美成人午夜精品| 国产亚洲欧美在线一区二区| 看免费av毛片| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| 久久免费观看电影| 动漫黄色视频在线观看| 男女边摸边吃奶| 国产精品一二三区在线看| 黄色视频,在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩精品亚洲av| av国产精品久久久久影院| tube8黄色片| 制服诱惑二区| av线在线观看网站| 99精品久久久久人妻精品| 韩国精品一区二区三区| 老司机午夜十八禁免费视频| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 久热这里只有精品99| 高清av免费在线| 久久久精品国产亚洲av高清涩受| 国产精品国产三级国产专区5o| 一区在线观看完整版| 成人国产一区最新在线观看| 女警被强在线播放| 日本欧美视频一区| 各种免费的搞黄视频| 国产精品影院久久| 亚洲色图 男人天堂 中文字幕| 丰满饥渴人妻一区二区三| 最黄视频免费看| 建设人人有责人人尽责人人享有的| 久久精品国产亚洲av香蕉五月 | 国产色视频综合| 手机成人av网站| 嫁个100分男人电影在线观看| 岛国在线观看网站| 黄片大片在线免费观看| 99热全是精品| 99热国产这里只有精品6| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| 国产在线观看jvid| 日本wwww免费看| 亚洲第一av免费看| 亚洲人成电影免费在线| 天天躁狠狠躁夜夜躁狠狠躁| av网站在线播放免费| 日韩制服丝袜自拍偷拍| 免费在线观看黄色视频的| 黄色视频在线播放观看不卡| www.999成人在线观看| 亚洲国产精品一区三区| 国产一区二区激情短视频 | 国产精品自产拍在线观看55亚洲 | 人成视频在线观看免费观看| 动漫黄色视频在线观看| 国产成人影院久久av| 狠狠精品人妻久久久久久综合| 日韩人妻精品一区2区三区| 亚洲精品中文字幕在线视频| tocl精华| 免费黄频网站在线观看国产| www.熟女人妻精品国产| 久久天堂一区二区三区四区| 免费一级毛片在线播放高清视频 | 久久久精品免费免费高清| 丰满迷人的少妇在线观看| 日韩三级视频一区二区三区| 我要看黄色一级片免费的| av视频免费观看在线观看| 国产精品 欧美亚洲| 捣出白浆h1v1| 亚洲精品国产av成人精品| 色精品久久人妻99蜜桃| 亚洲欧美激情在线| 免费观看人在逋| 亚洲五月色婷婷综合| 99热国产这里只有精品6| 亚洲va日本ⅴa欧美va伊人久久 | 91精品国产国语对白视频| 国产主播在线观看一区二区| 国产99久久九九免费精品| 欧美激情极品国产一区二区三区| 精品国产国语对白av| 亚洲性夜色夜夜综合| av电影中文网址| 久久精品成人免费网站| 国产欧美日韩一区二区三区在线| 国产一区二区在线观看av| 午夜福利乱码中文字幕| 欧美另类亚洲清纯唯美| 久久久水蜜桃国产精品网| 精品欧美一区二区三区在线| 国产免费av片在线观看野外av| 啦啦啦在线免费观看视频4| 日本a在线网址| 韩国高清视频一区二区三区| av超薄肉色丝袜交足视频| 悠悠久久av| 中文字幕色久视频| 亚洲精品久久成人aⅴ小说| 啦啦啦中文免费视频观看日本| 国产伦理片在线播放av一区| 亚洲欧美一区二区三区久久| 人妻一区二区av| 一本久久精品| 五月开心婷婷网| 黄色a级毛片大全视频| 在线精品无人区一区二区三| 丰满人妻熟妇乱又伦精品不卡| 美女高潮到喷水免费观看| 亚洲av电影在线观看一区二区三区| 99re6热这里在线精品视频| 2018国产大陆天天弄谢| 啦啦啦免费观看视频1| 国产成人av激情在线播放| 成年人免费黄色播放视频| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 国产亚洲av高清不卡| 久久精品亚洲av国产电影网| 黄网站色视频无遮挡免费观看| 男女之事视频高清在线观看| 亚洲熟女毛片儿| 国产不卡av网站在线观看| 亚洲av成人一区二区三| 最近最新中文字幕大全免费视频| 国产老妇伦熟女老妇高清| 亚洲熟女精品中文字幕| 欧美+亚洲+日韩+国产| 欧美另类一区| 精品久久久久久久毛片微露脸 | svipshipincom国产片| 久久精品熟女亚洲av麻豆精品| 窝窝影院91人妻| 国产av精品麻豆| 国产精品一二三区在线看| 国产区一区二久久| 一个人免费看片子| 久久久久久久精品精品| 波多野结衣av一区二区av| 正在播放国产对白刺激| 大陆偷拍与自拍| 99久久国产精品久久久| 12—13女人毛片做爰片一| 啦啦啦免费观看视频1| 午夜激情久久久久久久| 黄片播放在线免费| 国产三级黄色录像| 国产精品一区二区免费欧美 | 精品少妇黑人巨大在线播放| videosex国产| 蜜桃在线观看..| 国产成人av激情在线播放| 老汉色av国产亚洲站长工具| 成年女人毛片免费观看观看9 | 男女下面插进去视频免费观看| 少妇粗大呻吟视频| 老司机福利观看| 欧美日韩中文字幕国产精品一区二区三区 | 免费观看a级毛片全部| 可以免费在线观看a视频的电影网站| 婷婷色av中文字幕| 国产精品一二三区在线看| 嫁个100分男人电影在线观看| 高清在线国产一区| 欧美午夜高清在线| 国产高清videossex| 女人爽到高潮嗷嗷叫在线视频| 亚洲美女黄色视频免费看| 国产日韩欧美视频二区| 国产黄频视频在线观看| a级毛片黄视频| 亚洲美女黄色视频免费看| 侵犯人妻中文字幕一二三四区| 人人妻,人人澡人人爽秒播| av网站在线播放免费| 90打野战视频偷拍视频| 丝袜美足系列| 免费看十八禁软件| 三上悠亚av全集在线观看| 欧美黄色淫秽网站| 久久精品国产亚洲av香蕉五月 | 日韩欧美国产一区二区入口| 欧美久久黑人一区二区| 国产亚洲精品第一综合不卡| 啦啦啦中文免费视频观看日本| 亚洲精华国产精华精| 久热爱精品视频在线9| 亚洲精品乱久久久久久| 国产老妇伦熟女老妇高清| 亚洲欧美成人综合另类久久久| 精品乱码久久久久久99久播| 亚洲一区中文字幕在线| 老司机午夜十八禁免费视频| 精品少妇黑人巨大在线播放| 中文字幕精品免费在线观看视频| 国产av又大| 国产免费av片在线观看野外av| 亚洲精品国产av成人精品| 18在线观看网站| 啦啦啦免费观看视频1| 欧美日韩亚洲国产一区二区在线观看 | 热re99久久精品国产66热6| 人妻久久中文字幕网| 免费高清在线观看日韩| 亚洲av成人一区二区三| 亚洲天堂av无毛| 18禁观看日本|