• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    n-C3H7I和i-C3H7I在266 nm的光解:烷基自由基分支化對C—I解離動力學(xué)的影響

    2010-03-06 04:44:50王艷梅馮文林
    物理化學(xué)學(xué)報 2010年7期
    關(guān)鍵詞:文林波譜理工大學(xué)

    張 鋒 王艷梅 張 冰,* 馮文林

    (1重慶理工大學(xué)光電信息學(xué)院,重慶 400051; 2中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點實驗室,武漢 430071;3中國科學(xué)院研究生院,北京 100049)

    Alkyl halides are particularly attractive in the study of photodissociation reactions since they provide the opportunity to understand the effect of size and symmetry of the alkyl radicals on the dynamics of bond fission.Photodissociation dynamics of simple alkyl halides in the A-band arising from σ*←n transition of a lone pair electron of halogen atoms has attracted considerable attention in the past several decades[1-7].Generally,the excitation to the A-band of a molecule causes the fission of C—X(X is halogen atom)bond to produce an alkyl radical with the responding halogen atom X(2P3/2)or X*(2P1/2).Three states,3Q1,3Q0and1Q1in Mulliken′s notation,in the σ*configuration are dipole allowed from the ground state of alkyl halides and are repulsive in nature.The3Q0state correlates with the X*fragment while the other two states lead to the X formation.The final yields of X and X*from the A-band photodissociation of the molecule are mediated by the nonadiabatic transition between the3Q0and1Q1states.

    As the simplest alkyl halide,photodissociation of methyl halides in the A-band has been a paradigm for experimental[8-10]and theoretical researches[11-15]on photodissociation processes that occur along a repulsive potential surface of the excited state, by which the molecule directly dissociates into CH3and halogen atom[8-12].For instance,dissociation dynamics of methyl iodide in C3vgeometry can be relatively well confined within the ν2umbrella and ν3symmetric stretch modes,under the simplified assumption of collinear pseudotriatomic dissociation due to prompt dissociation[13].In fact,the computation of the three dimensional photodissociation dynamics of the selected rotational state shows that the overall rotation has significant effects on the methyl rotational and vibrational distributions as well as the I*yield[14].An ab initio study indicates that vibrational state control of the I*/I branching ratio in the alkyl(hydrogen)iodide photodissociation has an electronic rather than a dynamic nature[15].The study of a series of alkyl iodides[16-17]using resonance Raman spectra shows that bend-stretch combination band progressions exist in addition to C—I stretch normal modes.The intensity of bend-stretch combination band progressions increases with the alkyl radicals being heavier and more branched relative to the C—I stretch normal modes.This suggests that the photodissociation along reaction coordinate has significant multidimensional character coded with more complicated vibration and rotation modes.

    The photodissociation of n-C3H7I and i-C3H7I offers a good choice to check the effects of the geometry of an alkyl radical on photodissociation since these two molecules are isomers with the different radical branching at α-carbon atom.Taking advantage of ion imaging technique in this work,we investigated the photolysis of n-C3H7I and i-C3H7I at 266 nm.With the information extracted from the energy and angular distributions of photoproducts I and I*of these two molecules,we gave quantitatively the cross sections and the crossing probability between different dissociative states.Finally,these results are compared to gain insight into the effect of radical branching on C—I dissociation dynamics.

    1 Experimental

    The experiments were performed on a home-built velocity ion imaging apparatus that was described in detail elsewhere[18]. Briefly,the apparatus consists of three parts:a source chamber, a main chamber,and a detector.Both of the chambers were pumped to obtain a pressure of about 5.0×10-6Pa.A molecular beam was produced through a pulsed valve synchronized with the laser pulses at 10 Hz and intersected with linearly polarized tunable ultraviolet(UV)laser pulses in main chamber through a conical skimmer.The generated ions were extracted and accelerated by the electrostatic immersion lens and projected onto a two-dimensional(2D)detector consisting of two microchannel plates coupled with a P47 phosphor screen and a charge-coupled device camera.

    The UV laser pulses were frequency doubled output of a dye laser system pumped by the harmonic of a Nd:YAG(YG980, Quantel,France)operating at 10 Hz and were used to dissociate molecules.Within the same pulse,the atomic fragments were state-selectively ionized by a(2+1)REMPI process via 7p(4S3/2)←5p5(2P3/2)transition for I(2P3/2)and np(73/2)←5p5(2P1/2)transition for I*(2P1/2)[19].Each ion image was constructed by accumulating signals from 10000 shots of the pulse and scanning the laser wavelength over the entire Doppler profile of the detected species.In order to minimize the influence of clusters,photolysis was performed on the rising edge of the molecular beam pulse.During the experiments,all the time delays were controlled by a pulse delay generator(Stanford DG535 Pulse Generator,SRS Inc., USA).

    The liquid samples of n-C3H7I and i-C3H7I with the purity of 99.9%were seeded in Helium gas at 1.0×105Pa without further purification and then were introduced into the source chamber through the pulsed valve.

    2 Results

    Fig.1 shows the images of I(2P3/2)and I*(2P1/2)atoms from the photodissociation of n-C3H7I at 266 nm with the laser beam polarized along the vertical direction.Background counts in the raw images have been removed by subtracting the reference image acquired at off-resonance wavelength of iodide atoms under the same conditions.The distribution of fragments in space is cylindrically symmetric about the polarization axis of photolysis laser and can be reconstructed from the raw images by the basisset expansion method(BASEX)[20].The reconstructed images are also showed in Fig.1.Similarly,Raw images and the corresponding reconstructed images of I and I*from the photodissociation of i-C3H7I at 266 nm are displayed in Fig.2.

    Fig.1 Raw images of I(a)and I*(b)and the corresponding reconstructed ones of I(c)and I*(d)fragments from the photodissociation of n-C3H7I at 266 nmThe arrow denotes the polarization vectors of the photolysis laser.

    From the reconstructed ion images,the speed distributions, P(v),can be derived by integrating over all angles at each speed. Thus,the total translational energy(ET)distribution of each photodissociationchannelinmolecularcoordinate,P(ET),asshownin Fig.3,can be easily obtained from P(v)of an individual fragment by the following formulas:

    Fig.2 Raw images of I(a)and I*(b)and the corresponding reconstructed ones of I(c)and I*(d)fragments from the photodissociation of i-C3H7I at 266 nmThe arrow denotes the polarization vectors of the photolysis laser.

    where dv and dETare the differential elements for the velocity v and the total translational energy ET,respecitively,mxand vx(x= C3H7,I and I*)are the mass and velocity of the photoproducts, respectively.The average translational energy〈ET〉and the corresponding full width at half maximum(FWHM)of I and I*cha-nnels of these two molecules are abstracted from the Gaussian fitting functions and are listed in Table1.According to energy conversation,the maximum available energy for the dissociation process Eavlis calculated by the following equation:

    Fig.3 Total translational energy distributions(P(ET))of the I and I*channels of the n-C3H7I(a,b)and i-C3H7I(c,d)at 266 nmThe circles represent the experimental results and the solid lines are the best-fitting of the experimental data.

    where Einis the initial internal energy of the parent molecules, Ehνis the pump photon energy,D0is the C—I bond dissociation energy of parent molecules at the ground states,228 kJ·mol-1for n-C3H7I and 221 kJ·mol-1for i-C3H7I[2],Eelis the electronic energy of iodine atom,zero for I and 91 kJ·mol-1for I*.Einis very small for the supersonic molecular beam and assumed to be zero.The fraction of the translational energy,defined as fT=〈ET〉/ Eavlfor I or I*dissociation channel,is also determined.These energy values are listed in Table1.

    Angular distributions of the fragments I and I*,I(θ),are extracted by integrating the reconstructed three-dimensional spatial distribution over a proper range of speed at each angle.Generally,it may be characterized by anisotropy parameter β as expressed by Eq.(4):

    where P2(cosθ)is the second order Legendre polynomial,and θ is the angle between the recoil velocity vector of fragments and the pump polarization axis.The measured β values here are averaged over the range of the FWHM of the translational velocity distributions and are listed in Table 2.For a particular excited state in which a molecule dissociates quickly along a bond axis, the anisotropy parameter β can also be given by Eq.(5):

    where P2(cosχ)is the second order Legendre polynomial and χ is the angle between the transition dipole moment of an excited state and bond axis.It can be seen that β varies from+2(the limit of a parallel transition(χ=0°))to-1 for that of a perpendicular transition(χ=90°).The envelopes of the ultraviolet absorption spectrum of both n-C3H7I and i-C3H7I[21]are similar to that of CH3I and show a Gaussian-type broadband centered at ca 255 nm and ca 260 nm,respectively.These absorption broadbands can be resolved into the3Q1,3Q0and1Q1states analogous to that of CH3I in energy ascending order.Among these states,3Q0transition dominates the absorption band[1-2,14-15].In our experiment, the optical absorption at 266 nm,being in the red wing of the absorption spectra,should be accompanied with the transitions to the lower lying3Q1and3Q0states.The3Q0state correlates not only to the I*fragments but also to the I fragments through a nonadiabatic process due to curve crossing between the3Q0and1Q1states.The3Q1state directly correlates to I fragments.Thus, anisotropy distributions of I*fragments along the polarization of pump laser reflect the angle χ between the3Q0transition dipole moment and C—I bond axis of n-C3H7I or i-C3H7I,which is evaluated to be 15°for n-C3H7I and 18°for i-C3H7I from their individual β(I*)values according to the Eq.(5).

    Table 1 Values of the energy parameters for I and I* channels from the photodissociation of the n-C3H7I and i-C3H7I at 266 nm

    Table 2 Anisotropy anisotropy parameter,relative oscillator strengths,and fraction of a wavepacket along the possible dissociation potential energy surface at 266 nm for n-C3H7I and i-C3H7I,C2H5I,and CH3I

    3 Discussion

    The images of I and I*of both n-C3H7I and i-C3H7I show simple structures(Fig.1 and Fig.2)with sharp anisotropydistributions along the polarization of pump laser,suggesting that the C—I bond dissociation promptly happens within a rotation period. The distributions can be well fitted by a single-peaked Gaussian curve as shown in Fig.3.We obviously can see that the energy distributions of I fragments of both molecules are much wider than those of I*fragments,which reflects that the radicals accompanied with I fragments should be in hotter internal states than those produced by dissociation channel n-or i-C3H7+I*. This is a common character of the photodissociation dyanmics of all simple alkyl halides because of the greater available energy for the radical+X(2P3/2)reaction[1-2,18,22],in which more rotation and vibration modes of the radicals are excited.This is also confirmed by the fact that the translational energy fraction(fT)of I*fragments is larger than that of I fragments for both molecules as listed in Table 1.

    The resonance Raman spectra of a series of alkyl iodides[16-17]at 266 nm have shown that as the alkyl radical becomes heavier and more branched,the Raman spectra show increased intensity in bend-stretch combination band progressions relative to the C—I stretch overtone progression.Namely,the dissociation coordinate is not only along the C—I internal coordinate but also along the bending internal coordinates with increase of the mass and branches of the alkyl radical.Comparing n-C3H7I with i-C3H7I,from Fig.3 and Table 1 we can also see that the energy distributions of the same iodine atom become wider and the corresponding translational energy fractions become smaller with the radical on α-carbon atom being more branched.In the impulsive framework,the width of the energy distribution is a reflection of the initial spread of momenta of the C—I caused by local excitation to the C—I bond.Those atoms attached to the α-carbon have a significant effect on the initial spread of momenta of the C—I bond.That means that more branched and heavier are the radicals attached to the α-carbon,more easily happen bend vibration of the C—C—C chains for the n-C3H7I and i-C3H7I.

    As described above,the anisotropydistribution parameters β(I*) of the I*products from these two isomers directly reflect the alignment of the transition dipole of the3Q0state along the C—I bond axis.However,the I product originates from two channels: direct excitation of the3Q1state and the1Q1←3Q0nonadiabatic transition.The direct contribution in the I channel is considered to be the reflection of the alignment of the transition dipole of the3Q1state to the C—I bond axis,while the nonadiabatic contribution remains the same anisotropy as the fragments that appear in the I*channel.Therefore,the β(I)value may be resolved to the relative contributions of the3Q1and3Q0states by Eq.(6)[23]:

    where P3Q0or P3Q1represents a relative oscillator strength for the transition to the3Q0and3Q1states,respectively,andf(3Q0,I)and f(3Q0,I*)(in Eq.(7))are the fractions ofthe wavepackets going into the I and I*channels after pumped to the3Q0state, respectively,and f(3Q0,I)+f(3Q0,I*)=1.β3Q0and β3Q1represent the effective anisotropy parameter limit for the alignment of3Q0and3Q1transitions,respectively.and-0.90 for n-C3H7I and β3Q0=β(I*)=1.71 andfor i-C3H7I.In addition,the P and f are connected by Eq.(7)[23]:

    where Φ(I*)/Φ(I)is the ratio of relative quantum yields of the I*and I from the dissociation of a molecule,and have been exactly determined to be 0.7/0.3 and 0.44/0.56 for n-C3H7I and i-C3H7I[24],respectively.All the values calculated here are listed in Table 2.Obviously,the relative oscillator strengths of the transition to3Q0states are absolutely dominated,0.97 for n-C3H7I and 0.95 for i-C3H7I.Using magnetic circular dichroism technology, Gedanken et al.[25-26]also revealed that the3Q0←X transition carries over 80%oscillator strengths in the A-band spectra of these alkyl iodides[25-26].The difference of these two molecules is small in oscillator strengths of the transition from the ground state to3Q0state.However,the wavepackets on the3Q0state prepared by a 266 nm photon proceed nonadiabatically to give the I*fragment with a probability f(3Q0,I*)of 0.72 for n-C3H7I and 0.46 for i-C3H7I,the remaining wavepackets product the I fragment with the probability of 0.28 for n-C3H7I and 0.54 for i-C3H7I,respectively.

    The effects of radical size and branching on upper state symmetry and curve crossing probabilities are obvious by comparing our data with those for CH3I[9]and C2H5I[24]as listed in Table 2. Though the relative oscillatorstrengthsofthese moleculespumped by 266 nm photon display a small difference for the3Q0←X transition,the probability to yield I fragment via curve crossing between the3Q0and1Q1state shows a large difference as the radicals being more branched:0.54 for i-C3H7I and 0.26-0.29 for other n-alkyl iodides.This fact reflects that the introduction of the methyl to α-carbon atom enhances the coupling strengths between3Q0and1Q1states,which makes the probability of yielding I fragments increase after a wavepacket is pumped to3Q0state by 266 nm photon.Photodissociation of these alkyl iodides at 248 nm have been investigated using translational photofragment spectroscopy by Godwin and his co-workers[1-2].The fraction of the I quantum yield from i-C3H7I is obviously larger than that from other n-alkyl iodides.The results reported by Phillips et al.[16-17]have shown that the unique structure of the radical from i-C3H7I exhibits the stronger bend-stretch combination band relative to n-C3H7I.Moreover,as the alkyl radical becomes heavier and more branched the bend-stretch combination band progres-sion of the molecules becomes more obvious relative to the C—I stretch overtone progression.The formation of this enhanced bend-stretch combination band can cause the increase of the coupling strength between3Q0and1Q1states and should be responsible for the enhancement in the crossing probability that a wavepacket from3Q0goes into the I channel.

    4 Conclusions

    The photodissociation dynamics of n-C3H7I and i-C3H7I at 266 nm was investigated using ion imaging detection.For both molecules,the dissociation products are iodide atom(I or I*) and the responding alkyl radical with a single energy distribution.The energy disposed into internal motions of the molecules for I channel is greater than that for I*channel because of the greater available energy,with which complex vibration and rotation modes can be excited more easily.As the alkyl group becomes more branched,the mixing of the rovibrational motions about the α-carbon atom with the C—I stretching in the photodissociation of alkyl iodides becomes more significant.Though the relative oscillator strengths of these molecules pumped by 266 nm photon display a small difference for the3Q0←X transition,the probability to yield I fragment via curve crossing between the3Q0and1Q1shows a large difference:0.54 for i-C3H7I and 0.26-0.29 for other n-alkyl iodides.It is proposed that the contribution of bending motion of the molecule becomes more significant and the coupling strength between3Q0and1Q1states gets stronger greatly during the C—I dissociation.In addition, the3Q0←X transition is not completely parallel transition for both molecules and the angle between the transition dipole moment and bond axis is estimated to be about 15°for n-C3H7I and 18°for i-C3H7I,respectively.

    1 Paterson,C.;Godwin,F.G.;Gorry,P.A.Mol.Phys.,1987,60: 729

    2 Godwin,F.G.;Paterson,C.;Gorry,P.A.Mol.Phys.,1987,61: 827

    3 Zhu,Q.H.;Cao,J.R.;Wen,Y.;Zhang,J.M.;Zhong,X.;Huang, Y.H.;Fang,W.Q.;Wu,X.J.Chem.Phys.Lett.,1988,144:486

    4 Matsumi,Y.;Tonokura,K.;Kawasaki,M.J.Chem.Phys.,1991, 94:2669

    5 Uma,S.;Das,P.K.J.Chem.Phys.,1996,104:4470

    6 Underwood,J.G.;Powis,I.Phys.Chem.Chem.Phys.,2000,2: 747

    7 Zhou,J.G.;Lau,K.C.;Hassanein,E.;Xu,H.F.;Tian,S.X.; Jones,B.;Ng,C.Y.J.Chem.Phys.,2006,124:034309

    8 Hertz,R.A.;Syage,J.A.J.Chem.Phys.,1994,100:9265

    9 Eppink,A.T.J.B.;Parker,D.H.J.Chem.Phys.,1998,109:4758

    10 Samartzis,P.C.;Bakker,B.L.G.;Parker,D.H.;Kitsopoulos,T. N.J.Phys.Chem.A,1999,103:6106

    11 Rist,C.;Alexander,M.H.J.Chem.Phys.,1993,98:6196

    12 Thanopulos,I.;Shapiro,M.J.Chem.Phys.,2006,125:133314

    13 Alekseyev,A.B.;Liebermann,H.P.;Buenker,R.J.;Yurchenko,S. N.J.Chem.Phys.,2007,126:234102

    14 Xie,D.Q.;Guo,H.;Amatatsu,Y.;Kosloff,R.J.Phys.Chem.A, 2000,104:1009

    15 Alekseyev,A.B.;Liebermann,H.P.;Buenker,R.J.J.Chem. Phys.,2007,126:234103

    16 Phillips,D.L.;Lawrence,B.A.;Valentini,J.J.J.Phys.Chem., 1991,95:7570

    17 Phillips,D.L.;Lawrence,B.A.;Valentini,J.J.J.Phys.Chem., 1991,95:9085

    18 Tang,Y.;Ji,L.;Tang,B.F.;Zhu,R.S.;Zhang,S.;Zhang,B.Acta Phys.-Chim.Sin.,2004,20(4):344 [唐 穎,姬 磊,唐碧峰,朱榮淑,張 嵩,張 冰.物理化學(xué)學(xué)報,2004,20(4):344]

    19 Donovan,R.J.;Flood,R.V.;Lawley,K.P.;Yencha,A.J.;Ridley, T.Chem.Phys.,1992,164:439

    20 Dribinski,V.;Ossadtchi,A.;Mandelshtam,V.A.;Reisler,H.Rev. Sci.Instrum.,2002,73:2634

    21 Roehl,C.M.;Burkholder,J.B.;Moortgat,G.K.;Ravishankara,A. R.;Grutzen,P.J.J.Geophys.Res.,1997,102:12819

    22 Wang,Y.;Zhang,S.;Wei,Z.;Zheng,Q.;Zhang,B.J.Chem. Phys.,2006,125:184307

    23 Lee,K.S.;Lim,J.S.;Ahn,D.S.;Choi,K.W.;Kima,S.K. J.Chem.Phys.,2006,124:124307

    24 Fan,H.Y.;Pratt,S.T.J.Chem.Phys.,2005,123:204301

    25 Gedanken,A.;Rowe,M.D.Chem.Phys.Lett.,1975,34:39

    26 Gedanken,A.Chem.Phys.Lett.,1987,137:462

    猜你喜歡
    文林波譜理工大學(xué)
    昆明理工大學(xué)
    你的三觀,我很喜歡
    話雖不多,句句砸鍋
    話雖不多,句句砸鍋
    初中生世界(2021年9期)2021-03-15 08:25:46
    有用的人,都在讀無用的書
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    琥珀酸美托洛爾的核磁共振波譜研究
    美國波譜通訊系統(tǒng)公司
    嘟嘟电影网在线观看| 国内精品宾馆在线| 婷婷色综合大香蕉| 国产精品一及| 草草在线视频免费看| 亚洲欧美成人综合另类久久久| 国产av精品麻豆| 在线观看免费日韩欧美大片 | 能在线免费看毛片的网站| 少妇人妻 视频| 日本与韩国留学比较| 欧美最新免费一区二区三区| 久久这里有精品视频免费| 人妻一区二区av| 免费看光身美女| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久免费av| 97在线人人人人妻| 亚洲精品一区蜜桃| 国产精品.久久久| 黄片无遮挡物在线观看| 亚洲精品国产色婷婷电影| 成年人午夜在线观看视频| 久久久久久久久久久丰满| 欧美激情国产日韩精品一区| 一区二区三区精品91| 一区二区av电影网| 亚洲国产欧美人成| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 熟女av电影| 精品人妻偷拍中文字幕| 国产精品欧美亚洲77777| 春色校园在线视频观看| 一级爰片在线观看| 大话2 男鬼变身卡| 日本猛色少妇xxxxx猛交久久| 最后的刺客免费高清国语| 国产欧美日韩一区二区三区在线 | 国产在线一区二区三区精| 国产欧美亚洲国产| 亚洲欧洲国产日韩| 天美传媒精品一区二区| 最近手机中文字幕大全| tube8黄色片| 免费av不卡在线播放| 看非洲黑人一级黄片| 综合色丁香网| 国产精品蜜桃在线观看| 大香蕉久久网| 日韩制服骚丝袜av| 日韩免费高清中文字幕av| 久久精品国产亚洲av天美| 人妻制服诱惑在线中文字幕| 草草在线视频免费看| 少妇猛男粗大的猛烈进出视频| 成人二区视频| 色综合色国产| 久久久久久伊人网av| 六月丁香七月| av在线老鸭窝| 纵有疾风起免费观看全集完整版| 精品久久国产蜜桃| 韩国av在线不卡| 午夜免费观看性视频| 边亲边吃奶的免费视频| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 熟女av电影| 自拍偷自拍亚洲精品老妇| 伦理电影免费视频| 国产69精品久久久久777片| kizo精华| 深夜a级毛片| 美女xxoo啪啪120秒动态图| 国产精品99久久99久久久不卡 | 香蕉精品网在线| 亚洲在久久综合| 91aial.com中文字幕在线观看| 久久久久人妻精品一区果冻| 国产无遮挡羞羞视频在线观看| 日韩成人伦理影院| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 简卡轻食公司| 91狼人影院| 亚洲色图av天堂| 亚洲激情五月婷婷啪啪| 五月玫瑰六月丁香| 男男h啪啪无遮挡| 成年av动漫网址| 成人免费观看视频高清| 爱豆传媒免费全集在线观看| 黄色视频在线播放观看不卡| 麻豆成人av视频| 中文欧美无线码| 偷拍熟女少妇极品色| 久久精品久久久久久久性| 国产精品人妻久久久久久| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 国产免费福利视频在线观看| 激情 狠狠 欧美| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 蜜臀久久99精品久久宅男| 成人漫画全彩无遮挡| 久久精品夜色国产| 黄色一级大片看看| 99热网站在线观看| 熟女人妻精品中文字幕| 99国产精品免费福利视频| 哪个播放器可以免费观看大片| 久久ye,这里只有精品| 建设人人有责人人尽责人人享有的 | 亚洲av免费高清在线观看| 国产成人a区在线观看| 国产高潮美女av| 2018国产大陆天天弄谢| 国产美女午夜福利| 久久精品国产亚洲av涩爱| 免费观看a级毛片全部| 女人十人毛片免费观看3o分钟| 美女高潮的动态| 久久亚洲国产成人精品v| 国产精品无大码| 久久青草综合色| 亚洲国产精品成人久久小说| 香蕉精品网在线| 日日摸夜夜添夜夜添av毛片| 亚洲国产av新网站| 亚洲欧美中文字幕日韩二区| 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 国产精品久久久久成人av| h视频一区二区三区| 亚洲精品乱码久久久久久按摩| 噜噜噜噜噜久久久久久91| 男人狂女人下面高潮的视频| 人体艺术视频欧美日本| 亚洲精品国产成人久久av| 青春草国产在线视频| 欧美激情国产日韩精品一区| 国产成人免费观看mmmm| 免费黄色在线免费观看| 国产成人精品福利久久| 国产精品人妻久久久影院| 乱系列少妇在线播放| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 简卡轻食公司| 三级经典国产精品| av一本久久久久| 热re99久久精品国产66热6| www.av在线官网国产| 国内揄拍国产精品人妻在线| 狂野欧美激情性bbbbbb| 三级经典国产精品| av一本久久久久| 亚洲av不卡在线观看| 波野结衣二区三区在线| 国产视频首页在线观看| 又爽又黄a免费视频| 国产免费福利视频在线观看| av在线播放精品| 尤物成人国产欧美一区二区三区| a级一级毛片免费在线观看| 亚洲国产成人一精品久久久| 国产成人freesex在线| 尾随美女入室| 亚洲欧美一区二区三区黑人 | 男人和女人高潮做爰伦理| 亚洲人与动物交配视频| 男人狂女人下面高潮的视频| 在线观看人妻少妇| 久久久欧美国产精品| 欧美激情极品国产一区二区三区 | 啦啦啦中文免费视频观看日本| 久久久久久久久久久丰满| 午夜福利网站1000一区二区三区| 久久97久久精品| 老师上课跳d突然被开到最大视频| 日韩欧美 国产精品| 国产精品爽爽va在线观看网站| 中文字幕免费在线视频6| 高清午夜精品一区二区三区| 综合色丁香网| 精品视频人人做人人爽| 在线观看一区二区三区| 国产美女午夜福利| 九九在线视频观看精品| 一级毛片久久久久久久久女| 亚洲第一av免费看| av免费观看日本| 亚洲综合精品二区| 欧美+日韩+精品| 久久久久久久久大av| 欧美精品亚洲一区二区| .国产精品久久| 精品久久国产蜜桃| 极品少妇高潮喷水抽搐| 少妇人妻一区二区三区视频| 老司机影院成人| 欧美+日韩+精品| 国产成人免费观看mmmm| 久久99热6这里只有精品| 黄色日韩在线| 偷拍熟女少妇极品色| 在线观看人妻少妇| 国产 一区精品| 日韩免费高清中文字幕av| 国产伦理片在线播放av一区| 亚洲av.av天堂| 欧美xxxx性猛交bbbb| 亚洲成色77777| 国产亚洲最大av| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 日韩免费高清中文字幕av| 人妻一区二区av| 久久久久视频综合| 久久久久久久大尺度免费视频| 男女免费视频国产| 精品久久久久久久末码| 久久久久久久久久成人| 国产男女内射视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品偷伦视频观看了| 最后的刺客免费高清国语| 尾随美女入室| 97在线视频观看| av线在线观看网站| 国产真实伦视频高清在线观看| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 亚洲自偷自拍三级| 99热这里只有精品一区| 日本av免费视频播放| 2021少妇久久久久久久久久久| 日本黄色日本黄色录像| 国产视频首页在线观看| 联通29元200g的流量卡| 国产成人91sexporn| 国产视频内射| 在线观看av片永久免费下载| 午夜福利影视在线免费观看| 日韩国内少妇激情av| 777米奇影视久久| 中文字幕亚洲精品专区| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品电影小说 | 亚洲自偷自拍三级| 尤物成人国产欧美一区二区三区| 在线观看一区二区三区| 天堂俺去俺来也www色官网| 男女免费视频国产| 亚洲欧美清纯卡通| 亚洲成色77777| 偷拍熟女少妇极品色| 青春草视频在线免费观看| 国内揄拍国产精品人妻在线| 美女视频免费永久观看网站| 蜜臀久久99精品久久宅男| 99久国产av精品国产电影| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 国产淫语在线视频| 五月玫瑰六月丁香| 丝瓜视频免费看黄片| 中文欧美无线码| 下体分泌物呈黄色| 亚洲av日韩在线播放| 亚洲成人手机| 亚洲国产日韩一区二区| 舔av片在线| 精品一区二区三卡| 亚洲精品乱久久久久久| 伊人久久国产一区二区| 一区二区av电影网| 欧美日韩亚洲高清精品| 亚洲欧美精品专区久久| 亚洲欧美日韩另类电影网站 | 亚洲色图综合在线观看| 亚洲国产精品999| 亚洲伊人久久精品综合| 男人狂女人下面高潮的视频| av播播在线观看一区| 在线 av 中文字幕| 亚洲第一区二区三区不卡| 国精品久久久久久国模美| 亚洲精品一二三| 日韩中文字幕视频在线看片 | 一本色道久久久久久精品综合| 女的被弄到高潮叫床怎么办| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 国内少妇人妻偷人精品xxx网站| 午夜老司机福利剧场| 日本黄色日本黄色录像| 精品少妇久久久久久888优播| 午夜视频国产福利| 一边亲一边摸免费视频| 国产乱人偷精品视频| 精品人妻偷拍中文字幕| 男人和女人高潮做爰伦理| 国产毛片在线视频| 男女边吃奶边做爰视频| 国产大屁股一区二区在线视频| 久久99精品国语久久久| 五月天丁香电影| 久久精品国产亚洲av涩爱| 国产精品人妻久久久影院| 国产91av在线免费观看| 国产真实伦视频高清在线观看| 久久久久精品性色| 性高湖久久久久久久久免费观看| 国产精品女同一区二区软件| 国产欧美日韩精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产精品蜜桃在线观看| 亚洲欧美精品专区久久| 99热6这里只有精品| 一个人看的www免费观看视频| 久久影院123| 日日摸夜夜添夜夜爱| 联通29元200g的流量卡| 少妇人妻久久综合中文| 干丝袜人妻中文字幕| 免费观看av网站的网址| 亚洲色图综合在线观看| 日韩一区二区视频免费看| 搡女人真爽免费视频火全软件| 久久精品国产亚洲网站| 午夜福利高清视频| 久久午夜福利片| 成年女人在线观看亚洲视频| 色吧在线观看| 亚洲av不卡在线观看| 22中文网久久字幕| 一区二区三区乱码不卡18| 亚洲无线观看免费| 国产亚洲午夜精品一区二区久久| 99热这里只有精品一区| 精品久久久久久久久亚洲| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 日本爱情动作片www.在线观看| 久久这里有精品视频免费| 成人国产av品久久久| 青青草视频在线视频观看| 亚洲精品一二三| 精品一区在线观看国产| 久久亚洲国产成人精品v| 男女国产视频网站| 97超碰精品成人国产| 美女国产视频在线观看| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 久久久精品94久久精品| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 熟女av电影| 亚洲av电影在线观看一区二区三区| 99久久精品一区二区三区| 精品久久久久久久久av| 午夜视频国产福利| 亚洲国产精品一区三区| 日本黄色日本黄色录像| 91精品伊人久久大香线蕉| 看十八女毛片水多多多| 一区二区三区免费毛片| 久久人妻熟女aⅴ| 久久国内精品自在自线图片| 日本黄大片高清| av不卡在线播放| 国产熟女欧美一区二区| 亚洲精品日本国产第一区| 日本黄大片高清| 成年人午夜在线观看视频| 国产女主播在线喷水免费视频网站| 精品一区二区三区视频在线| 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| 日韩一本色道免费dvd| 精品人妻熟女av久视频| 日日啪夜夜撸| 久热久热在线精品观看| 亚洲欧美成人综合另类久久久| 国产久久久一区二区三区| 视频区图区小说| av线在线观看网站| 日韩三级伦理在线观看| 激情五月婷婷亚洲| 欧美日本视频| 观看美女的网站| 精品少妇黑人巨大在线播放| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 亚洲va在线va天堂va国产| 免费观看在线日韩| 成年人午夜在线观看视频| 国产永久视频网站| 丝袜脚勾引网站| 男女啪啪激烈高潮av片| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 纯流量卡能插随身wifi吗| 搡女人真爽免费视频火全软件| 高清在线视频一区二区三区| 亚洲精品乱久久久久久| 国产伦精品一区二区三区四那| 激情五月婷婷亚洲| 一个人看视频在线观看www免费| 天堂8中文在线网| 免费看光身美女| 少妇猛男粗大的猛烈进出视频| 成人亚洲欧美一区二区av| 日本一二三区视频观看| 久久久亚洲精品成人影院| 亚洲精品成人av观看孕妇| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 久久久成人免费电影| videos熟女内射| 亚洲精品色激情综合| 日韩视频在线欧美| 国产精品一区二区在线不卡| 国产欧美亚洲国产| 国语对白做爰xxxⅹ性视频网站| 日本黄大片高清| 亚洲欧美一区二区三区国产| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 最近最新中文字幕免费大全7| 国产免费又黄又爽又色| 久久久久人妻精品一区果冻| 大香蕉久久网| 国产亚洲精品久久久com| 天天躁夜夜躁狠狠久久av| 人妻系列 视频| 五月伊人婷婷丁香| 最近最新中文字幕大全电影3| 一边亲一边摸免费视频| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| 精品熟女少妇av免费看| 秋霞在线观看毛片| 婷婷色综合大香蕉| 一个人免费看片子| 97在线视频观看| 久久久久久久久久成人| 欧美日韩国产mv在线观看视频 | 热re99久久精品国产66热6| 日韩中字成人| 又黄又爽又刺激的免费视频.| 2018国产大陆天天弄谢| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频| 亚洲欧美一区二区三区黑人 | 精品一品国产午夜福利视频| 国产综合精华液| 国产精品.久久久| 国产亚洲精品久久久com| 日本欧美国产在线视频| 久久精品人妻少妇| 亚洲国产成人一精品久久久| 色吧在线观看| 亚洲人成网站在线观看播放| 黄色怎么调成土黄色| 五月开心婷婷网| 日本一二三区视频观看| 亚洲精品日韩在线中文字幕| 欧美极品一区二区三区四区| 国产一区亚洲一区在线观看| 18+在线观看网站| 国产黄片视频在线免费观看| 国产高清不卡午夜福利| 成年人午夜在线观看视频| 久久99精品国语久久久| av线在线观看网站| 有码 亚洲区| 国产探花极品一区二区| 成人无遮挡网站| 亚洲av欧美aⅴ国产| 成年免费大片在线观看| 草草在线视频免费看| 成年女人在线观看亚洲视频| 久久青草综合色| 日本免费在线观看一区| 亚洲精品第二区| 观看av在线不卡| 老师上课跳d突然被开到最大视频| 欧美少妇被猛烈插入视频| 国产在线视频一区二区| 春色校园在线视频观看| 在线观看免费日韩欧美大片 | 热re99久久精品国产66热6| 精品久久久久久电影网| 国产在线男女| av卡一久久| 在线看a的网站| 亚洲av综合色区一区| 99热网站在线观看| av专区在线播放| 久久久久久久精品精品| 免费观看av网站的网址| 美女高潮的动态| av免费在线看不卡| 国产精品国产av在线观看| 亚洲色图综合在线观看| 三级国产精品欧美在线观看| 国产乱来视频区| 亚洲国产精品专区欧美| 亚洲精华国产精华液的使用体验| 午夜福利视频精品| 国产乱人视频| 丝瓜视频免费看黄片| 男女边吃奶边做爰视频| 女人久久www免费人成看片| av女优亚洲男人天堂| 91午夜精品亚洲一区二区三区| 如何舔出高潮| 国产亚洲欧美精品永久| 一个人看视频在线观看www免费| 我要看黄色一级片免费的| 国产黄频视频在线观看| 又黄又爽又刺激的免费视频.| 丰满迷人的少妇在线观看| 最近中文字幕2019免费版| 亚洲精品成人av观看孕妇| 99久久精品热视频| 免费看不卡的av| 成人无遮挡网站| 国产黄色免费在线视频| 极品少妇高潮喷水抽搐| 高清av免费在线| 久久精品国产亚洲av涩爱| 日本欧美国产在线视频| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 国产综合精华液| 天堂中文最新版在线下载| 男人狂女人下面高潮的视频| 中文精品一卡2卡3卡4更新| 不卡视频在线观看欧美| 麻豆成人午夜福利视频| 哪个播放器可以免费观看大片| 国产色婷婷99| 一二三四中文在线观看免费高清| av网站免费在线观看视频| 成年av动漫网址| 久久久精品94久久精品| 欧美日韩综合久久久久久| 建设人人有责人人尽责人人享有的 | 六月丁香七月| 国产极品天堂在线| 乱码一卡2卡4卡精品| 丰满迷人的少妇在线观看| 肉色欧美久久久久久久蜜桃| 日本黄色片子视频| 国产精品人妻久久久影院| 亚洲最大成人中文| 欧美精品亚洲一区二区| 亚洲伊人久久精品综合| 色5月婷婷丁香| 久久国内精品自在自线图片| 观看av在线不卡| 日韩一区二区视频免费看| 大片免费播放器 马上看| 亚洲av国产av综合av卡| 特大巨黑吊av在线直播| 亚洲怡红院男人天堂| 狂野欧美白嫩少妇大欣赏| 狂野欧美激情性bbbbbb| 永久免费av网站大全| 少妇熟女欧美另类| 亚洲精品亚洲一区二区| 韩国高清视频一区二区三区| 日本色播在线视频| 亚洲精品一区蜜桃| 亚洲内射少妇av| 亚洲精品一二三| 久久青草综合色| 亚洲成人av在线免费| 国产精品嫩草影院av在线观看| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品古装| av在线观看视频网站免费| 国产91av在线免费观看| 亚洲av福利一区| 免费看不卡的av| 视频中文字幕在线观看| 大香蕉久久网| 亚洲精品国产av成人精品| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 欧美日韩精品成人综合77777| 97在线人人人人妻| 少妇的逼好多水| 人妻一区二区av| 18禁在线无遮挡免费观看视频| 三级国产精品欧美在线观看| 秋霞在线观看毛片| 久久精品久久久久久噜噜老黄| 免费黄频网站在线观看国产| 多毛熟女@视频| 看免费成人av毛片| 夜夜骑夜夜射夜夜干| 亚洲精品视频女| 国产精品久久久久久久久免| 国产成人91sexporn|