• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    紫色光合細(xì)菌Thermochromatium Tepidum捕光天線復(fù)合物2的激發(fā)態(tài)動力學(xué)

    2010-12-12 02:42:56于龍江艾希成王征宇張建平
    物理化學(xué)學(xué)報 2010年7期
    關(guān)鍵詞:張建平吉林大學(xué)

    楊 帆 于龍江 王 鵬 艾希成 王征宇 張建平,*

    (1集成光電子學(xué)國家重點(diǎn)聯(lián)合實(shí)驗室吉林大學(xué)實(shí)驗區(qū),吉林大學(xué)電子科學(xué)與工程學(xué)院,長春 130012; 2中國人民大學(xué)化學(xué)系,北京 100872; 3茨城大學(xué)理學(xué)部,水戶市文京2-1-1 310-8512,日本)

    The discovery of the high-resolution crystallographic structures of the light-harvesting complex 2(LH2)from photosynthetic purple bacteria Rhodopseudomonas(Rps.)acidophila[1-2]and Rhodospirillum(Rs.)molischianum[3]has stimulated extensive experimental and theoretical investigations aimed at its structure-function relationship.In the photosynthetic membrane of purple bacteria,a core light-harvesting complex 1(LH1)encircling a photosynthetic reaction center(RC)is surrounded by a pool of peripheral LH2s(see Ref.[4]and references therein). Light energy harvested by the antenna complexes(LH1,LH2)is transferred in form of electronic excitation to the RC with extremely high efficiency(>90%)to initiate the primary charge separation[5].The pigment-protein assembly of LH2 consists of 8 and 9repeatingsubunitsforRs.molischianum[3]andRps.acidophila[1], respectively.In the LH2 complexes,the subunits form circular aggregates with 8-or 9-fold symmetry,each subunit consists of a pair of α and β trans-membrane polypeptides,which bind 2 bacteriochlorophyll a(BChl)molecules with Qyabsorption at 850 nm(B850),1 BChl at 800 nm(B800),as well as 1 carotenoid (Car)molecule with slightly twisted all-trans configuration that is sandwiched between the pair of B850s and passes by the B800.The light-harvesting function of bacterial antenna is based on a series of ultrafast excitation energy transfer(EET)reactions proceeding in the time scales of 0.1-50 ps and in a cascading and downhill manner,e.g.,Car-to-BChl and B800-to-B850 within a LH2 complex[6],LH2-to-LH1 and LH1-to-RC[7].

    For the aforementioned LH2 complexes with known crystallographic structures,the molecular and electronic structures and the excited-state properties of BChls and Cars have been examined in great details(see Refs.[6-9]for reviews).Differing from the pigment-protein assemblies of these LH2s consisting of relatively simple constituents of trans-membrane polypeptides and pigment cofactors,the LH2 complexes from other bacterial species,such as Rps.palustris and Thermochromatium(Tch.) tepidum,contain multi-composition polypeptides and/or Cars. Recently,the LH2 complex from Rps.palustris has been identified with a 0.75 nm resolution to be an 8-fold symmetric octamer,and each α,β-subunit most likely contains 4 BChls with unique structural orientation and spectroscopic properties[10].In addition,the organization and the macroscopic structures of bacterial antenna complexes in intracytoplasmic membrane(ICM) has recently been revealed by the use of atomic force microscopy[11-12].Despite these advances,high-resolution crystallographic structures remain unknown for the LH2s with relatively complicated constituents of α,β-polypeptides and/or pigments. Accordingly,the excitation dynamics of these LH2s,such as those from Rps.palustris or Tch.tepidum etc.,have not been investigated in details.

    Purple photosynthetic bacterium Tch.tepidum is a moderate thermophile growing in an optimal temperature range of 48-50℃,which was firstly found from Mammoth Hot Springs in the Yellowstone National Park[13].Its pigment-protein complexes exhibit notably higher thermal stability than the mesophilic counterparts such as Allochromatium (Ach.)vinosum and Rb.sphaeroides growing under~30℃[14].We have recently studied the excited-state dynamics,and the origins of the long-wavelength Qyabsorption and the thermal stability of the LH1-RC core complex from Tch.tepidum[15-16].The LH2 of Tch.tepidum,whose crystallographic structure is unknown,is different from those of Rps.acidophila or Rs.molischianum in apoprotein and pigment compositions.It contains three different types of α and β polypeptide pairs[17],as well as three major carotenoid compositions categorized by the number of C=C conjugated double bonds(NC=C),namely,rhodopin and lycopene(NC=C=11),anhydrorhodovibrin (NC=C=12),and spirilloxanthin and(OH)-spirilloxanthin(NC=C=13)[18].

    This work is intended to examine the detailed EET dynamics of the isolated LH2 complex from Tch.tepidum.Surfactants with different ionic properties,i.e.,nonionic n-dodecyl-β-D-maltoside(DDM)and zwitterionic lauryldimethylamine oxide (LDAO),are used to prepare the LH2 complex,and the ultrafast EET processes,including Car-to-Car,Car-to-BChl,and BChl-to-BChl,are examined.The implications of the excitation dynamics are discussed in terms of the light-harvesting and the photoprotection roles of the LH2 complex.

    1 Materials and methods

    1.1 Sample preparation

    Tch.tepidum was cultured anaerobically at 48℃for 7 d.The cells were disrupted at 4℃by ultrasonication,and the obtained chromatophores were suspended in 20 mmol·L-1Tris-HCl buffer(pH 8.5)at a concentration of OD850nm~50 cm-1(OD:optical density).After being solubilized with 0.35%(φ,volume fraction)LDAO(Kao Corp.,Japan)for 60 min in the dark,the suspension was centrifuged(145400×g,4℃,100 min),and the supernatant was collected as crude LH2.The crude LH2 preparation was further purified by using DEAE-cellulose(Whatman DE52)column chromatography in the presence of 0.05%LDAO or 0.05%DDM,for the LDAO or the DDM preparations.The UV-visible absorption spectra were recorded on a Cray 50 absorption spectrometer(Varian).Fluorescence spectra were measured on a LS-55 luminescence spectrophotometer(Perkin Elmer).

    1.2 Femtosecond time-resolved spectroscopy

    The femtosecond time-resolved absorption apparatus with a temporal resolution of~150 fs is similar to that described in Refs.[15,19].Briefly,an optical parametric amplifier(OPA-800 CF-1,Spectra Physics)pumped bya regenerative amplifier(SPTF-100F-1KHPR,Spectra Physics)provided the actinic laser pulses (~120 fs,full width at half maximum),which was sent to the sample cell(optical path length,1 mm)with an excitation photon densities of 1013-1014photons·cm-2·pulse-1.White light continuum probe was generated from a 3-mm thick sapphire plate, and was detected after interrogating the excited sample by a liquid-nitrogen cooled CCD detector(Spec-10:400B/LN)attached to an imaging spectrograph(SpectraPro 2300i,USA).Timeresolved spectra were corrected against group velocity dispersion.To ensure that each laser shot excites fresh sample,the laser system was ran at the repetition rate of 100 Hz,and the sample cell was kept on shifting back and forth across the overlapped actinic and probe beams.The optical density of a LH2 sample at an actinic wavelength was adjusted to 0.2-0.45 mm-1. All of the time-resolved measurements were carried out at room temperature(23℃).Computer programs for the kinetics analysis were compiled based on Matlab (Mathworks)and Mathcad (MathSoft).

    2 Results and discussion

    2.1 Steady-state electronic absorption of the LH2 preparations

    Fig.1 UV-visible electronic absorption spectra of the DDM (red)and the DDM(black)preparations of isolated LH2 complexes from Tch.tepidumDashed lines are the corresponding fluorescence excitation spectra recorded at the observing wavelength of 900 nm.Spectra are normalized to the Qx absorption maximum at 590 nm.Arrows point to the excitation wavelengths for time-resolved spectroscopy.

    Fig.2 Schematic excited-state energy diagram and singlet excitation energy transfer scheme of the isolated LH2 complex form Tch.tepidumNumerals 1,2,and 3 represent the Car compositions 1,2 and 3 having NC=Cvalues of 11,12,and 13,respectively.The relative position of the exited-state manifolds of Car and BChl are scaled according to their state energies[8]. The recently found intermediate state,3A-g,of anhydrorhodovibrin[21] (composition 2)is also shown.Vertical arrows represent the optical excitation and the relaxation processes,i.e.,internal conversion(ic)and fluorescence emission(fl). Horizontal arrows indicate the EET processes discussed in this paper.

    The broadband absorption covering 450-570 nm in Fig.1 originates from the strongly optically allowedtransition of Car(Fig.2).The Car absorption spectrum of the LDAO preparation shows no significant difference from that of the DDM preparation except the slightly more prominent vibronic structures.It is documented that the absorptive transitionis rather susceptible to the Car surroundings[20]. Therefore,the insignificant change of Car absorption spectra suggests that Cars in LH2 experience only subtle environmental changes from the DDM preparation to the LDAO one.

    The LH2 complex of Tch.tepidum contains three major carotenoid compositions:composition 1 includes rhodopin (66.5%)and lycopene(2.2%)with NC=C=11;composition 2 is anhydrorhodovibrin(8.7%)with NC=C=12;composition 3 consists of spirilloxanthin(20.4%)and OH-spirilloxanthin(4.4%) with NC=C=13.It is well known that,theabsorption of Car shifts systematically to longer wavelength upon increasing NC=C.Specifically,the transition energy holds a linear relationship with 1/(2NC=C+1)[21-22].Therefore,the absorption spectra of different Car compositions overlap each other,which blurs the vibronic structures with respect to the LH2 containing single type of Car,e.g.,that of Rb.sphaeroides 2.4.1 contains spheroidene(NC=C=10)[23].By the use of fluorescence excitation spectroscopy,we have determined the overall Car-to-BChl singlet energy transfer efficiency,<30%,which is in general agreement with those reported for Cars having NC=Cvalues of 11-13 in bacterial light-harvesting complexes[24].Here,we note that for the LH2 complex containing multi-composition Cars,it is presently unknown that whether the Car heterogeneity associates to an individual LH2 or to different LH2s,an intriguing issue remaining to be clarified.

    In the near-infrared region of Qyabsorption(Fig.1,750-900 nm),the spectrum of the DDM preparation resembles the LH2 spectra of Rs.molischianum,Rps.acidophila,or Rb.sphaeroides 2.4.1 both in maximal wavelength(~850 nm)and in B850-to-B800 absorption ratio(A850/A800=1.2-1.7).However,the spec-trum of the LDAO preparation differs significantly from that of the DDM preparation,i.e.,the B850(Qy)band blue shits for~6 nm,and the A850/A800ratio decreases to 0.9 with reference to that of the DDM preparation,1.5.The spectral variation is apparently induced by the detergents:For the specific case of Tch. tepidum,the nonionic DDM is gentle and,therefore,facilitates preserving the native pigment-protein assembly of LH2,whereas the zwitterionic LDAO is relatively harsh,and hence induces subtle structural change.On the other hand,the excitonic interaction among the B850 molecules is very sensitive to the geometry of the B850 circular aggregate.Furthermore,specific and nonspecific interactions between B850 and its surroundings also largely influence the Qyabsorption[25-27].Therefore,even subtle structural variation of the LH2 assembly can induce appreciable spectral change of the B850(Qy)band.At the present stage,for the LH2 complex of Tch.tepidum lacking of structural details,a complete theoretical account for the electronic absorption spectrum seems unfeasible.

    2.2 Car-to-BChl excitation energy transfer

    2.2.1 Excited state dynamics

    Selective excitation of Car allows the processes of Car-to-BChl EET to be followed by probing the spectral dynamics and the population kinetics.As seen in Fig.3(a)for the DDM preparation,immediately following the pulsed excitation(0.0 ps),bleaching of Car ground state absorption appears as a negative signal (450-570 nm).The Car bleaching is accompanied by the characteristic Sn←S1absorption to the longer wavelength side(570-650 nm),which subsequently reaches the maximum at 0.3 ps. This rise phase of excited state absorption is due to the S2-to-S1internal conversion(ic,time constant derived by fitting the 600 nm kinetics in Fig.3(b),~140 fs).Importantly,the Sn←S1absorption maximized at 600 nm is attributed to anhydrorhodovibrin (NC=C=12)judging from its transition energy[28].

    In the near-infrared region(Fig.3(a),800-1000 nm),the exciton absorption(800-840 nm)together with the B850 bleaching (840-950 nm)are observed,both of which are mainly induced by the ultrafast Car(S2)-to-B850(Qx)EET.Note that,at 0.0 ps the B850(Qy)exciton absorption does not appear despite a sizable B850 bleaching.The delay of exciton absorption is explained below:the ultrafast Car(S2)-to-B850(Qx)EET promptly depopulates the ground state B850 and,subsequently,the B850(Qy) population is built up via the ic process of Qx-to-Qy(Fig.2).Thus the rise of B850(Qy)exciton absorption takes place with a time constant comparable to that of the Qx-to-Qyic,~220 fs,as derived from the 830 nm kinetics in Fig.3(b),in well agreement with that determined for the LH2 complex of Rb.sphaeroides G1C,~300fs[29].Inthesamescenario,theabsence ofB800 bleaching in Fig.3(a)proves that the Car-to-B800 EET path is inactive, which is most likely due to the unfavorable orientation of the transition dipole moments between Car and B800.

    Fig.3 (a,c)Femtosecond time-resolved spectra at indicated delay times,and(b,d)the corresponding kinetics at indicated probe wavelengths for the DDM(a,b)and the LDAO(c,d)preparations of LH2 complexes from Tch.tepidumSolid lines in(b,d)are fitting curves.Excitation wavelength was 530 nm.

    2.2.2 Ultrafast formation of triplet excited state Car

    From the decaying phase of the spectral dynamics(Fig.3(a), 0.3 ps→20.0 ps),it is seen that,when the Sn←S1absorption decays out at 20 ps,an absorption band at~565 nm remains.This transient with a decay time constant of microseconds,as derived from the 565 nm kinetics in Fig.3(b),can be safely attributed to the Tn←T1absorption of Car.Note that the Tn←T1transients appears in subpicosecond delay times,which cannot be explained by the BChl-to-Car triplet EET proceeding on a time scale of~10 ns as governed by Dexter′s electron-exchange mechanism[30]. The ultrafast formation of3Car*in subpicosecond time scale had been previously observed for the LH complex from Rs.rubrum containing the long chain Car,spirilloxanthin(NC=C=13)[31]. Since the covalent 21A-gexcitation intrinsically consists of a pair of double-excited and spin-correlated triplet excitationsthe ultrafast3Car*formation is ascribed to the singlet homofission reaction within Car conjugated backbone,i.e.,CarJudging from the Tn←T1transition energy,this triplet absorption spectrum is best attributed to the Car having NC=C=12(composition 2,anhydrorhodovibrin). Similar observation has recently been reported for the LH2 from Rps.palustris[32].

    2.2.3 Car-to-BChl singlet excitation energy transfer

    Both the S1and the S2states of Car are capable of mediating the Car-to-BChl singlet EET,e.g.,the LH2 complex of Rb. sphaeroides G1C containing a singlet Car composition of neurosporene(NC=C=9)shows an overall Car-to-BChl EET efficiency of 95%,the partitions of efficiency are 60%-74%for the Car (S2)-to-BChl(Qx)path and 24%-38%for Car(S1)-to-BChl(Qy), and the corresponding EET time constants are~100 fs and~1.42 ps,respectively[29].For energetic reasons,the Car(S1)-to-BChl (Qy)path is rather inefficient for Cars having NC=C=11,and it is even closed for those having NC=C=12 or 13.However,the Car (S2)-to-BChl(Qx)path is valid for most of the photosynthetic Cars(NC=C=9-13)in bacterial antenna complexes[28,33].In the LH2 complex of Tch.tepidum,the Car-to-BChl EET is predominantly mediated by the S2state,whereas the Car(S1)-to-BChl(Qy) path is inactive.This conclusion drawn on the basis of spectral dynamics is also supported by the population kinetics:(i)the S1-state lifetime of anhydrorhodovibrin in n-hexane(2.2 ps[34])in absence of energy acceptor is not shortened compared to that of the same Car bound in LH2(~2.4 ps,derived from the 600 nm kinetics in Fig.3(b));(ii)from the B850 bleaching kinetics at 860 nm,only a rise phase in a time scale of~100 fs is derived,i.e., no picosecond rising component correlating to the S1-state depopulation could be identified.

    The spectral dynamics and population kinetics in Fig.3(c,d) for the LDAO preparation are similar to those of the DDM preparation.An apparent difference is seen by comparing the decay phases in Fig.3(a)and Fig.3(c):the rapid decay phase of the B850 bleaching for the DDM preparation is not seen for the LDAO preparation.This rapid decay with a time constant of~270 fs,as derived from the 860 nm kinetics in Fig.3(b),is due to singlet annihilation among the B850 excitations.

    Taken together the above ultrafast spectroscopic results,we propose the scheme of Car-to-BChl EET as illustrated in Fig.2 for the LH2 of Tch.tepidum.It is important to point out that,despite the possible structural variation between the DDM and the LDAO preparations,the Car-to-BChl EET schemes are similar, suggesting that the accessory light-harvesting function of Car is rather robust against the structural variation of LH2.

    2.3 Car-to-Car excitation energy transfer

    Up to now,the subject of Car-to-Car singlet EET in bacterial light-harvesting complex has not been examined in any details, although Car-to-Car triplet EET at cryogenic temperature has recently been suggested for the LH2 of Rps.palustris[35].The difficulty of spectroscopic detection of Car-to-Car EET process stems from the fact that Car molecules in LH2 are identical and, therefore,hardly to be spectroscopically differentiated.The multicomposition Cars in the LH2 complex of Tch.tepidum may provide a possibility to tackle this problem.

    2.3.1 Excited state dynamics

    Despite sever overlap among the ground state absorption of different Cars(Fig.1),it is expect that excitation to the shorter wavelength side of the Car absorption band can preferentially excite shorter chain Cars owing to their highertransition energy.Fig.4 shows the representative transient spectra recorded under different excitation wavelengths.(i)Δt=0.0 ps. The ΔOD spectra show negative Car bleaching accompanied by the broadband Sn←S1absorption to the longer wavelength side, and no essential difference is seen from the transients at different excitation wavelengths.(ii)Δt=0.5 ps.The Sn←S1absorption reaches the maxima as a result of S2-to-S1ic proceeding in a time scale of~140 fs.For the LDAO preparation(Fig.4(b)),the shoulder absorption peaked at~570 nm becomes more prominent for longer excitation wavelength.This is an indication of Tn←T1absorption associated to the ultrafast3Car*formation.Such excitation wavelength dependence is not obvious for the DDM preparation.(iii)Δt=10.0 ps.The Tn←T1absorption peaked at~560 nm is observed irrespective to the excitation wavelengths.

    2.3.2 Inactivity of Car(T1)-to-Car(T1)EET

    Interestingly,although all of the three Car compositions were excited,only the Tn←T1absorption of anhydrorhodovibrin is observed(Figs.4(a,b),Δt=10.0 ps).Since direct Car-to-Car triplet EET must be extremely inefficient owing to the large intermolecular distance of~1 nm as known from the crystallographic structure of Rps.acidophila[1],the Tn←T1absorption of rhodopin, lycopene,or spirilloxanthin,if any,would be observed at different transition wavelengths.Here,it is difficult to understand why only the Tn←T1absorption of anhydrorhodovibrin is observed. Besides possible structural origins awaiting for detailed LH2 structural information of Tch.tepidum,we propose the following mechanism based on the unique electronic structure of this particular Car.Recent resonance Raman excitation profile studies of Car has revealed the presence of thestate beneath the well-knownstate[21](Fig.2).Theenergy separa-tion,~1700 cm-1,is comparable to a vibrational quanta of C=C double bond stretching,therefore,theic via state mixing must be extremely efficient.Importantly,because thestate is~500 cm-1below the Qxstate,directsinglet EET is energetically unfavorable.Taken together,the EET path of Car()-to-BChl(Qx)must be very inefficient for anhydrorhodovibrin owing to the rapid deactivation of theexcitation via efficientic.As the result,thepopulation is predominantly converted via cascading ic processes to theand further to thestate,which eventually show up as the Sn←S1and the Tn←T1absorption,respectively.

    Fig.4 Comparison of the spectral dynamics of the LH2 complexes following selective optical excitation of Car at 475,500 and 530 nm(a)DDM preparation,(b)LDAO preparation.The spectra at delay times(Δt)of 0.5 and 10.0 ps are normalized.

    2.3.3 Inactivity of Car(S1)-to-Car(S1)EET

    As shown in Fig.5(a,b),at the probing wavelength of 600 nm,population kinetics under the excitation wavelengths of 475 and 530 nm shows almost identical decay time constant of (2.44±0.03)and(2.63±0.02)ps for the DDM and LDAO preparation,respectively.Since 475 nm laser pulses preferentially excite shorter chain Cars(NC=C=11)having a longer S1-state lifetime of~4 ps,the associated Sn←S1absorption,if any,would appear at the characteristic maximal wavelength of 580 nm[23].The above kinetics similarity implies that the EET path of Car(S1)-to-Car(S1) is inactive,which may be understood in view of the followings. (i)Because of the large Car-Car intermolecular distance(~1 nm)and the rather small transition dipole moment of the S1state (<3.33×10-30C·m)[33],the strength of transition dipole coupling between a pair of Cars must be extremely low and,consequently,the S1-state mediated Car-to-Car EET is extremely inefficient. (ii)The ultrafast Car(S2)-to-B850(Qx)EET proceeding on~100 fs together with the ultrafast Car(S2)-to-Car(S2)EET(vide infra) are competitive to the S2→S1ic process(~140 fs),thus population to the S1state of shorter chain Cars(NC=C=11)must be inefficient.

    2.3.4 Car(S2)-to-Car(S2)EET

    Fluorescence excitation spectroscopy has revealed that,for either DDM or LDAO preparations,the overall efficiency of Carto-BChl EET at 475 nm(~11%)is much lower than that at 530 nm(~28%),which are in contrast to the general trend that the EET efficiency is higher for shorter chain Cars.In addition,only the Sn←S1and the Tn←T1absorption of anhydrorhodovibrin (NC=C=12)are observed despite the much higher composition of the Cars with NC=C=11(~67%)compared to that of anhydrorhodovibrin(~8%).These observations strongly suggest the presence of S2-state mediated EET from the shorter chain rhodopin and/or lycopene to the longer chain anhydrorhodovibrin,which is further supported by the kinetics results:at the probing wavelength of 560 nm,the relative amplitude of the3Car*species (anhydrorhodovibrin)is higher under shorter wavelength excitation at 475 nm(Fig.5(a,b)).Under the 475 nm excitation,direct excitation of anhydrorhodovibrin is expected to be less probable,however,an unusually high population of3Car*(anhydrorhodovibrin)is observed,and those of shorter chain Cars(rhodopin and lycopene)expected to appear at short-er transition wavelengths are not seen.This is readily accounted for by the S2-state mediated ultrafast Car-to-Car EET,which together with the ultrafast Car(S2)-to-BChl(Qx)EET efficiently deplete the S2-state and hence the S1-state population of Cars (NC=C=11).The presence of ultrafast Car(S2)-to-Car(S2)EET also holds the structural basis:thetransition carries a transition dipole moment as large as 5.00×10-30C·m[33].In addition,the Car back-bones are nearly paralleling as known from the existing crystallographic LH2 structures.Therefore,strong transition dipole coupling between Cars is expected in spite of the~1 nm separation.It is then in-ferred from the Car(S2)-to-Car (S2)EET that Cars having NC=C=11 and NC=C=12 coexist in a LH2 complex.Here,we note that,the minor Car composition anhydrorhodovibrin in LH2 seems an efficient trap of excitation energy rather than a light harvester.

    Fig.5 Comparison of the population kinetics under the indicated excitation wavelengths for (a)DDM and(b)LDAO preparations of LH2 complexes from Tch.tepidumThe kinetics are plotted from the spectral dynamics shown in Fig.4 at the indicated probing wavelengths(λpr).Solid lines are fitting curves.

    2.4 B800-to-B850 excitation energy transfer

    Fig.6 shows the bleaching recovery kinetics of B800 and B850 probed at 810 and 860 nm,respectively,as well as the kinetics of B850(Qy)exciton absorption probed at 830 nm.The instantaneous bleaching of B800 induced by pulsed excitation is followed by a slow recovery phase,which closely correlates to the rise phases of the kinetics at 830 or 860 nm.Such decay-to-rise correlation substantiates the process of B800(Qy)-to-B850 (Qy)EET(Fig.2).

    Fig.6 Kinetics at the indicated probing wavelengths for(a)DDM and(b)LDAO preparations of LH2 complexes from Tch.tepidumSolid lines are fitting curves.Excitation wavelength was 785 nm.

    Global fit of the three kinetics traces with bi-or tri-exponential model functions revealed the EET time constants,i.e.,~1.2 ps for the DDM preparation and~1.7 ps for the LDAO one.The value of 1.2 ps for the DDM preparation is~50%prolonged compared to the B800(Qy)-to-B850(Qy)EET time constants for the LH2s containing single Car composition from Rps.acidophila,Rs.molischianum,and Rb.sphaeroides(~0.8 ps)[36],suggesting that the mutual orientation of B800 and B850 in the LH2 of Tch.tepidum differs considerably from those in the LH2s from the above mesophilic species.Fitting the individual kinetics at 830 and 860 nm yielded identical rise time constant,i.e.,~1.2 ps for the DDM preparation and~0.8 ps for the LDAO one, whereas fitting the specific traces at 810 nm yielded a decay time constant of~1.1 ps for either DDM or LDAO preparation. Thus the B800(Qy)-to-B850(Qy)EET time constants for the DDM preparation derived from different fitting procedures are the same and,therefore,the value of~1.2 ps is considered to be robust.Here we note that the B800(Qy)-to-B850(Qy)EET time constant for the LDAO preparation of LH2 from Tch.tepidum had previously been reported to be 0.7-0.9 ps[37].How-ever,the detergent condition for LH2 preparation in Ref.[37]differs significantly from the present case.Nonetheless,the considerable difference in the time constants of B800(Qy)-to-B850(Qy)EET between the DDM and the LDAO preparations sug-gests some change in the mutual orientation of B800 and B850.Despite the relatively slow B800(Qy)-to-B850(Qy)EET,the EET efficiency of either of the LH2 preparations is close to unity because of the~1 ns Qy-state lifetime of BChl in LH2[38].These results imply that the light-harvesting functionality of LH2 is rather robust against its structural variation.

    2.5 Ultrafast band shift of Car in response to the BChl excitation

    First,we consider the ultrafast Car band shift for the DDM preparation(Fig.7(a,b)):(i)B850 excitations(Fig.7(a)).Car band shift is seen as weak derivative type signal residing on the broad background of excited state absorption of BChl.A spectral bump(marked with asterisk)appears in the 0.5 ps transient to the red side of the 0-0 vibronic band of the ground state absorption.In the 10.0 ps transient this bump decays out and another weak one remains at the shorter wavelength side.(ii)B800 excitation(Fig.7(b)).The transient at 0.5 ps is characterized by the asterisked bump accompanied by another one to its shorter wavelength side.The transient at 10.0 ps closely resembles the transient of B850 excitation at the same delay time.This is understandable since at 10.0 ps the B800 excitation is gone and only the B850 excitation remains.Here,Car can be regarded as a spectator of the ultrafast BChl dynamics,e.g.,B800(Qy)-to-B850 (Qy)EET and relaxation among the manifold of B850 excitonic states.

    The dynamics of Car band shift observed for the LDAO preparation(Fig.7(c,d))is similar to those for the DDM preparation(Fig.7(a,b))except that the asterisked bump observed for the DDM preparation is missing.This difference originates most likely from the subtle structural alteration in the LH2 assembly as induced by different detergents.Specifically,with reference to the 0-0 vibronic absorption band at 530 nm,the~10 nm red shift of the asterisked bump observed for the DDM preparation may arise from the Car composition 3 with NC=C=13,which preferentially senses the B850 excitation because of somehow favorable Car-BChl orientation.This speculation draws support from the difference between DDM and LDAO preparations in their B850 excitonic coupling strengths(Section 2.1).Here,it is worthy of noting that,besides other possible physiological roles,the photoprotection function for longer chain Cars,such as anhydrorhodovibrin and spirilloxanthin,is considered to be more important than light harvesting[42].Therefore,it is also physiologically reasonable to assume that spirilloxanthin is closer to BChls compared to other Car compositions.

    3 Conclusions

    We have examined,by the use of femtosecond time-resolved absorption spectroscopy,the detailed excitation dynamics of the isolated LH2 complex of Tch.tepidum prepared with the surfactants DDM or LDAO having different ionic properties.The spectral dynamics and the population kinetics of these LH2 preparations reveal efficient S2-state mediated Car-to-Car and Car-to-BChl singlet EET in a time scale of~100 fs,as well as the Qy-state mediated B800-to-B850 singlet EET for the DDM preparation in a time constant of~1.2 ps.These ultrafast EET processes suggest that the Cars with NC=C=11 and 12 coexist in a LH2 complex,and that the B800-B850 mutual orientation in the LH2 of Tch.tepidum differs considerably from those in the LH2s from the extensively investigated mesophilic species,e.g., Rps.acidophila and Rs.molischianum,etc.Anhydrorhodovibrin (NC=C=12)as a minor Car composition is found to act as an efficient trap of excitation energy,i.e.,itsexcitation,not transferring to BChl,relaxes rapidly to the intermediate statesthat either form triplet excitation or further relax to the ground state.The excitation-trap mechanism of anhydrorhodovibrin is considered to be important for the photoprotection function of Tch.tepidum.Furthermore,based on the ultrafast Car band shift in response to selective BChl excitation, we suggest that(OH-)spirilloxanthin locates in closer proximity to BChl compared to other Car compositions.Our results may facilitate to understand the light-harvesting and photoprotection mechanisms of Tch.tepidum as a thermophilic purple bacterium living under harsh natural conditions.

    1 McDermott,G.;Prince,S.M.;Freer,A.A.;Hawthornthwaite-Lawless,A.M.;Papiz,M.Z.;Cogdell,R.J.;Isaacs,N.W.Nature, 1995,374:517

    2 Papiz,M.Z.;Prince,S.M.;Howard,T.;Cogdell,R.J.;Isaacs,N. W.J.Mol.Biol.,2003,326:1523

    3 Koepke,J.;Hu,X.;Muenke,C.;Schulten,K.;Michel,H.Structure, 1996,4:581

    4 Sturgis,J.N.;Tucker,J.D.;Olsen,J.D.;Hunter,C.N.;Niederman, R.A.Biochemistry,2009,48:3679

    5 Hu,X.;Damjanovic,A.;Ritz,T.;Schulten,K.Proc.Natl.Acad. Sci.U.S.A.,1998,95:5935

    6 Sundstr?m,V.;Pullerits,T.;van Grondelle,R.J.Phys.Chem.B, 1999,103:2327

    7 Cogdell,R.J.;Gardiner,A.T.;Roszak,A.W.;Law,C.J.;Southall, J.;Isaacs,N.W.Photosynth.Res.,2004,81:207

    8 Polívka,T.;Sundstr?m,V.Chem.Rev.,2004,104:2021

    9 Ritz,T.;Damjanovic,A.;Schulten,K.;Zhang,J.P.;Koyama,Y. Photosynth.Res.,2000,66:125

    10 Hartigan,N.;Tharia,H.A.;Sweeney,F.;Lawless,A.M.;Papiz,M. Z.Biophys.J.,2002,82:963

    11 Bahatyrova,S.;Frese,R.N.;Siebert,C.A.;Olsen,J.D.;van der Werf,K.O.;van Grondelle,R.;Niederman,R.A.;Bullough,P.A.; Otto,C.;Hunter,C.N.Nature,2004,430:1058

    12 Scheuring,S.;Lévy,D.;Rigaud,J.L.Biochim.Biophys.Acta, 2005,1712:109

    13 Madigan,M.T.Science,1984,225:313

    14 Kimura,Y.;Hirano,Y.;Yu,L.J.;Suzuki,H.;Kobayashi,M.; Wang,Z.Y.J.Biol.Chem.,2008,283:13867

    15 Ma,F.;Kimura,Y.,Zhao,X.H.;Wu,Y.S.;Wang,P.;Fu,L.M.; Wang,Z.Y.;Zhang,J.P.Biophys.J.,2008,95:3349

    16 Ma,F.;Kimura,Y.;Yu,L.J.;Wang,P.;Ai,X.C.;Wang,Z.Y.; Zhang,J.P.FEBS J.,2009,276:1739

    17 Sekine,F.;Horiguchi,K.;Kashino,Y.;Yu,L.J.;Wang,Z.Y.Gene sequences and characterization of light-harvesting complex 2 from Thermochromatium tepidum.(In preparation.For more information,please contact Prof.Wang,Z.Y.via wang@mx. ibaraki.ac.jp)

    18 Suzuki,H.;Hirano,Y.;Kimura,Y.;Takaichi,S.;Kobayashi,M.; Miki,K.;Wang,Z.Y.Biochim.Biophys.Acta,2007,1767:1057

    19 Han,R.M.;Wu,Y.S.;Feng,J.;Ai,X.C.;Zhang,J.P.;Skibsted, L.H.Photochem.Photobiol.,2004,80:326

    20 Wang,Y.L.;Hu,X.C.J.Am.Chem.Soc.,2002,124:8445

    21 Furuichi,K.;Sashima,T.;Koyama,Y.Chem.Phys.Lett.,2002, 356:547

    22 Tavan,P.;Schulten,K.Phys.Rev.B,1987,36:4337

    23 Rondonuwu,F.S.;Yokoyama,K.;Fujii,R.;Koyama,Y.;Cogdell, R.J.;Watanabe,Y.Chem.Phys.Lett.,2004,390:314

    24 Frank,H.A.;Cogdell,R.J.The photochemistry and function of carotenoids in photosynthesis//Young,A.,Britton,G.Carotenoids in photosynthesis.London:Chapman&Hall,1993:252-326

    25 He,Z.;Sundstr?m,V.;Pullerits,T.J.Phys.Chem.B,2002,106: 11606

    26 Linnanto,J.;Korppi-Tommola,J.E.I.;Helenius,V.M.J.Phys. Chem.B,1999,103:8739

    27 Zerlauskiene,O.;Trinkunas,G.;Gall,A.;Robert,B.;Urboniene, V.;Valkunas,L.J.Phys.Chem.B,2008,112:15883

    28 Akahane,J.;Rondonuwu,F.S.;Fiedor,L.;Watanabe Y.;Koyama Y.Chem.Phys.Lett.,2004,393:184

    29 Zhang,J.P.;Inaba,T.;Watanabe,Y.;Koyama,Y.Chem.Phys. Lett.,2001,340:484

    30 Dexter,D.L.J.Chem.Phys.,1953,21:836

    31 Gradinaru,C.C.;Kennis,J.T.M.;Papagiannakis,E.;van Stokkum,I.H.M.;Cogdell,R.J.;Fleming,G.R.;Niederman,R. A.;van Grondelle,R.Proc.Natl.Acad.Sci.U.S.A.,2001,98: 2364

    32 Zhao,X.H.;Liang,J.;Ma,F.;Su,W.J.;Wang,P.;Fu,L.M.;Ai, X.C.;Zhang,J.P.Chem.J.Chin.Univ.,2008,29:149 [趙曉輝,梁 俊,馬 菲,蘇文杰,王 鵬,付立民,艾希成,張建平.高等學(xué)?;瘜W(xué)學(xué)報,2008,29:149]

    33 Zhang,J.P.;Fujii,R.;Qian,P.;Inaba,T.;Mizoguchi,T.;Koyama, Y.;Onaka,K.;Watanabe Y.J.Phys.Chem.B,2000,104:3683

    34 Fujii,R.;Inaba,T.;Watanabe,Y.;Koyama,Y.;Zhang,J.P.Chem. Phys.Lett.,2003,369:165

    35 Feng,J.;Wang,Q.;Wu,Y.S.;Ai,X.C.;Zhang,X.J.;Huang,Y. G.;Zhang,X.K.;Zhang J.P.Photosynth.Res.,2004,82:83

    36 Pullerits,T.;Chachisvilis,M.;Sundstr?m,V.J.Phys.Chem., 1996,100:10787

    37 Kennis,J.T.M.;Streltsov,A.M.;Vulto,S.I.E.;Aartsma,T.J.; Nozawa,T.;Amesz,J.J.Phys.Chem.B,1997,101:7827

    38 Chen,X.H.;Zhang,L.;Weng,Y.X.;Du,L.C.;Ye,M.P.;Yang., G.Z.;Fujii,R.;Rondonuwu,F.S.;Koyama,Y.;Wu,Y.S.;Zhang, J.P.Biophys.J.,2005,88:4262

    39 Herek,J.L.;Polívka,T.;Pullerits,T.;Fowler,G.J.S.;Hunter,C. N.;Sundstr?m,V.Biochemistry,1998,37:7057

    40 Herek,J.L.;Wendling,M.;He,Z.;Polívka,T.;Garcia-Asua,G.; Cogdell,R.J.;Hunter,C.N.;van Grondelle,R.;Sundstr?m,V.; Pullerits,T.J.Phys.Chem.B,2004,108:10398

    41 Zhang,J.P.;Nagae,H.;Qian,P.;Limantara,L.;Fujii,R.; Watanabe,Y.;Koyama,Y.J.Phys.Chem.B,2001,105:7312

    42 Qian,P.;Saiki,K.;Mizoguchi,T.;Hara,K.;Sashima,T.;Fujii,R.; Koyama,Y.Photochem.Photobiol.,2001,74:444

    猜你喜歡
    張建平吉林大學(xué)
    吉林大學(xué)學(xué)報(地球科學(xué)版)
    古詩集句(草書)
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    《吉林大學(xué)學(xué)報(理學(xué)版)》征稿簡則
    《吉林大學(xué)學(xué)報( 理學(xué)版) 》征稿簡則
    吉林大學(xué)等二醫(yī)院王金成教授簡介
    買一片海愛你夠不夠,95后小情侶的勵志浪漫
    ??? ???? ?? ‘-? ?’?‘- ???’? ?? ??*
    書記愛“折騰”
    慧眼識寶 筍殼織出財富夢
    成人综合一区亚洲| 国产黄频视频在线观看| 我的女老师完整版在线观看| 久久 成人 亚洲| 一二三四在线观看免费中文在 | 熟女av电影| 在线看a的网站| 久久精品久久久久久噜噜老黄| 精品第一国产精品| 亚洲av免费高清在线观看| 狠狠精品人妻久久久久久综合| 在线观看免费视频网站a站| 精品国产露脸久久av麻豆| 国产欧美日韩综合在线一区二区| 在线观看免费高清a一片| 另类精品久久| 亚洲国产精品999| 国产女主播在线喷水免费视频网站| 亚洲伊人久久精品综合| 一区二区三区四区激情视频| 中文字幕亚洲精品专区| videosex国产| 免费在线观看黄色视频的| 久久人人爽av亚洲精品天堂| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 国产极品天堂在线| 亚洲国产精品一区三区| 成人二区视频| 90打野战视频偷拍视频| 七月丁香在线播放| 精品久久久精品久久久| 美女中出高潮动态图| 天堂中文最新版在线下载| 一级毛片 在线播放| av卡一久久| 女人被躁到高潮嗷嗷叫费观| 国产精品国产av在线观看| 制服丝袜香蕉在线| 国产精品三级大全| 熟女人妻精品中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美精品一区二区大全| 久久久精品94久久精品| 在线观看www视频免费| 热99久久久久精品小说推荐| av在线观看视频网站免费| 91久久精品国产一区二区三区| av女优亚洲男人天堂| av在线老鸭窝| av.在线天堂| 成人国产av品久久久| xxx大片免费视频| 国语对白做爰xxxⅹ性视频网站| 日韩制服丝袜自拍偷拍| 在线天堂最新版资源| 日韩制服骚丝袜av| 亚洲高清免费不卡视频| 亚洲第一av免费看| 伊人亚洲综合成人网| 久久久国产一区二区| 欧美国产精品va在线观看不卡| 久久久国产欧美日韩av| 人成视频在线观看免费观看| 国产精品一区二区在线不卡| 欧美亚洲日本最大视频资源| 国产成人精品在线电影| 亚洲美女视频黄频| 欧美 亚洲 国产 日韩一| 国产又爽黄色视频| 满18在线观看网站| 成人影院久久| 如何舔出高潮| 国产日韩一区二区三区精品不卡| 妹子高潮喷水视频| 人人妻人人澡人人爽人人夜夜| 亚洲av成人精品一二三区| 精品卡一卡二卡四卡免费| 黑人巨大精品欧美一区二区蜜桃 | 女性被躁到高潮视频| 国产xxxxx性猛交| 亚洲国产精品一区二区三区在线| 久久ye,这里只有精品| 51国产日韩欧美| 少妇的逼水好多| 日韩一本色道免费dvd| 色哟哟·www| 黄色视频在线播放观看不卡| 欧美激情 高清一区二区三区| 欧美精品一区二区免费开放| av卡一久久| 精品亚洲成国产av| 久久免费观看电影| 午夜免费鲁丝| 99久久人妻综合| 亚洲成人av在线免费| 亚洲综合色惰| 精品一区二区三区视频在线| 国产成人一区二区在线| 国产国语露脸激情在线看| 丝袜美足系列| 久久久a久久爽久久v久久| av.在线天堂| 九色成人免费人妻av| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 中文欧美无线码| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| av有码第一页| 自拍欧美九色日韩亚洲蝌蚪91| 免费日韩欧美在线观看| 日韩在线高清观看一区二区三区| 久久精品国产自在天天线| 99九九在线精品视频| 乱码一卡2卡4卡精品| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码 | 欧美激情极品国产一区二区三区 | 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看 | 男女边吃奶边做爰视频| 超碰97精品在线观看| 亚洲精品美女久久av网站| 久久这里只有精品19| 欧美日韩国产mv在线观看视频| 国产成人精品一,二区| 免费观看在线日韩| 色哟哟·www| 在线观看www视频免费| 亚洲中文av在线| 色吧在线观看| 激情视频va一区二区三区| 国产探花极品一区二区| 99热网站在线观看| 女性被躁到高潮视频| kizo精华| 国产一区二区在线观看av| 好男人视频免费观看在线| 少妇精品久久久久久久| 中文天堂在线官网| 黄片播放在线免费| 国产乱人偷精品视频| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| 免费av不卡在线播放| 99热网站在线观看| 在线观看www视频免费| 国产成人精品在线电影| 久久久久人妻精品一区果冻| 丁香六月天网| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 久久久国产欧美日韩av| 午夜av观看不卡| 一级a做视频免费观看| 久久久精品区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲人与动物交配视频| 成人亚洲欧美一区二区av| 国产精品秋霞免费鲁丝片| 欧美人与性动交α欧美软件 | 久久久久久久精品精品| 飞空精品影院首页| 日韩电影二区| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 一区二区三区四区激情视频| 性色av一级| 97超碰精品成人国产| 母亲3免费完整高清在线观看 | 捣出白浆h1v1| 免费高清在线观看日韩| 欧美精品一区二区免费开放| 久久午夜综合久久蜜桃| 最近2019中文字幕mv第一页| 国产又爽黄色视频| 肉色欧美久久久久久久蜜桃| 亚洲综合色惰| 大片免费播放器 马上看| 纯流量卡能插随身wifi吗| 高清视频免费观看一区二区| 久久免费观看电影| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 国产高清三级在线| 国产黄色免费在线视频| 午夜91福利影院| 亚洲丝袜综合中文字幕| 成人国产麻豆网| 五月天丁香电影| 久久av网站| 视频区图区小说| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 日韩中文字幕视频在线看片| 丝袜在线中文字幕| 成人毛片a级毛片在线播放| 校园人妻丝袜中文字幕| 在线观看免费视频网站a站| 欧美bdsm另类| 黄色视频在线播放观看不卡| 插逼视频在线观看| 天美传媒精品一区二区| 精品一品国产午夜福利视频| 日韩精品有码人妻一区| 国产精品国产三级国产专区5o| 色网站视频免费| 大香蕉久久成人网| 亚洲欧美清纯卡通| 日韩熟女老妇一区二区性免费视频| 午夜久久久在线观看| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 99久久精品国产国产毛片| 欧美老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 在线观看www视频免费| 狠狠婷婷综合久久久久久88av| 成人影院久久| 国产免费又黄又爽又色| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 国产男女超爽视频在线观看| 久久99热这里只频精品6学生| 国产精品麻豆人妻色哟哟久久| av在线观看视频网站免费| 美国免费a级毛片| 宅男免费午夜| 一级片'在线观看视频| 丝袜在线中文字幕| 交换朋友夫妻互换小说| 亚洲国产最新在线播放| 国产探花极品一区二区| 中国国产av一级| 国产高清三级在线| 精品一区二区三区四区五区乱码 | 久久99一区二区三区| 天美传媒精品一区二区| 精品视频人人做人人爽| 一本色道久久久久久精品综合| 天堂俺去俺来也www色官网| 国产熟女欧美一区二区| 啦啦啦视频在线资源免费观看| 精品人妻在线不人妻| 又大又黄又爽视频免费| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 亚洲 欧美一区二区三区| 精品视频人人做人人爽| 精品久久久久久电影网| 亚洲精品456在线播放app| 男的添女的下面高潮视频| 9191精品国产免费久久| 精品酒店卫生间| √禁漫天堂资源中文www| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 国内精品宾馆在线| 日韩熟女老妇一区二区性免费视频| 中文字幕最新亚洲高清| 精品人妻在线不人妻| 一级毛片 在线播放| 黄色 视频免费看| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 国产色婷婷99| 成人国语在线视频| 精品人妻一区二区三区麻豆| 欧美人与性动交α欧美精品济南到 | 搡女人真爽免费视频火全软件| 最近的中文字幕免费完整| 色网站视频免费| 久久久久久久精品精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级毛片电影观看| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 成人毛片a级毛片在线播放| 一区二区三区四区激情视频| 99国产精品免费福利视频| 高清av免费在线| 韩国精品一区二区三区 | 精品亚洲成a人片在线观看| 中文欧美无线码| 欧美精品亚洲一区二区| 亚洲av欧美aⅴ国产| 国产在视频线精品| 99国产综合亚洲精品| 日本av手机在线免费观看| 午夜福利乱码中文字幕| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 婷婷色麻豆天堂久久| 大香蕉97超碰在线| 免费观看在线日韩| 中文字幕精品免费在线观看视频 | www日本在线高清视频| 成人免费观看视频高清| 久久国产亚洲av麻豆专区| 国产精品不卡视频一区二区| 国产男女内射视频| 国产精品久久久av美女十八| 爱豆传媒免费全集在线观看| 乱码一卡2卡4卡精品| 26uuu在线亚洲综合色| 少妇 在线观看| 男女下面插进去视频免费观看 | 精品人妻偷拍中文字幕| 成年人午夜在线观看视频| 波野结衣二区三区在线| 久久午夜福利片| 国产欧美亚洲国产| 日日爽夜夜爽网站| 看免费成人av毛片| xxxhd国产人妻xxx| 在线精品无人区一区二区三| 青春草亚洲视频在线观看| 亚洲三级黄色毛片| 777米奇影视久久| 日日啪夜夜爽| 极品人妻少妇av视频| 国产成人欧美| 看非洲黑人一级黄片| 人妻系列 视频| 日韩一本色道免费dvd| 久久久久网色| 国产免费一级a男人的天堂| 久久国内精品自在自线图片| 亚洲欧美一区二区三区黑人 | 天天影视国产精品| 少妇的丰满在线观看| 国产在线一区二区三区精| 久久久久精品久久久久真实原创| 天天躁夜夜躁狠狠躁躁| 99热国产这里只有精品6| 妹子高潮喷水视频| 免费观看a级毛片全部| 三级国产精品片| 日韩人妻精品一区2区三区| 美女国产高潮福利片在线看| 男女下面插进去视频免费观看 | 亚洲美女黄色视频免费看| 97精品久久久久久久久久精品| av网站免费在线观看视频| 国产精品熟女久久久久浪| 中文字幕另类日韩欧美亚洲嫩草| 国内精品宾馆在线| 边亲边吃奶的免费视频| 曰老女人黄片| 母亲3免费完整高清在线观看 | 国产精品蜜桃在线观看| 国产熟女午夜一区二区三区| 精品99又大又爽又粗少妇毛片| 制服诱惑二区| 中文字幕制服av| 亚洲色图 男人天堂 中文字幕 | av网站免费在线观看视频| 亚洲精品日本国产第一区| 天堂中文最新版在线下载| 最近手机中文字幕大全| av.在线天堂| 中文字幕精品免费在线观看视频 | 三级国产精品片| 国产极品天堂在线| 欧美3d第一页| 久久精品国产自在天天线| 女人被躁到高潮嗷嗷叫费观| 搡女人真爽免费视频火全软件| 内地一区二区视频在线| 久久这里只有精品19| 国产深夜福利视频在线观看| 欧美最新免费一区二区三区| 一区二区三区乱码不卡18| 国产av精品麻豆| 国产精品久久久久久av不卡| 老司机影院毛片| 午夜福利视频精品| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 日本免费在线观看一区| 亚洲国产精品成人久久小说| 伊人亚洲综合成人网| 最近2019中文字幕mv第一页| 亚洲精品,欧美精品| 人妻系列 视频| 两性夫妻黄色片 | 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 久久免费观看电影| 欧美xxxx性猛交bbbb| 亚洲av国产av综合av卡| 韩国高清视频一区二区三区| 欧美bdsm另类| 精品亚洲成国产av| 国产精品免费大片| 中国美白少妇内射xxxbb| 国产成人av激情在线播放| 捣出白浆h1v1| 18禁在线无遮挡免费观看视频| 99国产综合亚洲精品| 国产亚洲精品久久久com| 国产福利在线免费观看视频| 秋霞在线观看毛片| 国产一区二区三区av在线| 18禁动态无遮挡网站| 日韩伦理黄色片| 亚洲美女搞黄在线观看| 99久久中文字幕三级久久日本| 久久精品国产a三级三级三级| 我的女老师完整版在线观看| 国产淫语在线视频| 男女国产视频网站| 免费看光身美女| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 中文字幕精品免费在线观看视频 | 黄色 视频免费看| 久久精品久久久久久噜噜老黄| 日日啪夜夜爽| 免费久久久久久久精品成人欧美视频 | 纵有疾风起免费观看全集完整版| 狂野欧美激情性bbbbbb| 亚洲精品,欧美精品| 欧美 日韩 精品 国产| 精品一区二区三区四区五区乱码 | 国产一区二区在线观看av| 国产色爽女视频免费观看| 精品午夜福利在线看| 久久精品熟女亚洲av麻豆精品| 91久久精品国产一区二区三区| 亚洲性久久影院| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 精品久久久精品久久久| 22中文网久久字幕| 韩国高清视频一区二区三区| 少妇人妻 视频| 精品亚洲成a人片在线观看| 精品午夜福利在线看| 久久这里有精品视频免费| 9色porny在线观看| 亚洲经典国产精华液单| 亚洲四区av| 伦理电影大哥的女人| 人人澡人人妻人| 在线天堂中文资源库| 亚洲国产最新在线播放| 亚洲av成人精品一二三区| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 国产成人精品久久久久久| 亚洲国产色片| 国产黄频视频在线观看| 欧美成人午夜免费资源| 国产成人91sexporn| 在线观看一区二区三区激情| 精品久久久久久电影网| 久久久久久人妻| 一区二区三区精品91| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说| 美女脱内裤让男人舔精品视频| 精品人妻偷拍中文字幕| 国产在线免费精品| 久久精品久久精品一区二区三区| 成年人免费黄色播放视频| av在线播放精品| 九草在线视频观看| 国产成人a∨麻豆精品| 搡老乐熟女国产| 人妻 亚洲 视频| 男女边吃奶边做爰视频| 精品人妻在线不人妻| 国国产精品蜜臀av免费| 欧美变态另类bdsm刘玥| 亚洲内射少妇av| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 美女中出高潮动态图| 男女边吃奶边做爰视频| 国产成人午夜福利电影在线观看| 国产亚洲最大av| 80岁老熟妇乱子伦牲交| av一本久久久久| 精品国产一区二区三区四区第35| 久久久国产一区二区| 久久这里有精品视频免费| 一边亲一边摸免费视频| av在线app专区| 久久精品国产自在天天线| 丝袜在线中文字幕| 国产精品无大码| 国产69精品久久久久777片| 视频在线观看一区二区三区| 99热6这里只有精品| 亚洲精品日韩在线中文字幕| 97精品久久久久久久久久精品| 男女啪啪激烈高潮av片| 日韩 亚洲 欧美在线| 日韩av不卡免费在线播放| 日韩 亚洲 欧美在线| 日韩av在线免费看完整版不卡| 欧美xxxx性猛交bbbb| 亚洲激情五月婷婷啪啪| 少妇 在线观看| 日本午夜av视频| 一个人免费看片子| 青青草视频在线视频观看| 插逼视频在线观看| 天堂俺去俺来也www色官网| 99热网站在线观看| 欧美老熟妇乱子伦牲交| 一本久久精品| 国产精品国产三级专区第一集| 亚洲精品一区蜜桃| 男女高潮啪啪啪动态图| 夫妻性生交免费视频一级片| 日韩 亚洲 欧美在线| 免费播放大片免费观看视频在线观看| 久久婷婷青草| 91精品国产国语对白视频| 大话2 男鬼变身卡| 国产精品蜜桃在线观看| 日韩av免费高清视频| 亚洲精品美女久久久久99蜜臀 | 久久久国产精品麻豆| 欧美精品亚洲一区二区| 一区二区av电影网| 一区二区日韩欧美中文字幕 | 热99久久久久精品小说推荐| 9191精品国产免费久久| 免费高清在线观看视频在线观看| av在线app专区| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 国产亚洲一区二区精品| 少妇的丰满在线观看| 在线精品无人区一区二区三| 在现免费观看毛片| 国产一区二区三区av在线| 国产色爽女视频免费观看| 免费大片18禁| 国产成人精品久久久久久| 亚洲国产欧美日韩在线播放| 亚洲国产欧美在线一区| 国产在线免费精品| 国产黄色视频一区二区在线观看| 国产欧美日韩综合在线一区二区| 成人午夜精彩视频在线观看| 18禁在线无遮挡免费观看视频| freevideosex欧美| 十八禁高潮呻吟视频| 欧美性感艳星| 亚洲国产精品一区二区三区在线| 在线亚洲精品国产二区图片欧美| 国国产精品蜜臀av免费| 亚洲成人av在线免费| 韩国高清视频一区二区三区| 少妇的丰满在线观看| 国产一区二区三区综合在线观看 | 中文字幕人妻熟女乱码| 人妻 亚洲 视频| 亚洲国产最新在线播放| 日本av免费视频播放| 男女无遮挡免费网站观看| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 精品人妻一区二区三区麻豆| 视频中文字幕在线观看| 中文天堂在线官网| 亚洲国产精品国产精品| 成人18禁高潮啪啪吃奶动态图| 九九在线视频观看精品| 丝袜在线中文字幕| 黑人猛操日本美女一级片| 人体艺术视频欧美日本| 丝袜在线中文字幕| 免费av中文字幕在线| 夫妻性生交免费视频一级片| 欧美丝袜亚洲另类| 日本猛色少妇xxxxx猛交久久| 欧美最新免费一区二区三区| 啦啦啦啦在线视频资源| 国产男女内射视频| 久久久久久久久久人人人人人人| 人妻系列 视频| 亚洲国产欧美在线一区| 成人亚洲精品一区在线观看| 天堂俺去俺来也www色官网| 国产成人精品婷婷| 老司机影院毛片| 亚洲成人一二三区av| 国产精品三级大全| 全区人妻精品视频| 纯流量卡能插随身wifi吗| 成人影院久久| 满18在线观看网站| 久久精品国产鲁丝片午夜精品| 在线观看美女被高潮喷水网站| 男的添女的下面高潮视频| 男女午夜视频在线观看 | 亚洲欧美一区二区三区黑人 | 99精国产麻豆久久婷婷| 美女视频免费永久观看网站| 男女高潮啪啪啪动态图| 日本-黄色视频高清免费观看| 男人舔女人的私密视频| 亚洲情色 制服丝袜| 国产成人精品无人区| 丝瓜视频免费看黄片|