• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENTAL STUDY OF EFFECTS OF AIR CONTENT ON CAVITATION AND PRESSURE FLUCTUATIONS*

    2010-05-06 08:22:07YEJinmingXIONGYingLIFangCHENShuangqiao
    水動力學研究與進展 B輯 2010年5期

    YE Jin-ming, XIONG Ying, LI Fang, CHEN Shuang-qiao

    College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China,

    EXPERIMENTAL STUDY OF EFFECTS OF AIR CONTENT ON CAVITATION AND PRESSURE FLUCTUATIONS*

    YE Jin-ming, XIONG Ying, LI Fang, CHEN Shuang-qiao

    College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China,

    E-mail: yjmcx2318@sina.com

    (Received August 20, 2009, Revised August 18, 2010)

    This article studies the effects of air content on propeller cavitation and pressure fluctuations. The cavitation is observed while the pressure fluctuations on the hull are measured. When adjusting the air content, the sheet cavitation range does not change distinctly, but the pressure fluctuations see obvious differences. The amplitudes of the pressure fluctuations increase with the decrease of the air content. The results indicate that the air content has little effect on the sheet cavitation range but has an important effect on the bubble cavitation and the tip vortex cavitation. When the air content decreases, the water tensile force increases, which results in the instability of the bubble cavitation and the tip vortex cavitation and the increase of the pressure fluctuations. To minimize the scale effects, the experiments should be run at a high Reynolds number with a high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often made by increasing the dissolved air content.

    cavitation, pressure fluctuations, model test, air content

    1. Introduction

    The propeller is the most important source of the stern vibration. The cavitation on propellers makes pressure fluctuations especially serious. It is clear that the water quality has an important influence on the propeller cavitation inception process and the propeller induced pressure fluctuations[1-3]. The water quality is traditionally defined in terms of the dissolved air content level. In most numerical predictions of cavitation[4-10]and pressure fluctuations[11-13], the air content effects are not considered. The effects of the water quality or the air content on cavitation and fluctuations are often studied by experiments.

    Experimental studies of the influence of air on cavitation inception and dynamics over the past 20 years are reviewed by Billet[14]and Gindroz[15]. The influence of dissolved gas on the inception and development of the tip vortex cavitation was examined by Brian?on and Merle[16]. They demonstrated how both free and dissolved gas content would influence the cavitation of a stationary elliptic planform hydrofoil, including the core diameter and the dynamics of the vortex. While the size of the incident nuclei was not taken as an independently varying parameter in the study, it was shown that the dynamics and the fragmentation of larger bubbles in the vortex can influence the noise that the bubbles emit upon collapse. In order to correlate the water quality measurements with both visual and acoustic inception for several types of propeller cavitation, Grand Tunnel Hydrodynamic (GTH) offered a correlation for the propeller leading-edge sheet, between the bubble and tip vortex cavitation inception and water quality data as determined by the liquid tension and the microbubble event-rate. The results show clearly a dependency of the cavitation inceptionfor each propeller cavitation type on the liquid tension. The water quality is also important as shown in scale effects. The classical theory for scaling vaporous cavitation inception assumes that σ is constant, which implies that when scaling from one flow state to another, not only the characteristics of the flow field and its boundaries remain geometrically and kinematically similar but also cavitation occurs when the local pressure is equal to the liquid vapor pressure. However, the real flows often do not obey this classical theory and departures are often called the“scale effects”. Experimental results clearly show that in most cases, the cavitation inception index can be greater or less than the minimum pressure coefficient.

    In this article, the model test of pressure fluctuations induced by cavitation propeller is carried out in the large circulation channel. The ship wake is simulated by a ship model with all accessories. The cavitation is observed when the pressure fluctuations on the hull are measured. The effects of air content on cavitation and pressure fluctuations are studied.

    2. Test facility and test model

    The model test is carried out in the large circulation channel of the State Key Laboratory of Hydrodynamics. The work section is a rectangle of 2.2 m in width, 2 m in height and 10.5 m in length. The water speed range in the work section is from 1 m/s to 15 m/s, the pressure range at the center of the work section is from 0.005 MPa to 0.4 MPa.

    According to the dimension of the test section and the installation requirements, a ship hull model with all accessories is manufactured based on geometric similarity. The hull model is 6.76 m in length, and two propellers are both of internal rotation type. The appendages include one bulbous bow, two bilge keels, two fin stabilizers, several shift brackets and one rudder. The ship model is made of fiberglass. The serial number of the ship model is SM0404. The installation of the ship model and the propeller model is shown in Fig.1.

    Fig.1 The installation of the ship model and the propeller model

    In the model test, the geometric similarity, the kinematic similarity and the dynamic similarity are required.

    (1)The ship model and the propeller model are made according to the geometric similarity.

    (2)The cavitation number in the model test is the same as that for the full-scale ship:

    For full-scale ship:

    where ρsis the density of sea water, hsthe depth of the full-scale propeller, Dsthe diameter of the full-scale propeller, nsthe rotational speed of the full-scale propeller, pathe atmosphere pressure, pvsthe vapor pressure of sea water, nmthe rotational speed of the model propeller, pvmthe vapor pressure of the test water, p0the pressure at the center of the test section,hpthe height between the propeller model center and the work section center

    (3)Reynolds number is larger than the critical Reynolds number.

    where Vais the advance velocity of the propeller model,L0.75Rthe length of 0.75R propeller section, ν the kinematic viscosity coefficient of the water.

    (4)The thrust coefficient of the model propeller is the same as that of the full-scale propeller.

    There are 8 pressure transducers installed at the hull stern. The pressured surfaces of the transducers are leveled with the hull surface, and the diameters of the pressured surfaces are 3.7 mm. The#transducers are assembled as shown in Fig.2, and the 2 transducer is placed at the center of the propeller disc upside up.

    In order to observe the propeller cavitation, two watertight CCDs are fixed, respectively, ahead and behind the port propeller. The cavity pattern and development on the blade surface can berecorded by the two CCDs with the stroboscope.

    Fig.2 The measurement points on the SM0404

    According to the thrust coefficient KTsand the cavitation numberσnsof the full-scale ship at the ship speed Vshipof 28.87 kn, the rotational speednmof the propeller model, the flow velocityVsmand the pressure at the test section are determined. The operation conditions of the test model and the full-scale ship are shown in Table 1.

    Table 1 The conditions of the full-scale ship and the test model

    The relative air content α/ αsof the water in the large channel is adjusted to 0.58. When the air content is stabilized, the following measurement operations are carried out:

    (1) Calibrate the sensitivity of the transducers, and measure the pressure fluctuations on the hull stern at different conditions.

    With Fast Fourier Transform(FFT) of the pressure time-domain signal p, the blade frequency amplitudes piand the phase-anglesφiof the pressure fluctuations can be obtained.

    The non-dimensional amplitudes are calculated as:

    (2) When there is the cavitation on the blades, the cavitation shape is plotted on the key blade at different angles.

    (3) Change the relative air content α/ αsto 0.50, 0.68 and 0.82, respectively, repeat the procedures of the Steps (1)-(2).

    3. Results and analysis

    When the relative air content α/ αsis 0.82, 0.68, 0.58 and 0.50, respectively, the pressure fluctuations coefficients at the different measurement points are shown as in Fig.3 - Fig.7.

    Fig.3 The 1st pressure fluctuations coefficients

    Fig.4 The 2nd pressure fluctuations coefficients

    Fig.5 The 3rd pressure fluctuations coefficients

    From the above results, it is shown that the air content has a great effect on the pressure fluctuations. The pressure fluctuation amplitudes increase with the decrease of the air content except the 2nd order amplitudes. For example, the 1st order amplitude at α/ αs=0.5is 14.4% larger than that at α/ αs=0.82on the measurement point 6#.

    Fig.6 The 4th pressure fluctuations coefficients

    Fig.7 The 5th pressure fluctuations coefficients

    Fig.8 The cavity shape on the key blade

    When the relative air content α/ αsis 0.58, the cavitation range on the key blade from 0oto 40ois shown in Fig.8. In the test, there are a large number of gas bubbles floating up in the water because of the low pressure in the channel, which affect the observation of the bubble cavitation and the tip vortex cavitation to some extent. But the sheet cavitation can be observed clearly because it is relatively stable and its range is relatively large. So the range of the sheet cavitation in Fig.3 is more accurate than those of the bubble cavitation and the tip vortex cavitation. When the relative air content α/ αsis adjusted to other values, the sheet cavitation range on the blade changes little.

    Unfortunately, the results of the cavitation observation indicate that the sheet cavitation ranges change too diminutively to be observed clearly. And it is also difficult to observe clearly the effects of the air content on the bubble cavitation and the tip vortex cavitation in our model test because of the instability of the bubble cavitation and the tip vortex cavitation and the large number of gas bubbles in the water. But from the results of the pressure fluctuations, it is shown that the air content has a great effect on the pressure fluctuations induced by the cavitating propeller. So the air content must have important effects on cavitaiton, especially on the bubble cavitation and the tip vortex cavitation.

    This can be explained as follows. The cavitation nuclei are the defects of the viscous fluid, which causes a decrease of tensile force. So the cavitation nuclei concentration in the water has significant influences on the water tensile force. The cavitation nuclei concentration decreases with the decrease of the air content, therefore, the water tensile force becomes bigger, which results in the instability of the bubble cavitation and tip vortex cavitation and the increase of pressure fluctuations.

    The water tensile force comes from the fluid viscosity characterized by Reynolds number. In the 23ITTC, both the gas pressure and the bubble tension terms become less important when the velocities increase. So the tensile effects are also related to Reynolds number. With the increase of Reynolds number, the tensile effects decrease. Because the Reynolds number in the real case is much larger than that in the model test, the tensile forces are not similar in the real case and in the model test, that is to say, the tensile effects in the model test are larger than those in the full-scale case, which is called the scale effects. To lower the scale effects, some measures must be taken to reduce the tensile effects in the model test. Based on the analysis above, there are two methods to reduce the tensile effects in the model test: increasing the nuclei content and increasing Reynolds number. So the experiments should be run at high Reynolds number with high nuclei content in order to minimize the scale effects. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often obtained by increasing the dissolved air conten.

    4. Conclusions

    The effects of air content on propeller cavitation and pressure fluctuations are studied in this article.The cavitation is observed when the pressure fluctuations on the hull are measured. The air content is changed at the same working condition.

    When adjusting the air content, the sheet cavitation range does not change very distinctly, but the pressure fluctuations see obvious differences. The pressure fluctuation amplitudes increase with the decrease of air content except the second order amplitude. The results indicate that the air content has great effects on the pressure fluctuations induced by the cavitating propeller. So it must have important effects on the bubble cavitation and tip vortex cavitation.

    The reason is that the cavitation nuclei concentration decreases with the decrease of the air content. The cavitation nuclei concentration in the water has a significant influence on the tensile force of the water, and in its turn, on propeller cavitation characteristics. When the air content decreases, the water tensile forces become bigger, which would result in the instability of the cavity and the increase of the pressure fluctuations.

    Because Reynolds number in the full-scale case is much larger than that in the model test, the effects of the tensile force in the model test are larger than that in the full-scale case, which is called the scale effects. To minimize the scale effects, the experiments should be run at high Reynolds number with high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often obtained by increasing the dissolved air content.

    [1] M?RCH K. A. Cavitation nuclei: Experiments and theory[J]. Journal of Hydrodynamics, 2009, 21(2): 176-189.

    [2] GINDROZ B., MATERA F. Influence of the cavitation nuclei on the cavitation bucket when predicting the full-scale behavior of a marine propeller[C]. 21st Symposium on Naval Hydrodynamics. Trondheim, Norway, 1996, 839-850.

    [3] GINDROZ B., BILLET M. L. Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers[J]. Journal of Fluids Engineering, 1998, 120: 171-178.

    [4] TAMURA Y. Improvement of bubble model for cavitating flow simulations[J]. Journal of Hydrodynamics, 2009, 21(1): 41-46.

    [5] XIONG Ying, YE Jin-ming and WANG De-xun. Prediction of unsteady cavitation of propeller using suface panel method[J]. Journal of Hydrodynamics, Ser. B, 2005, 16(1): 43-49.

    [6] YE Jin-ming, XIONG Ying. Prediction of podded propeller cavitation using unsteady surface-panel method based on velocity potential[J]. Journal of Hydrodynamics, 2008, 20(6): 912-918.

    [7] RHEE S., KAWAMURA T. and LI H. A study of propeller cavitation using a RANS CFD method[C]. Proceedings of 8th International Conference on Numerical Ship Hydrodynamics. Busan, Korea, 2003.

    [8] RHEE S. H., JOSHI S. Computational Validation for flow around a marine propeller using vnstructured mesh based Navier-Stokes solver[J]. JSME International Journal Series B, 2005, 48(3): 562-570.

    [9] KAWAMURA T., WATANABE T. and TAKEKOSHI T. Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code[C]. Proceedings of 5th International Symposium on Cavitation. Osaka, Japan, 2003.

    [10] HAN Bao-yu, XIONG Ying and CHEN Shuang-qiao. Numerical simulation of cavitation around 2-dimentional hydrofoil[J]. Chinese Journal of Hydrodynamics, 2009, 24(6): 740-746(in Chinese).

    [11] KEHR Y. Z., HSIN C. Y. and SUN Y. C. Calculations of pressure fluctuations on the ship hull induced by intermittently cavitating propellers[C]. Proceedings of 21st Symposium On Naval Hydrodynamics. Trondheim, Norway, 1997, 882-897.

    [12] YE Jin-ming, XIONG Ying. Predicting pressure fluctuations on ship hulls due to intermittently cavitating propellers[J]. Journal of Ship Mechanics, 2005, 9(6): 21-29.

    [13] YE Jin-ming, XIONG Ying. Research on effects of phase difference to pressure fluctuations induced by propeller cavitation of twin-screw ship[J]. Journal of Ship Mechanics, 2009, 13(2): 203-209(in Chinese).

    [14] BILLET M. L. The importance and measurement of cavitation nuclei[C]. Advances in Aerodynamics, Fluid Mechanics and Hydraulics, ASCE. Minneapolis, MN, USA, 1986.

    [15] GINDROZ B., BILLET M. L. Nuclei and acoustic cavitation inception on ship propellers[C]. 2nd International Symposium on Cavitation. Tokyo, Japan, 1994.

    [16] BRIANCON M. L., MERLE L. Inception, development, and noise of a tip vortex cavitation[C]. Proceedings of 21st Symposium on Naval Hydrodynamics. Trondheim, Norway, 1997, 851-864.

    10.1016/S1001-6058(09)60097-4

    * Project supported by the Foundation of the State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University (Grant No. 0811), the National Natural Science Foundation of China (Grant No. 51009145) and the Foundation of Ministry of Education Key Laboratory of High speed ship Engineering, Wuhan University of Technology (Grant No. HSSE 1004).

    Biography: YE Jin-ming (1978-), Male, Ph. D., Lecturer

    午夜亚洲福利在线播放| 我的女老师完整版在线观看| av天堂中文字幕网| 一级爰片在线观看| 亚洲国产色片| av在线播放精品| av免费在线看不卡| 国产av在哪里看| 人体艺术视频欧美日本| 精品国内亚洲2022精品成人| 少妇熟女欧美另类| 18禁在线无遮挡免费观看视频| 亚洲av免费在线观看| 亚洲自拍偷在线| 欧美xxⅹ黑人| 91精品一卡2卡3卡4卡| 精品久久久久久久久久久久久| 非洲黑人性xxxx精品又粗又长| 观看美女的网站| 久久人人爽人人爽人人片va| 亚洲成人中文字幕在线播放| 欧美日韩亚洲高清精品| 婷婷色综合www| 狂野欧美激情性xxxx在线观看| 日韩制服骚丝袜av| 2022亚洲国产成人精品| 欧美区成人在线视频| 亚洲国产日韩欧美精品在线观看| 久久精品国产鲁丝片午夜精品| 亚洲精品成人av观看孕妇| 午夜老司机福利剧场| 国产精品精品国产色婷婷| 亚洲精品色激情综合| 免费观看a级毛片全部| 22中文网久久字幕| 看免费成人av毛片| 可以在线观看毛片的网站| 国产久久久一区二区三区| 亚洲精品成人av观看孕妇| 高清欧美精品videossex| 啦啦啦中文免费视频观看日本| 精品久久国产蜜桃| 精品久久久久久电影网| 日韩精品青青久久久久久| 色网站视频免费| 91狼人影院| 可以在线观看毛片的网站| 精品人妻一区二区三区麻豆| 天堂俺去俺来也www色官网 | 国产一级毛片在线| 国产精品熟女久久久久浪| 毛片一级片免费看久久久久| 18禁在线播放成人免费| 国产av不卡久久| 亚洲综合色惰| 3wmmmm亚洲av在线观看| 日韩av在线免费看完整版不卡| 成年女人看的毛片在线观看| 色综合色国产| 麻豆成人av视频| 看黄色毛片网站| 国产免费又黄又爽又色| 久久久久久久久久久丰满| 美女高潮的动态| 99热6这里只有精品| 国产精品熟女久久久久浪| 最后的刺客免费高清国语| 国精品久久久久久国模美| 午夜免费鲁丝| 激情五月婷婷亚洲| 在线观看三级黄色| 又大又黄又爽视频免费| 男人操女人黄网站| 亚洲av国产av综合av卡| 国产成人精品久久久久久| 国产有黄有色有爽视频| 亚洲人成77777在线视频| 不卡视频在线观看欧美| 亚洲精品一二三| 久热这里只有精品99| 国产又爽黄色视频| 欧美精品高潮呻吟av久久| av在线app专区| 伊人久久国产一区二区| 狠狠精品人妻久久久久久综合| 久久久精品区二区三区| 少妇熟女欧美另类| 国产精品免费视频内射| 国产精品嫩草影院av在线观看| 亚洲欧美清纯卡通| 性色avwww在线观看| 少妇猛男粗大的猛烈进出视频| 最近中文字幕高清免费大全6| 黄片播放在线免费| 国产高清国产精品国产三级| 色哟哟·www| 久久久国产一区二区| 啦啦啦在线观看免费高清www| 可以免费在线观看a视频的电影网站 | 一级黄片播放器| 97人妻天天添夜夜摸| 欧美日韩av久久| 老司机影院成人| 亚洲一区中文字幕在线| 男人爽女人下面视频在线观看| 日本欧美国产在线视频| www日本在线高清视频| 免费在线观看视频国产中文字幕亚洲 | 99久国产av精品国产电影| 成年人午夜在线观看视频| 狠狠精品人妻久久久久久综合| 不卡视频在线观看欧美| 人人妻人人澡人人爽人人夜夜| 九色亚洲精品在线播放| 卡戴珊不雅视频在线播放| 热re99久久国产66热| 亚洲精品av麻豆狂野| 亚洲国产欧美网| 99久久综合免费| 在线 av 中文字幕| 日韩免费高清中文字幕av| 99久国产av精品国产电影| 欧美日韩精品网址| 午夜福利影视在线免费观看| 性色av一级| 久久国产精品男人的天堂亚洲| 欧美成人午夜免费资源| 香蕉精品网在线| 18禁动态无遮挡网站| 久久久久久人妻| 国产精品香港三级国产av潘金莲 | 成人国产麻豆网| 熟女少妇亚洲综合色aaa.| 国产免费一区二区三区四区乱码| 欧美日韩精品网址| 少妇 在线观看| 精品亚洲成国产av| 亚洲精品中文字幕在线视频| 欧美 日韩 精品 国产| 亚洲三级黄色毛片| 欧美+日韩+精品| 久久久久精品人妻al黑| 国产成人精品在线电影| 看免费成人av毛片| 欧美+日韩+精品| 伦精品一区二区三区| 午夜福利一区二区在线看| 97在线人人人人妻| 日韩 亚洲 欧美在线| 黄色 视频免费看| av线在线观看网站| 亚洲伊人色综图| 在线观看一区二区三区激情| 精品亚洲乱码少妇综合久久| 亚洲欧美日韩另类电影网站| 午夜91福利影院| 国产男女内射视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一国产av| 视频在线观看一区二区三区| 亚洲成人av在线免费| 国产成人一区二区在线| 亚洲人成网站在线观看播放| 日韩电影二区| 久久久a久久爽久久v久久| 在线观看人妻少妇| 久久久国产欧美日韩av| 日本91视频免费播放| 少妇精品久久久久久久| 欧美+日韩+精品| 日韩熟女老妇一区二区性免费视频| 久久女婷五月综合色啪小说| 男女免费视频国产| 亚洲人成电影观看| 最新中文字幕久久久久| 爱豆传媒免费全集在线观看| 男女高潮啪啪啪动态图| 最近中文字幕高清免费大全6| 国产免费一区二区三区四区乱码| 在现免费观看毛片| 国产乱来视频区| 免费黄网站久久成人精品| 巨乳人妻的诱惑在线观看| 亚洲第一青青草原| 看免费成人av毛片| 日本-黄色视频高清免费观看| 亚洲av中文av极速乱| 日本色播在线视频| 色婷婷av一区二区三区视频| 夫妻午夜视频| 日日爽夜夜爽网站| 国产精品久久久久成人av| 国产精品免费视频内射| 中文字幕亚洲精品专区| 国产xxxxx性猛交| 另类亚洲欧美激情| 色94色欧美一区二区| 精品福利永久在线观看| 日本午夜av视频| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲最大av| 久久国产亚洲av麻豆专区| 久久国内精品自在自线图片| 黄色视频在线播放观看不卡| 中文字幕制服av| 热99久久久久精品小说推荐| 人体艺术视频欧美日本| 亚洲精品aⅴ在线观看| √禁漫天堂资源中文www| 美女福利国产在线| 国产日韩欧美亚洲二区| 亚洲一码二码三码区别大吗| 欧美中文综合在线视频| 99热全是精品| 日韩视频在线欧美| 午夜福利网站1000一区二区三区| 26uuu在线亚洲综合色| 国产精品久久久久久av不卡| 波多野结衣av一区二区av| 国产伦理片在线播放av一区| 久久精品国产自在天天线| 亚洲精品av麻豆狂野| 超碰97精品在线观看| 国产毛片在线视频| 日韩制服骚丝袜av| 啦啦啦中文免费视频观看日本| 亚洲精品一区蜜桃| 90打野战视频偷拍视频| 男人操女人黄网站| 两个人看的免费小视频| 纯流量卡能插随身wifi吗| 中文字幕亚洲精品专区| 如何舔出高潮| 亚洲成人一二三区av| 亚洲av综合色区一区| 青春草国产在线视频| a级片在线免费高清观看视频| 你懂的网址亚洲精品在线观看| 国产男人的电影天堂91| 亚洲国产最新在线播放| 五月天丁香电影| 999精品在线视频| 久久精品久久久久久久性| 国产精品国产av在线观看| 国产成人精品久久久久久| 亚洲激情五月婷婷啪啪| 丰满乱子伦码专区| 美女国产高潮福利片在线看| 人妻一区二区av| 国产欧美亚洲国产| 一级片免费观看大全| 精品第一国产精品| 亚洲成人一二三区av| 波野结衣二区三区在线| 日本av免费视频播放| 成人影院久久| 女人精品久久久久毛片| 久久精品国产综合久久久| 三级国产精品片| 日韩欧美一区视频在线观看| 寂寞人妻少妇视频99o| av片东京热男人的天堂| 热re99久久国产66热| 三上悠亚av全集在线观看| av有码第一页| av网站在线播放免费| 亚洲精品中文字幕在线视频| 免费观看在线日韩| 美女xxoo啪啪120秒动态图| 国产在线一区二区三区精| 波野结衣二区三区在线| 母亲3免费完整高清在线观看 | 你懂的网址亚洲精品在线观看| 制服诱惑二区| 亚洲av福利一区| 亚洲av免费高清在线观看| 伦精品一区二区三区| 国产麻豆69| 不卡av一区二区三区| 国产又色又爽无遮挡免| av在线观看视频网站免费| videossex国产| 精品少妇黑人巨大在线播放| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区 | 中文字幕亚洲精品专区| 国产精品国产三级专区第一集| 在线 av 中文字幕| 中文字幕人妻丝袜制服| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| 有码 亚洲区| 少妇精品久久久久久久| 一本色道久久久久久精品综合| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 国产老妇伦熟女老妇高清| 国产av精品麻豆| 日日摸夜夜添夜夜爱| 亚洲欧美成人精品一区二区| 国产高清国产精品国产三级| 免费看不卡的av| 国产男人的电影天堂91| 日本欧美视频一区| 中文字幕色久视频| 午夜影院在线不卡| 在线观看三级黄色| 欧美97在线视频| 少妇人妻久久综合中文| 欧美成人午夜免费资源| 国产精品秋霞免费鲁丝片| 啦啦啦啦在线视频资源| 香蕉国产在线看| 人妻系列 视频| 久久久久久久久久久久大奶| 国产黄色视频一区二区在线观看| 美女大奶头黄色视频| 国产精品嫩草影院av在线观看| 色网站视频免费| 国产1区2区3区精品| 人人妻人人爽人人添夜夜欢视频| 成人18禁高潮啪啪吃奶动态图| 美女中出高潮动态图| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 97人妻天天添夜夜摸| 国产精品av久久久久免费| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| 黄片播放在线免费| 亚洲久久久国产精品| 亚洲欧洲日产国产| 国产精品国产av在线观看| 欧美日韩亚洲国产一区二区在线观看 | 精品国产乱码久久久久久小说| 热re99久久精品国产66热6| 美女大奶头黄色视频| 国产片特级美女逼逼视频| 国产av码专区亚洲av| 毛片一级片免费看久久久久| 90打野战视频偷拍视频| 一级毛片我不卡| 夫妻性生交免费视频一级片| 人妻人人澡人人爽人人| 国产欧美亚洲国产| 在线观看三级黄色| 天美传媒精品一区二区| 国产一区亚洲一区在线观看| 一二三四在线观看免费中文在| 亚洲av福利一区| 国产精品三级大全| 久久久久国产精品人妻一区二区| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 激情视频va一区二区三区| 亚洲欧美精品自产自拍| 欧美国产精品va在线观看不卡| videossex国产| 国产淫语在线视频| 99精国产麻豆久久婷婷| 国产精品人妻久久久影院| 亚洲精品国产av成人精品| 国产xxxxx性猛交| 亚洲精品,欧美精品| 99久久综合免费| 赤兔流量卡办理| 一区二区av电影网| 日本欧美国产在线视频| 深夜精品福利| 一级毛片 在线播放| 麻豆精品久久久久久蜜桃| 国产高清不卡午夜福利| 欧美少妇被猛烈插入视频| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版| xxxhd国产人妻xxx| 欧美精品高潮呻吟av久久| 中文天堂在线官网| 亚洲,一卡二卡三卡| 成年动漫av网址| 亚洲美女视频黄频| 久久久久久人妻| 搡女人真爽免费视频火全软件| 国产爽快片一区二区三区| 欧美bdsm另类| 国产日韩欧美亚洲二区| 国产成人精品婷婷| 国产精品香港三级国产av潘金莲 | 国产免费现黄频在线看| 国产免费一区二区三区四区乱码| 免费观看在线日韩| 97人妻天天添夜夜摸| 久久久亚洲精品成人影院| 黄色视频在线播放观看不卡| 一区二区三区精品91| 国产乱来视频区| 国产精品无大码| 久热久热在线精品观看| 精品一区二区三区四区五区乱码 | 中文字幕精品免费在线观看视频| 成人毛片60女人毛片免费| 老司机影院成人| 母亲3免费完整高清在线观看 | 寂寞人妻少妇视频99o| www日本在线高清视频| 国产成人精品无人区| 国产 精品1| 国产黄色免费在线视频| 婷婷成人精品国产| 免费播放大片免费观看视频在线观看| 新久久久久国产一级毛片| 免费不卡的大黄色大毛片视频在线观看| 亚洲第一av免费看| 激情五月婷婷亚洲| 亚洲,欧美,日韩| 天美传媒精品一区二区| 国产精品一区二区在线观看99| 咕卡用的链子| 亚洲国产精品一区二区三区在线| 久久精品夜色国产| 黄片无遮挡物在线观看| 女的被弄到高潮叫床怎么办| 最新中文字幕久久久久| 免费黄频网站在线观看国产| 黑人猛操日本美女一级片| 久久毛片免费看一区二区三区| 搡老乐熟女国产| 中文字幕人妻丝袜一区二区 | 伊人久久国产一区二区| 777米奇影视久久| 午夜福利一区二区在线看| 成人漫画全彩无遮挡| 在线天堂最新版资源| 国产综合精华液| 九九爱精品视频在线观看| 伊人久久国产一区二区| 国产精品偷伦视频观看了| 国产乱来视频区| 久久99一区二区三区| 97在线视频观看| 国产精品香港三级国产av潘金莲 | 免费黄频网站在线观看国产| 精品国产一区二区久久| 国产日韩欧美视频二区| 狠狠婷婷综合久久久久久88av| 青青草视频在线视频观看| 欧美变态另类bdsm刘玥| 国产一区二区在线观看av| 老汉色∧v一级毛片| 亚洲精品久久久久久婷婷小说| 咕卡用的链子| 黑丝袜美女国产一区| 看免费av毛片| 成年动漫av网址| 各种免费的搞黄视频| 国产乱来视频区| 制服诱惑二区| av在线app专区| 有码 亚洲区| 中文字幕人妻丝袜一区二区 | 成年av动漫网址| 成人国语在线视频| 亚洲精华国产精华液的使用体验| 国产成人免费无遮挡视频| 90打野战视频偷拍视频| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 伊人久久国产一区二区| 黑人猛操日本美女一级片| 久久久久精品人妻al黑| 一级爰片在线观看| 青草久久国产| 韩国精品一区二区三区| 国产亚洲欧美精品永久| 免费在线观看完整版高清| av在线播放精品| 精品国产露脸久久av麻豆| 亚洲精品日本国产第一区| 18在线观看网站| 中文字幕制服av| 久久久精品国产亚洲av高清涩受| 日韩精品免费视频一区二区三区| 成人漫画全彩无遮挡| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 亚洲成国产人片在线观看| 久久这里有精品视频免费| 午夜免费鲁丝| 亚洲第一区二区三区不卡| 国产精品免费视频内射| 日韩精品有码人妻一区| 国产又爽黄色视频| 美女xxoo啪啪120秒动态图| 成人亚洲精品一区在线观看| 久久久久精品性色| 看免费成人av毛片| 日产精品乱码卡一卡2卡三| 香蕉精品网在线| 一本—道久久a久久精品蜜桃钙片| 人妻 亚洲 视频| 天堂8中文在线网| 国产高清不卡午夜福利| 一级a爱视频在线免费观看| 哪个播放器可以免费观看大片| videos熟女内射| 欧美精品av麻豆av| www.av在线官网国产| 在线 av 中文字幕| 亚洲美女黄色视频免费看| 老女人水多毛片| www.熟女人妻精品国产| 国产精品.久久久| 成年人午夜在线观看视频| 亚洲天堂av无毛| 免费黄频网站在线观看国产| 亚洲情色 制服丝袜| 黑丝袜美女国产一区| 一二三四在线观看免费中文在| 久久精品久久久久久噜噜老黄| 精品一区二区三卡| 人人妻人人添人人爽欧美一区卜| 久久久国产精品麻豆| av卡一久久| videosex国产| 最近2019中文字幕mv第一页| 国产国语露脸激情在线看| 亚洲伊人色综图| 一级毛片 在线播放| 国产精品麻豆人妻色哟哟久久| 精品一区在线观看国产| 亚洲中文av在线| 中文乱码字字幕精品一区二区三区| 黄片无遮挡物在线观看| 天天影视国产精品| 日韩成人av中文字幕在线观看| 成年美女黄网站色视频大全免费| 超碰97精品在线观看| 一本—道久久a久久精品蜜桃钙片| 黄片小视频在线播放| 最近手机中文字幕大全| 中文欧美无线码| 亚洲欧美色中文字幕在线| 校园人妻丝袜中文字幕| 亚洲一码二码三码区别大吗| 久久久久久久国产电影| 午夜激情久久久久久久| 女人久久www免费人成看片| 下体分泌物呈黄色| 亚洲美女视频黄频| 久热这里只有精品99| 丝袜美足系列| 超色免费av| 久久久国产欧美日韩av| 久久综合国产亚洲精品| 欧美xxⅹ黑人| 中文字幕制服av| 色哟哟·www| 午夜福利在线免费观看网站| 麻豆精品久久久久久蜜桃| 成人国产av品久久久| 日韩熟女老妇一区二区性免费视频| av女优亚洲男人天堂| 人人妻人人澡人人看| 少妇的逼水好多| videossex国产| av在线观看视频网站免费| tube8黄色片| 人人妻人人添人人爽欧美一区卜| 在线看a的网站| 中文字幕制服av| 免费av中文字幕在线| 国产免费现黄频在线看| 国产日韩欧美视频二区| 中文字幕色久视频| 美女高潮到喷水免费观看| 国产精品免费视频内射| 成人国产av品久久久| 午夜日本视频在线| 97在线人人人人妻| 天堂8中文在线网| 日本-黄色视频高清免费观看| 久久久久久免费高清国产稀缺| 国产一区亚洲一区在线观看| 黄色一级大片看看| 免费黄色在线免费观看| 少妇的丰满在线观看| 高清视频免费观看一区二区| 免费日韩欧美在线观看| 美女主播在线视频| 热99久久久久精品小说推荐| 夜夜骑夜夜射夜夜干| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲av天美| 国产高清国产精品国产三级| 国产免费福利视频在线观看| 欧美 日韩 精品 国产| av一本久久久久| 肉色欧美久久久久久久蜜桃| 如何舔出高潮| 色哟哟·www| 在线天堂最新版资源| 晚上一个人看的免费电影| 久久久精品94久久精品| 国产免费现黄频在线看| 天堂俺去俺来也www色官网| 一边亲一边摸免费视频| 久久久国产精品麻豆| 啦啦啦啦在线视频资源| 国产男女内射视频| 丝袜美腿诱惑在线| 婷婷成人精品国产| 欧美国产精品一级二级三级|