• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL STUDY OF CAVITATION ON THE SURFACE OF THE GUIDE VANE IN THREE GORGES HYDROPOWER UNIT*

    2010-05-06 08:22:26PENGYuchengCHENXiyang

    PENG Yu-cheng, CHEN Xi-yang

    School of energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, E-mail: fluidstar@smail.hust.edu.cn

    CAO Yan

    College of Electronic Information Engineering, Wuhan Polytechnic, Wuhan, 430074, China

    HOU Guo-xiang

    School of Traffic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

    NUMERICAL STUDY OF CAVITATION ON THE SURFACE OF THE GUIDE VANE IN THREE GORGES HYDROPOWER UNIT*

    PENG Yu-cheng, CHEN Xi-yang

    School of energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, E-mail: fluidstar@smail.hust.edu.cn

    CAO Yan

    College of Electronic Information Engineering, Wuhan Polytechnic, Wuhan, 430074, China

    HOU Guo-xiang

    School of Traffic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

    (Received March 7, 2010, Revised August 30, 2010)

    Large-area erosions such as rust and obvious cavitation were found on the surface of the guide vane in Three Gorges hydropower units. A numerical explanation of the cavitation is given in this article. At first, based on the characteristic performance curves of the prototype hydro-turbine supplied by ALSTOM together with the actual operating conditions, an operating point is chosen for numerical analysis using the Reynolds-Averaged Navier-Stokes (RANS) equations. The flow passages from the inlet of the spiral case to the outlet of the draft tube are included in the computational domain. The results show that the static pressure on the guide vane surface is much higher than the critical pressure of cavitation. Secondly, a tiny protrusion on the guide vane surface is considered and the problem is simplified to a 2-D problem to study the local detailed flow near the guide vane surface. The protrusion is 0.5 mm in height and is 5.0 mm in width. On the basis of the results of RANS simulations, the 2-D problem is studied using the Large Eddy Simulation (LES). It is shown that there exists a region in which the static pressure reaches a level below the vapor pressure of the water. Thirdly, a cavitation model is included for the 0.5 mm protrusion case and another tiny pit case, with a tiny pit 0.3 mm in depth and 1.0 mm in width. The results show that vapor bubble exists at the protrusion entrance and the pit exit as the low pressure regions.

    cavitation, guide vane, numerical analysis

    1. Introduction

    Static pressure governs the process of vapor bubble formation or boiling. In most cases, cavitation can occur near the fast moving blades of the turbine where the local dynamic head increases due to the action of blades which reduces the static pressure. Cavitation also occurs at the exit of the turbine when the water loses the major part of its pressure heads and any increase in dynamic head will lead to a decrease of static pressure and in its turn to cavitation.

    Cavitation seldom occurs on the guide vane surface. However, large-area erosions, including roughened spots, rust and obvious cavitation erosions, were found on the suction surface of the guide vane in the Three Gorges hydropower units. The erosions of rust, damaged coating and bluing can be seen in Figs.1(a), 1(b) and 1(c), respectively. The bluing shown in Fig.1(c) is at the cavitation erosion tails.

    Model tests are generally used to detect cavitation in a hydraulic turbine[1,2]and to investigate the cavitation structures[3,4]. On the other hand, the CFD is also widely and successfully used in cavitationstudies, and as a useful tool, can give realistic results in cavitation simulations[5-7]and predictions[8-10].

    The article presents a study of the cavitation occurred on the guide vane surface by using numerical methods with STAR-CD commercial code. The study is divided into two steps. The first step is a steady-state RANS simulation with complete flow passages from the inlet of the spiral case to the outlet of the draft tube, to obtain the contour of the static pressure and the velocity magnitude and to verify the possibility of cavitation on a smooth guide vane surface. In the second step, a transient LES method is used for a tiny protrusion and a tiny pit on the guide vane surface, to simulate the detailed flow near the guide vane surface and to investigate the difference between the scraggly and the smooth guide vane surfaces.

    Fig.1 Erosions on guide vane surface

    2. Numerical analysis based on RANS equations

    2.1 Geometry and discretization

    The full 3-D geometry of the Three Gorges ALSTOM hydro-unit shown in Fig.2 from the spiral case to the draft tube is included for the numerical analysis to obtain the pressure distribution near the guide vane. The up right corner is the runner’s geometry, of 10.5 m in diameter.

    The flow passage from the inlet of the spiral case to the outlet of the draft tube is the computational domain, which is discretized by a multi-block structured mesh. Figure 3 displays the mesh for the spiral case. Figure 4 displays the mesh for the stay vane, the guide vane and the runner. The number of stay vane blades and guide vane blades is 24. Five different hydrofoils are included in the stay vane. The number of runner blades is 15. The guide opening in Fig.2 and Fig.4 is 86%. Mesh for the draft tube is displayed in Fig.5. The total number of all meshes is 1 850 760. However, the mesh in Fig.3 to Fig.5 is the initial one, which will be adaptively refined according to yplus values.

    Fig.2 Full 3-D geometry and runner’s geometry (up right corner)

    Fig.3 Mesh for spiral case

    Fig.4 Mesh for stay vane, guide vane and runner

    Fig.5 Mesh for draft tube

    2.2 Operating condition and boundary conditions

    The operating condition listed in Table 1 is chosen for the RANS simulation, which is based on the actual operating conditions and the performance curves of the prototype turbine supplied by ALSTOM Company.

    Table 1 operating condition for RANS simulation

    Table 2 Boundary conditions

    Given the head loss in the penstock, together with the formula as shown below and Bernoulli equation, the flow rate and the pressure at the inlet of the spiral case can be obtained, which are listed in Table 2, together with the runner speed. The efficiency is expressed as

    where η denotes the efficiency, P the output

    Fig.6 Refined mesh near guide vane surface

    Fig.7 y+distribution on a guide vane surface

    According to the formula in Ref.[12], the performance at the operating condition listed in Table 1 can be calculated as shown in the following Table 3.In addition, some other values can be obtained, for example, the thrust force acting on the runner along the axis is 12 959.81 kN, and the radial force is 208.84 kN.

    Table 3 Simulated performance

    It is shown that the simulated results in Table 3 are much closer to those in Table 1.

    2.4 Pressure distribution

    The static pressure contour on the guide vane surface is displayed in Fig.8, where the lowest pressure on the guide vane lower exit surface is about 4.3 atmospheres, as is far above the vaporization pressure 2 370 Pa.

    The lowest pressure in the full computational domain is to be found at the exit edge and the suction side of the runner blade. The lowest pressure is lower than 2 370 Pa, so cavitation may occur. Iso-surface of 2 370 Pa in the computational domain is displayed as a black area in Fig.9.

    As described above, it is impossible to have conventional cavitation on a smooth guide vane, unless the pressure in all runner passages is lower than the vapor pressure of water. However, if there are some tiny protrusions or tiny pits on the guide vane surface, it will be another story. The following section will discuss the detailed flow on the guide vane surface, where a tiny protrusion and a tiny pit is considered using the LES method and the cavitation model.

    Fig.8 Pressure contour on guide vane surface

    Fig.9 Iso-surface of 2 370 Pa near runner blade

    3. Transient analysis based on LES

    A LES in short, is a computation in which the large eddies are computed and the smallest subgrid-scale (SGS) eddies are modeled. Literature[13]conducted a numerical modeling study using the 2-D LES approach to evaluate the wind effects on the transport and dispersion processes close to a covered roadway. The LES results, although only two dimensional, are in a good quantitative agreement with the experimental data and only slightly overestimate the concentration levels. The covered roadway is similar with the geometry used in our article. Therefore the 2-D LES will be used in our study. Further investigations will be conducted in order to compare the results of 2-D and 3-D computations.

    3.1 Geometry and boundaries

    A tiny protrusion is considered on the guide vane surface in this section. The geometry is simplified to a 2-D problem as shown in Fig.10, together with the primary direction of flow.

    Fig.10 Geometry and boundaries (mm)

    At the entrance of the geometry, the velocity inlet boundary is specified. At the exit is the outlet boundary. At the lower wall, the standard wall function is used. In addition, at the upper wall, the frictionless slip wall is assumed to avoid its influence. The location of the reference pressure, Pref, is marked in Fig.10.

    Structured mesh is used and the meshes near theprotrusion are refined as shown in Fig. 11. The total number of finite volume cells is 86 580.

    Fig.11 Meshes near protrusion

    The velocity at the entrance and the reference pressure are chosen according to the RANS results. The velocity magnitude distribution and the pressure distribution at the mid section plane of the guide vane is shown in Fig.12 and Fig.13, respectively. It can be seen that the velocity at the inlet boundary is 21 m/s, and the pressure at the reference location (see Fig.10) is 6.4×105Pa.

    Fig.12 Velocity magnitude distribution at the mid section plane of the guide vane

    Fig.13 Pressure distribution at the mid section plane of the guide vane

    3.2 Results without using the cavitation model

    The Smagorinsky mode[14]is used to solve this problem. To obtain the best results from LES, second-order schemes are used for both the temporal and spatial discretization, with time step of 1×10-6s.

    Figure 14 shows the contour plot of the instantaneous static pressure. The deep color denotes the low pressure. The region in which the static pressure reaches a level below the vapor pressure of the water can be distinguished.

    Fig.14 Contour plot of the instantaneous static pressure without using the cavitation model

    3.3 Results obtained by using the cavitation model

    In this case, the barotropic model[15]is used to simulate cavitation. The result is displayed in Fig.15. Deep color means a low pressure. It is shown that there is a vapor bubble at the entrance of the protrusion.

    Fig.15 Contour plot of pressure obtained by using the cavitation model

    Fig.16 Contour plot of pressure

    3.4 Another case

    In this case, a 2-D tiny pit of 1 mm in width and 0.3 mm in depth is considered. Other geometry and boundary conditions are the same as those in Fig.10. The pressure contour at an instant is obtained by usingLES and the cavitation model is shown in Fig.16. Deep color means a low pressure in this figure. It is shown that there exists a vapor bubble at the exit of the pit.

    4. Conclusions

    The RANS equations are solved in the computational domain comprising the flow passages from the inlet of the spiral case to the outlet of the draft tube. An operation condition is chosen for the simulation based on the actual operation conditions and the characteristic performance curves of prototype hydro turbine supplied by ALSTOM. It is found that the simulated performance agrees well with the actual one. Meanwhile, the contour of the static pressure on the guide vane surface indicates that it is impossible to have conventional cavitation on a smooth guide vane.

    However, if there are tiny protrusions or tiny pits on the guide vane surface, it will be another story. Considering a tiny protrusion of 5 mm in width and 0.5 mm in height and a tiny pit of 1.0 mm in width and 0.3 mm in depth on the guide vane surface, the detailed flow near the protrusion and the pit is computed using the LES method. The boundary conditions are determined by the pressure contour and the velocity magnitude contour at the mid section of the guide vane obtained from the RANS simulation. The LES results show that there is a region in which the absolute static pressure is under the vapor pressure of the water. Further simulations by using the cavitation model show that there are vapor bubbles in the flow domain. Therefore, it can be said that the cavitation will occur only if the guide vane surface is scraggly, such as with deciduous coat or tiny pits caused by silt cutting.

    [1] ESCALER X., EGUSQUIZA E. and FARHAT M. et al. Detection of cavitation in hydraulic turbines[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 983-1007.

    [2] MASJEDIAN JAZI A., RAHIMZADEH H. Detecting cavitation in globe valves by two methods: Characteristic diagrams and acoustic analysis[J]. Applied Acoustics, 2009, 70(11-12): 1440-1445.

    [3] METTIN R., LUTHER S. and OHL C. D. et al. Acoustic cavitation structures and simulations by a particle model[J]. Ultrasonics Sonochemistry, 1999, 6(1-2): 25-29.

    [4] DULAR M., BACHERT B. and STOFFEL B. et al. Relationship between cavitation structures and cavitation damage[J]. Wear, 2004, 257(11): 1176-1184.

    [5] LIU De-min, LIU Shu-hong and WU Yu-lin et al. LES numerical simulation of cavitation Bubble shedding on ALE 25 and ALE 15 hydrofoils[J]. Journal of Hydrodynamics, 2009, 21(6): 807-813.

    [6] WANG G., OSTOJA-STARZEWSKI M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil[J]. Applied Mathematical Modelling, 2007, 31(3): 417-447.

    [7] POUFFARY B., PATELLA R. F. and REBOUD J. L. et al. Numerical simulation of 3D cavitating flows: Analysis of cavitation head drop in turbomachinery[J]. Journal of Fluids Engineering, 2008, 130: 061301.

    [8] PARK K., SEOL H. and CHOI W. et al. Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution[J]. Applied Acoustics, 2009, 70(5): 674-680.

    [9] HATTORI S., KISHIMOTO M. Prediction of cavitation erosion on stainless steel components in centrifugal pumps[J]. Wear, 2008, 265(11-12): 1870-1874.

    [10] YE Jin-ming, XIONG Ying. Prediction of podded propeller cavitation using an unsteady surface panel method[J]. Journal of Hydrodynamics, 2008, 20(6): 790-796.

    [11] MENTER F. R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]. Proc. 24th Fluid Dynamics Conference. Orlando, Florida, USA, 1993, AIAA 93-2906.

    [12] PENG Yu-cheng. Research on the abnormal vibration of unit 6 of the Three Gorges Left Bank Station under small guide opening conditions[D]. Ph. D. Thesis, Wuhan: Huazhong University of Science and Technology, 2007(in Chinese).

    [13] LAATAR A. H., BENAHMED M. and BELGHITH A. et al. 2D large eddy simulation of pollutant dispersion around a covered roadway[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 617-637.

    [14] SMAGORINSKY J. General circulation experiments with the primitive equations, Part I: The basic experiment[J]. Mon. Weather Rev., 1963, 91(3): 99-115.

    [15] SCHMIDT D. P., RUTLAND C. J. and CORRADINI M. L. A numerical study of cavitating flow through various nozzle shapes[J]. SAE Trans., 1997, 106(3):1664-1673.

    10.1016/S1001-6058(09)60106-2

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 50975103 and 51006039).

    Biography: PENG Yu-cheng (1975-), Male, Ph. D., Lecturer

    HOU Guo-xiang, E-mail: houguoxiang@163.com

    国内久久婷婷六月综合欲色啪| 精品少妇一区二区三区视频日本电影| 免费在线观看影片大全网站| 黄色女人牲交| 男女下面插进去视频免费观看| 久9热在线精品视频| 午夜成年电影在线免费观看| 欧美性长视频在线观看| 神马国产精品三级电影在线观看 | 不卡av一区二区三区| 自线自在国产av| АⅤ资源中文在线天堂| 欧美日韩一级在线毛片| 免费在线观看日本一区| 免费在线观看影片大全网站| 琪琪午夜伦伦电影理论片6080| 成人手机av| 校园春色视频在线观看| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区三区在线| 久久久国产精品麻豆| 真人一进一出gif抽搐免费| 夜夜夜夜夜久久久久| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 19禁男女啪啪无遮挡网站| 国产精华一区二区三区| 国产aⅴ精品一区二区三区波| 欧美不卡视频在线免费观看 | 成人av一区二区三区在线看| 亚洲av成人av| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 91字幕亚洲| 变态另类丝袜制服| 99在线视频只有这里精品首页| 两个人看的免费小视频| 国产一级毛片七仙女欲春2 | av福利片在线| 怎么达到女性高潮| 亚洲专区中文字幕在线| 亚洲精品美女久久av网站| 午夜福利视频1000在线观看 | 变态另类丝袜制服| 久久久精品国产亚洲av高清涩受| 国产伦一二天堂av在线观看| 国产av在哪里看| 久久久精品欧美日韩精品| 免费在线观看黄色视频的| 亚洲在线自拍视频| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 午夜精品久久久久久毛片777| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 天堂动漫精品| 如日韩欧美国产精品一区二区三区| 91大片在线观看| 精品不卡国产一区二区三区| 十八禁网站免费在线| 亚洲成av人片免费观看| 看片在线看免费视频| 成人av一区二区三区在线看| 99国产综合亚洲精品| 老司机午夜十八禁免费视频| 香蕉久久夜色| 一a级毛片在线观看| 亚洲一码二码三码区别大吗| 熟女少妇亚洲综合色aaa.| 少妇熟女aⅴ在线视频| 欧美av亚洲av综合av国产av| 夜夜爽天天搞| 亚洲在线自拍视频| 亚洲精品在线观看二区| 狠狠狠狠99中文字幕| 亚洲欧美精品综合久久99| 不卡av一区二区三区| 午夜福利欧美成人| 色精品久久人妻99蜜桃| 中文字幕久久专区| 精品电影一区二区在线| 久久精品人人爽人人爽视色| 国产精品亚洲av一区麻豆| 国产精品亚洲美女久久久| 亚洲自拍偷在线| 男女之事视频高清在线观看| 亚洲男人的天堂狠狠| 9热在线视频观看99| 国产高清激情床上av| a级毛片在线看网站| 高清在线国产一区| 精品电影一区二区在线| 香蕉丝袜av| 国产单亲对白刺激| 在线观看免费视频日本深夜| 国产精品日韩av在线免费观看 | 国产真人三级小视频在线观看| 狠狠狠狠99中文字幕| 国产精品久久电影中文字幕| 国产午夜福利久久久久久| 免费高清视频大片| 女警被强在线播放| 不卡av一区二区三区| 男人舔女人下体高潮全视频| 久久中文字幕人妻熟女| 十八禁人妻一区二区| 国产av一区在线观看免费| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 制服丝袜大香蕉在线| 成人亚洲精品av一区二区| 欧美精品亚洲一区二区| 在线天堂中文资源库| 后天国语完整版免费观看| 91精品国产国语对白视频| 亚洲伊人色综图| 制服丝袜大香蕉在线| 美女扒开内裤让男人捅视频| 不卡一级毛片| 99国产综合亚洲精品| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2 | 欧美丝袜亚洲另类 | 这个男人来自地球电影免费观看| 免费搜索国产男女视频| 国产极品粉嫩免费观看在线| 亚洲国产日韩欧美精品在线观看 | 亚洲九九香蕉| 丰满人妻熟妇乱又伦精品不卡| 久久久久久免费高清国产稀缺| 国产精品,欧美在线| 香蕉国产在线看| 99国产精品99久久久久| 国产主播在线观看一区二区| 99香蕉大伊视频| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 夜夜爽天天搞| 成人精品一区二区免费| 国产蜜桃级精品一区二区三区| 亚洲成av人片免费观看| 国产熟女xx| 久久亚洲精品不卡| 精品欧美国产一区二区三| 丁香六月欧美| 婷婷六月久久综合丁香| 人人妻人人澡人人看| 亚洲专区字幕在线| 一进一出好大好爽视频| 国产精华一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲久久久国产精品| 三级毛片av免费| 91九色精品人成在线观看| 国产一区在线观看成人免费| 操出白浆在线播放| 久久国产精品影院| 免费高清在线观看日韩| 丰满人妻熟妇乱又伦精品不卡| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 可以在线观看毛片的网站| av天堂在线播放| 色播亚洲综合网| 我的亚洲天堂| 人人妻,人人澡人人爽秒播| 51午夜福利影视在线观看| www.熟女人妻精品国产| 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 国产成人免费无遮挡视频| 亚洲第一av免费看| 可以在线观看的亚洲视频| 欧美 亚洲 国产 日韩一| 丰满的人妻完整版| 桃色一区二区三区在线观看| 久久久久久免费高清国产稀缺| 久久久精品欧美日韩精品| 欧美中文综合在线视频| 99国产极品粉嫩在线观看| av视频在线观看入口| 国产日韩一区二区三区精品不卡| 美女大奶头视频| 日韩高清综合在线| 国产亚洲精品一区二区www| 他把我摸到了高潮在线观看| 女人精品久久久久毛片| 女同久久另类99精品国产91| 91成年电影在线观看| 法律面前人人平等表现在哪些方面| 久久久久久免费高清国产稀缺| 成在线人永久免费视频| 久久午夜综合久久蜜桃| 成人三级黄色视频| 亚洲成av人片免费观看| 欧美不卡视频在线免费观看 | 久久天堂一区二区三区四区| 欧美中文日本在线观看视频| 国产成人欧美| 免费看十八禁软件| 成人永久免费在线观看视频| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 国产亚洲精品久久久久久毛片| 视频区欧美日本亚洲| 国产成人啪精品午夜网站| 老熟妇仑乱视频hdxx| 满18在线观看网站| 精品卡一卡二卡四卡免费| 黄色女人牲交| 老司机午夜福利在线观看视频| 国产99白浆流出| 少妇裸体淫交视频免费看高清 | 青草久久国产| 美女国产高潮福利片在线看| 亚洲无线在线观看| 欧美国产日韩亚洲一区| 久久人人97超碰香蕉20202| 国产精品久久久久久人妻精品电影| 中文字幕久久专区| 久久天堂一区二区三区四区| 精品日产1卡2卡| 国产高清视频在线播放一区| 久久精品成人免费网站| 不卡av一区二区三区| 免费高清视频大片| 免费久久久久久久精品成人欧美视频| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 国产人伦9x9x在线观看| 男人舔女人下体高潮全视频| 成人国语在线视频| 999久久久国产精品视频| 一级片免费观看大全| 在线国产一区二区在线| 亚洲熟妇熟女久久| 正在播放国产对白刺激| 日韩欧美国产一区二区入口| 69精品国产乱码久久久| 国产亚洲av高清不卡| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 久久久精品国产亚洲av高清涩受| 国产视频一区二区在线看| 久久久久久久午夜电影| 女人精品久久久久毛片| 亚洲国产高清在线一区二区三 | 亚洲,欧美精品.| 欧美黄色淫秽网站| 日韩欧美国产一区二区入口| 久久香蕉激情| 精品国产超薄肉色丝袜足j| 两个人视频免费观看高清| 国产激情欧美一区二区| 欧美老熟妇乱子伦牲交| 欧美中文综合在线视频| 巨乳人妻的诱惑在线观看| bbb黄色大片| 又紧又爽又黄一区二区| 久久亚洲真实| 欧美性长视频在线观看| 叶爱在线成人免费视频播放| 精品久久久久久久人妻蜜臀av | 精品日产1卡2卡| 成人国产一区最新在线观看| 在线观看日韩欧美| 亚洲电影在线观看av| 欧美激情高清一区二区三区| 成人精品一区二区免费| 国产黄a三级三级三级人| 亚洲第一电影网av| 亚洲精品久久成人aⅴ小说| 日本vs欧美在线观看视频| 在线观看www视频免费| 久久精品国产亚洲av高清一级| 中文字幕av电影在线播放| 久久久久久国产a免费观看| 国产av一区在线观看免费| 国产成人系列免费观看| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| 18美女黄网站色大片免费观看| 美国免费a级毛片| 国产黄a三级三级三级人| 天堂影院成人在线观看| 日本 av在线| 日本撒尿小便嘘嘘汇集6| 欧美日韩黄片免| 一个人观看的视频www高清免费观看 | 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 精品卡一卡二卡四卡免费| 免费高清视频大片| 午夜久久久久精精品| 亚洲第一av免费看| 精品久久蜜臀av无| 国产在线观看jvid| 最新在线观看一区二区三区| 乱人伦中国视频| 两性夫妻黄色片| 一级黄色大片毛片| 人成视频在线观看免费观看| 欧美性长视频在线观看| 51午夜福利影视在线观看| 黑人操中国人逼视频| 亚洲精品美女久久久久99蜜臀| 久久久久精品国产欧美久久久| 搡老岳熟女国产| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 国产精品久久视频播放| 黄色成人免费大全| 国产精品久久久久久人妻精品电影| 无限看片的www在线观看| 亚洲中文av在线| 日韩大尺度精品在线看网址 | 色播在线永久视频| 成人免费观看视频高清| 一区二区三区国产精品乱码| 久久久久久久午夜电影| 成人精品一区二区免费| 露出奶头的视频| 看免费av毛片| 19禁男女啪啪无遮挡网站| 人人澡人人妻人| 国产一卡二卡三卡精品| 91大片在线观看| 国产免费av片在线观看野外av| 亚洲av电影不卡..在线观看| 精品一品国产午夜福利视频| 多毛熟女@视频| 亚洲第一av免费看| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 国产激情久久老熟女| 日本欧美视频一区| 人妻久久中文字幕网| 日韩成人在线观看一区二区三区| 在线av久久热| 村上凉子中文字幕在线| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 国产区一区二久久| 涩涩av久久男人的天堂| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 国产麻豆69| www.自偷自拍.com| 很黄的视频免费| 黑人巨大精品欧美一区二区蜜桃| x7x7x7水蜜桃| 亚洲成人精品中文字幕电影| 大码成人一级视频| 午夜福利欧美成人| 国内久久婷婷六月综合欲色啪| avwww免费| 精品久久久久久成人av| 日本 av在线| 欧美中文综合在线视频| 欧美午夜高清在线| 淫妇啪啪啪对白视频| 88av欧美| 国产精品电影一区二区三区| 亚洲无线在线观看| 国产精品亚洲美女久久久| av在线天堂中文字幕| 咕卡用的链子| 丝袜美腿诱惑在线| 老司机深夜福利视频在线观看| 欧美日韩乱码在线| 激情在线观看视频在线高清| 日本 欧美在线| 亚洲av五月六月丁香网| 又大又爽又粗| 亚洲精品中文字幕在线视频| 中文字幕人妻熟女乱码| 男人舔女人的私密视频| 国产亚洲欧美98| 国产三级在线视频| 99久久综合精品五月天人人| 国产又色又爽无遮挡免费看| 久久久久精品国产欧美久久久| 精品国产美女av久久久久小说| 国产人伦9x9x在线观看| 亚洲精品美女久久久久99蜜臀| 免费观看精品视频网站| 欧美激情极品国产一区二区三区| 色播在线永久视频| av在线天堂中文字幕| 无限看片的www在线观看| 51午夜福利影视在线观看| www日本在线高清视频| 国产成人精品无人区| 久久久久国产精品人妻aⅴ院| 久久久久久久精品吃奶| 黄色成人免费大全| 欧美成狂野欧美在线观看| 亚洲成人久久性| 免费在线观看黄色视频的| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影 | 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 999久久久国产精品视频| 很黄的视频免费| 久久久国产欧美日韩av| 国产激情久久老熟女| 国产欧美日韩一区二区三| 91大片在线观看| www.999成人在线观看| 看免费av毛片| 国产精品精品国产色婷婷| 99国产精品一区二区三区| 久久久久久久精品吃奶| 亚洲中文字幕日韩| 99精品久久久久人妻精品| 日韩欧美国产一区二区入口| 99久久综合精品五月天人人| 一进一出好大好爽视频| 99精品在免费线老司机午夜| 成在线人永久免费视频| 曰老女人黄片| 桃红色精品国产亚洲av| 好男人电影高清在线观看| 最新在线观看一区二区三区| 国产高清激情床上av| 制服人妻中文乱码| 国产亚洲欧美在线一区二区| 美国免费a级毛片| 亚洲aⅴ乱码一区二区在线播放 | 丁香六月欧美| 天堂动漫精品| 一级毛片精品| 日本免费a在线| 免费一级毛片在线播放高清视频 | 亚洲精品av麻豆狂野| 成在线人永久免费视频| 亚洲午夜精品一区,二区,三区| 亚洲精华国产精华精| 国产午夜福利久久久久久| 日本一区二区免费在线视频| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合一区二区三区| 给我免费播放毛片高清在线观看| 91字幕亚洲| www国产在线视频色| 欧美黑人精品巨大| 久久青草综合色| 国产成人精品在线电影| 日韩精品中文字幕看吧| 成人手机av| 此物有八面人人有两片| 熟女少妇亚洲综合色aaa.| 亚洲,欧美精品.| 麻豆一二三区av精品| 欧美日韩乱码在线| 在线观看免费视频日本深夜| 国产国语露脸激情在线看| 国产成人系列免费观看| 亚洲av成人不卡在线观看播放网| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 国产精品一区二区免费欧美| 亚洲狠狠婷婷综合久久图片| 成人国产综合亚洲| 亚洲色图 男人天堂 中文字幕| 自线自在国产av| 91麻豆av在线| 美女高潮喷水抽搐中文字幕| netflix在线观看网站| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 99久久国产精品久久久| 男人舔女人下体高潮全视频| 高潮久久久久久久久久久不卡| videosex国产| 9热在线视频观看99| tocl精华| 国产亚洲精品第一综合不卡| 国产精品 欧美亚洲| 国产一区二区三区综合在线观看| 看片在线看免费视频| а√天堂www在线а√下载| 久久香蕉精品热| 美女 人体艺术 gogo| 久久狼人影院| 看免费av毛片| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| 免费不卡黄色视频| 他把我摸到了高潮在线观看| 波多野结衣巨乳人妻| 国产成人精品无人区| 999久久久精品免费观看国产| 操美女的视频在线观看| 在线观看一区二区三区| 黄片播放在线免费| 国产亚洲精品久久久久5区| 亚洲欧美日韩另类电影网站| 亚洲人成电影免费在线| 国产又爽黄色视频| 啦啦啦观看免费观看视频高清 | 一级a爱视频在线免费观看| 麻豆国产av国片精品| 成人三级黄色视频| 精品一区二区三区av网在线观看| 日韩欧美免费精品| 亚洲电影在线观看av| 两人在一起打扑克的视频| av视频免费观看在线观看| 国产1区2区3区精品| 最近最新中文字幕大全免费视频| 麻豆久久精品国产亚洲av| 少妇的丰满在线观看| 欧美老熟妇乱子伦牲交| 国产亚洲精品一区二区www| 99riav亚洲国产免费| 亚洲精品在线观看二区| 天堂影院成人在线观看| 大陆偷拍与自拍| 国产精品免费视频内射| 国产国语露脸激情在线看| 国产主播在线观看一区二区| 成人精品一区二区免费| 一级,二级,三级黄色视频| 97碰自拍视频| 久久久久精品国产欧美久久久| 90打野战视频偷拍视频| 精品不卡国产一区二区三区| av片东京热男人的天堂| 国产精品免费一区二区三区在线| 黑人操中国人逼视频| www.www免费av| 波多野结衣高清无吗| 日韩欧美在线二视频| 琪琪午夜伦伦电影理论片6080| 亚洲色图av天堂| 欧美日韩福利视频一区二区| 国产精品香港三级国产av潘金莲| 国产成人免费无遮挡视频| 一级片免费观看大全| 韩国精品一区二区三区| 国内久久婷婷六月综合欲色啪| 91成年电影在线观看| 亚洲欧美日韩另类电影网站| 两人在一起打扑克的视频| 欧美黄色片欧美黄色片| 欧美绝顶高潮抽搐喷水| 99在线视频只有这里精品首页| 99re在线观看精品视频| 中文字幕av电影在线播放| 电影成人av| www.自偷自拍.com| 亚洲天堂国产精品一区在线| 日韩欧美免费精品| 老司机靠b影院| 亚洲男人的天堂狠狠| 亚洲av日韩精品久久久久久密| 一级a爱视频在线免费观看| 欧美色欧美亚洲另类二区 | 久久久久久久久中文| 又大又爽又粗| 亚洲国产精品999在线| 亚洲 欧美一区二区三区| 男女下面插进去视频免费观看| 大型黄色视频在线免费观看| 亚洲精品国产色婷婷电影| 久久中文字幕人妻熟女| 色哟哟哟哟哟哟| 熟女少妇亚洲综合色aaa.| 久久精品人人爽人人爽视色| 国产亚洲精品久久久久久毛片| 欧美中文日本在线观看视频| 变态另类丝袜制服| 一级a爱视频在线免费观看| 两人在一起打扑克的视频| 亚洲久久久国产精品| 欧美不卡视频在线免费观看 | 香蕉国产在线看| 日韩 欧美 亚洲 中文字幕| 看黄色毛片网站| 在线观看免费日韩欧美大片| 国产一区在线观看成人免费| 亚洲中文日韩欧美视频| 18禁裸乳无遮挡免费网站照片 | 亚洲av美国av| 色老头精品视频在线观看| 国产麻豆69| 国产成年人精品一区二区| 国产精品国产高清国产av| 国产成人一区二区三区免费视频网站| 国产精品,欧美在线| 757午夜福利合集在线观看| 三级毛片av免费| 欧美黄色片欧美黄色片| 一边摸一边抽搐一进一出视频| 国产麻豆69| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一出视频| aaaaa片日本免费| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区精品视频观看| 亚洲免费av在线视频| 国产欧美日韩精品亚洲av| 一级a爱视频在线免费观看| 久久精品国产99精品国产亚洲性色 |