李悠悠,陳圣鋒,王友華,田振軍
不同強(qiáng)度運(yùn)動(dòng)對大鼠冠狀動(dòng)脈CGRP、ET-1和NOS表達(dá)的影響
李悠悠,陳圣鋒,王友華,田振軍
目的:探討運(yùn)動(dòng)對大鼠冠狀動(dòng)脈降鈣素基因相關(guān)肽(CGRP)、內(nèi)皮素(ET-1)和一氧化氮合酶(NOS)表達(dá)的影響。方法:健康雄性SD3月齡大鼠24只,分為安靜對照組、小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組,運(yùn)動(dòng)組采用大鼠跑臺運(yùn)動(dòng)方式,建立大鼠不同強(qiáng)度運(yùn)動(dòng)模型,運(yùn)用免疫組織化學(xué)SABC法研究不同強(qiáng)度運(yùn)動(dòng)對大鼠冠狀動(dòng)脈CGRP、ET-1、神經(jīng)型一氧化氮合酶(nNOS)、誘導(dǎo)型一氧化氮合酶(iNOS)和內(nèi)皮型一氧化氮合酶(eNOS)表達(dá)的影響。結(jié)果:與安靜對照組比較,小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組CGRP、nNOS、iNOS和eNOS均顯著性升高,小強(qiáng)度運(yùn)動(dòng)組ET-1顯著降低,大強(qiáng)度運(yùn)動(dòng)組ET-1顯著性升高。與小強(qiáng)度運(yùn)動(dòng)組比較,大強(qiáng)度運(yùn)動(dòng)組CGRP、ET-1、nNOS、iNOS和eNOS的表達(dá)變化均有顯著性差異。小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組ET-1/CGRP和ET-1/NOS比值均低于安靜對照組。結(jié)論:運(yùn)動(dòng)可引起大鼠冠狀動(dòng)脈CGRP、ET-1及NOS的表達(dá)變化,且與運(yùn)動(dòng)強(qiáng)度關(guān)系密切。因此認(rèn)為,不同強(qiáng)度運(yùn)動(dòng)引起ET-1/CGRP和ET-1/NOS比值的變化可能是運(yùn)動(dòng)引起心血管生物功能改變的因素之一。
運(yùn)動(dòng)訓(xùn)練;冠狀動(dòng)脈;降鈣素基因相關(guān)肽;免疫組織化學(xué);血管內(nèi)皮細(xì)胞
冠狀動(dòng)脈結(jié)構(gòu)與功能重塑決定著心臟的供血狀況。冠狀動(dòng)脈粥樣硬化(atherosclerosis,AS)及梗塞可直接引起心肌缺血或?qū)е滦募」K繹1-2],是心源性猝死的主要原因[3-4],其病理機(jī)制主要通過機(jī)械刺激、高血脂、高血糖以及內(nèi)分泌等因素導(dǎo)致冠狀動(dòng)脈血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)增殖和血管內(nèi)皮細(xì)胞(vascular endothelial cell,VEC)功能紊亂[5-6];循環(huán)系統(tǒng)和冠狀動(dòng)脈局部VSMC和VEC可分泌CGRP、ET-1和NOS并可通過內(nèi)分泌、自分泌和旁分泌等途徑作用于VSMC和VEC,引起冠狀動(dòng)脈結(jié)構(gòu)與功能的重塑。CGRP可拮抗ET-1引起的VSMC增殖和縮血管效應(yīng),防止冠狀動(dòng)脈增厚,保護(hù)血管損傷[7-8],而NO可抑制VSMC增殖和冠狀動(dòng)脈舒張反應(yīng)[9]。目前,關(guān)于病理?xiàng)l件下冠狀動(dòng)脈結(jié)構(gòu)與功能變化及其機(jī)制研究報(bào)道較多[10-11]。有關(guān)生活方式干預(yù)重塑冠狀動(dòng)脈結(jié)構(gòu)與功能的研究,已引起學(xué)者的高度關(guān)注[12],但生活方式干預(yù)包括運(yùn)動(dòng)鍛煉時(shí)間、強(qiáng)度及其重塑冠狀動(dòng)脈結(jié)構(gòu)與功能的機(jī)制研究報(bào)道尚少見。積極探討運(yùn)動(dòng)鍛煉干預(yù)引起冠狀動(dòng)脈CGRP、ET-1和NOS的研究將對運(yùn)動(dòng)重塑冠狀動(dòng)脈結(jié)構(gòu)與功能提供實(shí)驗(yàn)依據(jù)。
健康雄性SD大鼠24只(3月齡,實(shí)驗(yàn)動(dòng)物購自陜西省中醫(yī)研究院實(shí)驗(yàn)動(dòng)物中心,動(dòng)物質(zhì)量合格證號:陜醫(yī)動(dòng)證字07-004號),體重(246.8±3.4)g,國家標(biāo)準(zhǔn)嚙類動(dòng)物飼料常規(guī)分籠喂養(yǎng)每籠4只,自由飲食,動(dòng)物室內(nèi)溫度為17℃~23℃,相對濕度為(40~60)%。隨機(jī)分為正常對照組,小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組,每組8只。對照組正?;\內(nèi)喂養(yǎng),不運(yùn)動(dòng)。小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組采用遞增強(qiáng)度方式進(jìn)行跑臺運(yùn)動(dòng)(采用杭州段氏專用大鼠電動(dòng)鼠籠跑臺),運(yùn)動(dòng)負(fù)荷參照Bedford的研究進(jìn)行[13]。小強(qiáng)度運(yùn)動(dòng)組訓(xùn)練5 d/wk,共持續(xù)訓(xùn)練8wk。起始速度為15 m/min,持續(xù)時(shí)間為20 min。遞增速度為3 m/min、遞增時(shí)間為5 min,運(yùn)動(dòng)至速度為20 m/min時(shí),增加跑臺坡度5%,總時(shí)間為60 min。大強(qiáng)度運(yùn)動(dòng)組訓(xùn)練6 d/wk,共持續(xù)訓(xùn)練8wk。遞增速度為3 m/min、遞增時(shí)間為5 min,運(yùn)動(dòng)至速度為35 m/min時(shí),增加跑臺坡度10°,總時(shí)間為60 min。整個(gè)訓(xùn)練過程可用電刺激來強(qiáng)迫大鼠進(jìn)行跑臺訓(xùn)練(電刺激<1 mA)。
20%烏拉坦腹腔麻醉,迅速開胸摘取心臟后迅速在冷生理鹽水中涮洗淤血,中性甲醛液固定,石蠟包埋,切片(厚5.0 μm,切片機(jī)為RM2126,德國LEICA公司),常規(guī)脫蠟至水后用于免疫組織化學(xué)實(shí)驗(yàn)。
免疫組化實(shí)驗(yàn)采用SABC法,按照試劑盒說明書操作步驟進(jìn)行。切片用去離子水沖洗,3%H2O2封閉,經(jīng)微波抗原修復(fù)15 min,PBS沖洗,加生物素封閉液A 10 min,滴加正常非免疫血清,滴加一抗(CGRP、ET-1、eNOS、nNOS和iNOS均為1∶100,兔抗小鼠、大鼠、人多克隆抗體,博士德公司),4℃過夜,復(fù)溫,PBS沖洗,滴加二抗,PBS沖洗,滴加SABC,Tween、PBS液洗2 h,DAB顯色,常規(guī)脫水透明,封片。每次染色設(shè)陰性對照,PBS取代一抗。
采用BX51 Olympus光學(xué)顯微鏡拍照,運(yùn)用低倍與高倍相結(jié)合的辦法,低倍選準(zhǔn)位置(選擇左、右心室游離壁心外膜下的心室肌淺層冠狀動(dòng)脈橫切處),高倍觀察并拍照,采用Olympus顯微圖像分析系統(tǒng),手工選取冠狀動(dòng)脈橫切面并測定其平均光密度值(Mean optical density,MOD),MOD值越大表明陽性表達(dá)越強(qiáng)。結(jié)果以平均數(shù)±標(biāo)準(zhǔn)差(X±S)表示,所有數(shù)據(jù)采用SPSS軟件分析,組間比較采用單因素方差分析(One-Way,ANOVA)。顯著性差異選擇P<0.05和P<0.01水平。
光鏡下觀察到冠狀動(dòng)脈VEC和VSMC胞漿陽性顆粒呈棕色或棕黃色。與安靜對照組比較,小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組CGRP的MOD值均顯著性升高;ET-1的MOD值小強(qiáng)度運(yùn)動(dòng)組顯著性降低,大強(qiáng)度運(yùn)動(dòng)組顯著性升高。大強(qiáng)度運(yùn)動(dòng)組CGRP和ET-1的表達(dá)變化與小強(qiáng)度運(yùn)動(dòng)組比較,均有顯著性差異。小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組ET-1/CGRP比值均小于安靜對照組(見圖1、圖2、表1)。
圖1 運(yùn)動(dòng)訓(xùn)練大鼠冠狀動(dòng)脈CGRP的表達(dá),×400Figure 1 Expression of the CGRP in exercise training rat coronary artery,×400
圖2 運(yùn)動(dòng)訓(xùn)練大鼠冠狀動(dòng)脈ET-1的表達(dá),×400Figure 2 Expression of the ET-1 in exercise training rat coronary artery,×400
表1 運(yùn)動(dòng)訓(xùn)練大鼠冠狀動(dòng)脈CGRP和ET-1表達(dá)及ET-(1M/COGDR,Pn=比8)Table 1 The compa值ris變on化 o的f C比G較RP and ET-1 express and ET-1/CGRP ratio changes on exercise training rats coronary artery
光鏡下觀察到冠狀動(dòng)脈VEC和VSMC胞漿陽性顆粒呈棕色或棕黃色。與安靜對照組比較,小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組NOS的MOD值均顯著性增加,但iNOS和eNOS的MOD值比nNOS表達(dá)的增加趨勢更顯著。大強(qiáng)度運(yùn)動(dòng)組NOS的表達(dá)變化與小強(qiáng)度運(yùn)動(dòng)組比較,均有顯著性差異。小強(qiáng)度運(yùn)動(dòng)組和大強(qiáng)度運(yùn)動(dòng)組ET-1/NOS低于安靜對照組(見圖3-圖5、表2)。
圖3 運(yùn)動(dòng)訓(xùn)練大鼠冠狀動(dòng)脈nNOS的表達(dá),×400Figure 3 Expression of the nNOS in exercise training rat coronary artery,×400
圖4 運(yùn)動(dòng)訓(xùn)練大鼠冠狀動(dòng)脈iNOS的表達(dá),×400Figure 4 Expression of the iNOS in exercise training rat coronary artery,×400
圖5 運(yùn)動(dòng)訓(xùn)練大鼠冠狀動(dòng)脈eNOS的表達(dá),×400Figure 5 Expression of the eNOS in exercise training rat coronary artery,×400
表2 運(yùn)動(dòng)訓(xùn)練大鼠冠狀動(dòng)脈NOS表達(dá)和ET-1/NOS比(M值O變D,化n=的8)Table 1 The comparison比 of較 3 NOS isoforms express and ET-1/NOS ratio changes on exercise training rats coronary artery
CGRP是目前已知的最強(qiáng)的舒血管物質(zhì)之一,對心血管系統(tǒng)起著重要的生理調(diào)節(jié)作用。CGPR的結(jié)合位點(diǎn)幾乎全集中于血管內(nèi)層,具有強(qiáng)大的擴(kuò)張冠狀動(dòng)脈作用,其舒張血管作用不完全依賴于VEC的完整性。CGRP可刺激VEC增殖進(jìn)而促進(jìn)血管修復(fù),對VSMC增殖有抑制作用并可使VSMC從合成表型向收縮表型轉(zhuǎn)化[14],對改善病變冠脈有重要意義。運(yùn)動(dòng)對機(jī)體CGRP影響的報(bào)道目前多集中于骨骼肌和脊髓背根神經(jīng)節(jié),關(guān)于運(yùn)動(dòng)對冠狀動(dòng)脈CGRP影響的報(bào)道少見。運(yùn)動(dòng)是影響機(jī)體CGRP釋放的主要因素之一[15],健康人在運(yùn)動(dòng)時(shí)血漿CGRP水平升高,對冠脈循環(huán)改善起重要調(diào)節(jié)作用[16],因此認(rèn)為,運(yùn)動(dòng)可以升高CGRP擴(kuò)張血管、緩解AS時(shí)血管彈性降低和心肌供血減少的狀況。目前認(rèn)為,CGRP對冠脈擴(kuò)張作用的可能機(jī)制為直接擴(kuò)張作用,或通過激活VSMC上K+-ATP通道來實(shí)現(xiàn),或通過胞內(nèi)cAMP介導(dǎo),或與CGRP維持細(xì)胞內(nèi)Ca2+濃度穩(wěn)定而降低細(xì)胞膜Ca2+通透性[17-18]。本文實(shí)驗(yàn)發(fā)現(xiàn),小強(qiáng)度運(yùn)動(dòng)大鼠冠狀動(dòng)脈CGRP的表達(dá)顯著升高,提示小強(qiáng)度運(yùn)動(dòng)通過加快血流刺激冠脈VEC促進(jìn)CGRP的釋放,引起冠脈擴(kuò)張從而保證心臟血供;而大強(qiáng)度運(yùn)動(dòng)大鼠CGRP的降低可能是因?yàn)榇髲?qiáng)度運(yùn)動(dòng)導(dǎo)致冠狀動(dòng)脈結(jié)構(gòu)損傷所致。大強(qiáng)度運(yùn)動(dòng)可以導(dǎo)致機(jī)體ET-1分泌增加[19],在一定程度上反饋抑制了CGRP的釋放;另外,大強(qiáng)度運(yùn)動(dòng)導(dǎo)致機(jī)體兒茶酚胺增加,也可抑制CGRP的分泌[20]。因此認(rèn)為小強(qiáng)度運(yùn)動(dòng)改善心功能與冠狀動(dòng)脈CGRP表達(dá)增加有關(guān)。
運(yùn)動(dòng)訓(xùn)練對冠狀動(dòng)脈ET-1表達(dá)的影響已有不少文獻(xiàn)報(bào)道,ET-1是目前最強(qiáng)的冠脈收縮物質(zhì),可促進(jìn)冠脈VSMC的增殖和遷移,調(diào)制該進(jìn)程有可能引發(fā)AS。運(yùn)動(dòng)訓(xùn)練可減弱冠脈VSMC的表型變化。Jones等證實(shí),運(yùn)動(dòng)訓(xùn)練可降低冠脈VSMC對ET-1的敏感性[21]。Wamhoff等報(bào)道,16~20周的跑臺耐力訓(xùn)練后,冠脈VSMC對促有絲分裂劑誘導(dǎo)的表型變化敏感性降低,其機(jī)制可能是運(yùn)動(dòng)訓(xùn)練通過SERCA途徑,增強(qiáng)核Ca2+的調(diào)控[22]。VEC是合成和釋放ET-1的主要部位[23],在AS斑塊中ET-1水平呈顯著性升高[7]。因此,ET-1升高被認(rèn)為是VEC受損的重要指標(biāo),VEC功能異常又是AS形成的早期表現(xiàn)。已有實(shí)驗(yàn)表明,運(yùn)動(dòng)訓(xùn)練可增強(qiáng)VEC的功能[24];對冠心病患者進(jìn)行12周的康復(fù)運(yùn)動(dòng)后,發(fā)現(xiàn)ET-1水平明顯下降[25],推測ET-1水平的下降可能是運(yùn)動(dòng)阻止冠狀動(dòng)脈病理形成和減輕病變嚴(yán)重程度的機(jī)理之一。適宜的運(yùn)動(dòng)可控制VEC對ET-1的合成和釋放,從而降低ET-1水平,這可能是運(yùn)動(dòng)對心血管系統(tǒng)產(chǎn)生有益影響的生理學(xué)基礎(chǔ)。而過度訓(xùn)練可使血漿ET-1水平升高,此時(shí)VEC釋放大量ET-1引起血管收縮,甚至使VEC增生[26]。本實(shí)驗(yàn)發(fā)現(xiàn),小強(qiáng)度運(yùn)動(dòng)大鼠冠狀動(dòng)脈ET-1顯著降低,而大強(qiáng)度運(yùn)動(dòng)使ET-1顯著升高,進(jìn)一步證實(shí)了上述觀點(diǎn)。
ET-1與CGRP對血管有強(qiáng)烈持久的相互拮抗效應(yīng),CGRP濃度降低時(shí)ET-1則上升引起血管收縮,而ET-1降低時(shí)CGRP升高導(dǎo)致血管擴(kuò)張。研究表明,CGRP能抑制病理?xiàng)l件下ET-1的大量釋放,但不影響血漿ET-1的基礎(chǔ)含量及離體血管條ET-1的基礎(chǔ)釋放。表明CGRP對心血管疾病的治療作用可能與它拮抗ET-1的生物效應(yīng)有關(guān)。運(yùn)動(dòng)應(yīng)激可增加冠狀動(dòng)脈CGRP合成與釋放[16],推測增加的CGRP可拮抗ET-1縮血管效應(yīng),對冠脈疾病起到一定保護(hù)作用。ET-1/CGRP的比值對血管舒/縮的調(diào)節(jié)起重要作用[27]。本文實(shí)驗(yàn)表明,小強(qiáng)度運(yùn)動(dòng)大鼠ET-1/CGRP的比值降低;大強(qiáng)度運(yùn)動(dòng)較小強(qiáng)度運(yùn)動(dòng)ET-1/CGRP的比值升高。提示,小強(qiáng)度運(yùn)動(dòng)升高血壓,刺激CGRP的合成與釋放增加,抑制ET-1的大量釋放,從而拮抗ET-1的縮血管效應(yīng),對冠狀動(dòng)脈產(chǎn)生保護(hù)作用。
研究表明,NO可維持血管舒張,影響血管重塑,對防止心血管疾病起重要作用[28]。NOS是NO合成唯一的限速酶,NOS活性可間接反映NO的生成情況。運(yùn)動(dòng)增加冠狀動(dòng)脈內(nèi)皮依賴性舒張作用,主要是通過增加eNOS表達(dá)水平和NO合成量實(shí)現(xiàn)的[29]。小強(qiáng)度運(yùn)動(dòng)可增加血管壁面切應(yīng)力,誘導(dǎo)eNOS表達(dá)上調(diào),從而增加VEC的NO產(chǎn)量和(或)提高VSMC的NO生物利用度,繼而發(fā)揮其保護(hù)心血管作用[30]。我們前期實(shí)驗(yàn)發(fā)現(xiàn),小強(qiáng)度運(yùn)動(dòng)后大鼠胸主動(dòng)脈eNOS的表達(dá)顯著性增加[31],此結(jié)果在冠狀動(dòng)脈中也得到證實(shí)。提示,小強(qiáng)度運(yùn)動(dòng)使血管nNOS和eNOS活性增強(qiáng),NO合成量增加,促進(jìn)內(nèi)皮依賴性的舒張反應(yīng)是運(yùn)動(dòng)抵抗多種心血管疾病的機(jī)制之一。NO適量合成對機(jī)體產(chǎn)生有益的影響,但大量的NO合成不僅會引起強(qiáng)烈的血管舒張,導(dǎo)致血壓降低而抑制心臟功能,還會產(chǎn)生細(xì)胞毒性作用。研究表明,NO分泌與管壁切應(yīng)力有關(guān),運(yùn)動(dòng)使管壁切應(yīng)力增大,激活了VEC表面的機(jī)械性感受器,使NOS活性增強(qiáng),產(chǎn)生更多NO[32]。iNOS一旦被誘導(dǎo)合成即可持續(xù)產(chǎn)生大量NO,直至底物耗竭,在L-Arg不足時(shí),NOS生成超氧離子損害VEC,引起AS的發(fā)生與發(fā)展。另外,ET-1大量增加除了引起血管收縮外,還可通過作用于ET-R激活NOS,導(dǎo)致NO合成增加[33]。本文實(shí)驗(yàn)發(fā)現(xiàn),大強(qiáng)度運(yùn)動(dòng)大鼠冠狀動(dòng)脈NOS表達(dá)均顯著性增加,且iNOS和eNOS增加幅度更大,推測小強(qiáng)度運(yùn)動(dòng)刺激NOS的表達(dá)對機(jī)體產(chǎn)生良好影響;大強(qiáng)度運(yùn)動(dòng)可誘導(dǎo)冠狀動(dòng)脈VEC產(chǎn)生過量的NOS,進(jìn)而產(chǎn)生大量氮自由基,引起VEC損傷和VSMC增殖,可能是大強(qiáng)度運(yùn)動(dòng)引起心血管功能降低的生物學(xué)因素之一。
研究證明,AS形成過程中始終存在ET-1/NOS平衡失調(diào),ET-1/NOS比值升高在AS的形成及發(fā)展中十分重要[34]。本文研究發(fā)現(xiàn),小強(qiáng)度運(yùn)動(dòng)大鼠冠狀動(dòng)脈的ET-1/NOS比值降低,推測可能是通過減少NO的降解和合成抑制,并通過抑制ET-1合成、釋放以及釋放后的作用等機(jī)制,導(dǎo)致ET-1/NOS比值下調(diào),從而達(dá)到保護(hù)內(nèi)皮功能而表現(xiàn)為抗AS作用;大強(qiáng)度運(yùn)動(dòng)大鼠冠狀動(dòng)脈ET-1/NOS的比值上調(diào),內(nèi)皮功能紊亂,可能是引起心血管功能降低的生物學(xué)因素之一。
運(yùn)動(dòng)可引起大鼠冠狀動(dòng)脈CGRP、ET-1及NOS表達(dá)發(fā)生變化,且與運(yùn)動(dòng)強(qiáng)度關(guān)系密切;小強(qiáng)度運(yùn)動(dòng)可使冠狀動(dòng)脈CGRP和NOS表達(dá)適度增加且抑制ET-1的表達(dá);大強(qiáng)度運(yùn)動(dòng)導(dǎo)致大鼠冠狀動(dòng)脈ET-1和NOS過量表達(dá),且抑制CGRP的釋放;不同強(qiáng)度運(yùn)動(dòng)引起ET-1/CGRP與ET-1/NOS的比值變化是運(yùn)動(dòng)引起心血管生物功能改變的因素之一。小強(qiáng)度運(yùn)動(dòng)可以舒張血管,對高血壓和冠狀動(dòng)脈粥樣硬化等心血管疾病危險(xiǎn)因素具有積極的預(yù)防和治療作用。
[1]Elhendy A,Chapman S,Porter T R,et al.Association of myocardialischemia with mortality and implantable cardioverter defibrillator therapy in patients with coronaryarterydisease at risk ofarrhythmic death[J].J Am Coll Cardiol,2005,46(9):1 727-1 728.
[2]Hansson G K.Inflammation,atherosclerosis,and coronary artery disease [J].N Engl J Med,2005,352(16):1 685-1 695.
[3]Solomon SD,Zelenkofske S,McMurrayJ J,et al.Sudden death in patients with myocardial infarction and left ventricular dysfunction,heart failure,or both[J].N Engl J Med,2005,352(25):2581-2588.
[4]Huikuri H V,Castellanos A,Myerburg RJ.Sudden death due to cardiac arrhythmias[J].N Engl J Med,2001,345(20):1 473-1 482.
[5]Magnone M,Bruzzone S,Guida L,et al.Abscisic acid released byhuman monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis[J].J Biol Chem,2009,284(26):17 808-17 818.
[6]Landmesser U,Hornig B,Drexler H.Endothelial Function:A Critical Determinant in Atherosclerosis[J].Circulation.2004,109(21 Suppl 1): II27-II33.
[7]Little P J,Ivey M E,Osman N.Endothelin-1 actions on vascular smooth muscle cell functions as a target for the prevention of atherosclerosis[J]. Curr Vasc Pharmacol,2008,6(3):195-203.
[8]Parlapiano C,Paoletti V,Campana E,et al.CGRP and ET-1 plasma levels in normal subjects[J].Eur Rev Med Pharmacol Sci,1999,3(3): 139-141.
[9]Kapadia M R,Eng J W,Jiang Q,et al.Nitric oxide regulates the 26S proteasome in vascular smooth muscle cells[J].Nitric Oxide,2009,20(4):279-288.
[10]Schoenhagen P,Tuzcu E M,Apperson-Hansen C,et al.Determinants of arterial wall remodelingduringlipid-loweringtherapy:serial intravascular ultrasound observations from the Reversal of Atherosclerosis with Aggressive Lipid Lowering Therapy(REVERSAL)trial[J].Circulation,2006,113(24):2 826-2 834.
[11]Okazaki S,Yokoyama T,Miyauchi K,et al.Early statin treatment in patients with acute coronary syndrome:demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event:the Establsh Study[J].Circulation,2004,110(9):1 061-1 068.
[12]Mente A,de Koning L,Shannon H S,et al.A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease[J].Arch Intern Med,2009,169(7):659-669.
[13]BedfordTG,TiptonCM,WilsonNC,etal.Maximumoxygenconsumption ofrats and its changes with various experimental procedures[J].Journal of Applied Physiology,1979,47(6):1278-1283.
[14]WangW,Sun W,WangX.Intramuscular gene transfer ofCGRP inhibits neointimal hyperplasia after balloon injury in the rat abdominal aorta[J]. Am J Physiol Heart Circ Physiol,2004,287(4):H1 582-H1 589.
[15]Hasbak P,Lundby C,Olsen NV,et al.Calcitonin gene-related peptide and adrenomedullin release in humans:effects of exercise and hypoxia[J]. Regul Pept,2002,108(2-3):89-95.
[16]Gazzieri D,Trevisani M,Tarantini F,et al.Ethanol dilates coronary arteries and increases coronary flow via transient receptor potential vanilloid 1 and calcitonin gene-related peptide[J].Cardiovasc Res,2006,70(3):589-599.
[17]Wellman G C,Quayle J M,Standen N B.ATP-sensitive K+channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle [J].J Physiol,1998,507(Pt1): 117-129.
[18]Sheykhzade M,Berg Nyborg N C.Mechanism of CGRP-induced relaxation in rat intramural coronary arteries[J].Br J Pharmacol,2001,132(6):1 235-1 246.
[19]Ahlbory G,Eddie W,Jan L,et al.Metabolic and vascular effects of circulatingendothelin-1 duringmoderatelyheavyprolonged exercise[J].J Appl Physiol,1995,78(6):294-300.
[20]Brain S D,Grant A D.Vascular actions of calcitonin gene-related peptide and adrenomedullin[J].Physiol Rev,2004,84(3):903-934.
[21]Jones A W,Rubin L J,Magliola L.Endothelin-1 sensitivity of porcine coronary arteries is reduced by exercise training and is gender dependent[J].J Appl Physiol,1999,87(3):1 172-1 177.
[22]Wamhoff B R,Bowles D K,Dietz N J,et al.Exercise training attenuates coronarysmoothmusclephenotypicmodulationandnuclearCa2+signaling[J]. Am J Physiol Heart Circ Physiol,2002,283(6):H2397-H2410.
[23]Shah R.Endothelins in health and disease[J].Eur J Intern Med,2007,18(4):272-282.
[24]Clarkson P,Montgomery H E,Mullen M J,et al.Exercise training enhances endothelial function in young men[J].J Am Coll Cardiol,1999,33(5):1 379-1 385.
[25]郭蘭,李河,孫家珍,等.冠脈重建術(shù)后患者康復(fù)運(yùn)動(dòng)對ET-1、NO和CGRP的影響[J].心血管康復(fù)醫(yī)學(xué)雜志,2003,12(2):586-588.
[26]Allevard A M,Gauquelin G,Gharib C.Endothelin and atrial natriuretic peptide after exercise performed until exhaustion in the rat[J].Life Sci,1991,49(24):1 803-1 808.
[27]Wang Y,Wang D H.Prevention of endothelin-1-induced increases in blood pressure:role of endogenous CGRP[J].Am J Physiol Heart Circ Physiol,2004,287(4):H1 868-H1 874.
[28]Rudic RD,Shesely E G,Maeda N,et al.Direct evidence for the importance ofendothelium-derived nitric oxide in vascular remodeling[J]. J Clin Invest,1998,101(4):731-736.
[29]Duncker DJ,BacheRJ.Regulation ofcoronaryblood flowduringexercise [J].Physiol Rev,2008,88(3):1009-1086.
[30]Higashi Y,Yoshizumi M.Exercise and endothelial function:role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients[J].Pharmacol Ther,2004,102(1):87-96.
[31]田振軍,吳瀟男.運(yùn)動(dòng)訓(xùn)練對大鼠主動(dòng)脈一氧化氮合酶及細(xì)胞凋亡的影響[J].天津體育學(xué)院學(xué)報(bào),2007,22(1):6-8.
[32]Díez J,F(xiàn)ortu觡o M A,Zalba G,et al.Altered regulation of smooth muscle cell proliferation and apoptosis in small arteries of spontaneously hypertensive rats[J].Eur Heart J,1998,19:G29-G33.
[33]DonatoAJ,GanoLB,Eskurza I,et al.Vascular Endothelial Dysfunction with Aging:Endothelin-1 and EndothelialNitricOxideSynthase[J].Am J Physiol Heart Circ Physiol,2009,297(1):H425-H432.
[34]Tousoulis D,B觟ger R H,Antoniades C,et al.Mechanisms of disease: L-arginine in coronary atherosclerosis-a clinical perspective[J].Nat Clin Pract Cardiovasc Med,2007,4(5):274-283.
Effect of Different Exercise Intensity on Expression of CGRP,ET-1 and NOS in the Coronary Artery of Rats
LI Youyou,CHEN Shengfeng,WANG Youhua,TIAN Zhenjun
(School of PE,Shaanxi Normal University,Xi'an 710062,China)
Objective:To discuss the effect of different exercise intensity on expressions of calcitonin gene-related peptide(CGRP),endothelin-1(ET-1)and nitric oxide synthase(NOS)in the rat coronary artery.Methods:Healthy 3-month male SD rats(n=24)were divided into the control group,small-intensity exercise group and high-intensity exercise group.Exercise group used treadmill exercise to establish the models of small-intensity exercise group and the high-intensity exercise group rats.Immunohistochemistry of SABC was used to measure different exercise intensity of coronary artery CGRP,ET-1,nNOS, iNOS,and eNOS expression of rats.Results:Comparing with the control group,the expressions of CGRP and NOS isoforms in the small-intensity exercise group and the high-intensity exercise group increased significantly,ET-1 expression reduced obviously in the small-intensity exercise group,the ET-1 level of the high-intensity exercise group considerably elevated.The change of the coronary artery CGRP,ET-1and NOS expression in the high-intensity exercise group compared with the small-intensity exercise group were significant.The rate of ET-1/CGRP and ET-1/NOS in the groups of small-intensity and high-intensity exercise were lower than the control group.Conclusions:Exercise can induce expression change of CGRP,ET-1 and NOS isoforms in coronary artery,and the close relationship with exercise intensity.Therefore the exercise training causes the ET-1/CGRP ratio and ET-1/NOS ratio change is one of the factors that exercise-induced the cardiovascular biological function change.
exercise training;coronary artery;calcitonin gene-related peptide;immunohistochemistry;vascular endothelial cells
G 804.4
A
1005-0000(2010)01-0041-04
2009-07-01;
2009-11-18;錄用日期:2009-11-19
教育部博士學(xué)科點(diǎn)基金(項(xiàng)目編號:20050718011);陜西師范大學(xué)“211工程”重點(diǎn)建設(shè)學(xué)科——運(yùn)動(dòng)生物學(xué)重點(diǎn)學(xué)科建設(shè)項(xiàng)目。
李悠悠(1987-),女,河南焦作人,陜西師范大學(xué)在讀碩士研究生。通訊作者:田振軍(1965-),男,陜西綏德人,陜西師范大學(xué)教授,博士生導(dǎo)師。
陜西師范大學(xué)體育學(xué)院,西安710062。