• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    紫色光合細(xì)菌Thermochromatium Tepidum捕光天線復(fù)合物2的激發(fā)態(tài)動力學(xué)

    2010-12-12 02:42:56于龍江艾希成王征宇張建平
    物理化學(xué)學(xué)報 2010年7期
    關(guān)鍵詞:張建平吉林大學(xué)

    楊 帆 于龍江 王 鵬 艾希成 王征宇 張建平,*

    (1集成光電子學(xué)國家重點(diǎn)聯(lián)合實(shí)驗室吉林大學(xué)實(shí)驗區(qū),吉林大學(xué)電子科學(xué)與工程學(xué)院,長春 130012; 2中國人民大學(xué)化學(xué)系,北京 100872; 3茨城大學(xué)理學(xué)部,水戶市文京2-1-1 310-8512,日本)

    The discovery of the high-resolution crystallographic structures of the light-harvesting complex 2(LH2)from photosynthetic purple bacteria Rhodopseudomonas(Rps.)acidophila[1-2]and Rhodospirillum(Rs.)molischianum[3]has stimulated extensive experimental and theoretical investigations aimed at its structure-function relationship.In the photosynthetic membrane of purple bacteria,a core light-harvesting complex 1(LH1)encircling a photosynthetic reaction center(RC)is surrounded by a pool of peripheral LH2s(see Ref.[4]and references therein). Light energy harvested by the antenna complexes(LH1,LH2)is transferred in form of electronic excitation to the RC with extremely high efficiency(>90%)to initiate the primary charge separation[5].The pigment-protein assembly of LH2 consists of 8 and 9repeatingsubunitsforRs.molischianum[3]andRps.acidophila[1], respectively.In the LH2 complexes,the subunits form circular aggregates with 8-or 9-fold symmetry,each subunit consists of a pair of α and β trans-membrane polypeptides,which bind 2 bacteriochlorophyll a(BChl)molecules with Qyabsorption at 850 nm(B850),1 BChl at 800 nm(B800),as well as 1 carotenoid (Car)molecule with slightly twisted all-trans configuration that is sandwiched between the pair of B850s and passes by the B800.The light-harvesting function of bacterial antenna is based on a series of ultrafast excitation energy transfer(EET)reactions proceeding in the time scales of 0.1-50 ps and in a cascading and downhill manner,e.g.,Car-to-BChl and B800-to-B850 within a LH2 complex[6],LH2-to-LH1 and LH1-to-RC[7].

    For the aforementioned LH2 complexes with known crystallographic structures,the molecular and electronic structures and the excited-state properties of BChls and Cars have been examined in great details(see Refs.[6-9]for reviews).Differing from the pigment-protein assemblies of these LH2s consisting of relatively simple constituents of trans-membrane polypeptides and pigment cofactors,the LH2 complexes from other bacterial species,such as Rps.palustris and Thermochromatium(Tch.) tepidum,contain multi-composition polypeptides and/or Cars. Recently,the LH2 complex from Rps.palustris has been identified with a 0.75 nm resolution to be an 8-fold symmetric octamer,and each α,β-subunit most likely contains 4 BChls with unique structural orientation and spectroscopic properties[10].In addition,the organization and the macroscopic structures of bacterial antenna complexes in intracytoplasmic membrane(ICM) has recently been revealed by the use of atomic force microscopy[11-12].Despite these advances,high-resolution crystallographic structures remain unknown for the LH2s with relatively complicated constituents of α,β-polypeptides and/or pigments. Accordingly,the excitation dynamics of these LH2s,such as those from Rps.palustris or Tch.tepidum etc.,have not been investigated in details.

    Purple photosynthetic bacterium Tch.tepidum is a moderate thermophile growing in an optimal temperature range of 48-50℃,which was firstly found from Mammoth Hot Springs in the Yellowstone National Park[13].Its pigment-protein complexes exhibit notably higher thermal stability than the mesophilic counterparts such as Allochromatium (Ach.)vinosum and Rb.sphaeroides growing under~30℃[14].We have recently studied the excited-state dynamics,and the origins of the long-wavelength Qyabsorption and the thermal stability of the LH1-RC core complex from Tch.tepidum[15-16].The LH2 of Tch.tepidum,whose crystallographic structure is unknown,is different from those of Rps.acidophila or Rs.molischianum in apoprotein and pigment compositions.It contains three different types of α and β polypeptide pairs[17],as well as three major carotenoid compositions categorized by the number of C=C conjugated double bonds(NC=C),namely,rhodopin and lycopene(NC=C=11),anhydrorhodovibrin (NC=C=12),and spirilloxanthin and(OH)-spirilloxanthin(NC=C=13)[18].

    This work is intended to examine the detailed EET dynamics of the isolated LH2 complex from Tch.tepidum.Surfactants with different ionic properties,i.e.,nonionic n-dodecyl-β-D-maltoside(DDM)and zwitterionic lauryldimethylamine oxide (LDAO),are used to prepare the LH2 complex,and the ultrafast EET processes,including Car-to-Car,Car-to-BChl,and BChl-to-BChl,are examined.The implications of the excitation dynamics are discussed in terms of the light-harvesting and the photoprotection roles of the LH2 complex.

    1 Materials and methods

    1.1 Sample preparation

    Tch.tepidum was cultured anaerobically at 48℃for 7 d.The cells were disrupted at 4℃by ultrasonication,and the obtained chromatophores were suspended in 20 mmol·L-1Tris-HCl buffer(pH 8.5)at a concentration of OD850nm~50 cm-1(OD:optical density).After being solubilized with 0.35%(φ,volume fraction)LDAO(Kao Corp.,Japan)for 60 min in the dark,the suspension was centrifuged(145400×g,4℃,100 min),and the supernatant was collected as crude LH2.The crude LH2 preparation was further purified by using DEAE-cellulose(Whatman DE52)column chromatography in the presence of 0.05%LDAO or 0.05%DDM,for the LDAO or the DDM preparations.The UV-visible absorption spectra were recorded on a Cray 50 absorption spectrometer(Varian).Fluorescence spectra were measured on a LS-55 luminescence spectrophotometer(Perkin Elmer).

    1.2 Femtosecond time-resolved spectroscopy

    The femtosecond time-resolved absorption apparatus with a temporal resolution of~150 fs is similar to that described in Refs.[15,19].Briefly,an optical parametric amplifier(OPA-800 CF-1,Spectra Physics)pumped bya regenerative amplifier(SPTF-100F-1KHPR,Spectra Physics)provided the actinic laser pulses (~120 fs,full width at half maximum),which was sent to the sample cell(optical path length,1 mm)with an excitation photon densities of 1013-1014photons·cm-2·pulse-1.White light continuum probe was generated from a 3-mm thick sapphire plate, and was detected after interrogating the excited sample by a liquid-nitrogen cooled CCD detector(Spec-10:400B/LN)attached to an imaging spectrograph(SpectraPro 2300i,USA).Timeresolved spectra were corrected against group velocity dispersion.To ensure that each laser shot excites fresh sample,the laser system was ran at the repetition rate of 100 Hz,and the sample cell was kept on shifting back and forth across the overlapped actinic and probe beams.The optical density of a LH2 sample at an actinic wavelength was adjusted to 0.2-0.45 mm-1. All of the time-resolved measurements were carried out at room temperature(23℃).Computer programs for the kinetics analysis were compiled based on Matlab (Mathworks)and Mathcad (MathSoft).

    2 Results and discussion

    2.1 Steady-state electronic absorption of the LH2 preparations

    Fig.1 UV-visible electronic absorption spectra of the DDM (red)and the DDM(black)preparations of isolated LH2 complexes from Tch.tepidumDashed lines are the corresponding fluorescence excitation spectra recorded at the observing wavelength of 900 nm.Spectra are normalized to the Qx absorption maximum at 590 nm.Arrows point to the excitation wavelengths for time-resolved spectroscopy.

    Fig.2 Schematic excited-state energy diagram and singlet excitation energy transfer scheme of the isolated LH2 complex form Tch.tepidumNumerals 1,2,and 3 represent the Car compositions 1,2 and 3 having NC=Cvalues of 11,12,and 13,respectively.The relative position of the exited-state manifolds of Car and BChl are scaled according to their state energies[8]. The recently found intermediate state,3A-g,of anhydrorhodovibrin[21] (composition 2)is also shown.Vertical arrows represent the optical excitation and the relaxation processes,i.e.,internal conversion(ic)and fluorescence emission(fl). Horizontal arrows indicate the EET processes discussed in this paper.

    The broadband absorption covering 450-570 nm in Fig.1 originates from the strongly optically allowedtransition of Car(Fig.2).The Car absorption spectrum of the LDAO preparation shows no significant difference from that of the DDM preparation except the slightly more prominent vibronic structures.It is documented that the absorptive transitionis rather susceptible to the Car surroundings[20]. Therefore,the insignificant change of Car absorption spectra suggests that Cars in LH2 experience only subtle environmental changes from the DDM preparation to the LDAO one.

    The LH2 complex of Tch.tepidum contains three major carotenoid compositions:composition 1 includes rhodopin (66.5%)and lycopene(2.2%)with NC=C=11;composition 2 is anhydrorhodovibrin(8.7%)with NC=C=12;composition 3 consists of spirilloxanthin(20.4%)and OH-spirilloxanthin(4.4%) with NC=C=13.It is well known that,theabsorption of Car shifts systematically to longer wavelength upon increasing NC=C.Specifically,the transition energy holds a linear relationship with 1/(2NC=C+1)[21-22].Therefore,the absorption spectra of different Car compositions overlap each other,which blurs the vibronic structures with respect to the LH2 containing single type of Car,e.g.,that of Rb.sphaeroides 2.4.1 contains spheroidene(NC=C=10)[23].By the use of fluorescence excitation spectroscopy,we have determined the overall Car-to-BChl singlet energy transfer efficiency,<30%,which is in general agreement with those reported for Cars having NC=Cvalues of 11-13 in bacterial light-harvesting complexes[24].Here,we note that for the LH2 complex containing multi-composition Cars,it is presently unknown that whether the Car heterogeneity associates to an individual LH2 or to different LH2s,an intriguing issue remaining to be clarified.

    In the near-infrared region of Qyabsorption(Fig.1,750-900 nm),the spectrum of the DDM preparation resembles the LH2 spectra of Rs.molischianum,Rps.acidophila,or Rb.sphaeroides 2.4.1 both in maximal wavelength(~850 nm)and in B850-to-B800 absorption ratio(A850/A800=1.2-1.7).However,the spec-trum of the LDAO preparation differs significantly from that of the DDM preparation,i.e.,the B850(Qy)band blue shits for~6 nm,and the A850/A800ratio decreases to 0.9 with reference to that of the DDM preparation,1.5.The spectral variation is apparently induced by the detergents:For the specific case of Tch. tepidum,the nonionic DDM is gentle and,therefore,facilitates preserving the native pigment-protein assembly of LH2,whereas the zwitterionic LDAO is relatively harsh,and hence induces subtle structural change.On the other hand,the excitonic interaction among the B850 molecules is very sensitive to the geometry of the B850 circular aggregate.Furthermore,specific and nonspecific interactions between B850 and its surroundings also largely influence the Qyabsorption[25-27].Therefore,even subtle structural variation of the LH2 assembly can induce appreciable spectral change of the B850(Qy)band.At the present stage,for the LH2 complex of Tch.tepidum lacking of structural details,a complete theoretical account for the electronic absorption spectrum seems unfeasible.

    2.2 Car-to-BChl excitation energy transfer

    2.2.1 Excited state dynamics

    Selective excitation of Car allows the processes of Car-to-BChl EET to be followed by probing the spectral dynamics and the population kinetics.As seen in Fig.3(a)for the DDM preparation,immediately following the pulsed excitation(0.0 ps),bleaching of Car ground state absorption appears as a negative signal (450-570 nm).The Car bleaching is accompanied by the characteristic Sn←S1absorption to the longer wavelength side(570-650 nm),which subsequently reaches the maximum at 0.3 ps. This rise phase of excited state absorption is due to the S2-to-S1internal conversion(ic,time constant derived by fitting the 600 nm kinetics in Fig.3(b),~140 fs).Importantly,the Sn←S1absorption maximized at 600 nm is attributed to anhydrorhodovibrin (NC=C=12)judging from its transition energy[28].

    In the near-infrared region(Fig.3(a),800-1000 nm),the exciton absorption(800-840 nm)together with the B850 bleaching (840-950 nm)are observed,both of which are mainly induced by the ultrafast Car(S2)-to-B850(Qx)EET.Note that,at 0.0 ps the B850(Qy)exciton absorption does not appear despite a sizable B850 bleaching.The delay of exciton absorption is explained below:the ultrafast Car(S2)-to-B850(Qx)EET promptly depopulates the ground state B850 and,subsequently,the B850(Qy) population is built up via the ic process of Qx-to-Qy(Fig.2).Thus the rise of B850(Qy)exciton absorption takes place with a time constant comparable to that of the Qx-to-Qyic,~220 fs,as derived from the 830 nm kinetics in Fig.3(b),in well agreement with that determined for the LH2 complex of Rb.sphaeroides G1C,~300fs[29].Inthesamescenario,theabsence ofB800 bleaching in Fig.3(a)proves that the Car-to-B800 EET path is inactive, which is most likely due to the unfavorable orientation of the transition dipole moments between Car and B800.

    Fig.3 (a,c)Femtosecond time-resolved spectra at indicated delay times,and(b,d)the corresponding kinetics at indicated probe wavelengths for the DDM(a,b)and the LDAO(c,d)preparations of LH2 complexes from Tch.tepidumSolid lines in(b,d)are fitting curves.Excitation wavelength was 530 nm.

    2.2.2 Ultrafast formation of triplet excited state Car

    From the decaying phase of the spectral dynamics(Fig.3(a), 0.3 ps→20.0 ps),it is seen that,when the Sn←S1absorption decays out at 20 ps,an absorption band at~565 nm remains.This transient with a decay time constant of microseconds,as derived from the 565 nm kinetics in Fig.3(b),can be safely attributed to the Tn←T1absorption of Car.Note that the Tn←T1transients appears in subpicosecond delay times,which cannot be explained by the BChl-to-Car triplet EET proceeding on a time scale of~10 ns as governed by Dexter′s electron-exchange mechanism[30]. The ultrafast formation of3Car*in subpicosecond time scale had been previously observed for the LH complex from Rs.rubrum containing the long chain Car,spirilloxanthin(NC=C=13)[31]. Since the covalent 21A-gexcitation intrinsically consists of a pair of double-excited and spin-correlated triplet excitationsthe ultrafast3Car*formation is ascribed to the singlet homofission reaction within Car conjugated backbone,i.e.,CarJudging from the Tn←T1transition energy,this triplet absorption spectrum is best attributed to the Car having NC=C=12(composition 2,anhydrorhodovibrin). Similar observation has recently been reported for the LH2 from Rps.palustris[32].

    2.2.3 Car-to-BChl singlet excitation energy transfer

    Both the S1and the S2states of Car are capable of mediating the Car-to-BChl singlet EET,e.g.,the LH2 complex of Rb. sphaeroides G1C containing a singlet Car composition of neurosporene(NC=C=9)shows an overall Car-to-BChl EET efficiency of 95%,the partitions of efficiency are 60%-74%for the Car (S2)-to-BChl(Qx)path and 24%-38%for Car(S1)-to-BChl(Qy), and the corresponding EET time constants are~100 fs and~1.42 ps,respectively[29].For energetic reasons,the Car(S1)-to-BChl (Qy)path is rather inefficient for Cars having NC=C=11,and it is even closed for those having NC=C=12 or 13.However,the Car (S2)-to-BChl(Qx)path is valid for most of the photosynthetic Cars(NC=C=9-13)in bacterial antenna complexes[28,33].In the LH2 complex of Tch.tepidum,the Car-to-BChl EET is predominantly mediated by the S2state,whereas the Car(S1)-to-BChl(Qy) path is inactive.This conclusion drawn on the basis of spectral dynamics is also supported by the population kinetics:(i)the S1-state lifetime of anhydrorhodovibrin in n-hexane(2.2 ps[34])in absence of energy acceptor is not shortened compared to that of the same Car bound in LH2(~2.4 ps,derived from the 600 nm kinetics in Fig.3(b));(ii)from the B850 bleaching kinetics at 860 nm,only a rise phase in a time scale of~100 fs is derived,i.e., no picosecond rising component correlating to the S1-state depopulation could be identified.

    The spectral dynamics and population kinetics in Fig.3(c,d) for the LDAO preparation are similar to those of the DDM preparation.An apparent difference is seen by comparing the decay phases in Fig.3(a)and Fig.3(c):the rapid decay phase of the B850 bleaching for the DDM preparation is not seen for the LDAO preparation.This rapid decay with a time constant of~270 fs,as derived from the 860 nm kinetics in Fig.3(b),is due to singlet annihilation among the B850 excitations.

    Taken together the above ultrafast spectroscopic results,we propose the scheme of Car-to-BChl EET as illustrated in Fig.2 for the LH2 of Tch.tepidum.It is important to point out that,despite the possible structural variation between the DDM and the LDAO preparations,the Car-to-BChl EET schemes are similar, suggesting that the accessory light-harvesting function of Car is rather robust against the structural variation of LH2.

    2.3 Car-to-Car excitation energy transfer

    Up to now,the subject of Car-to-Car singlet EET in bacterial light-harvesting complex has not been examined in any details, although Car-to-Car triplet EET at cryogenic temperature has recently been suggested for the LH2 of Rps.palustris[35].The difficulty of spectroscopic detection of Car-to-Car EET process stems from the fact that Car molecules in LH2 are identical and, therefore,hardly to be spectroscopically differentiated.The multicomposition Cars in the LH2 complex of Tch.tepidum may provide a possibility to tackle this problem.

    2.3.1 Excited state dynamics

    Despite sever overlap among the ground state absorption of different Cars(Fig.1),it is expect that excitation to the shorter wavelength side of the Car absorption band can preferentially excite shorter chain Cars owing to their highertransition energy.Fig.4 shows the representative transient spectra recorded under different excitation wavelengths.(i)Δt=0.0 ps. The ΔOD spectra show negative Car bleaching accompanied by the broadband Sn←S1absorption to the longer wavelength side, and no essential difference is seen from the transients at different excitation wavelengths.(ii)Δt=0.5 ps.The Sn←S1absorption reaches the maxima as a result of S2-to-S1ic proceeding in a time scale of~140 fs.For the LDAO preparation(Fig.4(b)),the shoulder absorption peaked at~570 nm becomes more prominent for longer excitation wavelength.This is an indication of Tn←T1absorption associated to the ultrafast3Car*formation.Such excitation wavelength dependence is not obvious for the DDM preparation.(iii)Δt=10.0 ps.The Tn←T1absorption peaked at~560 nm is observed irrespective to the excitation wavelengths.

    2.3.2 Inactivity of Car(T1)-to-Car(T1)EET

    Interestingly,although all of the three Car compositions were excited,only the Tn←T1absorption of anhydrorhodovibrin is observed(Figs.4(a,b),Δt=10.0 ps).Since direct Car-to-Car triplet EET must be extremely inefficient owing to the large intermolecular distance of~1 nm as known from the crystallographic structure of Rps.acidophila[1],the Tn←T1absorption of rhodopin, lycopene,or spirilloxanthin,if any,would be observed at different transition wavelengths.Here,it is difficult to understand why only the Tn←T1absorption of anhydrorhodovibrin is observed. Besides possible structural origins awaiting for detailed LH2 structural information of Tch.tepidum,we propose the following mechanism based on the unique electronic structure of this particular Car.Recent resonance Raman excitation profile studies of Car has revealed the presence of thestate beneath the well-knownstate[21](Fig.2).Theenergy separa-tion,~1700 cm-1,is comparable to a vibrational quanta of C=C double bond stretching,therefore,theic via state mixing must be extremely efficient.Importantly,because thestate is~500 cm-1below the Qxstate,directsinglet EET is energetically unfavorable.Taken together,the EET path of Car()-to-BChl(Qx)must be very inefficient for anhydrorhodovibrin owing to the rapid deactivation of theexcitation via efficientic.As the result,thepopulation is predominantly converted via cascading ic processes to theand further to thestate,which eventually show up as the Sn←S1and the Tn←T1absorption,respectively.

    Fig.4 Comparison of the spectral dynamics of the LH2 complexes following selective optical excitation of Car at 475,500 and 530 nm(a)DDM preparation,(b)LDAO preparation.The spectra at delay times(Δt)of 0.5 and 10.0 ps are normalized.

    2.3.3 Inactivity of Car(S1)-to-Car(S1)EET

    As shown in Fig.5(a,b),at the probing wavelength of 600 nm,population kinetics under the excitation wavelengths of 475 and 530 nm shows almost identical decay time constant of (2.44±0.03)and(2.63±0.02)ps for the DDM and LDAO preparation,respectively.Since 475 nm laser pulses preferentially excite shorter chain Cars(NC=C=11)having a longer S1-state lifetime of~4 ps,the associated Sn←S1absorption,if any,would appear at the characteristic maximal wavelength of 580 nm[23].The above kinetics similarity implies that the EET path of Car(S1)-to-Car(S1) is inactive,which may be understood in view of the followings. (i)Because of the large Car-Car intermolecular distance(~1 nm)and the rather small transition dipole moment of the S1state (<3.33×10-30C·m)[33],the strength of transition dipole coupling between a pair of Cars must be extremely low and,consequently,the S1-state mediated Car-to-Car EET is extremely inefficient. (ii)The ultrafast Car(S2)-to-B850(Qx)EET proceeding on~100 fs together with the ultrafast Car(S2)-to-Car(S2)EET(vide infra) are competitive to the S2→S1ic process(~140 fs),thus population to the S1state of shorter chain Cars(NC=C=11)must be inefficient.

    2.3.4 Car(S2)-to-Car(S2)EET

    Fluorescence excitation spectroscopy has revealed that,for either DDM or LDAO preparations,the overall efficiency of Carto-BChl EET at 475 nm(~11%)is much lower than that at 530 nm(~28%),which are in contrast to the general trend that the EET efficiency is higher for shorter chain Cars.In addition,only the Sn←S1and the Tn←T1absorption of anhydrorhodovibrin (NC=C=12)are observed despite the much higher composition of the Cars with NC=C=11(~67%)compared to that of anhydrorhodovibrin(~8%).These observations strongly suggest the presence of S2-state mediated EET from the shorter chain rhodopin and/or lycopene to the longer chain anhydrorhodovibrin,which is further supported by the kinetics results:at the probing wavelength of 560 nm,the relative amplitude of the3Car*species (anhydrorhodovibrin)is higher under shorter wavelength excitation at 475 nm(Fig.5(a,b)).Under the 475 nm excitation,direct excitation of anhydrorhodovibrin is expected to be less probable,however,an unusually high population of3Car*(anhydrorhodovibrin)is observed,and those of shorter chain Cars(rhodopin and lycopene)expected to appear at short-er transition wavelengths are not seen.This is readily accounted for by the S2-state mediated ultrafast Car-to-Car EET,which together with the ultrafast Car(S2)-to-BChl(Qx)EET efficiently deplete the S2-state and hence the S1-state population of Cars (NC=C=11).The presence of ultrafast Car(S2)-to-Car(S2)EET also holds the structural basis:thetransition carries a transition dipole moment as large as 5.00×10-30C·m[33].In addition,the Car back-bones are nearly paralleling as known from the existing crystallographic LH2 structures.Therefore,strong transition dipole coupling between Cars is expected in spite of the~1 nm separation.It is then in-ferred from the Car(S2)-to-Car (S2)EET that Cars having NC=C=11 and NC=C=12 coexist in a LH2 complex.Here,we note that,the minor Car composition anhydrorhodovibrin in LH2 seems an efficient trap of excitation energy rather than a light harvester.

    Fig.5 Comparison of the population kinetics under the indicated excitation wavelengths for (a)DDM and(b)LDAO preparations of LH2 complexes from Tch.tepidumThe kinetics are plotted from the spectral dynamics shown in Fig.4 at the indicated probing wavelengths(λpr).Solid lines are fitting curves.

    2.4 B800-to-B850 excitation energy transfer

    Fig.6 shows the bleaching recovery kinetics of B800 and B850 probed at 810 and 860 nm,respectively,as well as the kinetics of B850(Qy)exciton absorption probed at 830 nm.The instantaneous bleaching of B800 induced by pulsed excitation is followed by a slow recovery phase,which closely correlates to the rise phases of the kinetics at 830 or 860 nm.Such decay-to-rise correlation substantiates the process of B800(Qy)-to-B850 (Qy)EET(Fig.2).

    Fig.6 Kinetics at the indicated probing wavelengths for(a)DDM and(b)LDAO preparations of LH2 complexes from Tch.tepidumSolid lines are fitting curves.Excitation wavelength was 785 nm.

    Global fit of the three kinetics traces with bi-or tri-exponential model functions revealed the EET time constants,i.e.,~1.2 ps for the DDM preparation and~1.7 ps for the LDAO one.The value of 1.2 ps for the DDM preparation is~50%prolonged compared to the B800(Qy)-to-B850(Qy)EET time constants for the LH2s containing single Car composition from Rps.acidophila,Rs.molischianum,and Rb.sphaeroides(~0.8 ps)[36],suggesting that the mutual orientation of B800 and B850 in the LH2 of Tch.tepidum differs considerably from those in the LH2s from the above mesophilic species.Fitting the individual kinetics at 830 and 860 nm yielded identical rise time constant,i.e.,~1.2 ps for the DDM preparation and~0.8 ps for the LDAO one, whereas fitting the specific traces at 810 nm yielded a decay time constant of~1.1 ps for either DDM or LDAO preparation. Thus the B800(Qy)-to-B850(Qy)EET time constants for the DDM preparation derived from different fitting procedures are the same and,therefore,the value of~1.2 ps is considered to be robust.Here we note that the B800(Qy)-to-B850(Qy)EET time constant for the LDAO preparation of LH2 from Tch.tepidum had previously been reported to be 0.7-0.9 ps[37].How-ever,the detergent condition for LH2 preparation in Ref.[37]differs significantly from the present case.Nonetheless,the considerable difference in the time constants of B800(Qy)-to-B850(Qy)EET between the DDM and the LDAO preparations sug-gests some change in the mutual orientation of B800 and B850.Despite the relatively slow B800(Qy)-to-B850(Qy)EET,the EET efficiency of either of the LH2 preparations is close to unity because of the~1 ns Qy-state lifetime of BChl in LH2[38].These results imply that the light-harvesting functionality of LH2 is rather robust against its structural variation.

    2.5 Ultrafast band shift of Car in response to the BChl excitation

    First,we consider the ultrafast Car band shift for the DDM preparation(Fig.7(a,b)):(i)B850 excitations(Fig.7(a)).Car band shift is seen as weak derivative type signal residing on the broad background of excited state absorption of BChl.A spectral bump(marked with asterisk)appears in the 0.5 ps transient to the red side of the 0-0 vibronic band of the ground state absorption.In the 10.0 ps transient this bump decays out and another weak one remains at the shorter wavelength side.(ii)B800 excitation(Fig.7(b)).The transient at 0.5 ps is characterized by the asterisked bump accompanied by another one to its shorter wavelength side.The transient at 10.0 ps closely resembles the transient of B850 excitation at the same delay time.This is understandable since at 10.0 ps the B800 excitation is gone and only the B850 excitation remains.Here,Car can be regarded as a spectator of the ultrafast BChl dynamics,e.g.,B800(Qy)-to-B850 (Qy)EET and relaxation among the manifold of B850 excitonic states.

    The dynamics of Car band shift observed for the LDAO preparation(Fig.7(c,d))is similar to those for the DDM preparation(Fig.7(a,b))except that the asterisked bump observed for the DDM preparation is missing.This difference originates most likely from the subtle structural alteration in the LH2 assembly as induced by different detergents.Specifically,with reference to the 0-0 vibronic absorption band at 530 nm,the~10 nm red shift of the asterisked bump observed for the DDM preparation may arise from the Car composition 3 with NC=C=13,which preferentially senses the B850 excitation because of somehow favorable Car-BChl orientation.This speculation draws support from the difference between DDM and LDAO preparations in their B850 excitonic coupling strengths(Section 2.1).Here,it is worthy of noting that,besides other possible physiological roles,the photoprotection function for longer chain Cars,such as anhydrorhodovibrin and spirilloxanthin,is considered to be more important than light harvesting[42].Therefore,it is also physiologically reasonable to assume that spirilloxanthin is closer to BChls compared to other Car compositions.

    3 Conclusions

    We have examined,by the use of femtosecond time-resolved absorption spectroscopy,the detailed excitation dynamics of the isolated LH2 complex of Tch.tepidum prepared with the surfactants DDM or LDAO having different ionic properties.The spectral dynamics and the population kinetics of these LH2 preparations reveal efficient S2-state mediated Car-to-Car and Car-to-BChl singlet EET in a time scale of~100 fs,as well as the Qy-state mediated B800-to-B850 singlet EET for the DDM preparation in a time constant of~1.2 ps.These ultrafast EET processes suggest that the Cars with NC=C=11 and 12 coexist in a LH2 complex,and that the B800-B850 mutual orientation in the LH2 of Tch.tepidum differs considerably from those in the LH2s from the extensively investigated mesophilic species,e.g., Rps.acidophila and Rs.molischianum,etc.Anhydrorhodovibrin (NC=C=12)as a minor Car composition is found to act as an efficient trap of excitation energy,i.e.,itsexcitation,not transferring to BChl,relaxes rapidly to the intermediate statesthat either form triplet excitation or further relax to the ground state.The excitation-trap mechanism of anhydrorhodovibrin is considered to be important for the photoprotection function of Tch.tepidum.Furthermore,based on the ultrafast Car band shift in response to selective BChl excitation, we suggest that(OH-)spirilloxanthin locates in closer proximity to BChl compared to other Car compositions.Our results may facilitate to understand the light-harvesting and photoprotection mechanisms of Tch.tepidum as a thermophilic purple bacterium living under harsh natural conditions.

    1 McDermott,G.;Prince,S.M.;Freer,A.A.;Hawthornthwaite-Lawless,A.M.;Papiz,M.Z.;Cogdell,R.J.;Isaacs,N.W.Nature, 1995,374:517

    2 Papiz,M.Z.;Prince,S.M.;Howard,T.;Cogdell,R.J.;Isaacs,N. W.J.Mol.Biol.,2003,326:1523

    3 Koepke,J.;Hu,X.;Muenke,C.;Schulten,K.;Michel,H.Structure, 1996,4:581

    4 Sturgis,J.N.;Tucker,J.D.;Olsen,J.D.;Hunter,C.N.;Niederman, R.A.Biochemistry,2009,48:3679

    5 Hu,X.;Damjanovic,A.;Ritz,T.;Schulten,K.Proc.Natl.Acad. Sci.U.S.A.,1998,95:5935

    6 Sundstr?m,V.;Pullerits,T.;van Grondelle,R.J.Phys.Chem.B, 1999,103:2327

    7 Cogdell,R.J.;Gardiner,A.T.;Roszak,A.W.;Law,C.J.;Southall, J.;Isaacs,N.W.Photosynth.Res.,2004,81:207

    8 Polívka,T.;Sundstr?m,V.Chem.Rev.,2004,104:2021

    9 Ritz,T.;Damjanovic,A.;Schulten,K.;Zhang,J.P.;Koyama,Y. Photosynth.Res.,2000,66:125

    10 Hartigan,N.;Tharia,H.A.;Sweeney,F.;Lawless,A.M.;Papiz,M. Z.Biophys.J.,2002,82:963

    11 Bahatyrova,S.;Frese,R.N.;Siebert,C.A.;Olsen,J.D.;van der Werf,K.O.;van Grondelle,R.;Niederman,R.A.;Bullough,P.A.; Otto,C.;Hunter,C.N.Nature,2004,430:1058

    12 Scheuring,S.;Lévy,D.;Rigaud,J.L.Biochim.Biophys.Acta, 2005,1712:109

    13 Madigan,M.T.Science,1984,225:313

    14 Kimura,Y.;Hirano,Y.;Yu,L.J.;Suzuki,H.;Kobayashi,M.; Wang,Z.Y.J.Biol.Chem.,2008,283:13867

    15 Ma,F.;Kimura,Y.,Zhao,X.H.;Wu,Y.S.;Wang,P.;Fu,L.M.; Wang,Z.Y.;Zhang,J.P.Biophys.J.,2008,95:3349

    16 Ma,F.;Kimura,Y.;Yu,L.J.;Wang,P.;Ai,X.C.;Wang,Z.Y.; Zhang,J.P.FEBS J.,2009,276:1739

    17 Sekine,F.;Horiguchi,K.;Kashino,Y.;Yu,L.J.;Wang,Z.Y.Gene sequences and characterization of light-harvesting complex 2 from Thermochromatium tepidum.(In preparation.For more information,please contact Prof.Wang,Z.Y.via wang@mx. ibaraki.ac.jp)

    18 Suzuki,H.;Hirano,Y.;Kimura,Y.;Takaichi,S.;Kobayashi,M.; Miki,K.;Wang,Z.Y.Biochim.Biophys.Acta,2007,1767:1057

    19 Han,R.M.;Wu,Y.S.;Feng,J.;Ai,X.C.;Zhang,J.P.;Skibsted, L.H.Photochem.Photobiol.,2004,80:326

    20 Wang,Y.L.;Hu,X.C.J.Am.Chem.Soc.,2002,124:8445

    21 Furuichi,K.;Sashima,T.;Koyama,Y.Chem.Phys.Lett.,2002, 356:547

    22 Tavan,P.;Schulten,K.Phys.Rev.B,1987,36:4337

    23 Rondonuwu,F.S.;Yokoyama,K.;Fujii,R.;Koyama,Y.;Cogdell, R.J.;Watanabe,Y.Chem.Phys.Lett.,2004,390:314

    24 Frank,H.A.;Cogdell,R.J.The photochemistry and function of carotenoids in photosynthesis//Young,A.,Britton,G.Carotenoids in photosynthesis.London:Chapman&Hall,1993:252-326

    25 He,Z.;Sundstr?m,V.;Pullerits,T.J.Phys.Chem.B,2002,106: 11606

    26 Linnanto,J.;Korppi-Tommola,J.E.I.;Helenius,V.M.J.Phys. Chem.B,1999,103:8739

    27 Zerlauskiene,O.;Trinkunas,G.;Gall,A.;Robert,B.;Urboniene, V.;Valkunas,L.J.Phys.Chem.B,2008,112:15883

    28 Akahane,J.;Rondonuwu,F.S.;Fiedor,L.;Watanabe Y.;Koyama Y.Chem.Phys.Lett.,2004,393:184

    29 Zhang,J.P.;Inaba,T.;Watanabe,Y.;Koyama,Y.Chem.Phys. Lett.,2001,340:484

    30 Dexter,D.L.J.Chem.Phys.,1953,21:836

    31 Gradinaru,C.C.;Kennis,J.T.M.;Papagiannakis,E.;van Stokkum,I.H.M.;Cogdell,R.J.;Fleming,G.R.;Niederman,R. A.;van Grondelle,R.Proc.Natl.Acad.Sci.U.S.A.,2001,98: 2364

    32 Zhao,X.H.;Liang,J.;Ma,F.;Su,W.J.;Wang,P.;Fu,L.M.;Ai, X.C.;Zhang,J.P.Chem.J.Chin.Univ.,2008,29:149 [趙曉輝,梁 俊,馬 菲,蘇文杰,王 鵬,付立民,艾希成,張建平.高等學(xué)?;瘜W(xué)學(xué)報,2008,29:149]

    33 Zhang,J.P.;Fujii,R.;Qian,P.;Inaba,T.;Mizoguchi,T.;Koyama, Y.;Onaka,K.;Watanabe Y.J.Phys.Chem.B,2000,104:3683

    34 Fujii,R.;Inaba,T.;Watanabe,Y.;Koyama,Y.;Zhang,J.P.Chem. Phys.Lett.,2003,369:165

    35 Feng,J.;Wang,Q.;Wu,Y.S.;Ai,X.C.;Zhang,X.J.;Huang,Y. G.;Zhang,X.K.;Zhang J.P.Photosynth.Res.,2004,82:83

    36 Pullerits,T.;Chachisvilis,M.;Sundstr?m,V.J.Phys.Chem., 1996,100:10787

    37 Kennis,J.T.M.;Streltsov,A.M.;Vulto,S.I.E.;Aartsma,T.J.; Nozawa,T.;Amesz,J.J.Phys.Chem.B,1997,101:7827

    38 Chen,X.H.;Zhang,L.;Weng,Y.X.;Du,L.C.;Ye,M.P.;Yang., G.Z.;Fujii,R.;Rondonuwu,F.S.;Koyama,Y.;Wu,Y.S.;Zhang, J.P.Biophys.J.,2005,88:4262

    39 Herek,J.L.;Polívka,T.;Pullerits,T.;Fowler,G.J.S.;Hunter,C. N.;Sundstr?m,V.Biochemistry,1998,37:7057

    40 Herek,J.L.;Wendling,M.;He,Z.;Polívka,T.;Garcia-Asua,G.; Cogdell,R.J.;Hunter,C.N.;van Grondelle,R.;Sundstr?m,V.; Pullerits,T.J.Phys.Chem.B,2004,108:10398

    41 Zhang,J.P.;Nagae,H.;Qian,P.;Limantara,L.;Fujii,R.; Watanabe,Y.;Koyama,Y.J.Phys.Chem.B,2001,105:7312

    42 Qian,P.;Saiki,K.;Mizoguchi,T.;Hara,K.;Sashima,T.;Fujii,R.; Koyama,Y.Photochem.Photobiol.,2001,74:444

    猜你喜歡
    張建平吉林大學(xué)
    吉林大學(xué)學(xué)報(地球科學(xué)版)
    古詩集句(草書)
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    《吉林大學(xué)學(xué)報( 理學(xué)版) 》征稿簡則
    吉林大學(xué)等二醫(yī)院王金成教授簡介
    買一片海愛你夠不夠,95后小情侶的勵志浪漫
    ??? ???? ?? ‘-? ?’?‘- ???’? ?? ??*
    書記愛“折騰”
    慧眼識寶 筍殼織出財富夢
    av网站免费在线观看视频| 国产日韩一区二区三区精品不卡| 久久精品亚洲熟妇少妇任你| 乱人伦中国视频| 亚洲av美国av| 一级片免费观看大全| 非洲黑人性xxxx精品又粗又长| 黄色丝袜av网址大全| 久久久久国产精品人妻aⅴ院| 老熟妇仑乱视频hdxx| 国产精品免费一区二区三区在线| 夜夜爽天天搞| 欧美成人免费av一区二区三区| 亚洲午夜理论影院| 不卡一级毛片| 国产蜜桃级精品一区二区三区| 搡老妇女老女人老熟妇| 99久久精品国产亚洲精品| 成人欧美大片| 亚洲欧美激情在线| 婷婷六月久久综合丁香| 亚洲一码二码三码区别大吗| 欧美一级毛片孕妇| 亚洲av成人一区二区三| 久久久久久人人人人人| 中文字幕人妻丝袜一区二区| a在线观看视频网站| 国产精品永久免费网站| 亚洲一区中文字幕在线| 丁香欧美五月| 欧美激情高清一区二区三区| 夜夜夜夜夜久久久久| 精品久久久久久久人妻蜜臀av | 日日干狠狠操夜夜爽| 在线av久久热| 美国免费a级毛片| 亚洲少妇的诱惑av| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 中文字幕久久专区| 欧美亚洲日本最大视频资源| 男女床上黄色一级片免费看| 青草久久国产| 国产日韩一区二区三区精品不卡| 黄网站色视频无遮挡免费观看| 午夜免费观看网址| 亚洲人成电影观看| 久久午夜综合久久蜜桃| 欧美成人午夜精品| 久久精品国产清高在天天线| 国产精品久久视频播放| 午夜久久久在线观看| 天天一区二区日本电影三级 | 亚洲精品国产色婷婷电影| 9热在线视频观看99| 99re在线观看精品视频| cao死你这个sao货| 久久亚洲真实| 多毛熟女@视频| 在线十欧美十亚洲十日本专区| 亚洲自拍偷在线| 日本免费a在线| 夜夜夜夜夜久久久久| 好看av亚洲va欧美ⅴa在| 日韩精品青青久久久久久| 色综合站精品国产| 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 每晚都被弄得嗷嗷叫到高潮| 久久久水蜜桃国产精品网| 真人一进一出gif抽搐免费| 九色国产91popny在线| 亚洲人成网站在线播放欧美日韩| 亚洲视频免费观看视频| 麻豆av在线久日| 日本在线视频免费播放| 国产精品免费视频内射| 午夜福利一区二区在线看| 大型av网站在线播放| x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 制服丝袜大香蕉在线| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 神马国产精品三级电影在线观看 | 男女床上黄色一级片免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 伊人久久大香线蕉亚洲五| 成人亚洲精品一区在线观看| 久久久久久亚洲精品国产蜜桃av| 熟妇人妻久久中文字幕3abv| 国产真人三级小视频在线观看| 日日干狠狠操夜夜爽| www.精华液| 久久香蕉精品热| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说| 久久人人爽av亚洲精品天堂| 老司机靠b影院| 国产三级黄色录像| 无人区码免费观看不卡| 国产熟女xx| 亚洲国产精品sss在线观看| 亚洲七黄色美女视频| 免费久久久久久久精品成人欧美视频| 亚洲专区国产一区二区| 岛国视频午夜一区免费看| 69精品国产乱码久久久| 99国产精品99久久久久| 亚洲自拍偷在线| 69av精品久久久久久| 亚洲第一电影网av| 欧美国产精品va在线观看不卡| 波多野结衣高清无吗| 99国产精品免费福利视频| 大型av网站在线播放| 日本vs欧美在线观看视频| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 国内精品久久久久精免费| 日本免费一区二区三区高清不卡 | 免费无遮挡裸体视频| 久久中文看片网| 在线观看日韩欧美| 欧美乱色亚洲激情| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 色综合婷婷激情| 日韩成人在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 黄色 视频免费看| 久久久精品欧美日韩精品| 精品欧美一区二区三区在线| 亚洲中文字幕日韩| 女生性感内裤真人,穿戴方法视频| 亚洲成a人片在线一区二区| 成人国产综合亚洲| 人人妻人人爽人人添夜夜欢视频| 黄色片一级片一级黄色片| 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区二区三区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 女人爽到高潮嗷嗷叫在线视频| 精品国产一区二区三区四区第35| 91国产中文字幕| 男男h啪啪无遮挡| 美女免费视频网站| 一边摸一边抽搐一进一小说| 黄色毛片三级朝国网站| 一级a爱片免费观看的视频| 色精品久久人妻99蜜桃| 欧美最黄视频在线播放免费| 波多野结衣av一区二区av| 麻豆av在线久日| 99精品在免费线老司机午夜| 国产野战对白在线观看| 一级,二级,三级黄色视频| 脱女人内裤的视频| 午夜影院日韩av| 国产精品久久视频播放| 看片在线看免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久天躁狠狠躁夜夜2o2o| 亚洲色图综合在线观看| 搡老岳熟女国产| 在线观看免费日韩欧美大片| 亚洲国产日韩欧美精品在线观看 | 午夜福利在线观看吧| 精品国产乱子伦一区二区三区| 最好的美女福利视频网| 久久久久国内视频| 丁香六月欧美| 在线观看免费视频网站a站| 久久久久国内视频| 99久久99久久久精品蜜桃| 久久人人精品亚洲av| 国产精品 国内视频| 日日爽夜夜爽网站| 午夜福利欧美成人| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 欧美黑人精品巨大| 国产欧美日韩综合在线一区二区| 色婷婷久久久亚洲欧美| 天堂√8在线中文| 性欧美人与动物交配| 曰老女人黄片| 国产精品久久久久久精品电影 | 这个男人来自地球电影免费观看| av在线天堂中文字幕| 电影成人av| 大码成人一级视频| 国产亚洲av高清不卡| 亚洲熟妇熟女久久| 99久久综合精品五月天人人| 身体一侧抽搐| 久久人妻福利社区极品人妻图片| 黄色丝袜av网址大全| 日韩精品青青久久久久久| 一级片免费观看大全| 久久国产亚洲av麻豆专区| avwww免费| av福利片在线| 国产亚洲精品一区二区www| 波多野结衣av一区二区av| 国产一区二区激情短视频| 免费在线观看黄色视频的| 在线十欧美十亚洲十日本专区| 亚洲av美国av| 很黄的视频免费| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频| 成人国产综合亚洲| 日本 av在线| 亚洲性夜色夜夜综合| 国产欧美日韩综合在线一区二区| 91麻豆av在线| 一级毛片高清免费大全| 欧美激情久久久久久爽电影 | 一区在线观看完整版| svipshipincom国产片| 757午夜福利合集在线观看| 免费看a级黄色片| 国产亚洲欧美在线一区二区| 禁无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 美女国产高潮福利片在线看| 搡老岳熟女国产| 亚洲国产精品成人综合色| 午夜免费鲁丝| 美女午夜性视频免费| 99香蕉大伊视频| 九色亚洲精品在线播放| 国产精品自产拍在线观看55亚洲| 狂野欧美激情性xxxx| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美一区二区三区黑人| 一级毛片精品| 久久精品aⅴ一区二区三区四区| 男人的好看免费观看在线视频 | 色综合婷婷激情| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 亚洲成人久久性| 亚洲精华国产精华精| 亚洲av成人一区二区三| 十八禁网站免费在线| 亚洲精品国产一区二区精华液| 男人舔女人的私密视频| 欧美成人一区二区免费高清观看 | 18美女黄网站色大片免费观看| 中文字幕高清在线视频| 午夜福利,免费看| 亚洲欧美精品综合久久99| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影观看| 亚洲最大成人中文| 在线天堂中文资源库| 伦理电影免费视频| 无遮挡黄片免费观看| 好男人在线观看高清免费视频 | 在线视频色国产色| 99香蕉大伊视频| 在线十欧美十亚洲十日本专区| 女生性感内裤真人,穿戴方法视频| 正在播放国产对白刺激| 国产又爽黄色视频| 18禁裸乳无遮挡免费网站照片 | 日韩大码丰满熟妇| 制服人妻中文乱码| 侵犯人妻中文字幕一二三四区| 久久亚洲精品不卡| 国产精品久久视频播放| 成人亚洲精品av一区二区| 国产精品国产高清国产av| 一区福利在线观看| 啪啪无遮挡十八禁网站| 老司机午夜福利在线观看视频| 欧美绝顶高潮抽搐喷水| 女人高潮潮喷娇喘18禁视频| 国产精品爽爽va在线观看网站 | 午夜福利视频1000在线观看 | 99热只有精品国产| tocl精华| 精品国产国语对白av| 99国产精品免费福利视频| 精品久久久久久成人av| 国产野战对白在线观看| 精品国产一区二区久久| 成人av一区二区三区在线看| 一本久久中文字幕| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 国产成+人综合+亚洲专区| 亚洲aⅴ乱码一区二区在线播放 | 日韩有码中文字幕| 国产午夜福利久久久久久| 国产精品 国内视频| 日韩国内少妇激情av| 国产一区二区三区在线臀色熟女| 久久青草综合色| 宅男免费午夜| 亚洲国产中文字幕在线视频| 久久国产精品男人的天堂亚洲| 性少妇av在线| 欧美+亚洲+日韩+国产| 日韩高清综合在线| 黄色成人免费大全| av视频在线观看入口| 一本综合久久免费| 国产精品自产拍在线观看55亚洲| 看片在线看免费视频| 亚洲熟妇中文字幕五十中出| 国产精品一区二区在线不卡| 午夜福利一区二区在线看| 精品日产1卡2卡| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 丝袜在线中文字幕| 亚洲色图 男人天堂 中文字幕| 变态另类成人亚洲欧美熟女 | 一边摸一边抽搐一进一出视频| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 国产成年人精品一区二区| 日日夜夜操网爽| 亚洲成人国产一区在线观看| 国产人伦9x9x在线观看| 国产免费av片在线观看野外av| 国产亚洲欧美精品永久| 国产成人系列免费观看| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 免费在线观看黄色视频的| 亚洲欧美激情在线| 久久久久九九精品影院| 一边摸一边做爽爽视频免费| 男女之事视频高清在线观看| 搞女人的毛片| 51午夜福利影视在线观看| 成人永久免费在线观看视频| 久久中文字幕人妻熟女| 好看av亚洲va欧美ⅴa在| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 午夜福利免费观看在线| 亚洲av片天天在线观看| 天天添夜夜摸| 黑人操中国人逼视频| 亚洲精品粉嫩美女一区| 免费观看精品视频网站| 久久久水蜜桃国产精品网| 看免费av毛片| 深夜精品福利| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人爽人人添夜夜欢视频| 欧美一级a爱片免费观看看 | 国产私拍福利视频在线观看| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品电影 | 精品欧美一区二区三区在线| 动漫黄色视频在线观看| 久久人妻福利社区极品人妻图片| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 美女高潮到喷水免费观看| 国产1区2区3区精品| 19禁男女啪啪无遮挡网站| 脱女人内裤的视频| 色综合站精品国产| 在线观看舔阴道视频| 欧美日韩亚洲综合一区二区三区_| av电影中文网址| 精品国产乱码久久久久久男人| 国产熟女xx| 91av网站免费观看| 99国产精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | 波多野结衣高清无吗| x7x7x7水蜜桃| 亚洲国产精品sss在线观看| 91麻豆av在线| 色在线成人网| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 正在播放国产对白刺激| 欧美激情 高清一区二区三区| 久久热在线av| 国产午夜精品久久久久久| 精品久久久久久久人妻蜜臀av | 日韩大尺度精品在线看网址 | 色老头精品视频在线观看| 久久久久久久久久久久大奶| 亚洲欧美激情在线| 国产欧美日韩一区二区精品| 97碰自拍视频| 国产单亲对白刺激| 国产高清激情床上av| 亚洲第一电影网av| 男女床上黄色一级片免费看| 麻豆一二三区av精品| 国产精品自产拍在线观看55亚洲| 天天一区二区日本电影三级 | 不卡一级毛片| 99久久国产精品久久久| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| 亚洲成人国产一区在线观看| 亚洲 欧美一区二区三区| 19禁男女啪啪无遮挡网站| 色综合婷婷激情| 91av网站免费观看| 久久精品亚洲熟妇少妇任你| 欧美成人一区二区免费高清观看 | 在线观看午夜福利视频| 国产成人欧美| 久久久国产成人免费| 97碰自拍视频| 色综合欧美亚洲国产小说| 少妇被粗大的猛进出69影院| 精品国产乱子伦一区二区三区| 久久久久久国产a免费观看| 在线观看舔阴道视频| 欧美成人性av电影在线观看| 又紧又爽又黄一区二区| 亚洲国产精品999在线| 欧美色欧美亚洲另类二区 | 国产高清videossex| 午夜福利,免费看| 黄色毛片三级朝国网站| videosex国产| 亚洲国产精品合色在线| 一级,二级,三级黄色视频| 亚洲国产高清在线一区二区三 | 精品欧美一区二区三区在线| 精品一品国产午夜福利视频| 大码成人一级视频| 美女大奶头视频| 国产精品永久免费网站| 在线观看免费视频网站a站| 亚洲五月婷婷丁香| 女性被躁到高潮视频| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 国产精品美女特级片免费视频播放器 | 91国产中文字幕| 18禁观看日本| 人妻久久中文字幕网| 亚洲成人国产一区在线观看| 午夜免费鲁丝| 日韩欧美免费精品| 亚洲专区国产一区二区| 免费在线观看黄色视频的| 亚洲成人精品中文字幕电影| 亚洲欧洲精品一区二区精品久久久| АⅤ资源中文在线天堂| 国产成+人综合+亚洲专区| 日本 欧美在线| 麻豆久久精品国产亚洲av| 免费不卡黄色视频| 国产主播在线观看一区二区| 久久青草综合色| 免费看美女性在线毛片视频| 精品不卡国产一区二区三区| 黄色片一级片一级黄色片| 搡老岳熟女国产| 久久午夜综合久久蜜桃| 淫秽高清视频在线观看| 免费无遮挡裸体视频| 如日韩欧美国产精品一区二区三区| 乱人伦中国视频| 熟女少妇亚洲综合色aaa.| 中文字幕人妻丝袜一区二区| 一本综合久久免费| 亚洲人成电影观看| 国产av在哪里看| 日本三级黄在线观看| 亚洲精品美女久久av网站| 久久精品亚洲精品国产色婷小说| www.www免费av| 97碰自拍视频| 久久伊人香网站| 99在线人妻在线中文字幕| 国产免费男女视频| 国产色视频综合| 久久欧美精品欧美久久欧美| 亚洲avbb在线观看| 国产黄a三级三级三级人| 欧美绝顶高潮抽搐喷水| 国产色视频综合| 涩涩av久久男人的天堂| 亚洲天堂国产精品一区在线| 日韩视频一区二区在线观看| 又紧又爽又黄一区二区| 精品无人区乱码1区二区| 亚洲片人在线观看| 久久国产亚洲av麻豆专区| 国产成人精品久久二区二区91| 欧美日韩黄片免| 性欧美人与动物交配| 黄片小视频在线播放| 欧美日本视频| 国产精品久久视频播放| 日韩欧美国产一区二区入口| 高清在线国产一区| 免费高清在线观看日韩| 国产精品亚洲一级av第二区| 欧美色欧美亚洲另类二区 | 男男h啪啪无遮挡| 制服诱惑二区| 亚洲第一av免费看| 久久青草综合色| 满18在线观看网站| 免费在线观看影片大全网站| 自拍欧美九色日韩亚洲蝌蚪91| 男女床上黄色一级片免费看| 熟妇人妻久久中文字幕3abv| 两性夫妻黄色片| 国产野战对白在线观看| 欧美久久黑人一区二区| 国产亚洲精品久久久久5区| 亚洲电影在线观看av| 成人国语在线视频| 中文字幕人妻丝袜一区二区| 久久精品亚洲熟妇少妇任你| 99在线视频只有这里精品首页| 国产又爽黄色视频| 日日夜夜操网爽| 色播亚洲综合网| 亚洲精品中文字幕在线视频| 国产熟女午夜一区二区三区| 自线自在国产av| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 91麻豆av在线| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av| 在线观看免费午夜福利视频| av在线播放免费不卡| 久久 成人 亚洲| 亚洲精华国产精华精| 乱人伦中国视频| 午夜久久久久精精品| 国内毛片毛片毛片毛片毛片| 一区二区三区激情视频| 成人国语在线视频| 老汉色av国产亚洲站长工具| 成年版毛片免费区| 极品人妻少妇av视频| 国产私拍福利视频在线观看| 久久精品亚洲精品国产色婷小说| tocl精华| 免费少妇av软件| 亚洲精品国产色婷婷电影| 天堂动漫精品| 精品高清国产在线一区| 国内毛片毛片毛片毛片毛片| 免费在线观看视频国产中文字幕亚洲| av网站免费在线观看视频| 女同久久另类99精品国产91| 一本久久中文字幕| 99久久久亚洲精品蜜臀av| x7x7x7水蜜桃| 免费少妇av软件| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 亚洲最大成人中文| 1024视频免费在线观看| 丝袜在线中文字幕| 很黄的视频免费| 国产真人三级小视频在线观看| 国产片内射在线| 岛国视频午夜一区免费看| 精品久久久久久久人妻蜜臀av | 性欧美人与动物交配| 婷婷六月久久综合丁香| 国内精品久久久久精免费| 国产av精品麻豆| 精品福利观看| 亚洲色图 男人天堂 中文字幕| 韩国精品一区二区三区| 热99re8久久精品国产| 国产亚洲精品第一综合不卡| 欧美另类亚洲清纯唯美| 精品国产美女av久久久久小说| 国产精品电影一区二区三区| 亚洲性夜色夜夜综合| 成年版毛片免费区| 99在线视频只有这里精品首页| 人人妻人人澡欧美一区二区 | 国产一区二区在线av高清观看| 少妇 在线观看| 精品无人区乱码1区二区| 国产91精品成人一区二区三区| 国产免费男女视频| 可以在线观看的亚洲视频| 欧美午夜高清在线| 美国免费a级毛片| 亚洲人成电影免费在线| 久久婷婷人人爽人人干人人爱 | 久久亚洲真实| www.自偷自拍.com| 法律面前人人平等表现在哪些方面| 一个人免费在线观看的高清视频|