• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL SIMULATION OF THE ENERGY DISSIPATION CHARACTERISTICS IN STILLING BASIN OF MULTI-HORIZONTAL SUBMERGED JETS*

    2010-05-06 08:22:34CHENJiangangZHANGJianminXUWeilinWANGYurong

    CHEN Jian-gang, ZHANG Jian-min, XU Wei-lin, WANG Yu-rong

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, E-mail: chenjg@yeah.net

    NUMERICAL SIMULATION OF THE ENERGY DISSIPATION CHARACTERISTICS IN STILLING BASIN OF MULTI-HORIZONTAL SUBMERGED JETS*

    CHEN Jian-gang, ZHANG Jian-min, XU Wei-lin, WANG Yu-rong

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, E-mail: chenjg@yeah.net

    (Received May 6, 2010, Revised August 16, 2010)

    3-D numerical simulation was carried out for the water flow in a stilling basin with multi-horizontal submerged jets by using two different turbulence models, namely, the VOF RNG k?ε and Mixture RNG k?ε turbulence models. The calculated water depth, velocity profile and pressure distribution are in good agreement with the data obtained in experiments. It indicates that the numerical simulation can effectively be used to study the water flow movement and the energy dissipation mechanism. The numerical simulation results show that the turbulent kinetic energy distribution obtained by using the Mixture turbulence model covers a region about 18% larger than that calculated by using the VOF turbulence model, and is in better agreement with the actual situation. Furthermore, the Mixture turbulence model is better than the VOF turbulence model in calculating the air entrainment.

    multi-horizontal submerged jets, numerical simulation, VOF method, Mixture method, hydraulic characteristics, stilling basin

    1. Introduction

    The safety of flood discharging and energy dissipation is a very important issue in hydraulic engineering, especially in cases of high water head and large unit discharge. Many studies were devoted to this problem. Rajanamam[1], Hager[2]and Ohtsu[3]performed experimental studies of the underflow energy dissipation with abrupt drops or symmetric expansions. Katakam[4]studied the characteristics of underflow energy dissipation with abrupt drops and sudden enlargement, and it is found that the required tail-water level to ensure the hydraulic jump can be reduced and the flow pattern in downstream is stable. It is also found that the relative energy loss in the stilling basin is larger than that in the sudden enlargement type basin and the abrupt drop type basin. Zhang et al.[5,6]obtained a theoretical equation for the sequent depth of submerged hydraulic jumps in the stilling basin. They also developed a theoretical equation for the energy dissipation ratio. Deng et al.[7]performed a series of experimental studies of the multi-horizontal submerged jets. It is found that the flow patterns with the change of the tailwater level are quite stable with a large aspect ratio in a stilling basin. Sun et al.[8]found that the contracted orifice width would cause stable flow patterns in the stilling basin, increase the energy loss and reduce the atomization. Huang et al.[9]studied the effect of drop height on the velocity near the slab in stilling basin. Deng et al.[7], Li et al.[10-12], Gao et al.[13], and Yang et al.[14]studied the velocity field in a stilling basin by numerical simulations. It is found that there is no perforative vertical whirl in the stilling basin, the vortex dissociates on the slab and is not fixed on a place.

    Multi-horizontal submerged jets are a new typeof energy dissipater. Compared to the ski-jump energy dissipater and the underflow energy dissipater, they have features of weak atomization, high energy dissipation ratio and stable flow pattern. Due to their complex vortex structure and strong air entrainment in the stilling basin, it is hard to simulate the structure and intensity of the vortex by a routine test method, however, the numerical simulation can provide a good supplement to physical model tests and be used to obtain the detailed hydraulic characteristics of the velocity field.

    With the development of the computer technology, the application of turbulence models and the improvement of numerical methods, the numerical simulation plays an important part in studying the problems of hydraulics. Studies by Karim and Mali[15], Xu et al.[16], Lu and Li[17]and Ai and Jin[18]show that the k?ε two-equation turbulence model is an useful tool in simulating this complex water flow. In this study, the characteristics of the hydraulic jumps in a stilling basin of multi-horizontal submerged jets are studied by using VOF RNG k?ε and Mixture RNG k?ε turbulence models, for a further understanding of the characteristics of energy dissipation and air entrainment in the stilling basin of multi-horizontal submerged jets.

    2. Numerical model and boundary conditions

    2.1 VOF turbulence model

    Although the flow pattern is very complex in a stilling basin of multi-horizontal submerged jets, the Navire-Stokes equation can still give a precise mathematical description of multi-horizontal submerged jets. Today, a numerical simulation of 3-D free surface flows has become computationally affordable[19,20]. The RNG k?ε model is used to calculate the hydraulic parameters of the flows through the energy dissipaters. This model can very well simulate the anisotropy of high-speed jets. The governing equations for the VOF turbulence model are as follows

    Continuity equation:

    where ρ and μ are the density of the averaged volume fraction and the molecule viscosity coefficient, respectively. μtis the turbulent viscosity coefficient, obtained through the turbulent kinetic k and the turbulent dissipation rateε as

    In the tensor expression, xirepresents x, y, z and ui, u , v , w , where i=1,2,3 , i andj are used as the summation subscripts. The general model constants of the equation include, η0=4.38, β =0.012, Cμ=0.085, C2ε=1.68, σk=0.7179, σε=0.7179.

    2.2 Mixture turbulence model

    The Mixture model is a simplified multiphase flow model, which is used to simulate the flow of multiphases with different velocities. It is assumed that the balance is maintained in short-range spatial scales. The model includes the mixed phase momentum equation, continuity equation and energy equation, as well as the relations between the volume fractions of different phases and about the slip velocity. The Mixture turbulence model differs from the VOF turbulence model in the following aspects. First, the Mixture model allows an inter-penetration among different phases, that is, the volume fraction takes a value from zero to one in the same control volume. Second, it allows a slip velocity betweendifferent phases. The governing equations are as follows

    Continuity equation:

    where ρkis the density of k phase, ukis the mass averaged velocity of k phase,αkis the volume fraction of k phase, F is the body force, g is the acceleration of gravity, μeff,mis the coefficient of the virtual viscosity, and μeff,m= μl,m+μt,m, and udr,kis the drift velocity of kphase.

    where ukpis the relative slip velocity betweenk phase and the first phase ( q phase),fdragis the resistance coefficient.

    Fig.1(a) Numerical simulation region

    Fig.1(b) Mesh of crest overflowing orifice

    2.3 Boundary conditions

    The numerical simulation was carried out for the stilling basin of multi-horizontal submerged jets, as is in a practical project. The drop elevations of crest overflowing orifices and mid-discharge orifices are 261.0 m and 253.0 m, respectively, namely, the drop heights are S1=16.0 m and S2=8.0 m, for crest overflowing orifices and mid-discharge orifices, respectively. The flood discharging section includes 6 crest overflowing orifices and 5 mid-discharge orifices, and these orifices are alternately arranged. The stilling basin is 228.0 m long and 108.0 m wide. The elevation of the stilling basin slab is 245.0 m. The calculation region and the computing grid are shownin Fig.1. The numerical simulation covers the flood discharging section, the head-water reservoir, the stilling basin and the downstream reach. The identical computing grid is used in the numerical simulation in this article, and the details of the numerical simulation are shown in Table 1.

    Table1 Details of the numerical simulation

    (1) Inflow boundary: The variable values on the inflow boundary must be given. The velocity of the inflow is calculated according to the discharge and the water level, and it is given on the inflow boundary.

    (2) Outflow boundary: The outflow boundary conditions are given on the exit of the calculation region, based on the uniform flow conditions.

    (3) Wall boundary: Using the wall-function method.

    (4)Computing grid: The identical grid is used in the numerical simulation for two different turbulence models.

    Fig.1(c) Mesh of mid-discharge orifice

    3. Numerical simulation results and analyses

    3.1 Water surface profile

    Fig.2 Water surface profile calculated and measured

    Figure 2 shows the simulated and measured results of the water surface profile of the multi-horizontal submerged jets in a stilling basin. The origin of the coordinate system is set at the intersection of the drop and the centerline of the slab of the stilling basin, where X is the distance from measuring points to the drop, H is the water depth, Ystands for the distance from measuring points to the midline of the stilling basin. VOF stands for the numerical results obtained by using the VOF turbulence model, Mixture stands for the numerical results obtained by using the Mixture turbulence model and Exp. stands for experimental results. It can be seen from Fig.2 that the computed water surface profile agrees very well with that measured from the physical model. In the experiments, it can be seen from the cross section that the water surface breaks in the stilling basin, therefore, the water depth near the sidewall is measured in detail. The aerated water in the foreside of the stilling basin is strongly turbulent and the free water surface fluctuates greatly and randomly, which makes it difficult to identify the testing point exactly, which is the main reason why the water surface profile in the foreside of the stillingbasin varies greatly. At the end of the stilling basin, the water flow is smooth and the wave is small, thus the measured and computed values see little difference. The water depth gradient is very large in the foreside of the stilling basin in Trail 1 and Trail 3, while the water depth is very flat in Trail 2 and the water surface profile has a relation with the water depth at the end sill of the stilling basin.

    Fig.3 Pressure distribution calculated and measured

    3.2 Pressure distribution

    Fig.4 Measured and calculated velocities near the slab

    The calculated and measured pressure distributions on the slab of the stilling basin are shown in Fig.3, where Y is the distance from measuring points to the centerline of stilling basin. It can be seen from Fig.3 that the calculated values agree very well with the measured ones except in the foreside of the stilling basin, where there is a small difference. Timeaveraged pressure values see little difference when X<80 min Trail 1 and Trail 2, while the measured and calculated pressures keep consistent when X>80 m. There is a great pressure gradient on the slab of the stilling basin when 10 m

    Fig.5 Distributions of turbulent kinetic energy and turbulence dissipation rate for Trail 3

    3.3 Velocity near the slab in stilling basin

    The measured and calculated velocities near the slab in the stilling basin are shown in Fig.4. The velocity measuring points are about 0.5 m from the slab of the stilling basin. It can be seen from Fig.4 that the calculated values agree well with the measured ones. The velocity near the slab in the stilling basin decays fast, the points of the maximum positive and negative velocities are almost at the same point in the stilling basin and the velocity distribution has the same trend. However, there is a little error in the numerical values. The measured and calculated velocities see a little difference when X<60 m in Trail 2 and Trail 3. The main reason is that during the experiments, the water in the stilling basin is severely turbulent and the location and size of the maximum velocity are not fixed, while the experimental value is the instantaneous maximum at a fixed point.

    3.4 Turbulence flow characteristics

    Fig.6 Air entrainment distribution for Trail 3

    The distributions of the turbulent kinetic energy and the turbulence dissipation rate obtained by using the VOF RNG k?ε and Mixture RNG k?ε turbulence models are shown in Fig.5. It can be seen from Fig.5 that the turbulent kinetic energy takes the maximum on the foreside of the stilling basin, then gradually declines along the slab of the stilling basin. Near the foreside of the stilling basin, the flow is strongly turbulent and most of the energy is dissipated. The energy dissipation is very weak at the end of the stilling basin. It can be seen from the transverse section that there is a high efflux velocity at the core of the jet flow, while the velocity gradient is small. Turbulent kinetic energy at the core of the jet flow is smaller than that at the other shear area. Around the jet flow, the flow velocity decreases but the velocity gradient increases, thus the turbulent kinetic energy is very large. The turbulent kinetic energy distributions as obtained by using the VOF and Mixture turbulence models cover an region of 0 m

    3.5 Air concentration

    The air concentration distributions obtained by using the VOF RNG k?ε and Mixture RNG k?ε turbulence models in Trail 3 are shown in Fig.6, where the blue color stands for air and the red for water. The contours of the air concentration obtained by using the VOF turbulence model are densely distributed on the water surface, while the air concentration is small in the water body and is almost equal to zero near the slab and the side wall of the stilling basin. At the same time, there are some gas pockets of different sizes in the water body, which does not very well agree with the practical situation of the water flow movement. The air concentrationobtained by using the Mixture turbulence model is about 20% on average near the slab and the side wall of the stilling basin, as in agreement with the practical situation of the water flow movement. The Mixture model allows the interpenetration among different phases, namely, the volume fraction takes a value ranging from zero to one in a control volume, so the results obtained by using the Mixture turbulence model are better than those obtained by using the VOF turbulence model. The Mixture turbulence model can simulate the distribution of the air concentration in a turbulent flow, however, the two methods can not simulate the size of the air bubbles. During the experiments, it can be seen that the high-speed flow is strongly turbulent in the stilling basin and the water body has a certain air concentration, which can be calculated by the Mixture turbulence model with better agreement with the practical situation as compared with that calculated by using the VOF turbulence model. The VOF turbulence model has limitations when it is applied to strong air entrainment flows in predicting the air concentration.

    4. Conclusions

    The numerical simulation is carried out for the stilling basin of multi-horizontal submerged jets, as is in a practical project with the final scheme. The characteristics of the hydraulic jump in a stilling basin of multi-horizontal submerged jets are studied by using VOF RNG k?ε and Mixture RNG k?ε turbulence models in this article, and the numerical simulation results are verified by a series of model experiments. The conclusions are as follows:

    (1) 3-D numerical simulations are carried out for the water flow in a stilling basin of multi-horizontal submerged jets by using two different turbulence models, that is, the VOF RNG k?ε and the Mixture RNG k?ε turbulence models. The calculated results, such as water depth, velocity profile and pressure distribution, are in good agreement with those obtained by experiments. It indicates that the two turbulence models are valid.

    (2) The numerical results of the two turbulence models give a detailed picture of the mainstream decay process, vortex patterns, turbulence intensity and its distribution. The hydraulic characteristics and energy dissipation processes can be well described and the numerical simulation results can provide a good supplement to the results obtained in model experiments.

    (3) The turbulent kinetic energy distribution calculated by using the Mixture turbulence model covers a region about 18% larger than that calculated by using the VOF turbulence model on the average. Hence, the energy dissipation region calculated by using the Mixture turbulence model agrees better with the practical situation of the water flow movement.

    (4) The air concentration distribution calculated by using the Mixture turbulence model agrees very well with that in the stilling basin of multi-horizontal submerged jets, it indicates that the Mixture turbulence model is better than the VOF turbulence model in calculating the air concentration.

    [1] RAJANATNAM N., SUBRAMANYA K. Hydraulic jumps below abrupt symmetrical expansions[J]. J. Hydr. Div. ASCE, 1968, 94(2): 481-503.

    [2] HAGER W. H. B-Jumps at abrupt channel drops[J]. Journal of Hydraulic Engineering, ASCE,1985,111(5): 861-866.

    [3] OHTSU I, YASUDA Y. and ISHIKAWA M. Submerges hydraulic jump below abrupt expansion[J]. Journal of Hydraulic Engineering, ASCE,1999, 125(5): 492-499.

    [4] KATAKAM V. Spatial B-jump at channel enlargements with abrupt drop[J]. Journal of Hydraulic Engineering, ASCE, 1998, 124(6): 643-646.

    [5] ZHANG Jian-min, YANG Yong-quan and XU Wei-lin et al. Theory of multi-horizontal submerged jets and experimental investigation[J]. Advances in Nature Science, 2005, 15(1): 97-102(in Chinese).

    [6] ZHANG Jian-min, WANG Yu-rong and YANG Yong-quan et al. Energy dissipation and hydraulics characteristics of multi-horizontal submerged jets[J]. Advances in Water Science, 2005, 16(1): 18-22(in Chinese).

    [7] DENG Jun, XU Wei-lin and ZHANG Jian-min et al. A new energy dissipator- multi-horizontal submerged jets[J]. Science in China Series E: Technological Sciences, 2009, 39(1): 29-38(in Chinese).

    [8] SUN Shuang-ke, LIU Hai-tao and XIA Qing-fu et al. Study on stilling basin with step-down floor for energy dissipation of hydraulic jump in high dams[J]. Journal of Hydraulic Engineering, 2005, 36(10): 1188-1193(in Chinese).

    [9] HUANG Qiu-jun, FENG Shu-rong and LI Yang-nong. Experimental study on energy dissipation characteristics of multi-horizontal submerged jets[J]. Chinese Journal of Hydrodynamics, 2008, 23(6): 694-701(in Chinese).

    [10] LI Yan-ling, HUA Guo-chun and ZHANG Jian-min et al. Analysis on energy dissipation of the single-lever with multi-strand and multi-lever with multi-strand horizontal submerged jets[J]. Journal of Hydrodynamics, Ser. A, 2006, 21(1): 26-31(in Chinese).

    [11] LI Yan-ling, HUA Guo-chun and ZHANG Jian-min. Factors affecting the hydraulic characteristics of horizontal submerged jets[J]. Advances in Water Science, 2006, 17(6): 761-766(in Chinese).

    [12] LI Yan-ling, YANG Yong-quan and HUA Guo-chun et al. Experimental study on multi-horizontal submerged jets[J].Journal of Sichuan University (Engineering Science Edition), 2004, 36(6): 32-36(in Chinese).

    [13] GAO Peng, YANG Yong-quan and DENG Jun et al. Investigation on complex flow pattern of multi-submerged jets into plunge pool[J]. Journal of Sichuan University (Engineering Science Edition),2006, 38(5): 70-75(in Chinese).

    [14] YANG Zhong-chao, DENGJun and YANG Yong-quan et al. Numerical simulation of multiple submerged jets on multilevel dicharged into plunge pool[J]. Journal of Hydraulic Engineering, 2006, 38(5): 70-75(in Chinese).

    [15] KARIM O. A. K., MALI K. H. M. Prediction of flow patterns in local scour holes caused by turbulent water jets[J]. Journal of Hydraulic Research, 2000, 38(4): 279-287.

    [16] XU Wei-lin, LIAO Hua-sheng and YANG Yong-quan et al. Numerical simulation of 3-D turbulent flows of plunge pool and energy dissipation analysis[J]. Journal of Hydrodynamics, Ser. A, 1996, 11(5): 561-569(in Chinese).

    [17] LU Lin, LI Yu-cheng. Numerical simulation of turbulent free surface flow over obstruction[J]. Journal of Hydrodynamics, 2008, 20(4): 414-423.

    [18] AI Cong-fang, JIN Sheng. Three-dimensional free surface flow model for simulating water wave motions[J]. Chinese Journal of hydrodynamics, 2008, 23(3): 338-347(in Chinese).

    [19] WANG Kun, JIN Sheng and LIU Gang. Numerical modeling of free-surface flows with bottom and surface-layer pressure treament[J]. Journal of Hydrodynamics, 2009, 21(3): 352-359.

    [20] WU Jian-hua, AI Wan-zheng. Flows through energy dissipaers with sudden reduction and sudden enlargement forms[J]. Journal of Hydrodynamics, 2010, 22(3): 360-365.

    10.1016/S1001-6058(09)60110-4

    * Project supported by the National Key Basic Research Program of China (973 Program, Grant No. 2007CB714105), the Science Foundation of Ministry of Education of China (Grant No. 2008108111) and the Program for New Century Excellent Talents in University (Grant No. NCET-08-0378).

    Biography: CHEN Jian-gang (1982-), Male, Ph. D. Candidate

    ZHANG Jian-min, E-mail: jmzhangscu@263.net

    真人做人爱边吃奶动态| 午夜激情av网站| 久热爱精品视频在线9| 99国产极品粉嫩在线观看| 精品国产一区二区三区四区第35| 精品一区二区三区av网在线观看| 欧美日韩瑟瑟在线播放| 精品卡一卡二卡四卡免费| 岛国在线观看网站| 黑人巨大精品欧美一区二区mp4| 欧美三级亚洲精品| 亚洲国产欧美日韩在线播放| 人人妻,人人澡人人爽秒播| 午夜福利在线在线| 欧美av亚洲av综合av国产av| av中文乱码字幕在线| 亚洲av成人不卡在线观看播放网| 午夜福利高清视频| 国产av在哪里看| 欧美在线黄色| 午夜a级毛片| 亚洲片人在线观看| 久久婷婷人人爽人人干人人爱| 欧美黄色片欧美黄色片| 女同久久另类99精品国产91| av免费在线观看网站| 日本黄色视频三级网站网址| 精品一区二区三区视频在线观看免费| 亚洲精品国产区一区二| 一进一出抽搐gif免费好疼| 亚洲国产欧美日韩在线播放| 国产精品影院久久| 最好的美女福利视频网| 欧美又色又爽又黄视频| 村上凉子中文字幕在线| 精品久久久久久,| 日韩欧美一区视频在线观看| 国产主播在线观看一区二区| 免费av毛片视频| 岛国视频午夜一区免费看| 国产av不卡久久| 久久久久久大精品| 极品教师在线免费播放| 嫩草影院精品99| 免费看美女性在线毛片视频| 亚洲av电影在线进入| 91av网站免费观看| 日韩av在线大香蕉| 很黄的视频免费| 亚洲精华国产精华精| 制服诱惑二区| 亚洲人成电影免费在线| 欧美黄色淫秽网站| 欧洲精品卡2卡3卡4卡5卡区| 久久热在线av| 国产在线精品亚洲第一网站| 91在线观看av| 亚洲国产精品合色在线| 成人永久免费在线观看视频| 欧美日韩瑟瑟在线播放| 国产亚洲av高清不卡| 亚洲精品中文字幕在线视频| 99riav亚洲国产免费| 视频区欧美日本亚洲| 免费女性裸体啪啪无遮挡网站| 搡老妇女老女人老熟妇| 欧美在线一区亚洲| 欧美zozozo另类| 给我免费播放毛片高清在线观看| 久久性视频一级片| 非洲黑人性xxxx精品又粗又长| 在线av久久热| 91大片在线观看| 欧美一级a爱片免费观看看 | 国产av不卡久久| 亚洲,欧美精品.| 亚洲精品美女久久久久99蜜臀| 欧美激情 高清一区二区三区| 国产91精品成人一区二区三区| 国产精品自产拍在线观看55亚洲| 亚洲aⅴ乱码一区二区在线播放 | av福利片在线| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲国产一区二区在线观看| 欧美大码av| 搡老熟女国产l中国老女人| 变态另类成人亚洲欧美熟女| 韩国精品一区二区三区| 一区福利在线观看| 长腿黑丝高跟| 51午夜福利影视在线观看| 欧美黑人巨大hd| 99在线视频只有这里精品首页| 99久久综合精品五月天人人| 国产又黄又爽又无遮挡在线| 免费一级毛片在线播放高清视频| 岛国在线观看网站| 伊人久久大香线蕉亚洲五| 无遮挡黄片免费观看| 国产精品免费一区二区三区在线| 久久久国产精品麻豆| 丝袜人妻中文字幕| 国产极品粉嫩免费观看在线| 欧美另类亚洲清纯唯美| 日本一本二区三区精品| 久久久久久久久中文| 亚洲色图av天堂| 日本五十路高清| 深夜精品福利| 日日干狠狠操夜夜爽| 男人的好看免费观看在线视频 | 欧美黄色淫秽网站| 国产aⅴ精品一区二区三区波| 亚洲午夜理论影院| 欧美精品亚洲一区二区| 久久久久久人人人人人| 无遮挡黄片免费观看| 深夜精品福利| cao死你这个sao货| 午夜免费激情av| 免费在线观看亚洲国产| 国产精品 欧美亚洲| 脱女人内裤的视频| 超碰成人久久| 又紧又爽又黄一区二区| 亚洲精品一区av在线观看| 国产不卡一卡二| 免费高清视频大片| 免费女性裸体啪啪无遮挡网站| 国产av又大| 成人亚洲精品av一区二区| 国产激情久久老熟女| 黄色a级毛片大全视频| 熟妇人妻久久中文字幕3abv| 国产精品国产高清国产av| 国产精品综合久久久久久久免费| 人人妻人人澡欧美一区二区| 国产又爽黄色视频| 女性生殖器流出的白浆| 国产精品久久久久久人妻精品电影| 日本一区二区免费在线视频| 老司机福利观看| 亚洲午夜理论影院| 黄网站色视频无遮挡免费观看| 精品人妻1区二区| 久久久水蜜桃国产精品网| 黄频高清免费视频| 美女 人体艺术 gogo| 我的亚洲天堂| 侵犯人妻中文字幕一二三四区| av中文乱码字幕在线| 国产精品一区二区三区四区久久 | 少妇的丰满在线观看| 日日摸夜夜添夜夜添小说| 精品福利观看| 日本五十路高清| 一进一出好大好爽视频| 精品久久久久久久毛片微露脸| 精品熟女少妇八av免费久了| 午夜福利成人在线免费观看| 午夜日韩欧美国产| 亚洲中文字幕一区二区三区有码在线看 | 亚洲熟妇中文字幕五十中出| 人成视频在线观看免费观看| 国内精品久久久久久久电影| 精品第一国产精品| 欧美精品亚洲一区二区| 国产三级在线视频| 老汉色av国产亚洲站长工具| 男女视频在线观看网站免费 | x7x7x7水蜜桃| 高潮久久久久久久久久久不卡| 男男h啪啪无遮挡| 久热爱精品视频在线9| 亚洲欧美日韩无卡精品| 男女床上黄色一级片免费看| 日本a在线网址| 国产成人av教育| 人人澡人人妻人| 欧美国产精品va在线观看不卡| 波多野结衣高清无吗| 日韩欧美一区视频在线观看| 叶爱在线成人免费视频播放| 麻豆成人午夜福利视频| 国产成人啪精品午夜网站| 成人永久免费在线观看视频| 欧美又色又爽又黄视频| 黄色视频不卡| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 岛国在线观看网站| 日韩成人在线观看一区二区三区| 久久久久久久午夜电影| 最近在线观看免费完整版| www.精华液| 国产精品乱码一区二三区的特点| 亚洲精品一区av在线观看| 亚洲av成人av| 夜夜爽天天搞| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 国产成人欧美| 亚洲第一青青草原| 国产精品久久视频播放| 中出人妻视频一区二区| 美国免费a级毛片| 亚洲精品在线观看二区| 国产黄a三级三级三级人| 一本久久中文字幕| 国产成人啪精品午夜网站| 国产免费男女视频| 日韩精品青青久久久久久| 久久香蕉国产精品| 精品无人区乱码1区二区| 一级毛片精品| 麻豆成人av在线观看| 动漫黄色视频在线观看| 久久国产精品男人的天堂亚洲| 欧美性猛交╳xxx乱大交人| 黄色片一级片一级黄色片| 免费在线观看日本一区| 又紧又爽又黄一区二区| 少妇被粗大的猛进出69影院| 免费搜索国产男女视频| 亚洲男人的天堂狠狠| 欧美日韩瑟瑟在线播放| 最好的美女福利视频网| a级毛片a级免费在线| 欧美成狂野欧美在线观看| 亚洲在线自拍视频| 老司机靠b影院| 黄片小视频在线播放| 亚洲国产精品成人综合色| 色综合欧美亚洲国产小说| 亚洲一区二区三区不卡视频| 久久久国产欧美日韩av| 亚洲九九香蕉| 国产麻豆成人av免费视频| 啦啦啦韩国在线观看视频| 丝袜在线中文字幕| 欧美激情 高清一区二区三区| 又大又爽又粗| 午夜久久久久精精品| 一边摸一边做爽爽视频免费| 在线永久观看黄色视频| 日韩大码丰满熟妇| 久久午夜综合久久蜜桃| 亚洲国产高清在线一区二区三 | 色综合站精品国产| 日韩有码中文字幕| 亚洲欧美日韩高清在线视频| 无限看片的www在线观看| 久久久国产欧美日韩av| 91成年电影在线观看| 99久久精品国产亚洲精品| 精品久久久久久久人妻蜜臀av| 亚洲 国产 在线| 日韩三级视频一区二区三区| 成年人黄色毛片网站| 亚洲天堂国产精品一区在线| 熟女电影av网| 亚洲第一青青草原| 两人在一起打扑克的视频| 精品无人区乱码1区二区| 国产1区2区3区精品| 2021天堂中文幕一二区在线观 | 级片在线观看| av免费在线观看网站| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 成人18禁在线播放| 日本黄色视频三级网站网址| 亚洲,欧美精品.| 久久久久久国产a免费观看| 午夜精品在线福利| 日日摸夜夜添夜夜添小说| av中文乱码字幕在线| 日日干狠狠操夜夜爽| 久久久久精品国产欧美久久久| 免费在线观看影片大全网站| 99国产综合亚洲精品| 婷婷丁香在线五月| 麻豆成人av在线观看| 亚洲成av片中文字幕在线观看| 午夜精品久久久久久毛片777| 啦啦啦韩国在线观看视频| www.自偷自拍.com| 久久中文字幕人妻熟女| 精品午夜福利视频在线观看一区| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 久久久久国内视频| 国产aⅴ精品一区二区三区波| 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 人人妻人人看人人澡| 精品人妻1区二区| 狠狠狠狠99中文字幕| 熟女少妇亚洲综合色aaa.| 麻豆成人av在线观看| 宅男免费午夜| 久99久视频精品免费| 窝窝影院91人妻| 国产在线观看jvid| 最近最新免费中文字幕在线| 中文在线观看免费www的网站 | 国产亚洲欧美精品永久| 精品欧美国产一区二区三| 午夜福利在线观看吧| 日韩欧美免费精品| 淫秽高清视频在线观看| av有码第一页| 欧美黄色片欧美黄色片| 亚洲第一青青草原| 国产精品,欧美在线| а√天堂www在线а√下载| 国产片内射在线| 久久久久久九九精品二区国产 | 免费高清在线观看日韩| 国产单亲对白刺激| 在线观看66精品国产| 变态另类丝袜制服| 热99re8久久精品国产| 一本综合久久免费| 午夜福利一区二区在线看| 大香蕉久久成人网| 一级毛片高清免费大全| 久久国产乱子伦精品免费另类| 亚洲黑人精品在线| 国产成人av激情在线播放| 亚洲av成人不卡在线观看播放网| 最近最新中文字幕大全免费视频| 伦理电影免费视频| ponron亚洲| 亚洲精品中文字幕一二三四区| 高清在线国产一区| 免费在线观看影片大全网站| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 日韩中文字幕欧美一区二区| 国产一区二区在线av高清观看| 久久久久国产一级毛片高清牌| 少妇 在线观看| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 黄色成人免费大全| 国产成年人精品一区二区| 免费在线观看成人毛片| 欧美精品亚洲一区二区| 波多野结衣高清作品| 日本撒尿小便嘘嘘汇集6| 欧美精品啪啪一区二区三区| 亚洲男人天堂网一区| x7x7x7水蜜桃| 国产精品一区二区精品视频观看| 99在线人妻在线中文字幕| 在线av久久热| 在线观看免费视频日本深夜| 久久久水蜜桃国产精品网| www国产在线视频色| 国产一级毛片七仙女欲春2 | 亚洲第一电影网av| 男人舔女人的私密视频| 亚洲av熟女| 精品国产乱子伦一区二区三区| 日韩欧美国产一区二区入口| 国产成人精品无人区| 亚洲 欧美一区二区三区| 中文字幕人成人乱码亚洲影| www.www免费av| 国产伦一二天堂av在线观看| 丰满的人妻完整版| 国产精品美女特级片免费视频播放器 | 亚洲欧美日韩无卡精品| 成人午夜高清在线视频 | 亚洲成人国产一区在线观看| 免费在线观看黄色视频的| 岛国在线观看网站| 天堂√8在线中文| 性欧美人与动物交配| 亚洲国产高清在线一区二区三 | 人人妻人人澡人人看| 国产精品99久久99久久久不卡| 日韩三级视频一区二区三区| 精品久久蜜臀av无| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 亚洲精品国产一区二区精华液| 午夜两性在线视频| 精品久久久久久久毛片微露脸| 欧美另类亚洲清纯唯美| 国产爱豆传媒在线观看 | 免费人成视频x8x8入口观看| 91老司机精品| 精品人妻1区二区| 免费看十八禁软件| 日日摸夜夜添夜夜添小说| av在线播放免费不卡| 18禁黄网站禁片午夜丰满| 欧美日韩瑟瑟在线播放| 国产av不卡久久| 色av中文字幕| 日本免费一区二区三区高清不卡| 狠狠狠狠99中文字幕| 脱女人内裤的视频| 日韩成人在线观看一区二区三区| 大型黄色视频在线免费观看| av在线天堂中文字幕| 精品第一国产精品| 91成人精品电影| 99精品久久久久人妻精品| 欧美国产精品va在线观看不卡| 长腿黑丝高跟| 法律面前人人平等表现在哪些方面| 日本免费一区二区三区高清不卡| 国产精品久久久久久人妻精品电影| 中文字幕高清在线视频| 日韩欧美一区视频在线观看| 黄色片一级片一级黄色片| 亚洲五月色婷婷综合| 淫秽高清视频在线观看| 久久热在线av| 美女免费视频网站| 高清毛片免费观看视频网站| 天天一区二区日本电影三级| 国产欧美日韩精品亚洲av| svipshipincom国产片| 一区二区三区高清视频在线| 中亚洲国语对白在线视频| 香蕉久久夜色| 99在线人妻在线中文字幕| 国产精品永久免费网站| 国产成人系列免费观看| 黄色片一级片一级黄色片| 日本成人三级电影网站| 国产亚洲精品久久久久5区| 夜夜躁狠狠躁天天躁| 中文字幕人成人乱码亚洲影| 免费在线观看成人毛片| 久久婷婷成人综合色麻豆| а√天堂www在线а√下载| 国产熟女xx| www.999成人在线观看| 精品久久久久久久久久久久久 | www.999成人在线观看| 老司机福利观看| 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机在亚洲福利影院| 嫩草影院精品99| 淫妇啪啪啪对白视频| 观看免费一级毛片| 日本熟妇午夜| 女性生殖器流出的白浆| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久,| 中文字幕人妻熟女乱码| 在线十欧美十亚洲十日本专区| 亚洲精品粉嫩美女一区| 亚洲专区国产一区二区| 国产高清有码在线观看视频 | 精品国内亚洲2022精品成人| 美女大奶头视频| bbb黄色大片| 一级a爱视频在线免费观看| 黄色视频,在线免费观看| 日日夜夜操网爽| 免费电影在线观看免费观看| 狂野欧美激情性xxxx| 亚洲国产欧美日韩在线播放| 18美女黄网站色大片免费观看| 一本大道久久a久久精品| videosex国产| 怎么达到女性高潮| 美女高潮喷水抽搐中文字幕| 日本在线视频免费播放| 亚洲成人精品中文字幕电影| 亚洲色图 男人天堂 中文字幕| av免费在线观看网站| 成人午夜高清在线视频 | 亚洲成人国产一区在线观看| 免费看日本二区| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 久久久久久人人人人人| 大香蕉久久成人网| 精品少妇一区二区三区视频日本电影| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 99国产极品粉嫩在线观看| 亚洲成av人片免费观看| 亚洲精品一卡2卡三卡4卡5卡| av视频在线观看入口| 精品高清国产在线一区| 一区二区日韩欧美中文字幕| 国产v大片淫在线免费观看| 精品人妻1区二区| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 国产区一区二久久| 999久久久精品免费观看国产| 午夜福利在线观看吧| 欧美国产精品va在线观看不卡| av在线天堂中文字幕| 精品国产国语对白av| 欧美激情极品国产一区二区三区| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线 | 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 69av精品久久久久久| 一本综合久久免费| 日韩欧美免费精品| 国产熟女xx| 黑丝袜美女国产一区| 欧美日韩瑟瑟在线播放| 黄频高清免费视频| 一本大道久久a久久精品| 欧美日韩亚洲综合一区二区三区_| 色综合婷婷激情| 女生性感内裤真人,穿戴方法视频| 啦啦啦观看免费观看视频高清| www.999成人在线观看| 中文字幕久久专区| 天堂√8在线中文| 久久青草综合色| 亚洲熟妇中文字幕五十中出| 久久青草综合色| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 男女做爰动态图高潮gif福利片| 成人18禁在线播放| 国产免费av片在线观看野外av| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利欧美成人| 国产精品 欧美亚洲| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 级片在线观看| 亚洲,欧美精品.| 我的亚洲天堂| 给我免费播放毛片高清在线观看| 国产一级毛片七仙女欲春2 | 两性午夜刺激爽爽歪歪视频在线观看 | 波多野结衣av一区二区av| 欧美黄色淫秽网站| 婷婷精品国产亚洲av在线| e午夜精品久久久久久久| 欧美+亚洲+日韩+国产| e午夜精品久久久久久久| 国产成人系列免费观看| 少妇的丰满在线观看| 国产又色又爽无遮挡免费看| 丰满人妻熟妇乱又伦精品不卡| 他把我摸到了高潮在线观看| 在线播放国产精品三级| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 国产三级黄色录像| 在线观看舔阴道视频| 黑丝袜美女国产一区| 无限看片的www在线观看| 欧美在线一区亚洲| 又紧又爽又黄一区二区| 中国美女看黄片| 身体一侧抽搐| 欧美日韩一级在线毛片| 18禁观看日本| 国产亚洲欧美98| 国产又爽黄色视频| svipshipincom国产片| 久久中文看片网| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 欧美日本视频| 国产高清有码在线观看视频 | 人人澡人人妻人| 哪里可以看免费的av片| 亚洲中文日韩欧美视频| 俄罗斯特黄特色一大片| 少妇熟女aⅴ在线视频| 母亲3免费完整高清在线观看| 国产亚洲精品久久久久久毛片| 亚洲狠狠婷婷综合久久图片| 国产成+人综合+亚洲专区| 大型av网站在线播放| 久久香蕉精品热| 亚洲色图 男人天堂 中文字幕| 大型黄色视频在线免费观看| 亚洲一区高清亚洲精品| 国产又色又爽无遮挡免费看| 久久午夜综合久久蜜桃| 久久精品影院6| 91九色精品人成在线观看| 日韩av在线大香蕉| 动漫黄色视频在线观看| 国产日本99.免费观看| 欧美黑人精品巨大| 91老司机精品| 久久久精品欧美日韩精品| 欧美激情久久久久久爽电影| 午夜免费激情av| 国产爱豆传媒在线观看 | 亚洲欧美精品综合久久99| 色综合亚洲欧美另类图片| 亚洲 欧美一区二区三区| 极品教师在线免费播放| www日本在线高清视频| 18美女黄网站色大片免费观看| 国产成人欧美| 热99re8久久精品国产|