• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WAVE INDUCED OSCILLATORY AND STEADY FLOWS IN THE ANNULUS OF A CATHETERIZED VISCOELASTIC TUBE*

    2010-05-06 08:21:59MAYeNGChiuOnCHANGYinYee

    MA Ye, NG Chiu-On, CHANG Yin-Yee

    Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China,

    WAVE INDUCED OSCILLATORY AND STEADY FLOWS IN THE ANNULUS OF A CATHETERIZED VISCOELASTIC TUBE*

    MA Ye, NG Chiu-On, CHANG Yin-Yee

    Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China,

    E-mail: cong@hku.hk

    (Received March 30, 2010, Revised August 2, 2010)

    A perturbation analysis based on equations of motion in Lagrangian form is presented for the oscillatory and time-mean viscous flows induced by a propagating wave of small amplitude in an annulus with a viscoelastic outer wall. Owing to the steady streaming effect, the existence of a catheter in a blood vessel brings in an additional steady pressure gradient, a correction to that predicted by the linear theory, and an additional steady shear stress, which may increase the possibility of hemolysis of red blood cells.

    annulus flow, steady streaming, catheterized artery

    1. Introduction

    The study of oscillatory flow of a viscous fluid contained in a flexible tube is of importance particularly to biomechanics. In clinical situations such as balloon angioplasty, a pressure transducer with a long fine catheter is inserted in a peripheral artery to measure the pressure gradient over a large part of the arterial tree during angioplasty procedures[1]. The insertion of catheters in blood vessels will, however, alter the pressure distribution, thereby inducing errors to the pressure gradient measurement[2]. Also, hemolysis of blood samples is a common clinical problem encountered in emergency operations. Excessively large shear stress in the annulus flow due to catheterization may destroy the red blood cells, leading to inaccuracy in assay results and often to the need for repeated blood draws[3].

    With an objective to understand blood flow in an annular region through a stenotic artery, several studies have been performed to estimate the correction to the measured values of blood pressure gradient[1,2,4-6]. Due to the nonlinear phenomenon known as steady streaming, which amounts to a time-independent component of flow[7], there exists a higher-order non-zero time-mean pressure gradient in addition to the oscillatory component found at the leading order. Sarkar and Jayaraman[1]derived a correction to the mean pressure drop as predicted by the linear theory in pulsatile flow through a catheterized stenosed rigid artery. The effects of the catheter size and oscillation frequency on the time-mean quantities such as velocity, impedance and wall shear stress were studied. A nonlinear analysis of the annulus flow in an elastic tube was further carried out by Sarkar and Jayaraman[2]. They also showed that the mean pressure gradient would change with catheter size at all frequencies. The geometry as well as the elasticity of the wall could play an important role in the dynamics of the flow even for small catheter radius. More complex effects, such as artery clot, artery curvature and non-Newtonian fluid, were investigated by Jayaraman and Sarkar[4], Jayaraman and Dash[5]and Sankar[6], respectively. The associated mass transport problem in oscillatory flow through a catheterized artery was also studied by, e.g., Sarkar and Jayaraman[8].

    The above-mentioned works are based on the Eulerian formulation, in which the Taylor expansiontheorem is employed to approximate the boundary conditions on a moving wall by those on the mean position of the wall[9]. Such an approach would, however, limit the validity of the second-order results to waves of extremely small amplitude when the oscillation frequency is high[10]. To circumvent this problem, we adopt in this work the Lagrangian description, by which the conditions on a moving boundary are prescribed exactly by referring to its undisturbed position[11]. The Lagrangian description is intrinsically particle specific, and hence its analysis will yield results that can be interpreted as the conditions experienced by individual particles, e.g., blood cells, in the flow. The Lagrangian steady streaming velocity, which shows the time-mean movement of particles, is found directly by this approach. Ma and Ng[10]recently developed a Lagrangian model to investigate the nonlinear flow induced by oscillatory pressure forcing through a thick-walled flexible tube without catheter insertion. Their mathematical formulation is largely followed in this work. In particular, their solutions for oscillatory as well as time-mean motions with zero initial wall stresses will be used as particular cases for comparison in this article.

    Sharp and Mohammad[3]found that the probability of hemolysis would increase as a result of increasing pressure difference and catheter size. They defined a threshold for hemolysis of red blood cells as a function of exposure time and shear stress. Below the threshold, hemolysis is much less probable to occur. In this regard, it is essential to determine a catheter size that will not cause the blood cells to be subject to excessively large shear stress during the process of catheterization. This has motivated the present study.

    Specifically, the present work is to study the oscillatory and time-mean flows, as induced by purely oscillatory pressure forcing, in a catheterized artery with viscoelastic outer wall. The Lagrangian coordinates are employed. The catheter, or the inner tube, is assumed to be rigid, and the condition outside the outer tube can be either stress-free (i.e., a free tube without constraint by the surrounding tissues), or zero-displacement axially (i.e., a tethered tube constrained by the surrounding tissues). Effects of non-Newtonian fluid, stenosis, curvature, gravity and initial stresses of the outer wall are not considered in this work. A perturbation analysis is performed by introducing a small ratio of wave amplitude to tube radius. The wavenumber and wave attenuation are found of the first order and the steady fluid dynamic parameters like the axial mass transport velocity, pressure gradient, and shear stress are found of the second order. Results are generated to illustrate the effects of oscillation frequency and catheter radius on the first-order oscillatory flow and the second-order steady quantities. Finally, based on the results, a critical catheter radius is suggested.

    2. Mathematical formulation

    Figure 1 shows a schematic diagram of the annular geometry and the cylindrical coordinate system. The radius of the rigid catheter, and the initial inner and outer radii of the outer wall are represented by d, a and b, respectively. By the Lagrangian description, the instantaneous radial and axial coordinates of a particle of fixed identity, ( r, z), and the pressure, p, are functions of the initial coordinates of the particle, ( R, Z ), and time, t. Axisymmetry is assumed, and hence any dependence on the azimuthal positionθ is eliminated. As a result of an oscillatory pressure gradient of angular frequency σ, a progressive wave of wavenumber k is induced in the system, where k and σ are related by a dispersion equation, as will be deduced later.

    Fig.1 Schematic diagram of the problem, where description is based on Lagrangian axial and radial coordinates, Z and R. Viscous fluid contained in the annulus between a viscoelastic tube and a rigid catheter is subjected to time-periodic oscillatory pressure forcing at Z=0. A fluid element initially centered at (R, Z), upon undergoing deformation, moves to a new center ( r, z) at timet

    will be used as an ordering parameter for the perturbation analysis below.

    Following Ma and Ng[10], we introduce the following normalized variables, which are distinguished by a caret:

    where the subindex l is used to distinguish between the fluid and outer wall domains

    where ρ represents the density, τijare the deviatoric stress components, T and N are, respectively, the tangential and normal stress components on a material surface as seen in an ( R, Z) plane.

    The motions of the fluid and the wall are governed by the continuity and momentum equations in the Lagrangian system as follows. The continuity equation is

    The dimensionless stress components are given below:

    More details about the deduction of the Lagrangian equations of motions in the cylindrical system can be found in Ma and Ng[10]. In the equations above, three dimensionless parameters are introduced:

    where νl=μl/ρlis the kinematic viscosity. These parameters have the following physical meanings: α is a frequency parameter known as the Womersley number, β represents the significance of the tube elasticity, γ is a ratio of the tube viscosity to the fluid viscosity.

    The normalized boundary conditions read as follows:

    Substitution of the expansions above into the governing Eqs.(5) - (9), the stress components (10) -(15) and the boundary conditions (17) - (19), and collecting terms of equal power of ε, we may obtain the first- and second-order problems as detailed in the following sections.

    3. First-order problem

    At O()ε, the governing equations for the fluid are

    The system will have a non-trivial solution if and only if the determinant of the coefficient matrixA vanishes:

    This condition yields the characteristic equation governing the eigenvalue, which is the complex wavenumberEquation (56) admits four complex solutions forwhere the real partdenotes the wavenumber, and the imaginary partis the attenuation constant. Our focus is on the forward traveling waves, so we only consider the two solutions with> 0 and<0. Each of these two solutions corresponds to a distinct wave mode. The wave with a slower phase velocity C1= σ/kr1is called Young wave representing a pressure wave propagating in the fluid, while the one with a higher phase velocity C2= σ/kr2is called Lamb wave representing a wave traveling largely along the wall. Most of our discussions below will be on the Young wave mode, which is more important in the present study.

    The constants B1-B7are related to the pressure amplitude poby the following relations: where Δklis the cofactor obtained by eliminating the kth row and the lth column of the matrix A.

    In Case 2 for a tethered tube, B4=0 and the dispersion equation becomes much simpler, which can be expressed as

    The Lamb wave does not exist this time and only the Young wave can survive in the tethering case.

    Fig.2 Phase velocity C1(m/s) and imaginary wavenumberof the Young wave as functions of the Womersley numberα

    4. Second-order problem

    The overbar denotes time average over one wave period, and the asterisk denotes the complex conjugate.

    According to the forcing terms on the right-hand side of the time-averaged equations, the second-order solutions of the steady motion in both the fluid and the wall can be expressed as follows:

    where UsR, UsLand psfare functions ofonly. The termindicates that all the second-order steady solutions decay along the axial direction. The strength of the axial decay is represented by the magnitude of imaginary part wavenumber, which is always negative as illustrated in Fig.2.

    The boundary conditions for the steady streaming of the fluid can be written as

    Substitution of Eq.(66) into Eqs. (61) - (63) and the boundary conditions (67) - (68) readily yields the time-mean pressure and axial steady streaming velocity at=0.

    where the integration constant M1and M2can be determined from the boundary conditions (67) and (68).

    The steady Lagrangian drift, which is largely in the axial direction, is now determined. This steady current is affected through the parameter B1by the oscillation frequency and catheter radius, as given in Eq.(57). Our second-order analysis and the resulting expression for the Lagrangian drift in annulus flow appear not to have been reported in the existing literature. By virtue of the Lagrangian approach, the boundary conditions are prescribed exactly on the interfaces, and hence the expressions deduced above are good irrespective of the displacement amplitude of the boundaries.

    Fig.3 Cross-sectional profiles of steady axial velocity at=0

    Fig.5 Cross-sectional profiles of steady shear stress

    Numerical results, which are obtained with the computational package Mathcad Version 14, are presented below to help us look into the effects of the catheter radius on the second-order steady quantities. Figure 3 shows the steady axial velocity profiles at the steady pressure gradient as has been illustrated in Fig.4. As a matter of fact, a catheter of radius d? =0. 3 will take up only 9% of the cross-sectional area of the tube. An order-of-magnitude analysis will show that, with a blockage ratio equal to 10%, the increase in the section-mean velocity is also of the order 10%. Such a limited increase in velocity will also lead to a limited increase in the magnitude of the dynamics quantities. The results here suggest that in practice a catheter radius no greater than d?=0. 3 should be used in order to avoid too large an increase in pressure or stress to be induced in the fluid.

    5. Concluding remarks

    In this article, we have examined the oscillatory as well as the steady Lagrangian flows of a fluid as induced by a wave propagating in the annulus of a catheterized viscoelastic tube. The problem is entirely Lagrangian in formulation and analysis. The steady axial velocity has been solved as an analytical function of the wall and fluid properties, the Womersley number, and the catheter radius, as given in Eq.(71) in the second-order problem. Because of wave damping, all the time-mean quantities contain an exponential factor for axial decay along the tube. The influences of the oscillation frequency and the catheter radius on steady streaming velocity, steady pressure gradient and steady shear stress have been studied. A catheter radius that is 30% of the radius of the inner wall surface is a possibly critical radius, below which the steady pressure gradient and the steady shear stress in most part of the fluid may not be appreciably affected by the presence of the catheter.

    Extension of the present model is possible on taking into account additional effects due to non-Newtonian fluid, large amplitude wave, stenosis and curvature of the artery wall. For a problem with complex geometry or strong nonlinearity, numerical efforts should be employed[21,22]. Our analytical results presented here can be used as a benchmark to test the accuracy of a computational scheme for solving the Lagrangian problem numerically.

    [1] SARKAR A., JAYARAMAN G. Correction to flow rate – pressure drop relation in coronary angioplasty: Steady streaming effect[J]. Journal of Biomechanics, 1998, 31(9): 781-791.

    [2] SARKAR A., JAYARAMAN G. Nonlinear analysis of oscillatory flow in the annulus of an elastic tube: Application to catheterized artery[J]. Physics of Fluids, 2001, 13(10): 2901-2911.

    [3] SHARP M. K., MOHAMMAD S. F. Scaling of hemolysis in needles and catheters[J]. Annual Review ofBiomedical Engineering, 1998, 26(5): 788-797.

    [4] JAYARAMAN G., SARKAR A. Nonlinear analysis of arterial blood flow – steady streaming effect[J]. Nonlinear Analysis, 2005, 63(5-7): 880-890.

    [5] JAYARAMAN G., DASH R. K. Numerical study of flow in a constricted curved annulus: An application to flow in a catheterised artery[J]. Journal of Engineering Mathematics, 2001, 40(4): 355-375.

    [6] SANKAR D. S. A two-fluid model for pulsatile flow in catheterized blood vessels[J]. International Journal of Non-Linear Mechanics, 2009, 44(4): 337-351.

    [7] RILEY N. Steady streaming[J]. Annual Review of Fluid Mechanics, 2001, 33: 43-65.

    [8] SARKAR A., JAYARAMAN G. The effect of wall absorption on dispersion in oscillatory flow in an annulus: Application to a catheterized artery[J]. Acta Mechanica, 2004, 172(3-4): 151-167.

    [9] DRAGON C. A., GROTBERG J. B. Oscillatory flow and mass transport in a flexible tube[J]. Journal of Fluid Mechanics, 1991, 231: 135-155.

    [10] MA Ye, NG Chiu-On. Wave propagation and induced steady streaming in viscous fluid contained in a prestressed viscoelastic tube[J]. Physics of Fluids, 2009, 21(5): 051901.

    [11] NG Chiu-On, ZHANG Xue-yan. Mass transport in water waves over a thin layer of soft viscoelastic mud[J]. Journal of Fluid Mechanics, 2007, 573: 105-130.

    [12] ZHANG Xue-yan, NG Chiu-On. On the oscillatory and mean motions due to waves in a thin viscoelastic layer[J]. Wave Motion, 2006, 43(5): 387-405.

    [13] BATRA R. C., YU J. H. Effect of inertia forces on the damping of a constrained layer finitely deformed in shearing[J]. Journal of Sound and Vibration, 2001, 241: 913-919.

    [14] MACOSKO C. W. Rheology: Principles, measurements and applications[M]. New York: Wiley, 1994.

    [15] DEMIRAY H. A viscoelastic model for arterial wall materials[J]. International Journal of Engineering Science, 1994, 32(10): 1567-1578.

    [16] GUNDIAH N., RATCLIFFE M. B. and PRUITT L. A. The biomechanics of arterial elastin[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(3): 288-296.

    [17] PIERSON W. J. Perturbation analysis of the Navier-Stokes equations in Lagrangian form with selected linear solution[J]. Journal of Geophysical Research, 1962, 67(8): 3151-3160.

    [18] LING S. C., ATABEK H. B. A nonlinear analysis of pulsatile flow in arteries[J]. Journal of Fluid Mechanics, 1972, 55: 493-511.

    [19] COX R. H. Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube[J]. Biophysical Journal, 1968, 8(6): 691-709.

    [20] WILMER W. N., MICHAEL F. O. McDonald’s blood flow in arteries: Theoretical, experimental, and clinical principles[M]. London: Arnold, 1998.

    [21] ZHAO Jun-wei, YIN Wen-yi and DING Guang-hong et al. Numerical simulation and analysis on the hemodynamics of an elastic aneurysm[J]. Journal of Hydrodynamics, 2008, 20(2): 216-224.

    [22] WANG Qing, WANG Wei-zhe and FEI Zhi-min et al. Simulation of blood flow in intracranial ICA-PCOMA aneurysm via computational fluid dynamics modeling[J]. Journal of Hydrodynamics, 2009, 21(5): 583-590.

    10.1016/S1001-6058(09)60094-9

    * Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. HKU 715609E).

    Biograsphy: MA Ye (1982-), Male, Ph. D., Engineer

    免费看a级黄色片| 十八禁网站免费在线| 99精品欧美一区二区三区四区| 老鸭窝网址在线观看| 性少妇av在线| 国产精品欧美亚洲77777| 国产97色在线日韩免费| 女人被狂操c到高潮| 色综合欧美亚洲国产小说| 首页视频小说图片口味搜索| 成人黄色视频免费在线看| www.精华液| 91精品国产国语对白视频| 欧美亚洲日本最大视频资源| 一a级毛片在线观看| 午夜亚洲福利在线播放| 美女 人体艺术 gogo| 高潮久久久久久久久久久不卡| 侵犯人妻中文字幕一二三四区| 久久狼人影院| 99国产精品一区二区蜜桃av | 免费日韩欧美在线观看| 涩涩av久久男人的天堂| 久久中文字幕人妻熟女| 99久久精品国产亚洲精品| 一级毛片高清免费大全| 日本五十路高清| 美女高潮到喷水免费观看| 欧美日韩视频精品一区| 免费一级毛片在线播放高清视频 | 黄色成人免费大全| 国产精品国产av在线观看| 啪啪无遮挡十八禁网站| 大片电影免费在线观看免费| 国产乱人伦免费视频| 国产xxxxx性猛交| 天堂中文最新版在线下载| 久久久久久亚洲精品国产蜜桃av| 女性被躁到高潮视频| 丁香欧美五月| 亚洲五月天丁香| 法律面前人人平等表现在哪些方面| 亚洲va日本ⅴa欧美va伊人久久| 亚洲少妇的诱惑av| 亚洲九九香蕉| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕最新亚洲高清| 国产精品久久久久久精品古装| 宅男免费午夜| 一级作爱视频免费观看| 脱女人内裤的视频| 十八禁高潮呻吟视频| 亚洲av电影在线进入| x7x7x7水蜜桃| 色播在线永久视频| 亚洲精品在线观看二区| 99国产综合亚洲精品| 老司机午夜十八禁免费视频| 久久精品国产综合久久久| 精品人妻1区二区| 国产成人精品在线电影| 精品一区二区三区四区五区乱码| 无限看片的www在线观看| 无遮挡黄片免费观看| 99国产综合亚洲精品| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| 亚洲国产看品久久| 久久精品亚洲av国产电影网| 少妇猛男粗大的猛烈进出视频| 日韩免费av在线播放| 成人免费观看视频高清| 在线av久久热| 亚洲午夜精品一区,二区,三区| 成年动漫av网址| 交换朋友夫妻互换小说| 最新美女视频免费是黄的| 女同久久另类99精品国产91| 亚洲,欧美精品.| 两性夫妻黄色片| 人妻丰满熟妇av一区二区三区 | 一边摸一边抽搐一进一小说 | 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 欧美国产精品va在线观看不卡| 国产xxxxx性猛交| 大陆偷拍与自拍| 免费不卡黄色视频| 搡老熟女国产l中国老女人| 日韩免费av在线播放| 亚洲av电影在线进入| 欧美丝袜亚洲另类 | 欧美久久黑人一区二区| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线进入| 性少妇av在线| 免费日韩欧美在线观看| 热99久久久久精品小说推荐| 最新的欧美精品一区二区| 久久国产精品人妻蜜桃| 国产精品影院久久| 狠狠婷婷综合久久久久久88av| 欧洲精品卡2卡3卡4卡5卡区| av电影中文网址| 亚洲成人免费av在线播放| а√天堂www在线а√下载 | 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 水蜜桃什么品种好| 久久久水蜜桃国产精品网| 视频区图区小说| 日韩免费高清中文字幕av| 国产真人三级小视频在线观看| cao死你这个sao货| 国产高清国产精品国产三级| 欧美日韩黄片免| 国产一区二区激情短视频| 免费在线观看亚洲国产| 女性被躁到高潮视频| 黄色女人牲交| 久久久精品国产亚洲av高清涩受| 欧美日韩精品网址| 亚洲精品一二三| 欧美午夜高清在线| 午夜老司机福利片| 无限看片的www在线观看| 村上凉子中文字幕在线| 亚洲人成电影观看| 香蕉久久夜色| 亚洲视频免费观看视频| 国产麻豆69| 欧美人与性动交α欧美软件| 欧美老熟妇乱子伦牲交| 免费在线观看亚洲国产| 久久精品亚洲熟妇少妇任你| 人妻 亚洲 视频| 午夜精品在线福利| 亚洲自偷自拍图片 自拍| 成年动漫av网址| 一边摸一边抽搐一进一小说 | 午夜福利免费观看在线| 亚洲综合色网址| 国产精品亚洲一级av第二区| av有码第一页| svipshipincom国产片| 国产无遮挡羞羞视频在线观看| 国产亚洲欧美在线一区二区| 免费av中文字幕在线| 亚洲精品中文字幕在线视频| 丝袜美腿诱惑在线| 黄片播放在线免费| 在线观看一区二区三区激情| 久久精品亚洲av国产电影网| 日韩免费高清中文字幕av| 人妻 亚洲 视频| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 成人亚洲精品一区在线观看| 久久午夜综合久久蜜桃| 亚洲国产毛片av蜜桃av| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| 亚洲国产精品sss在线观看 | 18禁黄网站禁片午夜丰满| 欧美人与性动交α欧美软件| 亚洲男人天堂网一区| 人人妻人人澡人人看| 在线十欧美十亚洲十日本专区| 国产一区在线观看成人免费| 一进一出抽搐动态| 麻豆乱淫一区二区| 免费高清在线观看日韩| 国产人伦9x9x在线观看| av天堂在线播放| 99国产综合亚洲精品| 人妻久久中文字幕网| 麻豆成人av在线观看| 久久久久久久午夜电影 | 免费日韩欧美在线观看| 啦啦啦 在线观看视频| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费 | 久久天堂一区二区三区四区| 亚洲成a人片在线一区二区| 亚洲欧美精品综合一区二区三区| 90打野战视频偷拍视频| 亚洲情色 制服丝袜| 亚洲精品在线观看二区| tocl精华| 老司机在亚洲福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 亚洲专区国产一区二区| 中文字幕另类日韩欧美亚洲嫩草| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 精品电影一区二区在线| 精品福利永久在线观看| 99久久99久久久精品蜜桃| 精品视频人人做人人爽| 日本wwww免费看| 美女国产高潮福利片在线看| 国产成人精品在线电影| 国产片内射在线| 人人妻,人人澡人人爽秒播| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 啦啦啦 在线观看视频| 国产亚洲欧美精品永久| av线在线观看网站| 欧美亚洲 丝袜 人妻 在线| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 两人在一起打扑克的视频| 亚洲欧美日韩另类电影网站| 成人亚洲精品一区在线观看| 午夜免费鲁丝| 在线永久观看黄色视频| 国产单亲对白刺激| 一进一出抽搐gif免费好疼 | 高清av免费在线| 一进一出抽搐gif免费好疼 | 成人影院久久| 精品亚洲成a人片在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲一区二区三区不卡视频| 捣出白浆h1v1| 高清在线国产一区| 久久国产精品男人的天堂亚洲| 后天国语完整版免费观看| 在线十欧美十亚洲十日本专区| 国产一区二区三区综合在线观看| 国产精品一区二区在线不卡| 国产一区二区三区视频了| 人人妻人人爽人人添夜夜欢视频| 国产精华一区二区三区| 久久久久久久久免费视频了| 国产亚洲av高清不卡| 午夜福利,免费看| 最近最新中文字幕大全免费视频| 免费观看a级毛片全部| 在线观看舔阴道视频| 欧美激情 高清一区二区三区| 女人被狂操c到高潮| 黄色 视频免费看| cao死你这个sao货| 久久精品亚洲精品国产色婷小说| 90打野战视频偷拍视频| 亚洲色图综合在线观看| 欧美激情 高清一区二区三区| 久久久久视频综合| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片| 少妇 在线观看| 免费观看人在逋| 午夜免费鲁丝| 黄片小视频在线播放| 中出人妻视频一区二区| 美女视频免费永久观看网站| 国产成人影院久久av| 国产精品久久久久成人av| 亚洲精品美女久久av网站| svipshipincom国产片| 亚洲成人免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 我的亚洲天堂| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 身体一侧抽搐| 一级片免费观看大全| 精品久久久精品久久久| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 身体一侧抽搐| 中文欧美无线码| 9热在线视频观看99| 成在线人永久免费视频| 亚洲av成人一区二区三| 大香蕉久久网| 亚洲精品久久午夜乱码| 人人妻人人爽人人添夜夜欢视频| 最新美女视频免费是黄的| 精品视频人人做人人爽| 成人三级做爰电影| 亚洲第一av免费看| 最新在线观看一区二区三区| av天堂在线播放| 99香蕉大伊视频| 日韩中文字幕欧美一区二区| 高清毛片免费观看视频网站 | 无限看片的www在线观看| 五月开心婷婷网| 人人澡人人妻人| 两个人免费观看高清视频| 成年女人毛片免费观看观看9 | 91国产中文字幕| 国产精品99久久99久久久不卡| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 久久久国产精品麻豆| 91老司机精品| 高清视频免费观看一区二区| 人人澡人人妻人| 一进一出好大好爽视频| 亚洲欧洲精品一区二区精品久久久| 在线观看一区二区三区激情| 大码成人一级视频| 亚洲国产精品sss在线观看 | 国内久久婷婷六月综合欲色啪| 欧美成人午夜精品| 国产淫语在线视频| 亚洲欧美精品综合一区二区三区| 日韩精品免费视频一区二区三区| 男女之事视频高清在线观看| 日韩一卡2卡3卡4卡2021年| 欧美人与性动交α欧美软件| av在线播放免费不卡| 青草久久国产| 丝袜美足系列| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精华国产精华精| 免费观看精品视频网站| 精品亚洲成a人片在线观看| 国产精品久久久久久人妻精品电影| 国产精品一区二区在线不卡| 精品电影一区二区在线| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 自线自在国产av| 亚洲精品中文字幕一二三四区| 最近最新中文字幕大全电影3 | 午夜福利影视在线免费观看| 成年人免费黄色播放视频| 最近最新中文字幕大全电影3 | 亚洲avbb在线观看| 午夜福利乱码中文字幕| 色尼玛亚洲综合影院| 久久精品熟女亚洲av麻豆精品| 91麻豆av在线| 国产不卡一卡二| 色综合欧美亚洲国产小说| 搡老岳熟女国产| 最新在线观看一区二区三区| 欧美精品高潮呻吟av久久| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口| e午夜精品久久久久久久| www.自偷自拍.com| 日本vs欧美在线观看视频| 丝瓜视频免费看黄片| 国产国语露脸激情在线看| 少妇粗大呻吟视频| 久久精品91无色码中文字幕| 国产成+人综合+亚洲专区| 人人妻人人澡人人爽人人夜夜| 免费在线观看日本一区| 美女高潮到喷水免费观看| 人人妻人人添人人爽欧美一区卜| 国产又色又爽无遮挡免费看| 亚洲欧美激情综合另类| 精品亚洲成a人片在线观看| 中文欧美无线码| 国产精品久久久久成人av| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 99精国产麻豆久久婷婷| av电影中文网址| 免费观看人在逋| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 美女国产高潮福利片在线看| 一边摸一边抽搐一进一小说 | 热99re8久久精品国产| 成人国产一区最新在线观看| 日本vs欧美在线观看视频| 免费看a级黄色片| 亚洲一区高清亚洲精品| 亚洲国产看品久久| 伦理电影免费视频| www.999成人在线观看| 精品国内亚洲2022精品成人 | 91大片在线观看| 99热只有精品国产| 精品国内亚洲2022精品成人 | 亚洲情色 制服丝袜| 亚洲成av片中文字幕在线观看| 亚洲欧美日韩高清在线视频| 五月开心婷婷网| 色播在线永久视频| 天堂中文最新版在线下载| 久久久久国产精品人妻aⅴ院 | 成人av一区二区三区在线看| x7x7x7水蜜桃| 日本欧美视频一区| 午夜成年电影在线免费观看| 18禁国产床啪视频网站| 国精品久久久久久国模美| 欧美日韩中文字幕国产精品一区二区三区 | 俄罗斯特黄特色一大片| 757午夜福利合集在线观看| 69av精品久久久久久| 一二三四在线观看免费中文在| 最新的欧美精品一区二区| 久久久久久免费高清国产稀缺| tocl精华| 国产在线一区二区三区精| 国产成人免费观看mmmm| 成人国产一区最新在线观看| 在线观看免费日韩欧美大片| 久久久久国产精品人妻aⅴ院 | 久久热在线av| 91成人精品电影| 制服诱惑二区| 老熟妇乱子伦视频在线观看| 人妻一区二区av| 老司机福利观看| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 成人影院久久| 丁香欧美五月| 一进一出抽搐动态| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 日韩欧美三级三区| 99国产精品免费福利视频| 女人精品久久久久毛片| 亚洲片人在线观看| 久久人人爽av亚洲精品天堂| 久久久国产精品麻豆| 成人永久免费在线观看视频| 夜夜爽天天搞| 久久婷婷成人综合色麻豆| 国产成人av教育| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 亚洲久久久国产精品| 黄色毛片三级朝国网站| 性色av乱码一区二区三区2| 欧美精品亚洲一区二区| 麻豆国产av国片精品| 好男人电影高清在线观看| 亚洲欧美激情综合另类| 成年动漫av网址| 久久热在线av| 老司机影院毛片| av不卡在线播放| 免费看十八禁软件| 国产欧美日韩一区二区三区在线| 亚洲精品乱久久久久久| 午夜免费观看网址| 99国产精品99久久久久| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边抽搐一进一出视频| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 亚洲免费av在线视频| 久久精品熟女亚洲av麻豆精品| 精品第一国产精品| 亚洲人成77777在线视频| 成年人午夜在线观看视频| 欧美日韩成人在线一区二区| 99久久人妻综合| 欧美成人免费av一区二区三区 | 老司机午夜十八禁免费视频| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂| 久久国产精品大桥未久av| 激情在线观看视频在线高清 | 极品少妇高潮喷水抽搐| 成人18禁在线播放| 五月开心婷婷网| 免费日韩欧美在线观看| 成人手机av| 久久精品国产a三级三级三级| 一级片'在线观看视频| 人妻一区二区av| 亚洲av成人一区二区三| 最近最新免费中文字幕在线| 久久久久久久国产电影| 欧美日韩亚洲国产一区二区在线观看 | 久久精品成人免费网站| 纯流量卡能插随身wifi吗| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三| 啦啦啦在线免费观看视频4| 久久人妻熟女aⅴ| 久久香蕉精品热| 精品国产一区二区久久| 国产高清激情床上av| 亚洲色图综合在线观看| 满18在线观看网站| 国产无遮挡羞羞视频在线观看| av片东京热男人的天堂| 国产一卡二卡三卡精品| 久久精品国产综合久久久| 国产精品 国内视频| 欧美日韩亚洲高清精品| 成人三级做爰电影| 亚洲熟妇熟女久久| 757午夜福利合集在线观看| 香蕉国产在线看| 午夜福利视频在线观看免费| 亚洲欧洲精品一区二区精品久久久| 日韩熟女老妇一区二区性免费视频| 国产精品国产高清国产av | 国产日韩欧美亚洲二区| 国产精品一区二区在线不卡| 成在线人永久免费视频| 欧美成人午夜精品| 夜夜夜夜夜久久久久| 国产精品久久久人人做人人爽| 丁香六月欧美| 老鸭窝网址在线观看| 亚洲专区中文字幕在线| 国产精品久久电影中文字幕 | 精品第一国产精品| 香蕉丝袜av| 一区二区三区激情视频| 夜夜夜夜夜久久久久| 宅男免费午夜| 国产成+人综合+亚洲专区| 桃红色精品国产亚洲av| 久久国产乱子伦精品免费另类| 亚洲欧洲精品一区二区精品久久久| 亚洲人成77777在线视频| 麻豆成人av在线观看| 极品人妻少妇av视频| 久久狼人影院| 看片在线看免费视频| 亚洲国产欧美一区二区综合| 黑人巨大精品欧美一区二区蜜桃| 黄色丝袜av网址大全| 国产精品九九99| 午夜激情av网站| 三级毛片av免费| 午夜福利一区二区在线看| 色综合婷婷激情| 啪啪无遮挡十八禁网站| 欧美+亚洲+日韩+国产| 法律面前人人平等表现在哪些方面| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区久久| 在线看a的网站| 一级黄色大片毛片| 两人在一起打扑克的视频| 亚洲欧美色中文字幕在线| 久久影院123| 国产伦人伦偷精品视频| 国产无遮挡羞羞视频在线观看| 久久久精品国产亚洲av高清涩受| 午夜福利一区二区在线看| 亚洲欧美一区二区三区久久| 久久性视频一级片| 99re在线观看精品视频| 国产成人免费无遮挡视频| 久久精品91无色码中文字幕| 国产野战对白在线观看| 淫妇啪啪啪对白视频| 18禁美女被吸乳视频| 久久国产精品影院| 成人国语在线视频| 精品人妻熟女毛片av久久网站| 一边摸一边抽搐一进一出视频| 人人妻人人澡人人看| 1024香蕉在线观看| 亚洲专区字幕在线| 久久香蕉激情| 国产免费av片在线观看野外av| 好看av亚洲va欧美ⅴa在| 国产av又大| av欧美777| 王馨瑶露胸无遮挡在线观看| 久久性视频一级片| 日本欧美视频一区| 黄片播放在线免费| 亚洲av电影在线进入| 色婷婷久久久亚洲欧美| a在线观看视频网站| 可以免费在线观看a视频的电影网站| 村上凉子中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 91麻豆精品激情在线观看国产 | 搡老乐熟女国产| 欧美日本中文国产一区发布| 午夜91福利影院| 最近最新中文字幕大全免费视频| 亚洲欧美精品综合一区二区三区| 久久午夜亚洲精品久久| 亚洲精品在线观看二区| 欧美日韩亚洲国产一区二区在线观看 | 巨乳人妻的诱惑在线观看| 久久久久精品国产欧美久久久| 精品人妻熟女毛片av久久网站| 欧美乱码精品一区二区三区| 亚洲国产欧美一区二区综合| 丝袜在线中文字幕| 亚洲成国产人片在线观看| 少妇被粗大的猛进出69影院| 日日夜夜操网爽| 日本a在线网址| 在线观看www视频免费| 性少妇av在线| 丰满的人妻完整版| 一级毛片高清免费大全| 69av精品久久久久久| 美女视频免费永久观看网站|