• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    從Mn3O4前驅(qū)體到MnO2納米結(jié)構(gòu)的形貌和結(jié)構(gòu)變化

    2010-11-30 10:56:22王巖敏文衍宣粟海峰
    物理化學(xué)學(xué)報 2010年2期
    關(guān)鍵詞:化工學(xué)院納米線前驅(qū)

    王 凡 王巖敏 文衍宣 粟海峰 李 斌

    (廣西大學(xué)化學(xué)化工學(xué)院,南寧 530004)

    從Mn3O4前驅(qū)體到MnO2納米結(jié)構(gòu)的形貌和結(jié)構(gòu)變化

    王 凡*王巖敏 文衍宣 粟海峰 李 斌

    (廣西大學(xué)化學(xué)化工學(xué)院,南寧 530004)

    錳氧化物是一類重要的且具有廣泛應(yīng)用背景的材料,控制合成不同形貌和組成的錳氧化物納米結(jié)構(gòu)將有助于拓寬其應(yīng)用領(lǐng)域.本文報道了以Mn3O4為前驅(qū)體,通過水熱法控制合成MnO2納米結(jié)構(gòu)的方法.用X射線衍射(XRD)、掃描電鏡(SEM)、透射電鏡(TEM)等手段對產(chǎn)物進(jìn)行表征.在硫酸體系中,當(dāng)反應(yīng)溫度為80和180℃時,所得產(chǎn)物分別為γ-MnO2海膽結(jié)構(gòu)和β-MnO2單晶納米棒.此外,MnOOH納米線可以在稀酸溶液中合成.考察了反應(yīng)溫度、溶液酸度、反應(yīng)時間對產(chǎn)物結(jié)構(gòu)的影響,并提出了基于γ-MnO2為中間產(chǎn)物的反應(yīng)機(jī)理.實(shí)驗(yàn)結(jié)果表明,水熱體系促進(jìn)了產(chǎn)物的各向異性生長并最終形成不同形貌和結(jié)構(gòu)的錳氧化物.

    納米結(jié)構(gòu);水熱生長;錳氧化物;MnO2納米棒;MnOOH納米線

    Micro-and nano-structured inorganic materials with novel morphologies have drawn considerable attention because of their properties and potential applications in nanoscale devices. Recently,research on micro-and nano-structures is expanding rapidly into the assemblies of nano building blocks into ordered complex hierarchical superstructures,which are expected to have novel shape-dependent physicochemical properties.Due to their anisotropic structure,the oriented growth of nano building block,such as nanorods and nanowires,is difficult,and various methods,including capping agent and physical templates,have been employed to accomplish the controlled growth.However, these methods are complex and sometimes require further purification to remove the controlling agent or templates,which may introduce impurities and bring damages to the morphology of product.It has been and remains to be a challenge to find facile chemical methods for the synthesis and morphology control of hierarchical nanostructures under mild conditions.

    Various polymorphic forms of manganese dioxides(MnO2), such as α-,β-,and γ-type,are of considerable interests in technological applications owing to their outstanding structural flexi bility,such as catalysis[1-2],magnetic materials[3],and super-capacitors[4].The performances of manganese dioxides in most of these applications strongly depended on the parameters,such as powder morphology,crystalline structure,and bulk density,and can be enhanced in hierarchical nanostructures with well-controlled composition,dimensions,and morphology.In addition, manganeseoxyhydroxide(MnOOH)wasused asan effective precursor to synthesize intercalation compound and lithium manganese oxide,which are seen as potentially low-cost,environmentally benign positive materials for rechargeable lithium-ion batteries.Thus,the synthesis approaches of manganese dioxide and oxyhydroxide in various morphologies and structures for a very wide variety of applications are of great significance.

    Hydrothermal method has been facilely used to synthesize MnOOH and MnO2nanomaterials because of the simplicity and easily controlling.In this way,chemicals or precursors are important issues for the final composition and phase of the products.Based on the redox reactions of MnO-4and/or Mn2+,MnO2nanowires,nanotubes,and spherically hierarchical nanostruc tures had been hydrothermally prepared[5-10].Recently,the synthesis of MnO2nanostructures using commercial manganese oxide powder,likes MnO2and Mn2O3,as raw materials by facile hydrothermal method in the absence of templates or controlled agent has attracted attentions because it not only avoids complicated pre-treatment processes but also shows clearly the relationships between phases of the target products and the precursors[11-15].Generally,α-MnO2[11],β-MnO2[11],γ-MnO2[12-14],and MnOOH[15]nanorods/nanowires were successfully achieved. However,there is little evidence of morphological control in these syntheses with the shapes of final products being tuned to the precursors,and few studies are concentrated on synthetic route of MnO2hierarchical nanostructures from mineral precursors.Herein we present a simple surfactant free hydrothermal method to the synthesis of manganese oxide nanostructures using Mn3O4powder as raw materials.The structures and morphologies of the manganese oxide nanomaterials can be controlled by adjusting the acidity and temperature in the hydrothermal system.

    1 Experimental

    The raw Mn3O4materials were obtained from Qiulong chemical company,Shanghai.All chemicals were of analytical grade and used without further purification.In a typical synthesis,0.06 g of Mn3O4powder was added to 18 mL deionized water.Then, an appropriate amount of sulfuric acid was added dropwise to the mixture to adjust the pH value.The mixture was transferred to a 23 mL Teflon-lined autoclave and heated in an oven at 80-180℃.After the hydrothermal treatment,the resulting black product was collected and washed with deionized water and ethanol several times until pH is close to neutral.Finally,the products were dried in air at 80℃for characterization.

    The samples were characterized by X-ray powder diffraction (XRD)with a Japan Rigaku D/max-2500 X-ray diffractometer equipped with graphite monochromatized high-intensity Cu Kαradiation(λ=0.154178 nm).The transmission electron microscopy (TEM)images were performed with a JEM-200CX instrument (JEOL Ltd.,Japan)using an accelerating voltage of 160 kV.The scanning electron microscopy(SEM)images were taken on a S-3400N SEM(Hitachi,Japan).The high-resolution transmission electron microscopy(HRTEM)imageswere carried out on a JEM-2010 HRTEM(JEOL Ltd.,Japan)at an acceleration voltage of 300 kV.

    2 Results and discussion

    2.1 XRD patterns of the precursor and the products

    Fig.1 shows the XRD patterns of the commercial Mn3O4powder and the hydrothermal products.The XRD pattern of the Mn3O4powder(Fig.1(a))indicates that the raw material is well crystallized and is composed of hausmannite Mn3O4(JCPDS 80-0382)and MnOOH(JCPDS 74-1632).It can be found that the patterns of products are significantly different from that of the raw material.By hydrothermal treatment of Mn3O4powder in 0.5 mol·L-1H2SO4solution at 80℃ for 1 h,a mixture of γ-MnO2and MnOOH was obtained as shown in Fig.1(b).The calculated lattice constants of γ-MnO2(a=0.634 nm,b=1.017 nm,and c=0.410 nm)are in good agreement with JCPDS 14-0644(γ-MnO2).The intensity of MnOOH phase is gradually declined upon prolonging the reaction time.After 72 h,only the γ-MnO2phase is present(Fig.1(c)).

    When the reaction temperature increases further to 180℃,the γ-MnO2intermediate is observed for the 1 h product(Fig.1(d)). As the reaction time is increased to 6 h,only the tetragonal β-MnO2(JCPDS 24-0735,a=0.4408 nm and c=0.2874 nm)is present(Fig.1(e)).No characteristic peaks for the impurities are observed.The sharp and intense peaks in the XRD pattern indicate good crystallinity of pure β-MnO2.Consequently,the Mn3O4powder was presumably transformed to the pure MnO2products upon prolonging hydrothermal treatment time.

    2.2 Morphologies of the precursor and the products

    The typical Mn3O4precursor and the obtained products were observed by SEM.Fig.2(a)displays a representative overview of the Mn3O4precursor.This raw material has irregular-shaped particles with inhomogeneous size distribution ranging from one to several ten micrometers.After hydrothermal treatment of these irregular particles in H2SO4solution,the shapes of the obtained products are greatly changed to some special nanostructures (Fig.2(b-d)).At 80℃in 0.5 mol·L-1H2SO4solution,the largescale urchin-like γ-MnO2nanostructures with diameters of 1-2 μm were obtained after 72 h(Fig.2(b)).The high magnification SEM image in the inset of Fig.2(b)shows the morphology of an individual urchin-like nanostructure.Large numbers of nanorods were found radiated from the center of the spherical particles and vertically aligned with high density.The uniform nanorods have lengths up to about 200 nm and width around 40 nm.The firm γ-MnO2nanostructures cannot be destroyed after a long time of ultrasonic treatment.In addition,the γ-MnO2nanorods are getting longer by the H+concentration.Shown in Fig.2(c) is the urchin-like nanostructures synthesized in 3 mol·L-1H2SO4solution at 80℃ for 72 h.The lengths of the building nanorods are about 500 nm.With a raised temperature of 180℃, large numbers of β-MnO2nanorods were observed.The asobtained nanorods have uniform diameter around 100 nm with lengths up to 1000 nm(Fig.2(d)).

    The morphology and structure of the as-obtained manganese oxide nanostructures were further characterized by TEM and HRTEM as shown in Fig.3.Fig.3(a)displays the magnified TEM image of the γ-MnO2urchin-like nanostructures,in which the nanorods were grown on the surface with different radial angles. It also can be found that the building nanorods have uniform diameters of 20-40 nm and lengths of 100-300 nm,confirming the SEM observation in Fig.2(b).The HRTEM image of a single building nanorod is shown in Fig.3(b).The lattice fringes have spacing of 0.212 nm,which matches well with separations betweentheneighboringlatticesofthe(300)planesofγ-MnO2.Fig.3 (c)shows a low-magnification TEM image of β-MnO2nanorods obtained at 180℃.The observed dimensions of individual nanorods are in good agreement with the estimated values from the SEM results.Fig.3(d)shows a typical HRTEM image of a single β-MnO2nanorod.The clear lattice image indicates the good crystallinity and single crystalline nature of the β-MnO2nanorods.The interplanar spacings of fringes are 0.310 and 0.287 nm,corresponding to the(110)and(001)planes of tetragonal β-MnO2,respectively.

    2.3 Growth mechanism

    To obtain one-dimensional(1D)nanostructures from mineral precursors,it is important to understand the formation mechanism involved in the hydrothermal process.Our results indicate that both reaction temperature and acidity of solution influence the transformation of Mn3O4critically.Therefore,the comprehension of such aspects may lead to the preparation of novel 1D nanostructures.

    Numerous studies on the preparation of MnO2nanorods have been reported[2-3,5,7].However,the formation mechanism under hydrothermal conditions remains unclear since the results are somehow conflicting.Most works suggested that the formation of nanorods is assisted by the controlled agent[10,16],in which the rod-shaped micelles guide the product morphology.In the present work,we found that γ-MnO2acted as the important intermediate at the very beginning of the hydrothermal process,and the generation of MnO2nanostructures was tuned by the reaction temperature.

    In acidic solution(pH<1),Mn3O4tends toward the following dismutation reaction:

    The dismutation reaction is fast and most MnO6units,the bulding block for the construction of γ-MnO2and β-MnO2,will form and then adsorb on the surface of Mn3O4particles.These MnO6units will assembly together,provide the active sites and act as a director for assisting the formation of the nanorods. Through a condensation reaction,these MnO6aggregations may orient and grow in size by the continuous supply of MnO6units and form nanorods eventually on the edge of the particles.The γ-MnO2urchin-like nanostructures are stable because of the low synthesis temperature,and the length of nanorods increases with increasing the H+concentration(Fig.2(b,c)).

    According to the XRD results,the transformation of Mn3O4at 180℃ comprises two distinct processes:the formation of γ-MnO2and then change to β-MnO2nanorods.As shown in Fig.1 (b-d),the(120)peaks of γ-MnO2are broad,which reveals that the tunnel structure of these γ-MnO2aggregations is poor at the beginning of the hydrothermal process.Fig.4 shows the structures of γ-MnO2and β-MnO2.β-MnO2is constructed of single chains of edge-sharing MnO6octahedra,forming a framework structure with 1×1 tunnel arrays[17].On the other hand,γ-MnO2is considered as a disordered intergrowth of the β-MnO2and ramsdellite structures,consisting of a random arrangement of single and double chains of MnO6octahedron[16].This disorder creates a great number of discordance on the structure and as a result,the metastable γ-MnO2will transform into β-MnO2with 1×1 tunnel structure by hydrothermal treatment at high temperature[17].Thus, the phase transformation of γ-MnO2to β-MnO2should include a rapid collapse of the 1×2 tunnel structure and then a short-distance self-assembly of MnO6octahedra.The symmetrical 1×1 tunnel structure acts as directing factor and orients the preferential growth direction of nanorods.With the developing of the dismutation reaction,the Mn3O4precursor powders become incompact,and ultimately change to γ-MnO2in acidic solution.At high temperature(180℃),the fresh γ-MnO2particles may redissolve into the acidic solution,and transform into β-MnO2nanorods owing to the topological convenience.

    In these works,the hydrothermal product at 80℃is γ-MnO2, while the product at 180℃is β-MnO2.In fact,early synthesis studies of preparation of tunnel structure managanese oxides always suggest that if without hard cations,like K+,Mg2+,and Rb+acting as template,the tendency to form β-MnO2via homogeneous methods in acidic solution is prevailing[18].Fig.5 shows the XRD patterns of hydrothermal products obtained at different temperatures for 2 h.We can clearly see that the transformation of γ-MnO2to β-MnO2is getting fast with the increase of temperature.The γ-MnO2phase can still be found at 100℃(Fig.5b). As the reaction temperature increases further to 120℃,the β-MnO2starts to form (Fig.5c).At 160℃,only the β-MnO2phase ispresent(Fig.5e).Therefore,the role oftemperature isto tune the product types as well as accelerate the hydrothermal reaction[7-8]. In comparison with the hydrothermal synthesis,only irregularshaped particles were obtained at room temperature though the reaction time is prolonged to 6 d.

    2.4 Formation of MnOOH nanostructures

    In addition,we found that MnOOH phase products could likewise be selectively obtained in hydrothermal system in different H2SO4solutions.Fig.6(a)is the XRD patterns of the hydrothermal products in 5×10-4mol·L-1H2SO4solution(pH 3)for different time.It is clearly shown that the peaks of MnOOH become more sharp and intense with increasing reaction time,and consequently MnOOH becomes the main phase after 24 h at 180℃. The as-prepared product generally comprises mixed morphology of Mn3O4particles and MnOOH nanowires at 80℃after 24 h (Fig.6(b)).MnOOH nanowires have a diameter range of 100-300 nm and length of tens of micrometers.Interestingly,a large number of MnOOH multipods are found.A five-armed multipod is shown in Fig.6(c).We can clearly identify that the junction of the MnOOH multipod is a whole crystal.Further increase in hydrothermal temperature to 180℃formed mixtures of microrods and nanorods as shown in Fig.6(d).The microrods have diameters of 500 nm and lengths of 2-3 μm,while the nanorods have uniform diameters of 50 nm and lengths of 400 nm.The numerous multipods can still be found in these two microstructures.

    It should be pointed out that the formation of MnOOH nanostructures is actually the outward embodiment of the nature of the initial crystal structure.The structures of MnOOH and β-MnO2are much alike in the arrangement manner of MnO6octahedra[19].In MnOOH,the MnO6octahedron is elongated with different Mn—O bonds due to an interaction of the Jahn-Teller effect(Mn4+is replaced by Mn3+).Thus,MnOOH is a distorted derivative of β-MnO2and can be viewed as equivalent by replacing O with OH in the crystal lattice.MnOOH nanowires have been obtained via redox reactions in neutral and dilute acid solution[19-22].Moreover,the effect of dilute acidity may lead to the slow dissolution of manganese oxide in these works.Therefore, the product with wide diameter distribution could be obtained by the slow yet stable crystal growth process.

    The multipods can be looked upon as an ordered three-dimensional(3D)architectures,and may produce more active sites or exhibit more interesting electrical,optical,and magnetic properties than the two-dimensional(2D)or 1D architectures[23-24].The preparations of MnOOH multipods were often needed capping agent,like polyvinyl pyrrolidone(PVP)[23]and polyethylene glycol(PEG)[24].The role of the capping agents during the reaction is leading to competitive growth between the crystal planes due to the different adsorption of capping agents on the various crystal surfaces.In the present work,since no surfactant and capping agent were used,the surface defects might serve as active sites for the branch nanorods growth,which grow out from the main branch nanorod,bringing on hierarchical nanostructures[25].Hence, the formation of MnOOH multipods also reveals that the anisotropic crystal growth plays important roles when using mineral precursors to synthesize nanostructures in hydrothermal process.

    3 Conclusions

    In conclusion,a facile hydrothermal method for synthesizing MnO2nanostructures from Mn3O4solid precursors,which involved no catalysts or templates,has been developed.In the presence of H2SO4,different MnO2nanostructures can be selectively produced by adjusting the reaction temperature.The spherically urchin-like γ-MnO2nanostructures and β-MnO2nanorods are formed at 80 and 180℃,respectively.The possible growth mechanism of the MnO2nanostructures was proposed based on experimental results,and the γ-MnO2intermediate might play an important role in the formation of nanorods.In addition,MnOOH nanowires and multipods are formed at dilute acidic solution.Because of the flexible procedure of this method,the scale-up synthesis of MnO2with different phases and morphologies from single raw materials would be possible.

    1 Son,Y.C.;Makwana,V.D.;Howell,A.R.;Suib,S.L.Angew. Chem.Int.Edit.,2001,40:4280

    2 Zhang,W.X.;Yang,Z.H.;Wang,X.;Zhang,Y.C.;Wen,X.G.; Yang,S.H.Catal.Commun.,2006,7:408

    3 Wang,G.L.;Tang,B.;Zhuo,L.H.;Ge,J.C.;Xue,M.Eur.J. Inorg.Chem.,2006:2313

    4 Subramanian,V.;Zhu,H.W.;Vajtai,R.;Ajayan,P.M.;Wei,B.Q. J.Phys.Chem.B,2005,109:20207

    5 Wang,X.;Li,Y.D.Chem.Eur.J.,2003,9:300

    6 Wu,C.Z.;Xie,Y.;Wang,D.;Yang,J.;Li,T.W.J.Phys.Chem.B, 2003,107:13583

    7 Li,W.N.;Yuan,J.K.;Gomez-Mower,S.;Sithambaram,S.;Suib, S.L.J.Phys.Chem.B,2006,110:3066

    8 Song,X.C.;Zheng,Y.F.;Lin,S.;Wang,Y.Acta Phys.-Chim. Sin.,2007,23:258 [宋旭春,鄭遺凡,林 深,王 蕓.物理化學(xué)學(xué)報,2007,23:258]

    9 Ni,J.P.;Lu,W.C.;Zhang,L.M.;Yue,B.H.;Shang,X.F.;Lv,Y. J.Phys.Chem.C,2009,113:54

    10 Song,X.C.;Zhao,Y.;Zheng,Y.F.Cryst.Growth Des.,2007,7: 159

    11 Wei,M.D.;Konishi,Y.;Zhou,H.S.;Sugihara,H.;Arakawa,H. Nanotechnology,2005,16:245

    12 Yuan,Z.Y.;Zhang,Z.L.;Du,G.H.;Ren,T.Z.;Su,B.L.Chem. Phys.Lett.,2003,378:349

    13 Zhang,G.Q.;Bao,S.J.;Zhang,X.G.;Li,H.L.J.Solid State Electrochem.,2005,9:655

    14 Li,G.C.;Jiang,L.;Pang,H.T.;Peng,H.R.Mater.Lett.,2007, 61:3319

    15 Yuan,Z.Y.;Ren,T.Z.;Du,G.H.;Su,B.L.Appl.Phys.A,2005, 80:743

    16 Xiong,Y.J.;Xie,Y.;Li,Z.Q.;Wu,C.Z.Chem.Eur.J.,2003,9: 1645

    17 Gao,T.;Fjellvag,H.;Norby,P.Nanotechnology,2009,20: 055610

    18 Suib,S.L.J.Mater.Chem.,2008,18:1623

    19 Zhang,Y.G.;Liu,Y.;Guo,F.;Hu,Y.H.;Liu,X.Z.;Qian,Y.T. Solid State Commun.,2005,134:523

    20 Xi,G.C.;Peng,Y.Y.;Zhu,Y.C.;Xu,L.Q.;Zhang,W.Q.;Yu, W.C.;Qian,Y.T.Mater.Res.Bull.,2004,39:1641

    21 Fang,Z.;Tang,K.B.;Gao,L.S.;Wang,D.;Zeng,S.Y.;Liu,Q.C. Mater.Res.Bull.,2007,42:1761

    22 Zhang,Y.C.;Qiao,T.;Hu,X.Y.J.Solid State Chem.,2004,177: 4093

    23 Zheng,D.S.;Yin,Z.L.;Zhang,W.M.;Tan,X.J.;Sun,S.X. Cryst.Growth Des.,2006,6:1733

    24 Mi,Y.H.;Zhang,X.B.;Yang,Z.Q.;Li,Y.;Zhou,S.M.;Zhang, H.;Zhu,W.M.;He,D.L.;Wang,J.L.;Tendeloo,G.V.Mater. Lett.,2007,61:1781

    25 Jia,Y.J.;Xu,J.;Zhou,L.H.;Liu,H.L.;Hu,Y.Mater.Lett.,2008, 62:1336

    August 12,2009;Revised:November 23,2009;Published on Web:December 22,2009.

    Structural and Morphological Transformation of MnO2Nanostructures from Mn3O4Precursor

    WANG Fan*WANG Yan-Min WEN Yan-Xuan SU Hai-Feng LI Bin
    (School of Chemistry and Chemical Engineering,Guangxi University,Nanning 530004,P.R.China)

    Manganese oxides show huge structural flexibility and appear in various crystallographic polymorphs. Hence,morphological and phase control of desired manganese oxide nanostructures could enable their properties to be tuned with a greater versatility,and endow them with potential applications.Herein,we report a simple hydrothermal route for the synthesis of various MnO2nanostructures using Mn3O4powder as raw material.The obtained products were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Results show that in H2SO4solution,urchin-like γ-MnO2nanostructures and single-crystal β-MnO2nanorods are obtained at 80 and 180℃,respectively.In addition,MnOOH nanowires were obtained in a dilute acid solution.The influence of synthetic parameters including temperature,acidity,and reaction time are discussed.The γ-MnO2intermediate might play an important role in the formation of nanorods.The evolution of phases and morphologies in the reaction process suggested the anisotropic crystal growth for the formation of nanostructures under acidic conditions.

    Nanostructure;Hydrothermal growth;Manganese oxide;MnO2nanorod;MnOOH nanowire

    O648;O614

    *Corresponding author.Email:fanwang@gxu.edu.cn;Tel:+86-771-3233718.

    The project was supported by the Natural Science Foundation of Guangxi Province,China(0832010).

    廣西自然科學(xué)基金(桂科青0832010)資助項(xiàng)目

    猜你喜歡
    化工學(xué)院納米線前驅(qū)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    SiBNC陶瓷纖維前驅(qū)體的結(jié)構(gòu)及流變性能
    可溶性前驅(qū)體法制備ZrC粉末的研究進(jìn)展
    《化工學(xué)報》贊助單位
    前驅(qū)體磷酸鐵中磷含量測定的不確定度評定
    丰满的人妻完整版| 又黄又粗又硬又大视频| 一级毛片精品| 国产在线精品亚洲第一网站| 久久青草综合色| 中文字幕高清在线视频| 免费在线观看视频国产中文字幕亚洲| 欧美不卡视频在线免费观看 | 好看av亚洲va欧美ⅴa在| 不卡一级毛片| 日韩欧美三级三区| 桃红色精品国产亚洲av| xxx96com| 亚洲中文字幕一区二区三区有码在线看 | 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 一级a爱片免费观看的视频| 91成年电影在线观看| 给我免费播放毛片高清在线观看| 久久热在线av| 悠悠久久av| 国产成年人精品一区二区| 免费看十八禁软件| 久久国产精品人妻蜜桃| 每晚都被弄得嗷嗷叫到高潮| 在线天堂中文资源库| 在线观看免费日韩欧美大片| 窝窝影院91人妻| 一区二区三区激情视频| 91成人精品电影| 久久精品aⅴ一区二区三区四区| 久久精品影院6| 久久久国产精品麻豆| 亚洲av第一区精品v没综合| 极品教师在线免费播放| 这个男人来自地球电影免费观看| 午夜精品久久久久久毛片777| 日本三级黄在线观看| 亚洲国产日韩欧美精品在线观看 | 久久久久久人人人人人| 亚洲电影在线观看av| 午夜免费成人在线视频| 91麻豆精品激情在线观看国产| 成在线人永久免费视频| 日韩欧美免费精品| 欧美乱妇无乱码| 久久草成人影院| 久久青草综合色| 久久国产精品人妻蜜桃| 国产精品乱码一区二三区的特点| 亚洲一区二区三区色噜噜| 97人妻精品一区二区三区麻豆 | 亚洲色图 男人天堂 中文字幕| 桃色一区二区三区在线观看| 我的亚洲天堂| 久久久久久久久中文| 亚洲av成人一区二区三| 动漫黄色视频在线观看| 亚洲第一av免费看| 日本精品一区二区三区蜜桃| 麻豆av在线久日| 操出白浆在线播放| 在线播放国产精品三级| 亚洲午夜理论影院| 一边摸一边做爽爽视频免费| 大型黄色视频在线免费观看| 少妇被粗大的猛进出69影院| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| 成年免费大片在线观看| 一本精品99久久精品77| 国产精品电影一区二区三区| 韩国av一区二区三区四区| 欧美不卡视频在线免费观看 | 成人午夜高清在线视频 | 亚洲国产高清在线一区二区三 | 亚洲一码二码三码区别大吗| 男人的好看免费观看在线视频 | 美女扒开内裤让男人捅视频| 欧美最黄视频在线播放免费| 亚洲av五月六月丁香网| 神马国产精品三级电影在线观看 | 国产黄色小视频在线观看| 欧美一级毛片孕妇| 白带黄色成豆腐渣| 国产不卡一卡二| 日韩三级视频一区二区三区| 国产精品九九99| 精品久久久久久久毛片微露脸| 色播亚洲综合网| tocl精华| 国产视频内射| 欧美大码av| 久久久久久久久中文| 精品福利观看| 大型黄色视频在线免费观看| 国产激情偷乱视频一区二区| 免费在线观看影片大全网站| 亚洲九九香蕉| 国产亚洲欧美精品永久| 激情在线观看视频在线高清| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 国产成人av激情在线播放| 欧美亚洲日本最大视频资源| 俄罗斯特黄特色一大片| 级片在线观看| 亚洲av成人不卡在线观看播放网| 人成视频在线观看免费观看| 午夜免费鲁丝| 波多野结衣av一区二区av| 日日干狠狠操夜夜爽| 午夜成年电影在线免费观看| 悠悠久久av| 国产一区二区三区在线臀色熟女| 国产成人av教育| 欧美乱码精品一区二区三区| 免费在线观看影片大全网站| 国产一区在线观看成人免费| 国产精品爽爽va在线观看网站 | 在线观看免费视频日本深夜| 男女床上黄色一级片免费看| 欧美日韩福利视频一区二区| 热re99久久国产66热| 婷婷精品国产亚洲av在线| 日本a在线网址| 国产成人啪精品午夜网站| 精品少妇一区二区三区视频日本电影| 99在线人妻在线中文字幕| 女警被强在线播放| 成人精品一区二区免费| 国产熟女xx| 女警被强在线播放| av片东京热男人的天堂| 老司机午夜十八禁免费视频| 国产激情久久老熟女| 久久久久久久久免费视频了| 久久久久免费精品人妻一区二区 | 国产真人三级小视频在线观看| 女性生殖器流出的白浆| 精品午夜福利视频在线观看一区| 人人妻人人看人人澡| 国产视频一区二区在线看| 亚洲全国av大片| 国产精品久久久av美女十八| 男女床上黄色一级片免费看| 亚洲av熟女| x7x7x7水蜜桃| 成人一区二区视频在线观看| 久久国产精品影院| 午夜福利免费观看在线| 色综合欧美亚洲国产小说| 在线观看66精品国产| www.999成人在线观看| 热99re8久久精品国产| 99国产精品一区二区三区| 日韩欧美一区二区三区在线观看| 非洲黑人性xxxx精品又粗又长| 国产成+人综合+亚洲专区| www日本黄色视频网| 91av网站免费观看| 久久久国产成人免费| 热re99久久国产66热| 国产99白浆流出| 欧美黄色片欧美黄色片| 性欧美人与动物交配| 日本成人三级电影网站| 美女高潮到喷水免费观看| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区mp4| 哪里可以看免费的av片| 校园春色视频在线观看| 久久久久久九九精品二区国产 | 97超级碰碰碰精品色视频在线观看| 曰老女人黄片| videosex国产| 国产高清videossex| ponron亚洲| 一夜夜www| 天堂影院成人在线观看| 无遮挡黄片免费观看| 久久久久国内视频| 日韩国内少妇激情av| 亚洲激情在线av| 亚洲人成电影免费在线| 亚洲欧美精品综合一区二区三区| 亚洲性夜色夜夜综合| 天堂影院成人在线观看| 日韩欧美国产一区二区入口| 嫁个100分男人电影在线观看| 亚洲av成人一区二区三| 天堂动漫精品| 女人被狂操c到高潮| 麻豆成人av在线观看| 国产精品九九99| 欧美另类亚洲清纯唯美| 亚洲精品国产区一区二| 免费人成视频x8x8入口观看| 国产激情欧美一区二区| 精品国产美女av久久久久小说| 久99久视频精品免费| 激情在线观看视频在线高清| 欧美性猛交黑人性爽| 人妻久久中文字幕网| 色哟哟哟哟哟哟| 黄频高清免费视频| 性欧美人与动物交配| 免费观看精品视频网站| 日本一区二区免费在线视频| 日日爽夜夜爽网站| 亚洲电影在线观看av| 久久99热这里只有精品18| 日日干狠狠操夜夜爽| 精品无人区乱码1区二区| 日韩大尺度精品在线看网址| 侵犯人妻中文字幕一二三四区| 美女午夜性视频免费| av视频在线观看入口| 熟女少妇亚洲综合色aaa.| 久久久久免费精品人妻一区二区 | av天堂在线播放| 成人亚洲精品一区在线观看| 成人手机av| 男女那种视频在线观看| 久热爱精品视频在线9| 国产精品香港三级国产av潘金莲| 国产精品 国内视频| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美一区二区综合| 夜夜夜夜夜久久久久| 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲| 人人妻人人澡欧美一区二区| 听说在线观看完整版免费高清| 国产区一区二久久| 黑人操中国人逼视频| 人人妻人人澡欧美一区二区| 亚洲九九香蕉| 精品久久蜜臀av无| 国产精品免费视频内射| 国产高清激情床上av| 色综合站精品国产| 热99re8久久精品国产| 日日爽夜夜爽网站| 午夜福利高清视频| 国产精品九九99| 精品午夜福利视频在线观看一区| 白带黄色成豆腐渣| 国产不卡一卡二| 一本久久中文字幕| 可以在线观看毛片的网站| 老司机靠b影院| 19禁男女啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 亚洲欧美精品综合一区二区三区| 国产不卡一卡二| 国产高清有码在线观看视频 | 一边摸一边抽搐一进一小说| www.熟女人妻精品国产| 国产精品国产高清国产av| 天天躁狠狠躁夜夜躁狠狠躁| 91国产中文字幕| 免费观看精品视频网站| 精品久久久久久,| 男女之事视频高清在线观看| 亚洲欧洲精品一区二区精品久久久| ponron亚洲| 视频区欧美日本亚洲| 久久久精品国产亚洲av高清涩受| 精品卡一卡二卡四卡免费| 99国产极品粉嫩在线观看| 欧美黑人巨大hd| 久久久久久久久免费视频了| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 久久久久久亚洲精品国产蜜桃av| 美女国产高潮福利片在线看| 丰满的人妻完整版| 中文字幕人妻熟女乱码| 亚洲av中文字字幕乱码综合 | 日本精品一区二区三区蜜桃| 中文字幕最新亚洲高清| 国产高清激情床上av| 十分钟在线观看高清视频www| 一边摸一边做爽爽视频免费| 亚洲精品久久国产高清桃花| 白带黄色成豆腐渣| cao死你这个sao货| 欧美国产精品va在线观看不卡| 久久香蕉国产精品| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| svipshipincom国产片| 精品人妻1区二区| 国产久久久一区二区三区| 琪琪午夜伦伦电影理论片6080| 国产成人精品久久二区二区免费| 黄片大片在线免费观看| 在线永久观看黄色视频| 亚洲五月色婷婷综合| 亚洲在线自拍视频| tocl精华| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 亚洲无线在线观看| 亚洲欧美日韩无卡精品| 国产一区在线观看成人免费| 啦啦啦 在线观看视频| 村上凉子中文字幕在线| 白带黄色成豆腐渣| 美女 人体艺术 gogo| 久久久水蜜桃国产精品网| 欧美+亚洲+日韩+国产| 亚洲avbb在线观看| 国产一区二区三区在线臀色熟女| 动漫黄色视频在线观看| 精品国产国语对白av| 国产精品久久电影中文字幕| 男人的好看免费观看在线视频 | 久久久久久免费高清国产稀缺| 精品不卡国产一区二区三区| 欧美乱码精品一区二区三区| 美国免费a级毛片| 精品福利观看| av免费在线观看网站| 欧美性长视频在线观看| 精品卡一卡二卡四卡免费| 怎么达到女性高潮| 国产精品永久免费网站| www国产在线视频色| 午夜老司机福利片| 99riav亚洲国产免费| 黄色a级毛片大全视频| 亚洲第一电影网av| 欧美成人免费av一区二区三区| 欧美日韩一级在线毛片| 男人的好看免费观看在线视频 | 90打野战视频偷拍视频| 这个男人来自地球电影免费观看| 亚洲成av人片免费观看| 最近在线观看免费完整版| 午夜精品久久久久久毛片777| 俺也久久电影网| 国产色视频综合| 国产精品电影一区二区三区| 777久久人妻少妇嫩草av网站| 每晚都被弄得嗷嗷叫到高潮| 成人av一区二区三区在线看| 国产99白浆流出| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 国产激情久久老熟女| 国产久久久一区二区三区| 国产成人啪精品午夜网站| 少妇的丰满在线观看| 亚洲一区高清亚洲精品| 日本撒尿小便嘘嘘汇集6| bbb黄色大片| 午夜精品久久久久久毛片777| 亚洲色图 男人天堂 中文字幕| 久久青草综合色| 国产免费男女视频| 美国免费a级毛片| 亚洲自偷自拍图片 自拍| 亚洲自偷自拍图片 自拍| 国产免费男女视频| 亚洲va日本ⅴa欧美va伊人久久| 香蕉久久夜色| 无限看片的www在线观看| 香蕉久久夜色| 欧美精品啪啪一区二区三区| 免费av毛片视频| 国产av一区二区精品久久| 久久婷婷人人爽人人干人人爱| 他把我摸到了高潮在线观看| 国产私拍福利视频在线观看| 久久精品国产清高在天天线| 他把我摸到了高潮在线观看| 国产精品免费一区二区三区在线| 亚洲av美国av| 天堂动漫精品| 19禁男女啪啪无遮挡网站| 午夜福利免费观看在线| 一个人免费在线观看的高清视频| 一个人免费在线观看的高清视频| 欧美性猛交╳xxx乱大交人| 欧美日韩亚洲综合一区二区三区_| 国产精品自产拍在线观看55亚洲| 黄色视频,在线免费观看| 少妇裸体淫交视频免费看高清 | 高潮久久久久久久久久久不卡| 亚洲电影在线观看av| 一二三四社区在线视频社区8| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| av有码第一页| 欧美激情高清一区二区三区| 欧美一级毛片孕妇| 国产亚洲欧美精品永久| 精品午夜福利视频在线观看一区| 免费看十八禁软件| 一夜夜www| 亚洲av电影在线进入| 国产高清有码在线观看视频 | 老司机深夜福利视频在线观看| 不卡av一区二区三区| 欧美国产精品va在线观看不卡| 日本熟妇午夜| 黑人巨大精品欧美一区二区mp4| 嫩草影视91久久| 欧美黑人精品巨大| 亚洲av日韩精品久久久久久密| 亚洲性夜色夜夜综合| 久久久久国内视频| 中文字幕精品亚洲无线码一区 | 校园春色视频在线观看| 久久热在线av| 日日夜夜操网爽| 老熟妇乱子伦视频在线观看| www.自偷自拍.com| av超薄肉色丝袜交足视频| 亚洲第一欧美日韩一区二区三区| 高潮久久久久久久久久久不卡| 曰老女人黄片| 婷婷精品国产亚洲av在线| 午夜免费观看网址| 日本a在线网址| 黄片大片在线免费观看| 婷婷丁香在线五月| 啦啦啦 在线观看视频| 国产伦人伦偷精品视频| 久99久视频精品免费| 级片在线观看| 999久久久国产精品视频| www.www免费av| 特大巨黑吊av在线直播 | 18禁黄网站禁片免费观看直播| 天堂√8在线中文| 最近最新免费中文字幕在线| 亚洲免费av在线视频| 久久青草综合色| 午夜两性在线视频| 亚洲国产看品久久| 露出奶头的视频| 欧美乱妇无乱码| 天堂影院成人在线观看| 超碰成人久久| 男女午夜视频在线观看| 国产av不卡久久| 国产色视频综合| 天堂影院成人在线观看| 日韩精品中文字幕看吧| 日韩成人在线观看一区二区三区| 日韩三级视频一区二区三区| 久久久久国内视频| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 最近在线观看免费完整版| 欧美不卡视频在线免费观看 | 一区福利在线观看| 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 精华霜和精华液先用哪个| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲av高清不卡| 日韩欧美一区二区三区在线观看| 亚洲欧美一区二区三区黑人| 成年女人毛片免费观看观看9| 国产亚洲精品av在线| www.自偷自拍.com| 欧美性猛交黑人性爽| bbb黄色大片| 老司机靠b影院| 听说在线观看完整版免费高清| 免费在线观看黄色视频的| 免费观看精品视频网站| 欧美日韩黄片免| 一二三四社区在线视频社区8| 男人操女人黄网站| 国产成人av激情在线播放| 身体一侧抽搐| 女生性感内裤真人,穿戴方法视频| 法律面前人人平等表现在哪些方面| 国产又爽黄色视频| 国产日本99.免费观看| 国产亚洲av高清不卡| 91av网站免费观看| 久久国产精品人妻蜜桃| 国产av在哪里看| 久久精品91无色码中文字幕| 日日摸夜夜添夜夜添小说| 国产真人三级小视频在线观看| 一本一本综合久久| 国产精品亚洲一级av第二区| 亚洲,欧美精品.| 婷婷亚洲欧美| 国产精品久久久av美女十八| 欧美成人性av电影在线观看| 亚洲欧美精品综合久久99| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 午夜免费激情av| 人妻丰满熟妇av一区二区三区| 国内少妇人妻偷人精品xxx网站 | 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 亚洲片人在线观看| 在线观看免费日韩欧美大片| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区中文字幕在线| 免费高清在线观看日韩| 亚洲中文日韩欧美视频| 久久久久久久久久黄片| 久久久国产成人免费| 亚洲国产日韩欧美精品在线观看 | 国产伦一二天堂av在线观看| 亚洲国产毛片av蜜桃av| 中亚洲国语对白在线视频| 亚洲欧美日韩高清在线视频| 亚洲 国产 在线| 搡老妇女老女人老熟妇| 色尼玛亚洲综合影院| 欧美三级亚洲精品| 久久久久久国产a免费观看| 久久精品国产99精品国产亚洲性色| 亚洲国产精品合色在线| 丰满的人妻完整版| 99在线视频只有这里精品首页| 9191精品国产免费久久| 啦啦啦免费观看视频1| 大香蕉久久成人网| 国产1区2区3区精品| 天天躁狠狠躁夜夜躁狠狠躁| 母亲3免费完整高清在线观看| 淫妇啪啪啪对白视频| 嫩草影视91久久| 国产精品久久久久久人妻精品电影| 黑人欧美特级aaaaaa片| 97碰自拍视频| 国产成人精品久久二区二区91| 精品久久久久久久久久免费视频| 亚洲 国产 在线| 欧美zozozo另类| 人人澡人人妻人| 欧美日本亚洲视频在线播放| 母亲3免费完整高清在线观看| 精品国内亚洲2022精品成人| 丁香欧美五月| 青草久久国产| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 在线观看午夜福利视频| 亚洲av成人一区二区三| 国产精品久久久久久精品电影 | 手机成人av网站| 亚洲精品美女久久av网站| 色综合欧美亚洲国产小说| 欧美日韩黄片免| 成人午夜高清在线视频 | 中文字幕人成人乱码亚洲影| 亚洲成av人片免费观看| 超碰成人久久| 黄色视频不卡| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 欧美成人一区二区免费高清观看 | 亚洲中文av在线| 亚洲国产精品久久男人天堂| 神马国产精品三级电影在线观看 | 国产三级黄色录像| 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲av嫩草精品影院| av电影中文网址| АⅤ资源中文在线天堂| 欧美日韩亚洲国产一区二区在线观看| 亚洲全国av大片| 欧美黑人巨大hd| 在线观看舔阴道视频| 国产欧美日韩精品亚洲av| 亚洲男人的天堂狠狠| 成人国产一区最新在线观看| 一本久久中文字幕| 色老头精品视频在线观看| 免费高清在线观看日韩| 夜夜躁狠狠躁天天躁| 男女下面进入的视频免费午夜 | 亚洲精品国产一区二区精华液| 亚洲精品在线观看二区| 欧美色视频一区免费| 精品不卡国产一区二区三区| 18禁美女被吸乳视频| 亚洲av成人一区二区三| АⅤ资源中文在线天堂| 国产精品 欧美亚洲| 午夜影院日韩av| 国产成人一区二区三区免费视频网站| 亚洲国产高清在线一区二区三 | tocl精华| 亚洲成人免费电影在线观看| 成人午夜高清在线视频 | 88av欧美| 欧美大码av| 一a级毛片在线观看| 久久精品国产99精品国产亚洲性色| 18禁观看日本| 国产真实乱freesex| 妹子高潮喷水视频| 日韩大码丰满熟妇| 老熟妇乱子伦视频在线观看|