• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SIMULATION OF SEDIMENT DEPOSITION IN A CAVITY WITH FREE SURFACE*

    2010-05-06 08:22:05ZHANGXiaofeng
    水動力學研究與進展 B輯 2010年5期

    ZHANG Xiao-feng

    State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: Zhangxfwuhee@263.net

    CUI Zhan-feng

    Yangtze River Scientific Research Institute, Wuhan 430010, China

    LU Xin-hua

    State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    SIMULATION OF SEDIMENT DEPOSITION IN A CAVITY WITH FREE SURFACE*

    ZHANG Xiao-feng

    State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: Zhangxfwuhee@263.net

    CUI Zhan-feng

    Yangtze River Scientific Research Institute, Wuhan 430010, China

    LU Xin-hua

    State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    (Received May 24, 2009, Revised July 27, 2010)

    Studies of the flow and sediment movement in a cavity with free surface were mostly limited to physical modeling experiments. In this study, the sediment movement is characterized in detail using a 3-D turbulent numerical model. To close the Reynolds equations, the standard k-ε model is employed. The VOF method is adopted to capture the time varying free surface and the porosity method is introduced to deal with the irregular boundary and the varying bed deformation. The computation results agree well with the experimental data in major aspects such as the vertical distribution of the sediment concentration and the deposition topography in the cavity. The comparisons show that this model can well predict the flow structure and the sediment movement and also the river bed deformation in a cavity.

    3-D turbulent flow, cavity flow, free surface, VOF, porosity, sediment transport

    1. Introduction

    The simulation of the lid-driven flow inside an enclosed cavity is a very hot issue in computational fluid dynamics. Related studies can be classified into four categories: (1) the evaluation of numerical methods and the verification of computer codes[1-3], (2) steady solutions of a driven cavity at moderate or high Reynolds numbers[3-4], (3) the bifurcation of the flow in a cavity from a steady pattern to an unsteady pattern[5-7], (4) the natural convection flow in an enclosed cavity[8-11]. Nearly all these studies are restricted to the vertical 2-D steady flow in andepth-averaged flow and sediment mathematical model for cavity flows with free surface. It was found that the flow circulation has an asymmetric and non-closed structure, and the characteristics of the flow circulation determine the concentration of the sediment and the deposition in the cavity. His study involves many limitations because of the very complicated 3-D nature of the structures of flow and sediment. The 2-D model can not be used to capture the circulation in the vertical direction, which would change the spatial distribution of the sediment concentration and the deposition in the cavity, from the free surface to the bottom, as can be seen later in the simulation results in this article.

    Besides the few studies of numerical simulation, valuable results were obtained through physical models. By using a generalized model test, Xu[13]made a thorough experimental observation of the velocity field of the circulating flow in a cavity, carried out a preliminary theoretical analysis of its hydrodynamic features, and proposed an empirical estimation formula for the critical grain size of the circulating flow sediment deposition. Liu[14,15]conducted an experimental study and a theoretical analysis in detail of several aspects such as the sediment mixture near the opening of a cavity, the flow structure of the circulating flow, the sediment startup and movement in the circulating flow region, and sediment-carrying features of the circulating flow.

    In this study, a 3-D fluid-sediment mathematical model is built to study the fluid-sediment movement in a cavity with free surface. The standard k?ω turbulence model is employed to close the Reynolds equations, and the VOF method is used to accurately capture the time varying free surface, and the porosity method is adopted to treat the river bed deformation.

    Fig.1(a) Schematic diagram of the lid-driven flow in an enclosed cavity

    Fig.1(b) Schematic diagram of the cavity flow with free surface

    2. Governing equations and numerical methods

    2.1Governing equations

    The Reynolds equations of flow are as follows

    is the turbulent kinetic energy production, the widelyaccepted values of coefficients are chosen in this article:

    The governing equations for the sediment movement and the river bed deformation are:

    The boundaries in this simulation include the inlet and outflow of the mainstream, the free surface, the wall boundaries, and the sediment concentration near the bottom. At the inlet, the velocity, the turbulent kinetic energy, the diffusion rate and the sediment concentration distribution are given, and at the outflow, a zero gradient boundary condition is imposed. At the walls and the riverbed, the wall function is used, as for u( v, w):

    where u?=is the friction velocity,z0refers to the elevation where the velocity is zero, z0= ks/30,ksdepends on the riverbed: for a smooth bed without sand wave, ksis taken as d50, otherwise, the value ofksdepends on the height and length of the sand wave.

    To deal with irregular boundaries and river bed deformations, the porosity method[17]is used. On the free surface, the VOF model is used to determine the time varying surface level. The method used in Ref.[18] is used here to obtain the sediment concentration near the bottom.

    3. Simulation of sediment movement and deposition in the cavity

    Xia[19]conducted a series of experiments to study the fluid-sediment in a cavity with free surface. In the experiments, the main channel is 16 m long and 1.5 m wide with a longitudinal slope of 1/2 000. The cavity is 1m long in the X-direction and 5 m long in the Y-direction, which is perpendicular with the main channel. The sediment particles have a median diameter d50=0.0165 mm and d90=0.0546 mm, with density of 2 650 kg/m3. The gradation is shown in Fig.2. Two cases are chosen for this simulation with parameters as shown in Table 1.

    Fig.2 Sediment gradation

    Table 1 Parameters in experiments

    The simulated region covers the whole area with a dimension of 16 m×6.5 m×0.3 m, and a 160×65×30 mesh is used for the study.

    3.1 Flow structure and spatial distribution of concentration

    Figure 3(a) shows the flow field and the spatial distribution of the concentration of sediment on X-Y plane near the surface and z =0.03m. The mainstream flows into the cavity near the downstream of the opening of the cavity due to the deflecting flowat the upstream corner. It can be clearly seen that there are two big vortexes with one near the opening of the cavity and the other at the end of the cavity formed by the solid wall. These two vortexes entrain a great amount of sediment into the cavity from the mainstream.

    Fig.3(a) Flow field and spatial distribution of concentration on X-Y plane near the surface

    Figure 3(b) shows the distribution of the turbulent viscositytμ on X-Y plane near the surface. There is a high turbulent viscosity region at the downstream of the opening of the cavity, which means a heavy turbulent mixing of sediment in this area. With respect to the flow field and the turbulent mixing, a high concentration range can be seen in the downstream range near the opening in Figs.3(a) and 4(a).

    Fig.3(b) Turbulent viscositytμ on X-Y plane near the surface

    Figure 4 shows the flow field and the spatial distribution of the concentration of sediment, and the distribution of turbulent viscosity on X-Y plane at z =0.03m. The basic feature is similar with that near the surface but with two main differences: (1) the concentration of sediment is higher than that near the surface, as is consistent with the well known law of the sediment concentration distribution: “upper portion is diluted and lower portion is concentrated”, (2) the turbulent viscosity is very small compared with that near the surface, which indicates a heavy turbulent mixing of sediment mostly at the upper part of the flow.

    Fig.4(a) Flow field and spatial distribution of concentration on X-Y plane atz=0.03m

    Fig.4(b) Turbulent viscosity μton X-Y plane at z =0.03m

    The vertical sediment concentrations are compared with those measured in the selected 9 locations, of which I-1, II-1, III-1 are in the opening of the cavity, I-2, II-2, III-2 are in the middle part and I-3, II-3, III-3 are in the end part. The details are shown in Table 2 and Fig.5.

    Table 2 Locations

    Fig.5 Representative locations and the simulated area

    Fig.6 Sediment concentration vs. relative depth at locations I-1, II-1, III-1 in Case 1

    Fig.7 Sediment concentration vs. relative depth at locations I-2, II-2, III-2 in Case 1

    Figures 6-8 show a comparison between the computed vertical sediment concentration distribution and the experimental data at the selected 9 locations. As can be seen in these figures, the simulation results generally agree well with the experimental data: (1) the vertical distribution of the sediment concentration shows a trend of increase from the top to the bottom and it is more even in the opening area than in the middle and tail areas, (2) the average sediment concentration is the highest in the opening area andthe lowest in the tail area, and is lower near the upstream side wall (I) than near the downstream side wall (III). This is related to the complicated 3-D flow field and the turbulent mixing between the cavity flow and the mainstream. Also several minor discrepancies are observed between the simulated and measured results. The computed sediment concentration is slightly smaller than the measured value, especially near the upstream side wall (I). On the whole, the simulated distribution of the sediment concentration is more even than the measured one, which may be due to the presence of the density current flow in the experiment. The simulation of such density current flow is not very accurate in our current model.

    Fig.8 Sediment concentration vs. relative depth at locations I-3, II-3, III-3 in Case 1

    3.2 Deposit characteristics in the cavity

    Figures 9 and 10 show the deposit topographic map after 4 h’s running in Case 1 and Case 2, respectively. It is shown that the sediment deposition has an irregular cone shape, which is resulted from the circulation and the suspended sediment movement. The maximum sediment deposition usually occurs along the downstream side wall. Heavy sediment deposition occurs in the upstream side wall region near the opening area, and the downstream side wall region with exception of the opening area due to a sharp decrease of flow velocity near the interface. Comparing Case 1 and Case 2, the sediment concentration increases 3.6 times from 2 kg/m3to 7.2 kg/m3, but the sediment deposition increases 5 times accordingly, indicating a strong influence of sediment concentration in the mainstream on the sediment deposition in the cavity.

    Fig.9 Contour of deposit bathymetry in Case 1 (m)

    Fig.10 Contour of deposit bathymetry in Case 2 (m)

    Fig.11 Deposit height vs. Y-coordinate at Section I in Case 1

    Figures 11-13 show the deposit height vs. Y-coordinate in 4 h’s running in Case 1 at Sections I, II and III, respectively. As shown in Figs.11-13, the simulated morphology of sediment deposition in cross-sections agrees well with the measured one.

    Fig.12 Deposit height vs. Y-coordinate at Section II in Case 1

    Fig.13 Deposit height vs. Y-coordinate at Section III in Case 1

    Figure 14 shows the deposition per unit area in the cavity vs. time in Case 1. Because the carrying capacity of the sediment in the cavity is pretty small, one sees a sustained deposition. Unlike the sediment transport in sediment laden flows in natural rivers, the increase of the sediment deposition in the cavity is nearly linear during all running time.

    Fig.14 Deposit per unit area in the cavity vs. time in Case 1

    4.Conclusions

    In this study a 3-D turbulence model is built to simulate the fluid-sediment movement in a cavity with free surface. To capture the time varying free surface, the VOF method is used. The porosity method is employed to treat the irregular boundary and the varying bed deformation. The following conclusions are drawn:

    (1) The mainstream flows into the cavity near the downstream of the opening of the cavity due to the deflecting flow at the upstream corner. A heavy mixing of sediment is found near the downstream of the opening. With respect to the flow field and the turbulent mixing, there is a high concentration range in the downstream range near the opening.

    (2) The vertical distribution of sediment concentration in the cavity sees a general trend of increase from the top to the bottom, which is most prominent in the middle and tail areas of the cavity as compared to the relatively even distribution in the opening area. The average concentration of sediment in the cavity is the highest in the opening area and the lowest in the tail area, and higher in the downstream side wall than in the upper side wall.

    (3) The sediment deposition in the cavity is an accumulative process and the sediment concentration of the mainstream is the main factor determining the deposition in the cavity.

    Acknowledgement

    This worked was supported by the Ph. D. Independent Research Fund of Wuhan University (Grant No. 20102060101000064).

    [1] BARRAGY E., CAREY G. F. Stream function-vorticity driven cavity solutions using p finite elements[J]. Computers and Fluids, 1997, 26(5): 453-468.

    [2] CHEN Ying, LU Chuan-jing. A homogenousequilibrium-model based numerical code for cavitation flows and evaluation by computation cases[J]. Journal of Hydrodynamics, 2008, 20(2): 186-194.

    [3] ERTURK E., CORKE T. C. and GOKCOL C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 2005, 48(7): 747-774.

    [4] ERTURK E., GOKCOL C. Fourth order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 2006, 50(4): 421-436.

    [5] FORTIN A., JARDAK M. and GERVAIS J. J. et al. Localization of Hopf bifurcations in fluid flow problems[J]. International Journal for Numerical Methods in Fluids, 1997, 24(11): 1185-1210.

    [6] SAHIN M., OWENS R. G. A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Parts I and II[J]. International Journal for Numerical Methods in Fluids, 2003, 42(1): 79-88.

    [7] TIESINGA G., WUBS F. W. and VELDMAN A. E. P. Bifurcation analysis of incompressible flow in a driven cavity by the Newton–Picard method[J]. Journal of Computational and Applied Mathematics, 2002, 140: 751-772.

    [8] D’ORAZIO A., CORCIONE M. and CELATA G. P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6): 575-586.

    [9] AYDIN O., UNAL A. and AYHAN T. Numericalsolutions for buoyancy-driven flow in a 2-D square enclosure heated from one side and cooled from above[C]. Proceedings of the Advances in Computational Heat Transfer Symposium. New York: Begell House, 1997, 387-394.

    [10] GANZAROLLI M. M., MILANEZ L. F. Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides[J]. Inter. J. Heat Mass Transfer, 1995, 38(6): 1063-1073.

    [11] AYDIN O., UNAL A. and AYHAN T. Natural convection in rectangular enclosures heated from one side and cooled from the ceiling[J]. Inter. J. Heat Mass Transfer, 1999, 42(13): 2345-2355.

    [12] DONG Yao-hua. Calculation and analysis on flow and sediment transport in cavity recirculation[J]. Journal of Sediment Research, 1999, (2): 34-39(in Chinese).

    [13] XU Jian-yi. Experiment research of sediment in cecum[D]. Master Thesis, Wuhan: Wuhan University, 1984(in Chinese).

    [14] LIU Qing-quan. A study of sediment transport from the equations of turbulent two-phase flows -A discussion on diffusion theory and diffusion[J]. Journal of Hydraulic Engineering, 1995, (4): 68-76(in Chinese).

    [15] LIU Qing-quan. A study on sediment diffusion in turbulent mixing region at the mouth of cecum reach[J]. Journal of Sediment Research, 1995, (2): 11-21(in Chinese).

    [16] TAO Wen-quan. Numerical heat transfer[M]. Xi’an: Xi’an Jiangtong University Press, 2005(in Chinese).

    [17] CUI Zhan-feng, ZHANG Xiao-feng. Flow and sediment simulation around spur dike with free surface using 3-D turbulent model[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 237-244.

    [18] XIA Yun-feng. Research on application of 3D hydrodynamics, sediment transport model with non-staggered curvilinear grid for tidal rivers[D]. Ph. D. Thesis, Nanjing: Hohai University, 2003(in Chinese).

    [19] XIA Ren-jie. Research of muddy water invasion at the mouth of cecum reaches[D]. Master Thesis, Nanjing: Hohai University, 1982(in Chinese).

    10.1016/S1001-6058(09)60096-2

    * Project supported by the National Natural Science Foundation of China (Grant No. 51079104).

    Biography: ZHANG Xiao-feng (1962-), Male, Ph. D., Professor

    LU Xin-hua, E-mail: xhlu@yahoo.cn

    18禁观看日本| 中文字幕人妻熟女乱码| 欧美大码av| 亚洲自偷自拍图片 自拍| 欧美+亚洲+日韩+国产| 亚洲,欧美精品.| 欧美精品一区二区大全| 成人三级做爰电影| 9热在线视频观看99| 波多野结衣av一区二区av| 一本一本久久a久久精品综合妖精| 大型av网站在线播放| 老司机午夜十八禁免费视频| 一区二区三区乱码不卡18| 午夜精品国产一区二区电影| videosex国产| 观看av在线不卡| 青春草亚洲视频在线观看| 欧美日韩av久久| 国产成人系列免费观看| 欧美xxⅹ黑人| 欧美黄色淫秽网站| 欧美国产精品va在线观看不卡| 极品少妇高潮喷水抽搐| 肉色欧美久久久久久久蜜桃| 少妇的丰满在线观看| 好男人视频免费观看在线| 国产高清视频在线播放一区 | 成年美女黄网站色视频大全免费| 国产精品人妻久久久影院| 亚洲欧美日韩高清在线视频 | 大片免费播放器 马上看| 飞空精品影院首页| 国产在线视频一区二区| 黄色片一级片一级黄色片| 久久久久久久精品精品| 999久久久国产精品视频| 久久鲁丝午夜福利片| 香蕉国产在线看| av天堂久久9| 狂野欧美激情性bbbbbb| 久久av网站| 十八禁人妻一区二区| svipshipincom国产片| 9热在线视频观看99| 青春草视频在线免费观看| 天堂中文最新版在线下载| 国产精品亚洲av一区麻豆| 亚洲欧美一区二区三区久久| 国产日韩欧美在线精品| 男女之事视频高清在线观看 | 午夜精品国产一区二区电影| 美女脱内裤让男人舔精品视频| 国产成人一区二区三区免费视频网站 | 一级黄片播放器| 欧美黑人精品巨大| 在线观看免费日韩欧美大片| 亚洲精品av麻豆狂野| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线免费观看网站| 亚洲国产av影院在线观看| 日日摸夜夜添夜夜爱| 在线亚洲精品国产二区图片欧美| 午夜福利在线免费观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美性长视频在线观看| 精品人妻在线不人妻| 亚洲国产欧美一区二区综合| 黄色a级毛片大全视频| 黄网站色视频无遮挡免费观看| 蜜桃在线观看..| 只有这里有精品99| 国产99久久九九免费精品| 999精品在线视频| 午夜免费成人在线视频| 久久久国产精品麻豆| 午夜老司机福利片| 国语对白做爰xxxⅹ性视频网站| 新久久久久国产一级毛片| 国产熟女欧美一区二区| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 国产精品国产av在线观看| 日韩大码丰满熟妇| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播 | 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 婷婷色麻豆天堂久久| 久久热在线av| 婷婷色av中文字幕| 黄片小视频在线播放| 欧美精品一区二区免费开放| 亚洲中文日韩欧美视频| 一个人免费看片子| 视频在线观看一区二区三区| 黄色毛片三级朝国网站| 精品亚洲乱码少妇综合久久| 美女大奶头黄色视频| 一级毛片电影观看| 黄色 视频免费看| 视频区欧美日本亚洲| 少妇人妻久久综合中文| 国产精品一区二区精品视频观看| 一二三四社区在线视频社区8| 最黄视频免费看| 丝袜美足系列| 欧美精品高潮呻吟av久久| 久久99一区二区三区| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 免费不卡黄色视频| a 毛片基地| 国产一卡二卡三卡精品| 亚洲av成人精品一二三区| 美国免费a级毛片| 日韩视频在线欧美| 后天国语完整版免费观看| 啦啦啦视频在线资源免费观看| 人人妻,人人澡人人爽秒播 | 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 一级毛片 在线播放| 国产精品熟女久久久久浪| h视频一区二区三区| 在线观看免费日韩欧美大片| 精品少妇内射三级| 人妻 亚洲 视频| 久久久亚洲精品成人影院| 亚洲国产精品一区三区| 好男人电影高清在线观看| 欧美日韩亚洲综合一区二区三区_| 又粗又硬又长又爽又黄的视频| 亚洲专区国产一区二区| 久久女婷五月综合色啪小说| 丰满人妻熟妇乱又伦精品不卡| 超碰97精品在线观看| 看十八女毛片水多多多| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 亚洲国产欧美一区二区综合| 99久久综合免费| 国产精品久久久av美女十八| 视频在线观看一区二区三区| 色播在线永久视频| 成人午夜精彩视频在线观看| 久久久精品国产亚洲av高清涩受| 亚洲精品成人av观看孕妇| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看av| 欧美性长视频在线观看| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 妹子高潮喷水视频| 亚洲欧美一区二区三区黑人| 欧美久久黑人一区二区| av在线app专区| 国产精品久久久久久人妻精品电影 | 久久久亚洲精品成人影院| 天堂8中文在线网| 亚洲av在线观看美女高潮| 99国产精品一区二区蜜桃av | 国产av精品麻豆| 十八禁人妻一区二区| xxxhd国产人妻xxx| 午夜免费观看性视频| 成人黄色视频免费在线看| 午夜91福利影院| h视频一区二区三区| 波多野结衣一区麻豆| 无限看片的www在线观看| 免费看不卡的av| 亚洲欧洲国产日韩| 国产日韩欧美视频二区| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 91字幕亚洲| 交换朋友夫妻互换小说| 99九九在线精品视频| 欧美黑人精品巨大| 欧美日韩一级在线毛片| 秋霞在线观看毛片| 久久精品国产亚洲av高清一级| 久久综合国产亚洲精品| 日韩精品免费视频一区二区三区| 少妇人妻 视频| 午夜激情av网站| 国产欧美亚洲国产| 欧美少妇被猛烈插入视频| 天天躁夜夜躁狠狠躁躁| 一级片免费观看大全| 国精品久久久久久国模美| 国产精品久久久av美女十八| 人人妻人人澡人人看| a级毛片黄视频| 91精品三级在线观看| 爱豆传媒免费全集在线观看| 久久久久久久大尺度免费视频| 成年美女黄网站色视频大全免费| 久久久久久久久免费视频了| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| a 毛片基地| av有码第一页| 美女扒开内裤让男人捅视频| 女人高潮潮喷娇喘18禁视频| 婷婷色综合大香蕉| 国产精品99久久99久久久不卡| 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| 美女视频免费永久观看网站| 久久免费观看电影| 不卡av一区二区三区| 久久av网站| 亚洲成国产人片在线观看| 国产亚洲一区二区精品| 欧美在线一区亚洲| 国产成人免费无遮挡视频| avwww免费| 中文字幕人妻熟女乱码| 国产亚洲一区二区精品| a级毛片在线看网站| 精品卡一卡二卡四卡免费| 国产主播在线观看一区二区 | 国产主播在线观看一区二区 | 午夜福利乱码中文字幕| 亚洲伊人久久精品综合| 欧美亚洲日本最大视频资源| 色精品久久人妻99蜜桃| 在现免费观看毛片| 岛国毛片在线播放| 久久午夜综合久久蜜桃| h视频一区二区三区| 一区二区av电影网| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜制服| 免费在线观看日本一区| 尾随美女入室| 啦啦啦在线观看免费高清www| 中文字幕亚洲精品专区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av成人精品| 亚洲久久久国产精品| 亚洲综合色网址| 自线自在国产av| 亚洲精品自拍成人| a级毛片黄视频| 国产精品一区二区在线观看99| 国产视频首页在线观看| 久久亚洲精品不卡| 精品久久蜜臀av无| 男女午夜视频在线观看| 成年人黄色毛片网站| 一边摸一边抽搐一进一出视频| 成人免费观看视频高清| 日本av手机在线免费观看| 精品人妻在线不人妻| e午夜精品久久久久久久| 亚洲精品在线美女| 十八禁人妻一区二区| 在现免费观看毛片| 亚洲av电影在线进入| 黄片播放在线免费| 亚洲第一青青草原| www.熟女人妻精品国产| 国产主播在线观看一区二区 | 久久天堂一区二区三区四区| 免费久久久久久久精品成人欧美视频| 搡老岳熟女国产| 最黄视频免费看| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 亚洲国产最新在线播放| videosex国产| 久久久久久久精品精品| 欧美黑人欧美精品刺激| 青春草亚洲视频在线观看| 美女中出高潮动态图| 极品人妻少妇av视频| 蜜桃国产av成人99| 日韩av不卡免费在线播放| 欧美人与性动交α欧美软件| av有码第一页| 50天的宝宝边吃奶边哭怎么回事| 国产不卡av网站在线观看| 久久久久视频综合| av在线app专区| 最黄视频免费看| 黄网站色视频无遮挡免费观看| cao死你这个sao货| 高清欧美精品videossex| 亚洲中文av在线| 欧美精品av麻豆av| 两个人免费观看高清视频| 成人国产av品久久久| 人妻人人澡人人爽人人| 波野结衣二区三区在线| 黄色毛片三级朝国网站| 国产精品九九99| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三卡| 99久久精品国产亚洲精品| 黄色 视频免费看| 国产成人影院久久av| 丝袜脚勾引网站| 香蕉丝袜av| 精品高清国产在线一区| 亚洲成色77777| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 熟女少妇亚洲综合色aaa.| 久久久国产欧美日韩av| 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 999精品在线视频| 久久99精品国语久久久| 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区黑人| 色婷婷久久久亚洲欧美| 国产福利在线免费观看视频| 久久久久网色| 国产伦人伦偷精品视频| 免费在线观看视频国产中文字幕亚洲 | 精品免费久久久久久久清纯 | 18在线观看网站| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜制服| 国产精品熟女久久久久浪| 国产精品久久久av美女十八| 亚洲免费av在线视频| 日韩制服丝袜自拍偷拍| 性少妇av在线| 亚洲少妇的诱惑av| 在线av久久热| 免费黄频网站在线观看国产| 桃花免费在线播放| 久久久国产欧美日韩av| 91麻豆av在线| 日本欧美视频一区| 十分钟在线观看高清视频www| 成人国产一区最新在线观看 | 国产精品麻豆人妻色哟哟久久| 操美女的视频在线观看| 欧美av亚洲av综合av国产av| 91麻豆av在线| 日韩 欧美 亚洲 中文字幕| 精品欧美一区二区三区在线| 国产真人三级小视频在线观看| 18禁裸乳无遮挡动漫免费视频| 男女午夜视频在线观看| 可以免费在线观看a视频的电影网站| av天堂在线播放| 日韩一卡2卡3卡4卡2021年| 韩国精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 日韩制服丝袜自拍偷拍| 女人精品久久久久毛片| 天天影视国产精品| 国产亚洲欧美精品永久| 久久精品aⅴ一区二区三区四区| 亚洲国产中文字幕在线视频| 国产欧美日韩一区二区三 | 午夜福利视频精品| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 国产免费现黄频在线看| 欧美乱码精品一区二区三区| 日本a在线网址| 不卡av一区二区三区| 亚洲七黄色美女视频| 老司机影院成人| 99国产精品一区二区蜜桃av | 只有这里有精品99| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频 | 日韩熟女老妇一区二区性免费视频| 免费一级毛片在线播放高清视频 | 人妻一区二区av| 多毛熟女@视频| av视频免费观看在线观看| 男女高潮啪啪啪动态图| 亚洲,欧美,日韩| 免费在线观看日本一区| 精品久久久久久久毛片微露脸 | 男人爽女人下面视频在线观看| 国产成人精品久久二区二区91| 下体分泌物呈黄色| 嫁个100分男人电影在线观看 | 女人精品久久久久毛片| 日韩视频在线欧美| 伦理电影免费视频| 十八禁网站网址无遮挡| 亚洲国产欧美网| 天天添夜夜摸| 亚洲欧美一区二区三区久久| 大话2 男鬼变身卡| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| 成年av动漫网址| 亚洲伊人久久精品综合| 欧美av亚洲av综合av国产av| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 久久久久久久久免费视频了| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 国产福利在线免费观看视频| 一边摸一边做爽爽视频免费| 欧美成狂野欧美在线观看| 亚洲精品国产区一区二| 亚洲av成人精品一二三区| 国产日韩欧美亚洲二区| 大片电影免费在线观看免费| 热99久久久久精品小说推荐| 久久久久久久精品精品| 久久国产精品大桥未久av| 高清欧美精品videossex| 叶爱在线成人免费视频播放| 真人做人爱边吃奶动态| 欧美激情极品国产一区二区三区| 亚洲,一卡二卡三卡| 19禁男女啪啪无遮挡网站| 国产成人精品久久二区二区免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文日韩欧美视频| 亚洲国产日韩一区二区| 色播在线永久视频| 久久人妻熟女aⅴ| 美女福利国产在线| 久久鲁丝午夜福利片| 精品少妇内射三级| 最近最新中文字幕大全免费视频 | bbb黄色大片| 精品人妻一区二区三区麻豆| 免费久久久久久久精品成人欧美视频| 免费在线观看完整版高清| 日日夜夜操网爽| 国产成人精品在线电影| 中文乱码字字幕精品一区二区三区| 美女大奶头黄色视频| 亚洲欧美激情在线| 视频区图区小说| 91成人精品电影| 亚洲综合色网址| kizo精华| 亚洲,一卡二卡三卡| 99精国产麻豆久久婷婷| 97人妻天天添夜夜摸| 亚洲五月婷婷丁香| 99久久人妻综合| xxx大片免费视频| 国产又色又爽无遮挡免| 国产成人免费无遮挡视频| 国产有黄有色有爽视频| 亚洲精品一卡2卡三卡4卡5卡 | 操美女的视频在线观看| 国产色视频综合| 亚洲av综合色区一区| 国产国语露脸激情在线看| 波多野结衣av一区二区av| 国产成人啪精品午夜网站| 国产91精品成人一区二区三区 | 精品久久久久久电影网| 久久国产精品男人的天堂亚洲| 国产激情久久老熟女| 人人妻人人爽人人添夜夜欢视频| 好男人视频免费观看在线| 高清黄色对白视频在线免费看| 久久国产精品影院| 久久精品久久久久久噜噜老黄| tube8黄色片| 国产男女内射视频| 欧美人与善性xxx| 午夜福利视频精品| cao死你这个sao货| 亚洲欧美一区二区三区国产| 国产精品国产三级专区第一集| 狠狠精品人妻久久久久久综合| 爱豆传媒免费全集在线观看| 欧美激情 高清一区二区三区| 国产成人免费无遮挡视频| 免费观看av网站的网址| 日韩中文字幕欧美一区二区 | 日本欧美视频一区| 久久综合国产亚洲精品| 人体艺术视频欧美日本| 亚洲精品成人av观看孕妇| 99热国产这里只有精品6| 国产亚洲精品第一综合不卡| 国产亚洲午夜精品一区二区久久| 久久久久精品人妻al黑| 欧美性长视频在线观看| 久久九九热精品免费| 亚洲少妇的诱惑av| 欧美精品av麻豆av| 国产精品一区二区在线观看99| a级毛片黄视频| 后天国语完整版免费观看| 丁香六月天网| 国产精品一区二区在线不卡| 国产男女超爽视频在线观看| 亚洲精品第二区| 亚洲欧美成人综合另类久久久| 国产真人三级小视频在线观看| 黄片播放在线免费| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一二三区在线看| 精品国产乱码久久久久久小说| 波多野结衣av一区二区av| 在线观看国产h片| 欧美日本中文国产一区发布| 亚洲欧美清纯卡通| 中文欧美无线码| 精品人妻一区二区三区麻豆| 欧美国产精品一级二级三级| 久热爱精品视频在线9| 青草久久国产| 亚洲成人免费av在线播放| www.精华液| 亚洲久久久国产精品| 亚洲成人手机| 视频在线观看一区二区三区| 亚洲伊人色综图| 精品一区在线观看国产| 夫妻性生交免费视频一级片| 亚洲精品成人av观看孕妇| 精品一区二区三区四区五区乱码 | 一本—道久久a久久精品蜜桃钙片| 久久久欧美国产精品| 亚洲中文日韩欧美视频| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 日本vs欧美在线观看视频| 日韩精品免费视频一区二区三区| 免费在线观看日本一区| 99国产精品一区二区蜜桃av | 在线av久久热| 欧美激情 高清一区二区三区| netflix在线观看网站| 在线看a的网站| 蜜桃国产av成人99| 又粗又硬又长又爽又黄的视频| 捣出白浆h1v1| 曰老女人黄片| 亚洲av成人精品一二三区| 午夜福利一区二区在线看| 丝袜美足系列| 十八禁人妻一区二区| 精品亚洲成国产av| 亚洲欧美日韩高清在线视频 | 黄色视频不卡| 水蜜桃什么品种好| 少妇人妻久久综合中文| 黄片小视频在线播放| 我要看黄色一级片免费的| 亚洲天堂av无毛| 男女无遮挡免费网站观看| 亚洲,一卡二卡三卡| 久久久久久久久久久久大奶| 嫩草影视91久久| 中文字幕最新亚洲高清| 国产亚洲精品久久久久5区| 国产一级毛片在线| 亚洲国产中文字幕在线视频| 精品久久久久久久毛片微露脸 | 亚洲伊人色综图| 国产日韩一区二区三区精品不卡| 丝袜美腿诱惑在线| 欧美日韩黄片免| 亚洲综合色网址| 女性生殖器流出的白浆| 秋霞在线观看毛片| 爱豆传媒免费全集在线观看| 国产一区二区三区综合在线观看| 97人妻天天添夜夜摸| 日韩一卡2卡3卡4卡2021年| 午夜福利,免费看| 老司机影院成人| 亚洲av成人精品一二三区| 久久亚洲国产成人精品v| av不卡在线播放| 免费在线观看黄色视频的| 欧美变态另类bdsm刘玥| av电影中文网址| 日本午夜av视频| 80岁老熟妇乱子伦牲交| 一本久久精品| 波多野结衣一区麻豆| 久久精品aⅴ一区二区三区四区| 亚洲国产最新在线播放| 午夜av观看不卡| 日韩欧美一区视频在线观看| 欧美日韩国产mv在线观看视频| 如日韩欧美国产精品一区二区三区| 日韩精品免费视频一区二区三区| 王馨瑶露胸无遮挡在线观看| 欧美精品一区二区免费开放| 在线观看免费视频网站a站| 久久精品国产综合久久久| 男人操女人黄网站| 午夜福利一区二区在线看| 婷婷色综合www| 久久精品久久久久久噜噜老黄| 久久久精品免费免费高清| 天天躁日日躁夜夜躁夜夜| 欧美人与性动交α欧美精品济南到| 天天影视国产精品| 久久久久久久久免费视频了| 成在线人永久免费视频| 国产精品免费视频内射| 成年女人毛片免费观看观看9 |