• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THREE-DIMENSIONAL NUMERICAL SIMULATION OF THERMALHYDRAULIC PERFORMANCE OF A CIRCULAR TUBE WITH EDGEFOLD-TWISTED-TAPE INSERTS*

    2010-05-06 08:22:15CUIYongzhang

    CUI Yong-zhang

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China, E-mail: cyz@sdjzu.edu.cn

    TIAN Mao-cheng

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    THREE-DIMENSIONAL NUMERICAL SIMULATION OF THERMALHYDRAULIC PERFORMANCE OF A CIRCULAR TUBE WITH EDGEFOLD-TWISTED-TAPE INSERTS*

    CUI Yong-zhang

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China, E-mail: cyz@sdjzu.edu.cn

    TIAN Mao-cheng

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    (Received November 30, 2009, Revised July 7, 2010)

    Three-dimensional numerical simulations and experiments were carried out to study the heat transfer characteristics and the pressure drop of air flow in a circular tube with Edgefold-Twisted Tape (ETT) inserts and with classic Spiral-Twisted-Tape (STT) inserts of the same twist ratio. The RNG turbulence model for mildly swirling flows, the enhanced wall treatment for low Reynolds numbers, and the SIMPLE pressure-velocity method were adopted to simulate the flow and heat transfer characteristics. Within the range of Reynolds number from 2 500 to 9 500 and the twist ratio y from 5.4 to 11.4, the Nusselt number of the tube with ETT inserts is found to be 3.9% - 9.2% higher than that with STT inserts, and the friction factor of the tube with ETT inserts is 8.7% -74% higher than that of STT inserts. The heat enhancement is due to higher tangential velocity and asymmetrical velocity profile with the increase and decrease of the periodic velocity within an edgefold length. It is found that main factors affecting the heat transfer of ETT inserts are the twist angle and the gap width between the tube and inserts. A larger twist angle leads to a higher tangential velocity, and larger Nusselt number and friction factor. The thermal-hydraulic performance slowly decreases as the twist angle increases. The gap width between tube and inserts has a significant influence on the heat transfer, while little influence on pressure drops. The thermal-hydraulic performance increases in average by 124% and 140% when the gap width reduces from 1.5 mm to 1.0 mm and 0.5 mm. The larger the gap width, the higher velocity through the gap will be, which would reduce the main flow velocity and tangential velocity. So a small gap is desirable. Comparing experimental and numerical results at variable air flow and tube wall temperature, the numerical results are found to be in a reasonable agreement with the experiment results, with difference of the Nusselt number in a range of 1.6% - 3.6%, and that of the friction factor in a range of 8.2% - 13.6%.

    heat transfer enhancement, Edgefold-Twisted-Tape (ETT), Spiral-Twisted-Tape (STT), thermal-hydraulic performance

    1. Introduction

    The heat transfer enhancement technology has been developed rapidly and employed in a wide variety of engineering problems, such as condensing gas boiler and water heater. Tape inserts are frequently used to reduce exhaust flue temperature and to make heat exchangers compact. There are mainly five effects of twisted tape inserts in the heat transfer enhancement: (1) increase in flow velocity, (2) decrease in hydraulic diameter, (3) increase in flow path, (4) secondary motion, (5) fin contribution, if tape inserts are in good thermal contact with the tube wall.

    The swirl flow in a tube was suggested by Kreit and Margolis (1959), and most of the swirl flows were created by long and short classic Spiral Twisted-Tape (STT) inserts[1-22]with and without holes[1-5], regularly spaced tape inserts[6-7], louvered strip[8]and wire coil inserts[9]. Studies were carried out[1,4,10-12]the heat transfer characteristics and pressure drops in circular tubes with twisted-tape inserts under fully turbulent flow conditions. Fahed[10]studied the effect of the tube-tape clearance on the heat transfer in fully developed turbulent flow in a horizontal isothermal tube, and it is shown that the heat transfer enhancement increases as the tube-tape clearance decreases. Recently, three-dimensional numerical analyses were carried out to study the thermal-hydraulic characteristics of the flow inside a circular tube with different twisted-tape inserts[12-21,23]. The RNG k?ε turbulent model[24,25]was used to simulate self-rotating STT inserts by Zhang[21], and to model STT inserts and perforated and jagged twisted tapes by Rahimi et al.[2]. Results show that the higher turbulence intensity of the fluid close to the wall and the tangential velocities were mainly attributed for the heat transfer enhancement. Eiamsa-Ard[12]adopted the SIMPLE technique, together with four turbulence models to simulate the flow in a circular tube induced by means of loose-fit twisted tapes, and the numerical results show that the shear stress transport k?ω turbulence models give the most consistent results with those of Manglik and Bergles.

    Table 1 Geometrical parameters and the twist ratio of inserts

    The transition flow regimes in a tube with twisted-tape inserts, specially Edgefold-Twisted-Tape (ETT) inserts, were not well studied. The arrangement enhances the structural stability and makes it possible to adopt thinner stainless inserts. This article presents three-dimensional numerical analyses and experiments on heat transfer characteristics and pressure drops of the air flow in a circular tube fitted with ETT inserts and STT inserts under constant wall temperature.

    2. Physical model and mathematical analysis

    2.1 Circular tube with inserts

    A circular tube with ETT inserts is shown in Fig.1. The tube’s inner diameter is D. The main geometrical parameters of ETT inserts include edgefold length ( L ), twist angle (A), tape width ( B), and tape thickness (δ). The twist angle is a rotation within an edgefold length, with H beingothe twist pitch and n the edgefold number within 360, the gap between tubes and inserts (b ) and the twist ratio ( y) can be expressed as:

    Fig.1 Circular tube with edgefold-twisted-tape inserts

    The STT inserts have the same twist ratio and the twist width as the ETT inserts in order to compare the thermal and hydraulic performance. Geometrical parameters and the twist ratio of the investigated inserts are listed in Table 1.

    2.2 Mathematical analysis

    The studied area includes the air between twist tape inserts and inside the tube. The following assumptions are adopted to simplify the physical model: (1) the radiation and natural convection heat transfer can be ignored, (2) the viscosity heating can be ignored, (3) the change of the air composition can be ignored, (4) the twisted-tape surface can be considered as adiabatic, and the conduction along tape inserts can be ignored, (5) no slip motion on tube walland inserts surface, (6) constant wall temperature. For transition turbulent flows, the three-dimensional equations of continuity, momentum, energy, turbulent kinetic energy (k), and the dissipation rate (ε) in the fluid region are as follows:

    Continuity equation:

    The numerical simulation is carried out using Fluent, with RNG k?ε, SIMPLE pressure-velocity coupling algorithm, and the second upwind discretization scheme for momentum, energy, turbulent kinetic energy and dissipation energy. The convergence criterion is satisfied when the residuals of variables are less than 1×10-4except for the energy where a value of 1×10-7is used. Under-relaxation factors of turbulent kinetic energy, turbulent dissipation rate and turbulent viscosity are changed within the range between 0.2 and 0.4, others take the default values. For accounting for the low Reynolds number and the near wall flow, an enhanced wall treatment is also adopted.

    The air inlet is specified with the mass flow rate inlet boundary condition, the air outlet with the pressure outlet boundary condition, the tube wall is a wall with constant temperature and the surface of the inserts is an adiabatic wall.

    2.3 Grid-independence

    The region near the inner tube wall is meshed with refined hexahedron cells, the other regions are meshed with tetrahedron cells, and the grid number is varied with the tube’s inner diameter. The accuracy and the validity of the numerical results are ensured by a careful check of the grid-independence. Table 2 shows the grid numbers and numerical results for inner diameters of 21 mm and 1 m of No.2 ETT inserts, so the internal count of 80 is used to grid all inserts. By using the boundary adaptation on the tube wall and the insert wall and the gradient adaptation on the whole region, the convergence rate is high. The computations are performed on the workstation with Intel Xeon E4505 CPU and the time is in the range of 2 h to 4 h for each case.

    Table2 grid number and numerical results

    3. Numerical results and discussions

    The steps involved in calculating the tubesideheat transfer coefficient and the friction factor from the simulation temperature, flow rate, and pressure drop are outlined below. All intube flow parameters are based on the inner diameter of the empty tube, all fluid properties are evaluated at the length average bulk temperature, unless otherwise indicated.

    The log-mean temperature difference, ΔTm, is defined as

    where Tinis the inlet temperature of air, Toutis the outlet temperature of air, Twis the inner wall temperature.

    The Nusselt number, Nu, is defined as

    where α is the convective heat transfer coefficient, λ is the thermal conductivity, Q is the heat transfer rate and F is the heat transfer area.

    The friction factor, f, is calculated from the following equation

    where ΔP is the pressure drop in the entire length ( Ltotal), u is the bulk averaged velocity.

    The thermal-hydraulic performance with different inserts, φ, is defined as

    3.1 STT and ETT insert performance

    Figures 2 and 3 show the Nusselt number and the friction factor of a tube with No.5 and No.7 STT inserts and No.2 and No.4 ETT inserts at the same inlet and tube wall temperature, with gap width b of 0.5 mm. It can be seen that the Nusselt number and the friction factor of the tube with ETT inserts are larger than those with STT inserts with the same twist ratio. The Nusselt number of No.2 ETT inserts is 3.9% greater than that of No.5 STT inserts, the Nusselt number of No.4 ETT inserts is 9.2% greater than that of No.7 STT inserts in average. The friction factor of No.2 ETT inserts is 8.7% larger than that of No.5 STT inserts, the friction factor of No.4 ETT inserts is 74% larger than that of No.7 STT inserts in average. The thermal-hydraulic performance φ of No.2 ETT inserts is 1.01 on the base of No.5 STT inserts, that of No.4 ETT inserts is 0.91 on the base of No.7 STT inserts.

    Fig.2 Nusselt number of tube with S TT and ETT inserts

    Fig.3 Friction factor of tube with STT and ETT inserts

    The enhancement is mainly due to a higher tangential velocity and the main flow velocity profile. The tube with STT inserts has a symmetrical profile with the same main velocity and tangential velocity, but the tube with ETT inserts has asymmetrical velocity magnitude and tangential velocity profiles, as shown in Figs.4 and 5. It can be seen that the velocity of ETT assumes a periodic variation within an edgefold length, the velocity first increases and later decreases on one side, but it first decreases and later increases on the other side The tangential velocity has the same variation trend. Such velocity variations help gas mixing.than that for twist angle 20o, and the Nusselt number for twist angle 20ois 1.9% larger than that for twist angle 15oin average. The friction factor for twist angle 30ois 45% greater than that for twist angle 20o, and the friction factor for twist angle 20ois 0.4% greater than that for twist angle 15o. Therefore, under the transition flow, the flow disturbance increases with the increase of the twisted ratio, and the low twisted ratio tape has a strong effect. On the base of 15otape, the thermal-hydraulic performance φ of 20oand 30otapes is 0.996 and 0.988, respectively, and it decreases with the increase of the twist angle.

    Fig.4 Velocity magnitude profile of No.3 inserts

    Fig.5 Tangential velocity profile of No.3 inserts

    Fig.6 Effect of twist angle (A) on Nusselt number

    Fig.7 Effect of twist angle (A) on friction factor

    Fig.8 Tangential velocity profile at z =0.180 m for twist angles of 20oand 30o

    The enhancement by the twist angle is due to different tangential velocities. Figure 8 is the

    Fig.9 Effect of gap width (b) on Nusselt number

    Fig.10 Effect of gap width (b) on friction factor

    3.2.2 Gap between tube and inserts b

    Figures 9 and 10 show the Nusselt number and the friction factor for different gap widths at the same inlet temperature and wall temperature. In general, the gap width has a significant influence on the Nusselt number, but little influence on the pressure drop. The Nusselt number and the friction factor decrease as the gap width increases. The Nusselt number for b=1mm and b=0.5 mm is 7.1% and 23.7% larger than that for b=1.5 mm. The friction factor for b=1mm and b=0.5 mm is 3.2% and 12.1% greater than that for b=1.5 mm. On the base of the case b=1.5 mm, the thermal-hydraulic performances for the cases b=1mm and b=0.5 mm are shown in Fig.11, which increase in average by 124% and 140%, respectively. So a small gap width is desirable. The gap width effect comes from the different velocity through the gap. Figures 12 and 13 show the velocity magnitude and the tangential velocity for the cases b=1mm and b=1.5 mm at section z =0.100 m. The traveling velocity through the gap increases with the gap width, which leads to significantly lower main velocity and tangential velocity.

    Fig.11 Effect of gap width ( b) on thermal-hydraulic performance

    Fig.12 Velocity profile of different gap widths at the same inlet velocity of 3 m/s

    3.2.3 Edgefold length L

    Figures 14 and 15 show that the edgefold length has little effect on the Nusselt number and the friction factor, which in the case, L=20 mmtakes value 2.4% and 1.4% smaller those in the case L=15 mm. A large edgefold length can be used for easy fabrication.

    Fig.13 Tangential velocity profile of different gap widths at the same inlet velocity of 3 m/s

    Fig.14 Effect of edgefold length on Nusselt number

    Fig.15 Effect of edgefold length on friction factor

    Fig.16 Schematic diagram of the test facility

    4. Validity test

    4.1 Test facility

    The experiment setup is shown in Fig.16, where a copper tube with inner diameter d=21mm and wall thickness 2 mm is used as the test section. Length of the test section is 1 000 mm. The tube with ETT inserts is placed in a box and cooled by water, and the working medium inside the tube is air. Cooling water is provided by a thermostatic gas water heater. Air temperature is adjusted by adjustable electric heater, and is measured by eight RTDs. The volume flow rate of air is measured with Swema Flow 125, with a measuring range from 2 l/s to 125 l/s and the accuracy of ±3%. The pressure drop of air is measured with Swema 3 000 , with pressure range from –150 Pa to 1 500 Pa. The average temperature of the tube wall is determined by means of 10 thermocouples located along the tube. All the data signals are collected by a data acquisition system and stored in computer for further analysis.

    4.2 Test results and discussions

    For a high cooling water rate and a low heat transfer rate, the water temperature rise is within 0.4 k - 0.8 k, so the tube wall temperature is represented by the average temperature at ten locations on the test tube wall

    where N is the thermocouple number, TNis the temperature measured at a location on the tube wall.

    The total heat transfer capacity

    where G is the air flow rate, Tinand Toutare the air inlet and outlet temperature.

    The test and numerical results are shown in Figs.17 and 18. The test air inlet temperature is 393 K, the tube wall temperature is 313 K, the air flow rate is adjusted by the fan speed. The Nusselt number in the test is 1.6% - 3.6% smaller than that obtained by the simulation, and the friction factor is 8.2% - 13.6% greater than that of the simulation. So experiment results are in a reasonable agreement with simulation results.

    Fig.17 Nusslet number vs. air inlet velocity

    Fig.18 Friction factor vs. air inlet velocity

    5. Conclusions

    Three-dimensional numerical simulations and experiments were carried out to study the heat transfer, friction factor and thermal-hydraulic performance of tubes with STT inserts and ETT inserts. Experiment results are in a reasonable agreement with numerical results. The following conclusions are reached.

    (1) The heat transfer of a tube with ETT inserts is enhanced as compared with a tube with STT inserts.Within the range of Reynolds number from 2 500 to 9 500 and the twist ratio y from 5.4 to 11.4, the Nusselt number and the friction factor of the tube with ETT inserts are 3.9% - 9.2% and 8.7% - 74% larger than those with STT inserts, and the thermal-hydraulic performance is within 0.91 to 1.01. The major enhancement of the heat transfer is found due to higher tangential velocity and asymmetrical velocity profile with the increase and decrease of the periodic velocity within an edgefold length

    (2) The twist angle is the most important structural factor. A larger twist angle leads to larger Nusselt number and friction factor. The larger the twist angle, the higher tangential velocity will be. As the twist angle increases, the thermal-hydraulic performance decreases slowly.

    (3) The gap width has a significant influence on the heat transfer, but little influence on the pressure drop. When the gap width is reduced from 1.5 mm to 1.0 mm and 0.5 mm, the Nusselt number increases by 7.1% and 23.7%, the friction factor increases by 3.2% and 12.1%. The thermal-hydraulic performance increases in average by 124% and 140%. The traveling velocity increases as the gap width increases, which leads to significantly lower main velocity and tangential velocity, therefore, a small gap width is desirable.

    [1] CHIU Yu-wei, JANG Jiin-yuh. 3D numerical and experimental analysis for thermal-hydraulic characteristics of air flow inside a circular tube with different tube inserts[J]. Applied Thermal Engineering, 2009, 29(2-3): 250-258.

    [2] RAHIMI M., SHABANIAN S. R. and ALASAIRAFI A. A. Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts[J]. Chemical Engineering and Processing, 2009, 48(3): 762-770.

    [3] ZHANG Hua, ZHOU Qiang-tai. Experimental investigation on heat transfer and flow resistance characteristics of smooth round tubes with twisted-tape inserts[J]. Physical Examination and Testing, 2005, 23(5): 15-18(in Chinese).

    [4] KLACZAK A. Heat transfer and pressure drop in tubes with short tabulators[J]. Heat and Mass Transfer, 1996, 31(6): 399-401.

    [5] EIAMASA-ARD S., THIANPONG C. and PETPICES E. et al. Convective heat transfer in a circular tube with short-length twisted tape insert[J]. International Communication in Heat and Mass Transfer, 2009, 36(4): 365-371.

    [6] EIAMSA-ARD S., THIANPONG C. and PROMVONGE P. Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements[J]. International Communications in Heat and Mass Transfer, 2006, 33(10): 1225-1233.

    [7] SAHA S. K., DUTTA A. and DHAL S. K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted tape insert[J]. International Journal of Heat and Mass Transfer, 2001, 44(22): 4211-4223.

    [8] EIAMSA-ARD S., PETHKOOL S. and THIANPONG S. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts[J]. International Communications in Heat and Mass Transfer, 2008, 35(2): 120-129.

    [9] AHMED M., DEJU L. and SARKAR M. A. R. et al.Heat transfer in turbulent flow through a circular tube with twisted tape inserts[C]. Proceedings of the International Conference on Mechanical Engineering. Dhaka, Bangladesh, 2005, ICME05-TH-08.

    [10] FAHED S. A., CHAKROUN W. Effect of tube-tape clearance on heat transfer for fully developed turbulent flow in a horizontal isothermal tube[J]. International Journal of Heat and Fluid Flow, 1996,17(2): 173-178.

    [11] DATE A. W. Prediction of fully developed flow in a tube containing a twisted tape[J]. International Journal of Heat and Mass Transfer, 1974, 17(8): 845-859.

    [12] EIAMSA-ARD S., WONGCHAREE K. and SRIPATTANAPIPAT S. 3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. International Communication in Heat and Mass Transfer, 2009, 36(9): 947-955.

    [13] SAMA P. K., SUBRAMANYAM T. and KISHORE P. S. et al. A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow[J]. International Journal of Thermal Science, 2002, 41(10): 955-960.

    [14] SIVASHANMUGAN P., SURESH S. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with helical screw-tape inserts[J]. Applied Thermal Engineering, 2007, 46(16): 1292-1298.

    [15] MAZEN M., KHADER A. Further understanding of twisted tape inserts effects as tube insert for heat transfer enhancement[J]. Heat and Mass Transfer, 2006, 43(2): 123-134.

    [16] SIVASHANMUGAM P., SURESH S. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with regularly spaced helical screw-tape inserts[J]. Applied Thermal Engineering, 2007, 27(8-9): 1311-1319.

    [17] JIN Zhi-hao, WANG Guan-qing and LIU Jie et al. Numerical simulation of fluid flow characteristics in wavy plates[J]. Journal of Hydrodynamics, Ser. A, 2004, 19(1): 26-30(in Chinese).

    [18] WU Mei-wei, ZHANG Zao-sun. Numerical research on the structure in turbulent pipe flow[J]. Journal of Hydrodynamics, Ser. A, 2002, 17(3): 324-333(in Chinese).

    [19] TANG Zhi-wei, YAN Gui-lan and GAO Li-li. Numerical simulation of heat transfer enhancement for twisted inserts in tubes[J]. Journal of Engineering Thermophysics, 2008, 29(7): 1211-1214(in Chinese).

    [20] SUN Dong-liang, WANG Liang-bi. Numerical simulation of fluid flow and heat transfer in tube inserting twisted-tape[J]. Journal Chemical Industry and Engineering, 2004, 55(9): 1422-1427(in Chinese).

    [21] ZHANG Lin, QIAN Wei-hong. 3D numerical simulation of flow and heat transfer in self-rotating twistedtape-inserted tube[J]. Journal Chemical Industry and Engineering, 2005, 56(9): 1633-1638(in Chinese).

    [22] SARMA P. K., KISHORE P. S. and RAO V. D. et al. A combined approach to predict friction coefficients and convective heat transfer characteristics in a tube with twisted tape inserts for a wide range of Re and Pr[J]. International Journal of Thermal Science, 2005, 44(4): 393-398.

    [23] ZENG Zhuo-xiong. A new turbulence modulation in second-order moment two-phase model and its application to horizontal channel[J]. Journal of Hydrodynamics, 2008 ,20(3): 331-338.

    [24] ZHANG Ming-liang, SHEN Yong-ming. Threedimensional simulation of meandering river based on 3-D RNG k-ε turbulence model[J]. Journal of Hydrodynamics, 2008, 20(4): 116-125.

    [25] LU Chang-gen, CAO Wei-dong and QIAN Jian-hua. A study on numerical method of Navier-Stokes equation and non-linear evolution of the coherent structures in a laminar boundary layer[J]. Journal of Hydrodynamics, Ser. B, 2006 ,18(3): 372-377.

    10.1016/S1001-6058(09)60101-3

    * Project supported by the National Basic Research Program of China (973 Program, Grant No. 2007CB206903).

    Biography: CUI Yong-zhang (1970- ), Male, Ph. D. Candidate, Associate Professor

    TIAN Mao-cheng, E-mail: tianmc65@sdu.edu.cn

    亚洲va日本ⅴa欧美va伊人久久| 男女做爰动态图高潮gif福利片| 两个人的视频大全免费| 色5月婷婷丁香| 精品不卡国产一区二区三区| www日本黄色视频网| 亚洲激情在线av| 亚洲av免费在线观看| 国产精品三级大全| 久久久久久久精品吃奶| 日本一二三区视频观看| 在线播放国产精品三级| 天天一区二区日本电影三级| 欧美又色又爽又黄视频| 99热只有精品国产| 嫩草影院入口| 在线看三级毛片| 国产精品久久电影中文字幕| 国产熟女xx| 午夜两性在线视频| 在线免费观看的www视频| 超碰av人人做人人爽久久| 性色avwww在线观看| xxxwww97欧美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美激情国产日韩精品一区| 国产亚洲精品久久久久久毛片| 欧美日本亚洲视频在线播放| 久久久久久久久久黄片| 色精品久久人妻99蜜桃| 亚洲av不卡在线观看| 可以在线观看毛片的网站| 国产成+人综合+亚洲专区| 精品一区二区三区视频在线观看免费| 亚洲精品在线观看二区| 三级国产精品欧美在线观看| 精品人妻偷拍中文字幕| 99国产极品粉嫩在线观看| 嫩草影视91久久| 欧美日韩综合久久久久久 | 免费高清视频大片| 婷婷六月久久综合丁香| 一区二区三区激情视频| 国产一级毛片七仙女欲春2| 伦理电影大哥的女人| 成人国产综合亚洲| 成年版毛片免费区| 国产探花极品一区二区| 国产精品人妻久久久久久| 久久久久久久久中文| 天堂网av新在线| 欧美高清成人免费视频www| 日本熟妇午夜| 日韩精品中文字幕看吧| 亚洲人成网站在线播放欧美日韩| 精品不卡国产一区二区三区| 中文亚洲av片在线观看爽| 午夜福利在线观看免费完整高清在 | 一区福利在线观看| av国产免费在线观看| 少妇丰满av| 国产伦精品一区二区三区视频9| 国产欧美日韩一区二区三| 国内揄拍国产精品人妻在线| 国产欧美日韩一区二区三| 美女高潮喷水抽搐中文字幕| 久久这里只有精品中国| 国产精品免费一区二区三区在线| 少妇被粗大猛烈的视频| 丁香欧美五月| 午夜福利18| 日韩中字成人| 欧美又色又爽又黄视频| 午夜福利18| 欧美又色又爽又黄视频| 国产精品影院久久| 18禁黄网站禁片免费观看直播| 中文字幕人成人乱码亚洲影| 精品国产三级普通话版| 高清日韩中文字幕在线| 97超视频在线观看视频| 露出奶头的视频| 好男人在线观看高清免费视频| 亚洲精品乱码久久久v下载方式| 色5月婷婷丁香| 好男人电影高清在线观看| 精品午夜福利在线看| 天天躁日日操中文字幕| 国产成人欧美在线观看| 国产探花极品一区二区| 亚洲精品在线观看二区| 免费看美女性在线毛片视频| 欧美丝袜亚洲另类 | 校园春色视频在线观看| 国产精品一区二区三区四区免费观看 | 1024手机看黄色片| 精品一区二区三区av网在线观看| 成人特级黄色片久久久久久久| av欧美777| 少妇裸体淫交视频免费看高清| 亚洲人成电影免费在线| 精品久久久久久久久久久久久| 国产精品亚洲美女久久久| 日韩精品中文字幕看吧| 精华霜和精华液先用哪个| 五月玫瑰六月丁香| 免费av毛片视频| 丰满人妻一区二区三区视频av| 黄片小视频在线播放| 舔av片在线| 亚洲av熟女| 亚洲精品久久国产高清桃花| 乱码一卡2卡4卡精品| 欧美激情久久久久久爽电影| 日韩欧美 国产精品| 动漫黄色视频在线观看| 熟女电影av网| 又紧又爽又黄一区二区| 婷婷色综合大香蕉| 伊人久久精品亚洲午夜| 波多野结衣高清无吗| 亚洲aⅴ乱码一区二区在线播放| 午夜福利免费观看在线| 最近中文字幕高清免费大全6 | 国产伦精品一区二区三区四那| 亚洲午夜理论影院| 99久久九九国产精品国产免费| 国产亚洲精品久久久久久毛片| 亚洲精品一区av在线观看| 日韩中字成人| 久久人人爽人人爽人人片va | 丝袜美腿在线中文| 亚洲欧美日韩高清专用| 高清毛片免费观看视频网站| 日本一二三区视频观看| 国产单亲对白刺激| 久久久久免费精品人妻一区二区| 91久久精品电影网| 高清日韩中文字幕在线| 99久久无色码亚洲精品果冻| 国内精品久久久久久久电影| 男女那种视频在线观看| 国产免费男女视频| 91久久精品电影网| 亚洲自偷自拍三级| 一个人观看的视频www高清免费观看| 美女高潮的动态| 亚洲三级黄色毛片| 特级一级黄色大片| 国产精品久久久久久久电影| 在线观看av片永久免费下载| 18禁黄网站禁片免费观看直播| 婷婷色综合大香蕉| 欧美精品国产亚洲| 最近中文字幕高清免费大全6 | 亚洲成人久久性| 中文字幕av成人在线电影| 亚洲av美国av| 男女视频在线观看网站免费| aaaaa片日本免费| 赤兔流量卡办理| 99国产极品粉嫩在线观看| 偷拍熟女少妇极品色| 国产视频内射| 久久国产精品影院| 国产一区二区激情短视频| 国产真实乱freesex| 免费一级毛片在线播放高清视频| 自拍偷自拍亚洲精品老妇| 免费看美女性在线毛片视频| 国产成人啪精品午夜网站| 国产午夜精品论理片| 欧美又色又爽又黄视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲男人的天堂狠狠| 亚洲精品一卡2卡三卡4卡5卡| 国产高清激情床上av| 亚洲黑人精品在线| 亚洲在线自拍视频| 又粗又爽又猛毛片免费看| 精品乱码久久久久久99久播| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 亚洲av美国av| 别揉我奶头~嗯~啊~动态视频| 99热这里只有是精品50| 欧美一区二区精品小视频在线| www.999成人在线观看| 午夜精品在线福利| 国产av麻豆久久久久久久| 1000部很黄的大片| 淫秽高清视频在线观看| 性欧美人与动物交配| 人妻制服诱惑在线中文字幕| 精品久久久久久久久亚洲 | 毛片一级片免费看久久久久 | 99精品久久久久人妻精品| 午夜激情欧美在线| 伦理电影大哥的女人| 黄色女人牲交| 一边摸一边抽搐一进一小说| 免费在线观看日本一区| 波多野结衣高清无吗| 美女xxoo啪啪120秒动态图 | .国产精品久久| 久久精品久久久久久噜噜老黄 | 嫩草影视91久久| 精品久久国产蜜桃| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| avwww免费| 日本 欧美在线| 又黄又爽又刺激的免费视频.| 亚洲第一区二区三区不卡| 丰满人妻一区二区三区视频av| 成年人黄色毛片网站| 免费观看精品视频网站| 婷婷色综合大香蕉| 成年人黄色毛片网站| 少妇的逼水好多| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| xxxwww97欧美| 老熟妇乱子伦视频在线观看| 国产精品一区二区三区四区久久| 国产中年淑女户外野战色| 老司机深夜福利视频在线观看| 一a级毛片在线观看| 综合色av麻豆| 日韩欧美在线二视频| 亚洲精品在线美女| 露出奶头的视频| 好男人在线观看高清免费视频| 色哟哟·www| 很黄的视频免费| 欧美精品啪啪一区二区三区| 免费电影在线观看免费观看| 国产真实乱freesex| 国产精品人妻久久久久久| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产在线观看| 午夜福利高清视频| 乱人视频在线观看| 如何舔出高潮| 日韩中文字幕欧美一区二区| www.999成人在线观看| 亚洲人与动物交配视频| 成人一区二区视频在线观看| 欧美高清性xxxxhd video| 日韩大尺度精品在线看网址| www日本黄色视频网| 一进一出抽搐动态| 日本成人三级电影网站| 99久久无色码亚洲精品果冻| 韩国av一区二区三区四区| 久久中文看片网| 国产成人欧美在线观看| 国产乱人视频| 国产精品嫩草影院av在线观看 | 亚洲色图av天堂| 噜噜噜噜噜久久久久久91| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产麻豆成人av免费视频| 女同久久另类99精品国产91| а√天堂www在线а√下载| 成人欧美大片| 88av欧美| 最近最新中文字幕大全电影3| 精华霜和精华液先用哪个| 无人区码免费观看不卡| 国产免费一级a男人的天堂| 亚洲黑人精品在线| 久久久久国产精品人妻aⅴ院| 国产亚洲欧美在线一区二区| 欧美潮喷喷水| 国产私拍福利视频在线观看| 欧美高清性xxxxhd video| 国产三级在线视频| 无人区码免费观看不卡| 中文字幕av成人在线电影| 国产精华一区二区三区| 在线a可以看的网站| 91在线精品国自产拍蜜月| 国产在线男女| 久久久久久国产a免费观看| 又爽又黄a免费视频| 国产真实伦视频高清在线观看 | 天堂av国产一区二区熟女人妻| 久久久成人免费电影| 欧美丝袜亚洲另类 | 欧美日韩中文字幕国产精品一区二区三区| 精品国内亚洲2022精品成人| 亚洲激情在线av| 亚洲av电影不卡..在线观看| 一级a爱片免费观看的视频| 午夜激情欧美在线| 成人国产一区最新在线观看| bbb黄色大片| 国产一级毛片七仙女欲春2| 亚洲精华国产精华精| 国产精品乱码一区二三区的特点| 亚洲av一区综合| 久久久久久久久中文| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 亚洲av.av天堂| 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 免费在线观看影片大全网站| 给我免费播放毛片高清在线观看| 亚洲第一区二区三区不卡| 欧美成人一区二区免费高清观看| 一级黄色大片毛片| 嫩草影院入口| 久久国产精品影院| 97热精品久久久久久| 亚洲欧美日韩东京热| 深爱激情五月婷婷| 亚洲,欧美,日韩| 久久久精品欧美日韩精品| 免费在线观看日本一区| 哪里可以看免费的av片| 国产欧美日韩精品一区二区| 亚洲熟妇熟女久久| 国产激情偷乱视频一区二区| 色哟哟·www| 免费观看精品视频网站| 少妇的逼好多水| 久久国产精品人妻蜜桃| 久久久久久久久大av| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻视频免费看| 桃色一区二区三区在线观看| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 亚洲第一区二区三区不卡| 俺也久久电影网| 欧美最新免费一区二区三区 | 亚洲午夜理论影院| 美女xxoo啪啪120秒动态图 | 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 高清毛片免费观看视频网站| 亚洲精品在线美女| 亚洲国产色片| 一进一出抽搐gif免费好疼| 欧美色视频一区免费| 亚洲 欧美 日韩 在线 免费| 男人和女人高潮做爰伦理| 欧美三级亚洲精品| 成年人黄色毛片网站| 精品一区二区三区视频在线观看免费| 精品欧美国产一区二区三| 日韩中文字幕欧美一区二区| 真人一进一出gif抽搐免费| 日本黄大片高清| 一本一本综合久久| 午夜福利高清视频| 国产日本99.免费观看| 亚洲专区中文字幕在线| 国内精品久久久久久久电影| 色在线成人网| 欧美极品一区二区三区四区| 国产免费av片在线观看野外av| 国产久久久一区二区三区| 久久精品国产自在天天线| 中出人妻视频一区二区| 午夜福利18| 久久久国产成人精品二区| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 欧美国产日韩亚洲一区| 国产精品免费一区二区三区在线| 国产综合懂色| 国产国拍精品亚洲av在线观看| 精品久久久久久久久久免费视频| 亚洲av成人av| 99久久精品一区二区三区| 久久久久久久午夜电影| 国产伦在线观看视频一区| 日本免费a在线| 欧美+日韩+精品| 日韩欧美免费精品| 成年版毛片免费区| 99riav亚洲国产免费| 国产视频一区二区在线看| 高清毛片免费观看视频网站| 悠悠久久av| 国产美女午夜福利| 午夜福利18| 国产精品久久久久久久久免 | 色视频www国产| 欧美日本亚洲视频在线播放| 亚洲av电影不卡..在线观看| 久久精品国产清高在天天线| 成人美女网站在线观看视频| a级毛片免费高清观看在线播放| 真人做人爱边吃奶动态| 亚洲av一区综合| 国产精品永久免费网站| 在线免费观看的www视频| 欧美一级a爱片免费观看看| 波多野结衣高清作品| 啦啦啦观看免费观看视频高清| 精品久久国产蜜桃| 国产伦一二天堂av在线观看| 69av精品久久久久久| 白带黄色成豆腐渣| 最后的刺客免费高清国语| 午夜两性在线视频| 亚洲成人久久爱视频| 国产精品影院久久| 精品日产1卡2卡| 精品一区二区免费观看| 免费观看精品视频网站| 极品教师在线免费播放| 白带黄色成豆腐渣| 久久九九热精品免费| 久久久久久九九精品二区国产| 精品熟女少妇八av免费久了| 久久人人精品亚洲av| 老司机福利观看| 他把我摸到了高潮在线观看| 99热精品在线国产| 偷拍熟女少妇极品色| 黄色配什么色好看| 日韩欧美精品免费久久 | 欧美3d第一页| 99久久精品热视频| 欧美一级a爱片免费观看看| 色综合站精品国产| 欧美精品啪啪一区二区三区| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区人妻视频| 非洲黑人性xxxx精品又粗又长| 日韩成人在线观看一区二区三区| 最近视频中文字幕2019在线8| 色5月婷婷丁香| 岛国在线免费视频观看| 99视频精品全部免费 在线| 久久久国产成人免费| 亚洲 国产 在线| 久久久国产成人精品二区| 精品国产三级普通话版| 怎么达到女性高潮| 偷拍熟女少妇极品色| 亚洲色图av天堂| 禁无遮挡网站| 波多野结衣高清无吗| 国产成人欧美在线观看| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| av福利片在线观看| 精品熟女少妇八av免费久了| 丁香欧美五月| 乱码一卡2卡4卡精品| 国产一区二区在线av高清观看| 在线观看舔阴道视频| 欧美成人性av电影在线观看| 在线天堂最新版资源| 亚洲成人久久爱视频| 少妇人妻一区二区三区视频| 高清在线国产一区| 99在线人妻在线中文字幕| 91狼人影院| 91久久精品国产一区二区成人| 国产精品98久久久久久宅男小说| 男女视频在线观看网站免费| 国产白丝娇喘喷水9色精品| 99riav亚洲国产免费| 国产一级毛片七仙女欲春2| 18禁裸乳无遮挡免费网站照片| 国产白丝娇喘喷水9色精品| 男人和女人高潮做爰伦理| 日本五十路高清| 国产成人啪精品午夜网站| 久久人人爽人人爽人人片va | 日本精品一区二区三区蜜桃| 在线国产一区二区在线| 久久亚洲真实| 成人av一区二区三区在线看| 色视频www国产| 精品一区二区免费观看| 国产伦精品一区二区三区四那| 午夜亚洲福利在线播放| 日本黄色视频三级网站网址| 国内精品久久久久久久电影| 久久99热这里只有精品18| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 成年女人看的毛片在线观看| 亚洲人成伊人成综合网2020| 99久久精品热视频| 免费一级毛片在线播放高清视频| 成人午夜高清在线视频| 亚洲精品在线美女| 又爽又黄无遮挡网站| 久久中文看片网| 欧美高清成人免费视频www| 毛片一级片免费看久久久久 | 91久久精品电影网| 午夜福利成人在线免费观看| 亚洲av美国av| 人人妻人人看人人澡| 老鸭窝网址在线观看| 国产爱豆传媒在线观看| 99热这里只有精品一区| 精品久久国产蜜桃| 日韩精品中文字幕看吧| 精品欧美国产一区二区三| 久久人人精品亚洲av| 精品久久久久久久久久久久久| a级毛片免费高清观看在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 给我免费播放毛片高清在线观看| 91午夜精品亚洲一区二区三区 | 人妻丰满熟妇av一区二区三区| 一个人免费在线观看电影| 白带黄色成豆腐渣| 国产麻豆成人av免费视频| 国产高清激情床上av| 亚洲av中文字字幕乱码综合| 99久久无色码亚洲精品果冻| 好男人电影高清在线观看| 亚洲国产精品久久男人天堂| 久久久久久久午夜电影| 亚洲专区国产一区二区| 狂野欧美白嫩少妇大欣赏| 久久这里只有精品中国| 久久久久久久久中文| 午夜福利在线观看吧| 国产精品影院久久| 老女人水多毛片| 国内毛片毛片毛片毛片毛片| 国产午夜福利久久久久久| 麻豆av噜噜一区二区三区| 欧美黄色片欧美黄色片| 国产探花极品一区二区| 99在线视频只有这里精品首页| 3wmmmm亚洲av在线观看| 99久久精品一区二区三区| 欧美成人a在线观看| 国产三级中文精品| 色尼玛亚洲综合影院| 国产一区二区三区在线臀色熟女| 亚洲人成网站在线播放欧美日韩| 成人鲁丝片一二三区免费| 五月玫瑰六月丁香| 日韩精品中文字幕看吧| bbb黄色大片| 他把我摸到了高潮在线观看| 久久久久免费精品人妻一区二区| 国产亚洲av嫩草精品影院| 亚洲美女黄片视频| 最近最新中文字幕大全电影3| 亚洲av一区综合| 欧美日韩黄片免| 一级av片app| 国产国拍精品亚洲av在线观看| 婷婷亚洲欧美| 非洲黑人性xxxx精品又粗又长| 国产私拍福利视频在线观看| 老司机深夜福利视频在线观看| 久久久国产成人免费| 久久精品夜夜夜夜夜久久蜜豆| 人人妻人人看人人澡| 午夜免费激情av| 亚洲美女黄片视频| 精品国内亚洲2022精品成人| 日本 欧美在线| 自拍偷自拍亚洲精品老妇| 欧美一级a爱片免费观看看| 丝袜美腿在线中文| 久久久久亚洲av毛片大全| 尤物成人国产欧美一区二区三区| 欧美性感艳星| 1000部很黄的大片| 国内久久婷婷六月综合欲色啪| 99国产综合亚洲精品| 午夜福利在线观看免费完整高清在 | 亚洲专区国产一区二区| 色视频www国产| 天堂√8在线中文| 国产精品1区2区在线观看.| 夜夜夜夜夜久久久久| 天堂√8在线中文| .国产精品久久| 亚洲一区高清亚洲精品| 少妇的逼好多水| 三级男女做爰猛烈吃奶摸视频| 久久久国产成人精品二区| 国产一区二区激情短视频| 99视频精品全部免费 在线| 国产v大片淫在线免费观看| 亚洲精品粉嫩美女一区| 国产精品亚洲一级av第二区| 国产精品久久久久久久久免 | 天堂网av新在线| 男女视频在线观看网站免费| 日本与韩国留学比较| 人妻丰满熟妇av一区二区三区| 嫩草影院入口| 国产真实伦视频高清在线观看 | 欧美又色又爽又黄视频| 成人美女网站在线观看视频| 一个人观看的视频www高清免费观看| 2021天堂中文幕一二区在线观| 欧美最黄视频在线播放免费|