• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENTAL INVESTIGATION ON THE DRAG REDUCTION CHARACTERISTICS OF TRAVELING WAVY WALL AT HIGH REYNOLDS NUMBER IN WIND TUNNEL*

    2010-05-06 08:22:31YAOYan

    YAO Yan

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    Beijing Electromechanic Engineering Institute, Beijing 100074, China, E-mail: yaoyanyy@163.com

    LU Chuan-jing

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

    SI Ting

    Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

    ZHU Kun

    Beijing Electromechanic Engineering Institute, Beijing 100074, China

    EXPERIMENTAL INVESTIGATION ON THE DRAG REDUCTION CHARACTERISTICS OF TRAVELING WAVY WALL AT HIGH REYNOLDS NUMBER IN WIND TUNNEL*

    YAO Yan

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    Beijing Electromechanic Engineering Institute, Beijing 100074, China, E-mail: yaoyanyy@163.com

    LU Chuan-jing

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, China

    SI Ting

    Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

    ZHU Kun

    Beijing Electromechanic Engineering Institute, Beijing 100074, China

    (Received March 29, 2010, Revised July 10, 2010)

    Drag reduction experiments of the traveling wavy wall at high Reynolds number, ranging from 1.46×106to 5.83×106based on the free-stream velocity and the model length, were conducted. A suit of traveling wavy wall device was developed and its characteristics of drag reduction at high Reynolds number were investigated. The drag forces of the traveling wavy wall with various wave speeds (c) were measured at different wind speeds (U) in the FL-8 low-speed wind tunnel and compared with the drag force of the flat plate. The results show that the mean drag force of the traveling wavy wall decreases as the value of c/ U increases, at different wind velocities, the values of c/ U corresponding to minimal drag force of the traveling wavy wall are different, when the values of c/ U are larger than 0.6, the mean drag forces of the traveling wavy wall are smaller than those of the flat plate, and the drag reduction can be up to 60%. The drag reduction effectiveness of traveling wavy wall is thus achieved. Furthermore, as the value of c/ U increases, the traveling wavy wall can restrain the separation and improve the quality of flow field.

    flow control, drag reduction, traveling wavy wall, wind tunnel test

    1. Introduction

    Minimizing the surface friction of aircraft and ships is a long-term goal in engineering design. Generally, the surface friction accounts for as large as 50% of the total resultant drag. For submarines, the ratio can be up to 70%. In recent years, the research of drag reduction becomes more and more attractive.

    Conventional methods for the drag reduction make use of the low-resistance streamline shape and decrease surface protruding structures as far as possible. The examples can be taken for the car of the streamline body and the submarine of water droplet shape and so on. However, these methods are all passive and the effect of its drag-reducing has been proved limited. Contrarily, more and more active flow control technologies for drag reduction have been developed, one of which is based on the traveling wavy wall. In this method, a smooth wavy wall undergoes the motion in the form of a streamwise traveling wave and is found to exhibit restraining turbulence intensity and separation as the phase speed of the traveling wave is increased to reach somevalues comparable to the free stream velocity. Reynolds number by using the large eddy simulation.

    It must be pointed out that most of previous experiments were conducted at low Reynolds number. In the present work, we perform experimental investigation of the traveling wavy wall at h6igh Reynold6s number, which ranges from 1.46×10 to 5.83×10 based on the free-stream velocity U and the experimental model length L. The drag forces of the traveling wavy wall, flat plate and fixed wavy wall are also measured in the wind tunnel. The article is organized as follows. In Section 2 the experimental method is described. The experimental device to generating traveling wavy wall with high phase speed is developed and is placed in the wind tunnel to measure the drag force. In Section 3 the experimental results and related discussions are presented. Finally the main conclusions are drawn in Section 4.

    2. Experimental apparatus and method

    The motion equation of the traveling wavy wall is described in the following

    where A is the reciprocating movement distance of the pole, f the frequency and Φ the phase of the gas cylinder. In this way, if a number of gas cylinders with the same frequency are placed equidistantly and two neighboring ones have an equal phase difference ΔΦ , the vertices of the poles will move along an approximate sine curve. Note that the shape of this curve is mainly determined by the frequency and the responsive time of the gas cylinders.

    Following this consideration, we developed an experimental device as shown in Fig.1, consisting of aflexible plate, seven knightheads, seven air cylinders, seven electromagnetic valves, a control circuit, some fixed supports and a number of windpipes. The seven air cylinders (ISO standard, with compressed air as working medium) with A=100 mm were placed in the fixed support at the same interval l =300 mm. A flexible plate with width of 300 mm was connected to the poles of seven air cylinders by seven metal knightheads. Seven electromagnetic valves controlled by a control circuit system were fixed on the support and connected one by one with the gas cylinders by a number of windpipes. When the gas cylinder was working, air was compressed into one gate and extruded from the other gate of the gas cylinder. Either in or out was decided by the signals of the electromagnetic valve. When the valve was opened, the pole was moving upwards, while when the valve was closed, the pole was moving downwards. The control circuit system could set the frequencies and switches of seven electromagnetic valves. The phase difference ΔΦ of two neighboring gas cylinder was settled to be π/2, and then the flexible plate was moving approximately in the form of Eq.(1). Note that the forehead and the tail of the flexible plate were located in the center line of the whole wave, the forehead is fixed on the support while the tail is free.

    Fig.1 The device for generating traveling wavy wall

    The experiment was conducted in the FL-8 low-speed wind tunnel, which is a single flat circular wind tunnel with the maximum speed up to 72 m/s and the average turbulence degree 0.1745%. The size of the test section is 3.5 m×2.5 m×5.5 m. The experimental device was supported by an 8BM03-01 semi-mode balance in the test section (see Fig.1). Although the balance was designed to measure six components of the load, the drag force in the horizontal direction was especially concerned in order to obtain the drag of the traveling wavy wall.

    In the experiment, how to measure the drag of the flexible plate separately is a difficult problem. In order to prevent the influence of the resistance of the device, the device was vertically placed on the balance, and a set of oriented equipment consisting of boards and organic glasses was fixed in the wind tunnel as shown in Fig.2. The front of the oriented equipment was designed to be triangle shape, the upper surface of which was plane with the same height as the forehead of the flexible plate. Note that the oriented equipment surrounding the experimental device was not linked with it but has a little spacing. Then the measured force in the streamwise direction is mainly the drag force of the flexible plate.

    Fig.2 The photo of experimental models in the wind tunnel

    The experimental data were collected by a VXI data acquisition system. Collecting a data point cost 0.02 s. Then in each case we spent more than 6 s to collect 300 data points for analysis.

    Fig.3 Configuration of experimental models

    3. Results and discussions

    In the experiment, the drag force of the traveling wavy wall as well as the flat plate and the fixed wavy walls (i.e., c=0) under five oscillation frequencies were measured. Figure 3 show the shape of the two fixed model, Flat plate model is flat, that is, the height of the air cylinders are its 1/2 of its maximum stroke, the same level as the fixed support. Fixed wavy wall model takes on the fixed wavy shape, similar to sinusoidal wave. The first air cylinder is at the highest point of its stroke.

    3.1 Drag force of the flat plate and fixed wavy wall

    To identify flow is turbulent or laminar flow, the key parameter is the Reynolds number. The critical

    Figure 4 shows the drag forces for of flat plate and fixed wavy wall at different free-stream speeds. From the figure, it can be seen that with the increase of the free-stream speed, the drag force increases by the square of the speed.

    Fig.4 Drag forces for flat plate and fixed wavy wall versus the free-stream speed

    The drag force for the flat plate is significantly smaller than that for the fixed wavy wall. The fixed wavy wall not only bears the frictional resistance, but also endures the pressure drag, and behind of the crest of fixed wavy wall there is apparent flow separation. Meanwhile, the experimental data for drag force of flat plate are in good agreement with the theoretical values from turbulent boundary.

    3.2 Drag force of the traveling wavy wall at different wave velocities

    The ratio of the traveling wave speed, c, to the free-stream speed, U, c/ U , is an important parameter, and different values of c/ U correspond to the different characteristics of the flow field. In unsteady flow, the Strouhal number St, is generally introduced to describe the feature of the unsteady flow field. For the two-dimensional traveling wavy wall problem, the Strouhal number is characterized by the length of the wavelengthλ:

    which implies the Strouhal number determines the character of the flow field.

    In the present work, the amplitude of the traveling wave is constant. By adjusting the oscillation frequency of air cylinder to change the phase speed of the traveling wavy wall. Under different oscillation frequenciesf=2 Hz, 3 Hz, 4 Hz, 5 Hz, 6 Hz, the corresponding phase speeds are c = λf =2.4 m/s, 3.6 m/s, 4.8 m/s, 6 m/s, 7.2 m/s. Table 1 gaves a list of c/ U corresponding to different frequencies and free-stream velocities.flow pattern and dynamics depend strongly on the phase speed c. as c increases, the friction force increases, the pressure force decreases monotonically, and the total drag force decreases. The present measurement results are in good agreement with their computational conclusion.

    Table 1 c/ U forer different frequencies and free-stream velocities

    Fig.5 The curve of drag force of traveling wavy wall versus frequency

    3.3 Comparison of flat plate of drag force for fixed wavy wall and traveling-wavy wall

    Figure 5 shows that the drag force of traveling wavy wall reaches its minimum, at the free stream velocity U=10m/s and the oscillation frequency f=6 Hz. Table 2 gives the comparison of drag forces for the flat plate, the fixed and traveling wavy plate. It can be seen that traveling wave indeed plays a crucial role in reducing the drag force. For the ratio U , c/ U ≥ 0.6 ( U=10 m/s ), the drag force reduction is about 60%.

    Table 2 Drag forces for flat plate,fixedand traveling wavy walls (Unit: N)

    4. Conclusions

    A suit of smooth flexible traveling wavy wall devices have been designed and experimentally examined for turbulent flows over the wall undergoing streamwise traveling-wave and transverse motions. The Reynolds number based on the free-stream velocity U and the experimental length L is O(106), and the traveling wave amplitude a is given by2 πa/λ=0.26.

    By changing the ratio of the traveling wave phase speed c to the free-stream velocity U, it is found that the wall oscillations can be optimized to achieve separation suppression and turbulence reduction, and to reduce drag force.

    At the same free-stream velocity U,with incresing oscillation frequency, the wavy wall drag force decreases. That is to say, as c/ U increases, the drag force for traveling wavy wall is generally reduced. At different free-stream velocity, when the traveling wavy wall gives minimal drag force, the corresponding values of c/ U are also different.

    Compared with the flat plate, experimental results show that the traveling wavy wall indeed plays the role of drag reduction, as c/ U ≥0.6. And the drag reduction is about 60 %.

    With c/ U ingrom zero, experimental studies show that the traveling wavy wall has the mechanisms of separation elimination and turbulence reduction.

    [1] SCHLICHTING H., GERSTEN K. and KRAUSE E. et al. Boundary-layer theory[M]. 8th Edition, New York: Springer, 2000.

    [2] KENDALL J. M. The turbulent boundary layer over a wall with progressive surface waves[J]. Journal of Fluid Mechanics, 1970, 41: 259-281.

    [3] TANEDA S., TOMONARI Y. An experiment on the flow around a waving plate[J]. Journal of the Physical Society of Japan, 1974, 36: 1683-1689.

    [4] TANEDA S. Visual study of unsteady separated flows around bodies[J]. Prog. Aerosp. Sci., 1977, 85: 287-348.

    [5] SAVCHENKO Y. N. Hydrodynamic effects of a traveling wave[R]. Kyiv, Ukraine: USSR Bionics Trans., JPRS L/ 9420, 1980.

    [6] WU Jian-ming, WU Chui-jie and WU Jie-zhi et al. Preliminary study of nonlinear flow over traveling wavy wall[C]. International Symposium on Nonsteady Fluid Dynamics. Toronto, Canada, 1990, 359-368.

    [7] WU Jie-zhi, WU Jian-ming. Vorticity dynamics on boundaries[J]. Advances in Applied Mechanics, 1996, 32: 119-275.

    [8] TECHET A. H. Experimental visualization of the near-boundary hydrodynamics about fish-like swimming motion[D]. Ph. D. Thesis, Cambridge, MA, USA: MIT, 2000.

    [9] SHEN Lian, ZHANG Xiang and YUE D. K. P. et al. Turbulent flow over a flexible wall undergoing a streamwise traveling wave motion[J]. Journal of Fluid Mechanics, 2003, 484: 197-221.

    [10] LU Xi-yun, YIN Xie-zhen. Propulsive performance of fish-like traveling wavy wall[J]. Acta Mechanica, 2005, 175: 197-215.

    [11] WU Chui-jie, XIE Yan-qiong and WU Jie-zhi. “Fluid roller bearing” effect and flow control[J]. Acta Mechanica, sinica 2003, 19(5): 476-484.

    [12] DONG Gen-jin, LU Xi-yun. Numerical analysis on the propulsive performance and vortex shedding of fish-like traveling wavy plate[J]. Int. J. Num. Methods Fluids, 2005, 48(12): 1351-1373.

    [13] YANG Zhu, WU Jie-zhi. Drag reduction by axisymmetric traveling wavy wall[J]. Journal of University of Science and Technology of China, 2005, 35(4): 471-479.

    [14] TRIANTAFYLLOU M. S., TECHET A. H. et al. Vorticity control in fish-like propulsion and maneuvering[J]. Integr. Comp. Biol., 2002, 42: 1026-1031.

    [15] ZHANG Zhi-xin, LUO Zhen-ou. Numerical calculation of three-dimensional boundary layers over moving wavy wall[J]. Journal of Hydrodynamics, Ser. A, 2000, 15(3): 287-292(in Chinese).

    [16] CAI Shu-peng, JIN Guo-yu and LI Da-mei et al. Drag reduction effect of coupling flexible tubes with turbulent flow[J]. Journal of Hydrodynamics, 2008, 20(1): 96-100.

    [17] ZOU Lin, LIN Yu-feng. Numerical simulation of turbulent flow around wavy cylinders at a subcritical Reynolds number and the investigation on drag reduction[J]. Chinese Journal of Hydrodynamics, 2010, 26(1): 31-36(in Chinese).

    10.1016/S1001-6058(09)60108-6

    * Biography: YAO Yan (1978-), Female, Ph. D. Candidate, Engineer

    av在线蜜桃| 青青草视频在线视频观看| 亚洲一区二区三区欧美精品| 精品亚洲乱码少妇综合久久| 国产综合精华液| 男女免费视频国产| h视频一区二区三区| 18禁在线播放成人免费| 国产av码专区亚洲av| 亚洲不卡免费看| 观看美女的网站| 少妇被粗大猛烈的视频| 日韩欧美一区视频在线观看 | 赤兔流量卡办理| av不卡在线播放| 亚洲精品乱久久久久久| 插逼视频在线观看| 免费人成在线观看视频色| 成年人午夜在线观看视频| 亚洲国产欧美在线一区| 亚洲第一区二区三区不卡| 黄色欧美视频在线观看| 国产高清有码在线观看视频| 汤姆久久久久久久影院中文字幕| 99久久精品一区二区三区| 纯流量卡能插随身wifi吗| 啦啦啦中文免费视频观看日本| 午夜视频国产福利| av一本久久久久| 午夜福利在线在线| 国产伦理片在线播放av一区| 婷婷色av中文字幕| 99久久综合免费| 自拍欧美九色日韩亚洲蝌蚪91 | 人人妻人人爽人人添夜夜欢视频 | 在线观看国产h片| 日韩中字成人| 久久久久久九九精品二区国产| 精品酒店卫生间| 精品一品国产午夜福利视频| 99久久人妻综合| 久久久久国产精品人妻一区二区| 欧美zozozo另类| 成人18禁高潮啪啪吃奶动态图 | 又粗又硬又长又爽又黄的视频| 最黄视频免费看| 欧美人与善性xxx| 成人二区视频| 99热全是精品| 在现免费观看毛片| 亚洲高清免费不卡视频| 精品久久国产蜜桃| 久久久成人免费电影| 男人舔奶头视频| 精品人妻偷拍中文字幕| 91aial.com中文字幕在线观看| 日韩一本色道免费dvd| 欧美日韩综合久久久久久| 免费大片黄手机在线观看| 久久亚洲国产成人精品v| 成人综合一区亚洲| 乱码一卡2卡4卡精品| 亚洲av不卡在线观看| 国产淫片久久久久久久久| 成人无遮挡网站| 日韩成人av中文字幕在线观看| 各种免费的搞黄视频| 亚洲美女视频黄频| 汤姆久久久久久久影院中文字幕| 少妇的逼好多水| 国产精品偷伦视频观看了| 日韩国内少妇激情av| 不卡视频在线观看欧美| 人妻一区二区av| 精品一品国产午夜福利视频| 在线亚洲精品国产二区图片欧美 | 亚洲精品乱码久久久v下载方式| 男人爽女人下面视频在线观看| 一二三四中文在线观看免费高清| 亚洲国产欧美人成| 日韩大片免费观看网站| 中文字幕av成人在线电影| 99视频精品全部免费 在线| 国产精品不卡视频一区二区| 夜夜爽夜夜爽视频| 在线 av 中文字幕| 久久青草综合色| 精品午夜福利在线看| 国产高清不卡午夜福利| 在线观看一区二区三区激情| 免费观看无遮挡的男女| 亚洲国产精品一区三区| 高清av免费在线| 99久久精品热视频| 日本av免费视频播放| 身体一侧抽搐| 精品国产露脸久久av麻豆| 人妻一区二区av| 男人添女人高潮全过程视频| 高清在线视频一区二区三区| 国产精品一二三区在线看| 水蜜桃什么品种好| 插阴视频在线观看视频| 免费观看性生交大片5| 啦啦啦在线观看免费高清www| 亚洲熟女精品中文字幕| 久久国产精品男人的天堂亚洲 | 青春草国产在线视频| 欧美日本视频| 熟女人妻精品中文字幕| 嫩草影院入口| av在线播放精品| 大片电影免费在线观看免费| 亚洲精品日韩av片在线观看| 亚洲一区二区三区欧美精品| 国产精品一区二区性色av| 日韩,欧美,国产一区二区三区| 成年女人在线观看亚洲视频| 国产日韩欧美亚洲二区| 精品人妻熟女av久视频| 日本av手机在线免费观看| 久久影院123| 最近最新中文字幕免费大全7| 中文欧美无线码| 国产亚洲5aaaaa淫片| 天天躁夜夜躁狠狠久久av| 欧美日韩一区二区视频在线观看视频在线| 成人高潮视频无遮挡免费网站| 91精品一卡2卡3卡4卡| 联通29元200g的流量卡| 免费少妇av软件| 夜夜爽夜夜爽视频| tube8黄色片| 日本欧美视频一区| 99久久人妻综合| 亚洲精品中文字幕在线视频 | 国产成人免费观看mmmm| 国产精品精品国产色婷婷| 亚洲精品久久午夜乱码| 校园人妻丝袜中文字幕| 亚洲国产精品一区三区| 男女国产视频网站| 激情五月婷婷亚洲| 一级二级三级毛片免费看| 舔av片在线| 国产视频首页在线观看| 亚洲欧洲日产国产| 国产亚洲午夜精品一区二区久久| 又粗又硬又长又爽又黄的视频| 麻豆国产97在线/欧美| 男女边吃奶边做爰视频| 舔av片在线| 黄色怎么调成土黄色| 国产色爽女视频免费观看| 99热这里只有精品一区| 丝瓜视频免费看黄片| 99久久人妻综合| 中文字幕人妻熟人妻熟丝袜美| 涩涩av久久男人的天堂| 黄色欧美视频在线观看| 成人午夜精彩视频在线观看| 久久亚洲国产成人精品v| 亚洲,欧美,日韩| 精品一区二区三卡| 中文字幕亚洲精品专区| 丝袜喷水一区| 成人美女网站在线观看视频| 国产av一区二区精品久久 | 看十八女毛片水多多多| 色综合色国产| 免费观看在线日韩| 中文字幕av成人在线电影| 欧美精品一区二区免费开放| 亚洲怡红院男人天堂| 一本—道久久a久久精品蜜桃钙片| 五月玫瑰六月丁香| 精品久久国产蜜桃| 午夜免费鲁丝| 好男人视频免费观看在线| 大香蕉97超碰在线| 中文乱码字字幕精品一区二区三区| 五月天丁香电影| 国产亚洲一区二区精品| 熟妇人妻不卡中文字幕| 少妇精品久久久久久久| 成人午夜精彩视频在线观看| 精品少妇黑人巨大在线播放| 五月开心婷婷网| 国产精品久久久久久久电影| 成人毛片a级毛片在线播放| 国产精品偷伦视频观看了| 最新中文字幕久久久久| 色吧在线观看| 国产亚洲午夜精品一区二区久久| 成人漫画全彩无遮挡| 少妇猛男粗大的猛烈进出视频| 美女cb高潮喷水在线观看| 97精品久久久久久久久久精品| 日本黄色片子视频| 亚洲不卡免费看| 成人美女网站在线观看视频| 熟女av电影| 黑丝袜美女国产一区| 亚洲av中文av极速乱| 九九久久精品国产亚洲av麻豆| 日韩中文字幕视频在线看片 | 狠狠精品人妻久久久久久综合| 男人狂女人下面高潮的视频| 国产久久久一区二区三区| 精品人妻一区二区三区麻豆| 极品少妇高潮喷水抽搐| 中文在线观看免费www的网站| 中文在线观看免费www的网站| tube8黄色片| 中文在线观看免费www的网站| 久久国产精品男人的天堂亚洲 | 一级av片app| 纯流量卡能插随身wifi吗| 尤物成人国产欧美一区二区三区| 亚洲丝袜综合中文字幕| 亚洲无线观看免费| 亚洲精品一二三| 三级经典国产精品| 插逼视频在线观看| 久久精品人妻少妇| 亚洲精品日韩av片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲91精品色在线| 一级毛片久久久久久久久女| 一本久久精品| 亚洲欧美一区二区三区国产| 国产一级毛片在线| 久久久久久久亚洲中文字幕| 高清视频免费观看一区二区| 午夜福利网站1000一区二区三区| 欧美日韩精品成人综合77777| 国产男女内射视频| 美女福利国产在线 | 中文字幕人妻熟人妻熟丝袜美| 日本黄色日本黄色录像| av.在线天堂| 观看av在线不卡| 亚洲内射少妇av| 高清不卡的av网站| 亚洲人与动物交配视频| 直男gayav资源| 久久亚洲国产成人精品v| 你懂的网址亚洲精品在线观看| 亚洲精品乱码久久久久久按摩| 菩萨蛮人人尽说江南好唐韦庄| 一级二级三级毛片免费看| 精品一区二区三区视频在线| 国产久久久一区二区三区| 中文资源天堂在线| 亚洲电影在线观看av| 欧美精品一区二区免费开放| 国产国拍精品亚洲av在线观看| 国产一区二区三区av在线| 黄片wwwwww| 精品一区在线观看国产| 美女内射精品一级片tv| 亚洲精品第二区| 欧美97在线视频| 久久久久久久久久人人人人人人| 蜜臀久久99精品久久宅男| 中国三级夫妇交换| av在线播放精品| 秋霞在线观看毛片| 国产精品麻豆人妻色哟哟久久| 精品少妇黑人巨大在线播放| 天天躁夜夜躁狠狠久久av| 中国三级夫妇交换| 免费观看性生交大片5| 婷婷色av中文字幕| 国产伦精品一区二区三区四那| 色网站视频免费| 免费观看a级毛片全部| 免费av中文字幕在线| 亚洲成人手机| 亚洲成人一二三区av| 大又大粗又爽又黄少妇毛片口| 黄色一级大片看看| 午夜日本视频在线| 日韩中文字幕视频在线看片 | 精品一品国产午夜福利视频| 欧美日韩一区二区视频在线观看视频在线| 久久热精品热| 丰满人妻一区二区三区视频av| 日本av手机在线免费观看| 欧美精品亚洲一区二区| 在线观看一区二区三区激情| h日本视频在线播放| 久久国产乱子免费精品| 亚洲国产欧美人成| 99久久精品国产国产毛片| 欧美丝袜亚洲另类| 青春草视频在线免费观看| 久久女婷五月综合色啪小说| 亚洲欧美日韩无卡精品| 97在线视频观看| 在现免费观看毛片| 精品99又大又爽又粗少妇毛片| 欧美97在线视频| 国产av码专区亚洲av| 搡女人真爽免费视频火全软件| 亚洲内射少妇av| 国产精品熟女久久久久浪| 国产久久久一区二区三区| 国产一区二区三区综合在线观看 | 免费看光身美女| 成人毛片a级毛片在线播放| 久久久久久伊人网av| 久久99热这里只频精品6学生| 亚洲人与动物交配视频| 国产大屁股一区二区在线视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲av综合色区一区| 精品一品国产午夜福利视频| 免费av不卡在线播放| 蜜臀久久99精品久久宅男| 亚洲国产欧美在线一区| 国产免费一区二区三区四区乱码| 色视频www国产| 精品视频人人做人人爽| 一个人看的www免费观看视频| 街头女战士在线观看网站| 一级片'在线观看视频| 日韩欧美精品免费久久| 国产69精品久久久久777片| 免费少妇av软件| 国产男女超爽视频在线观看| 日本色播在线视频| 伦理电影免费视频| 亚洲精品第二区| 国产淫语在线视频| 永久网站在线| 亚洲欧美成人综合另类久久久| 国产精品欧美亚洲77777| 在现免费观看毛片| 亚洲人成网站在线播| 国产伦在线观看视频一区| 精品人妻偷拍中文字幕| 日韩中文字幕视频在线看片 | 国产精品99久久久久久久久| 亚洲一区二区三区欧美精品| 亚洲av电影在线观看一区二区三区| 亚洲欧美日韩另类电影网站 | av.在线天堂| 最近最新中文字幕免费大全7| 丰满少妇做爰视频| 18禁动态无遮挡网站| 一个人看视频在线观看www免费| 亚洲欧美日韩无卡精品| 一二三四中文在线观看免费高清| 观看免费一级毛片| 亚洲av中文av极速乱| 久久久精品94久久精品| 国产人妻一区二区三区在| 夜夜爽夜夜爽视频| 国产免费一级a男人的天堂| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 久久久久久久久久久丰满| 国产白丝娇喘喷水9色精品| 哪个播放器可以免费观看大片| 激情五月婷婷亚洲| 黄色视频在线播放观看不卡| 免费少妇av软件| 在线天堂最新版资源| 亚洲自偷自拍三级| 男人和女人高潮做爰伦理| 亚洲国产毛片av蜜桃av| 国产精品久久久久久久电影| 国产男人的电影天堂91| 五月天丁香电影| 一边亲一边摸免费视频| 亚洲av免费高清在线观看| 99久久精品一区二区三区| 午夜日本视频在线| 日韩成人av中文字幕在线观看| 如何舔出高潮| 一个人看的www免费观看视频| 美女国产视频在线观看| 亚洲国产精品成人久久小说| a级一级毛片免费在线观看| freevideosex欧美| 欧美国产精品一级二级三级 | 97在线人人人人妻| 久久久久精品久久久久真实原创| videos熟女内射| 久久国产亚洲av麻豆专区| 欧美国产精品一级二级三级 | 九色成人免费人妻av| 熟女人妻精品中文字幕| 99re6热这里在线精品视频| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 精品久久久噜噜| 中文天堂在线官网| 欧美性感艳星| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频| 国产精品一区二区性色av| 有码 亚洲区| 免费看av在线观看网站| 亚洲av二区三区四区| 高清日韩中文字幕在线| 久久久久网色| 97超碰精品成人国产| 在线观看一区二区三区| 国产在视频线精品| 成人一区二区视频在线观看| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 熟妇人妻不卡中文字幕| 亚洲第一区二区三区不卡| 97在线视频观看| 国产v大片淫在线免费观看| 最近中文字幕2019免费版| 精品一区在线观看国产| 成人二区视频| 人人妻人人爽人人添夜夜欢视频 | 国产精品国产av在线观看| 欧美bdsm另类| 男人和女人高潮做爰伦理| 亚洲欧美成人精品一区二区| 日本色播在线视频| 一本一本综合久久| 日韩成人伦理影院| 亚洲国产av新网站| 国产精品久久久久久精品电影小说 | 国产色婷婷99| 欧美日韩视频精品一区| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区四那| 国产 一区精品| 美女cb高潮喷水在线观看| 91精品一卡2卡3卡4卡| 国产精品av视频在线免费观看| 国产精品99久久99久久久不卡 | 欧美日韩综合久久久久久| 成人亚洲欧美一区二区av| 国产成人精品久久久久久| 一级二级三级毛片免费看| 熟妇人妻不卡中文字幕| 国产成人精品久久久久久| 色视频在线一区二区三区| 国产 一区 欧美 日韩| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频| 欧美97在线视频| 日本午夜av视频| 亚洲国产色片| 亚洲最大成人中文| 一级片'在线观看视频| 国产爽快片一区二区三区| 日韩av不卡免费在线播放| 久久国产亚洲av麻豆专区| 80岁老熟妇乱子伦牲交| 久久精品国产自在天天线| 在线免费十八禁| 色综合色国产| 久久久精品94久久精品| 亚洲国产精品国产精品| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 黄色一级大片看看| 国产精品精品国产色婷婷| 欧美高清性xxxxhd video| 91午夜精品亚洲一区二区三区| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区视频在线观看 | 哪个播放器可以免费观看大片| 国产淫片久久久久久久久| 看十八女毛片水多多多| 欧美国产精品一级二级三级 | 久热久热在线精品观看| av在线蜜桃| 高清不卡的av网站| 99久久精品一区二区三区| 亚洲综合色惰| 国产无遮挡羞羞视频在线观看| 国产免费一级a男人的天堂| 一二三四中文在线观看免费高清| 日韩一区二区视频免费看| 国产伦精品一区二区三区视频9| 亚洲精品成人av观看孕妇| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 日本黄色片子视频| 国产精品久久久久久久电影| 亚洲精品久久午夜乱码| 成年女人在线观看亚洲视频| 日韩精品有码人妻一区| 国产淫片久久久久久久久| av福利片在线观看| 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 免费人妻精品一区二区三区视频| 男人和女人高潮做爰伦理| 亚洲经典国产精华液单| 成人18禁高潮啪啪吃奶动态图 | 大香蕉久久网| 亚洲国产精品一区三区| 国产一区有黄有色的免费视频| 黄片wwwwww| 久久人人爽人人片av| 欧美三级亚洲精品| 国产成人免费无遮挡视频| 免费看不卡的av| xxx大片免费视频| 成人二区视频| 国产极品天堂在线| av女优亚洲男人天堂| 看十八女毛片水多多多| 久久综合国产亚洲精品| h视频一区二区三区| 99热网站在线观看| 亚洲精品456在线播放app| 久久久亚洲精品成人影院| 免费观看的影片在线观看| 国产精品一区二区三区四区免费观看| 国产男女内射视频| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 久久精品国产亚洲网站| 高清黄色对白视频在线免费看 | 国产av国产精品国产| 蜜桃在线观看..| 日韩av免费高清视频| 老师上课跳d突然被开到最大视频| 草草在线视频免费看| 如何舔出高潮| 亚洲一区二区三区欧美精品| 成年人午夜在线观看视频| 九九在线视频观看精品| 亚洲欧美日韩卡通动漫| 高清视频免费观看一区二区| 久久ye,这里只有精品| 一级爰片在线观看| 99久久中文字幕三级久久日本| 欧美极品一区二区三区四区| 国产精品无大码| 久久精品国产亚洲网站| 三级国产精品欧美在线观看| 欧美日韩国产mv在线观看视频 | 久久人人爽av亚洲精品天堂 | 麻豆国产97在线/欧美| 久久精品国产a三级三级三级| 深夜a级毛片| 日本黄色片子视频| 久久久久久九九精品二区国产| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 亚洲综合精品二区| 亚洲色图av天堂| 久久久久久久精品精品| 伦精品一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲国产毛片av蜜桃av| 99热网站在线观看| 丝瓜视频免费看黄片| 精品久久久久久久久亚洲| 男人狂女人下面高潮的视频| 黄片无遮挡物在线观看| 国产精品一二三区在线看| 午夜福利在线在线| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区| 久久久久网色| 午夜福利高清视频| a 毛片基地| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品电影小说 | 在线观看av片永久免费下载| 大香蕉97超碰在线| 制服丝袜香蕉在线| 毛片女人毛片| 国产成人精品久久久久久| 一级毛片我不卡| 插逼视频在线观看| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 好男人视频免费观看在线| 国产高清不卡午夜福利| 大片免费播放器 马上看| 女性生殖器流出的白浆| 18禁在线无遮挡免费观看视频| 久久女婷五月综合色啪小说| 久久国产亚洲av麻豆专区| 亚洲中文av在线| 91久久精品国产一区二区成人| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| 女性生殖器流出的白浆| 国产成人a∨麻豆精品| 人人妻人人澡人人爽人人夜夜| 一区二区三区免费毛片| 欧美日韩综合久久久久久| 国产在视频线精品| 亚洲电影在线观看av| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 下体分泌物呈黄色| 男女边摸边吃奶| a级毛色黄片| av国产免费在线观看| 亚洲精品456在线播放app| 国产一区二区在线观看日韩| 蜜桃久久精品国产亚洲av| av免费在线看不卡| 国产淫语在线视频|