• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    n-C3H7I和i-C3H7I在266 nm的光解:烷基自由基分支化對C—I解離動力學(xué)的影響

    2010-03-06 04:44:50王艷梅馮文林
    物理化學(xué)學(xué)報 2010年7期
    關(guān)鍵詞:文林波譜理工大學(xué)

    張 鋒 王艷梅 張 冰,* 馮文林

    (1重慶理工大學(xué)光電信息學(xué)院,重慶 400051; 2中國科學(xué)院武漢物理與數(shù)學(xué)研究所,波譜與原子分子物理國家重點實驗室,武漢 430071;3中國科學(xué)院研究生院,北京 100049)

    Alkyl halides are particularly attractive in the study of photodissociation reactions since they provide the opportunity to understand the effect of size and symmetry of the alkyl radicals on the dynamics of bond fission.Photodissociation dynamics of simple alkyl halides in the A-band arising from σ*←n transition of a lone pair electron of halogen atoms has attracted considerable attention in the past several decades[1-7].Generally,the excitation to the A-band of a molecule causes the fission of C—X(X is halogen atom)bond to produce an alkyl radical with the responding halogen atom X(2P3/2)or X*(2P1/2).Three states,3Q1,3Q0and1Q1in Mulliken′s notation,in the σ*configuration are dipole allowed from the ground state of alkyl halides and are repulsive in nature.The3Q0state correlates with the X*fragment while the other two states lead to the X formation.The final yields of X and X*from the A-band photodissociation of the molecule are mediated by the nonadiabatic transition between the3Q0and1Q1states.

    As the simplest alkyl halide,photodissociation of methyl halides in the A-band has been a paradigm for experimental[8-10]and theoretical researches[11-15]on photodissociation processes that occur along a repulsive potential surface of the excited state, by which the molecule directly dissociates into CH3and halogen atom[8-12].For instance,dissociation dynamics of methyl iodide in C3vgeometry can be relatively well confined within the ν2umbrella and ν3symmetric stretch modes,under the simplified assumption of collinear pseudotriatomic dissociation due to prompt dissociation[13].In fact,the computation of the three dimensional photodissociation dynamics of the selected rotational state shows that the overall rotation has significant effects on the methyl rotational and vibrational distributions as well as the I*yield[14].An ab initio study indicates that vibrational state control of the I*/I branching ratio in the alkyl(hydrogen)iodide photodissociation has an electronic rather than a dynamic nature[15].The study of a series of alkyl iodides[16-17]using resonance Raman spectra shows that bend-stretch combination band progressions exist in addition to C—I stretch normal modes.The intensity of bend-stretch combination band progressions increases with the alkyl radicals being heavier and more branched relative to the C—I stretch normal modes.This suggests that the photodissociation along reaction coordinate has significant multidimensional character coded with more complicated vibration and rotation modes.

    The photodissociation of n-C3H7I and i-C3H7I offers a good choice to check the effects of the geometry of an alkyl radical on photodissociation since these two molecules are isomers with the different radical branching at α-carbon atom.Taking advantage of ion imaging technique in this work,we investigated the photolysis of n-C3H7I and i-C3H7I at 266 nm.With the information extracted from the energy and angular distributions of photoproducts I and I*of these two molecules,we gave quantitatively the cross sections and the crossing probability between different dissociative states.Finally,these results are compared to gain insight into the effect of radical branching on C—I dissociation dynamics.

    1 Experimental

    The experiments were performed on a home-built velocity ion imaging apparatus that was described in detail elsewhere[18]. Briefly,the apparatus consists of three parts:a source chamber, a main chamber,and a detector.Both of the chambers were pumped to obtain a pressure of about 5.0×10-6Pa.A molecular beam was produced through a pulsed valve synchronized with the laser pulses at 10 Hz and intersected with linearly polarized tunable ultraviolet(UV)laser pulses in main chamber through a conical skimmer.The generated ions were extracted and accelerated by the electrostatic immersion lens and projected onto a two-dimensional(2D)detector consisting of two microchannel plates coupled with a P47 phosphor screen and a charge-coupled device camera.

    The UV laser pulses were frequency doubled output of a dye laser system pumped by the harmonic of a Nd:YAG(YG980, Quantel,France)operating at 10 Hz and were used to dissociate molecules.Within the same pulse,the atomic fragments were state-selectively ionized by a(2+1)REMPI process via 7p(4S3/2)←5p5(2P3/2)transition for I(2P3/2)and np(73/2)←5p5(2P1/2)transition for I*(2P1/2)[19].Each ion image was constructed by accumulating signals from 10000 shots of the pulse and scanning the laser wavelength over the entire Doppler profile of the detected species.In order to minimize the influence of clusters,photolysis was performed on the rising edge of the molecular beam pulse.During the experiments,all the time delays were controlled by a pulse delay generator(Stanford DG535 Pulse Generator,SRS Inc., USA).

    The liquid samples of n-C3H7I and i-C3H7I with the purity of 99.9%were seeded in Helium gas at 1.0×105Pa without further purification and then were introduced into the source chamber through the pulsed valve.

    2 Results

    Fig.1 shows the images of I(2P3/2)and I*(2P1/2)atoms from the photodissociation of n-C3H7I at 266 nm with the laser beam polarized along the vertical direction.Background counts in the raw images have been removed by subtracting the reference image acquired at off-resonance wavelength of iodide atoms under the same conditions.The distribution of fragments in space is cylindrically symmetric about the polarization axis of photolysis laser and can be reconstructed from the raw images by the basisset expansion method(BASEX)[20].The reconstructed images are also showed in Fig.1.Similarly,Raw images and the corresponding reconstructed images of I and I*from the photodissociation of i-C3H7I at 266 nm are displayed in Fig.2.

    Fig.1 Raw images of I(a)and I*(b)and the corresponding reconstructed ones of I(c)and I*(d)fragments from the photodissociation of n-C3H7I at 266 nmThe arrow denotes the polarization vectors of the photolysis laser.

    From the reconstructed ion images,the speed distributions, P(v),can be derived by integrating over all angles at each speed. Thus,the total translational energy(ET)distribution of each photodissociationchannelinmolecularcoordinate,P(ET),asshownin Fig.3,can be easily obtained from P(v)of an individual fragment by the following formulas:

    Fig.2 Raw images of I(a)and I*(b)and the corresponding reconstructed ones of I(c)and I*(d)fragments from the photodissociation of i-C3H7I at 266 nmThe arrow denotes the polarization vectors of the photolysis laser.

    where dv and dETare the differential elements for the velocity v and the total translational energy ET,respecitively,mxand vx(x= C3H7,I and I*)are the mass and velocity of the photoproducts, respectively.The average translational energy〈ET〉and the corresponding full width at half maximum(FWHM)of I and I*cha-nnels of these two molecules are abstracted from the Gaussian fitting functions and are listed in Table1.According to energy conversation,the maximum available energy for the dissociation process Eavlis calculated by the following equation:

    Fig.3 Total translational energy distributions(P(ET))of the I and I*channels of the n-C3H7I(a,b)and i-C3H7I(c,d)at 266 nmThe circles represent the experimental results and the solid lines are the best-fitting of the experimental data.

    where Einis the initial internal energy of the parent molecules, Ehνis the pump photon energy,D0is the C—I bond dissociation energy of parent molecules at the ground states,228 kJ·mol-1for n-C3H7I and 221 kJ·mol-1for i-C3H7I[2],Eelis the electronic energy of iodine atom,zero for I and 91 kJ·mol-1for I*.Einis very small for the supersonic molecular beam and assumed to be zero.The fraction of the translational energy,defined as fT=〈ET〉/ Eavlfor I or I*dissociation channel,is also determined.These energy values are listed in Table1.

    Angular distributions of the fragments I and I*,I(θ),are extracted by integrating the reconstructed three-dimensional spatial distribution over a proper range of speed at each angle.Generally,it may be characterized by anisotropy parameter β as expressed by Eq.(4):

    where P2(cosθ)is the second order Legendre polynomial,and θ is the angle between the recoil velocity vector of fragments and the pump polarization axis.The measured β values here are averaged over the range of the FWHM of the translational velocity distributions and are listed in Table 2.For a particular excited state in which a molecule dissociates quickly along a bond axis, the anisotropy parameter β can also be given by Eq.(5):

    where P2(cosχ)is the second order Legendre polynomial and χ is the angle between the transition dipole moment of an excited state and bond axis.It can be seen that β varies from+2(the limit of a parallel transition(χ=0°))to-1 for that of a perpendicular transition(χ=90°).The envelopes of the ultraviolet absorption spectrum of both n-C3H7I and i-C3H7I[21]are similar to that of CH3I and show a Gaussian-type broadband centered at ca 255 nm and ca 260 nm,respectively.These absorption broadbands can be resolved into the3Q1,3Q0and1Q1states analogous to that of CH3I in energy ascending order.Among these states,3Q0transition dominates the absorption band[1-2,14-15].In our experiment, the optical absorption at 266 nm,being in the red wing of the absorption spectra,should be accompanied with the transitions to the lower lying3Q1and3Q0states.The3Q0state correlates not only to the I*fragments but also to the I fragments through a nonadiabatic process due to curve crossing between the3Q0and1Q1states.The3Q1state directly correlates to I fragments.Thus, anisotropy distributions of I*fragments along the polarization of pump laser reflect the angle χ between the3Q0transition dipole moment and C—I bond axis of n-C3H7I or i-C3H7I,which is evaluated to be 15°for n-C3H7I and 18°for i-C3H7I from their individual β(I*)values according to the Eq.(5).

    Table 1 Values of the energy parameters for I and I* channels from the photodissociation of the n-C3H7I and i-C3H7I at 266 nm

    Table 2 Anisotropy anisotropy parameter,relative oscillator strengths,and fraction of a wavepacket along the possible dissociation potential energy surface at 266 nm for n-C3H7I and i-C3H7I,C2H5I,and CH3I

    3 Discussion

    The images of I and I*of both n-C3H7I and i-C3H7I show simple structures(Fig.1 and Fig.2)with sharp anisotropydistributions along the polarization of pump laser,suggesting that the C—I bond dissociation promptly happens within a rotation period. The distributions can be well fitted by a single-peaked Gaussian curve as shown in Fig.3.We obviously can see that the energy distributions of I fragments of both molecules are much wider than those of I*fragments,which reflects that the radicals accompanied with I fragments should be in hotter internal states than those produced by dissociation channel n-or i-C3H7+I*. This is a common character of the photodissociation dyanmics of all simple alkyl halides because of the greater available energy for the radical+X(2P3/2)reaction[1-2,18,22],in which more rotation and vibration modes of the radicals are excited.This is also confirmed by the fact that the translational energy fraction(fT)of I*fragments is larger than that of I fragments for both molecules as listed in Table 1.

    The resonance Raman spectra of a series of alkyl iodides[16-17]at 266 nm have shown that as the alkyl radical becomes heavier and more branched,the Raman spectra show increased intensity in bend-stretch combination band progressions relative to the C—I stretch overtone progression.Namely,the dissociation coordinate is not only along the C—I internal coordinate but also along the bending internal coordinates with increase of the mass and branches of the alkyl radical.Comparing n-C3H7I with i-C3H7I,from Fig.3 and Table 1 we can also see that the energy distributions of the same iodine atom become wider and the corresponding translational energy fractions become smaller with the radical on α-carbon atom being more branched.In the impulsive framework,the width of the energy distribution is a reflection of the initial spread of momenta of the C—I caused by local excitation to the C—I bond.Those atoms attached to the α-carbon have a significant effect on the initial spread of momenta of the C—I bond.That means that more branched and heavier are the radicals attached to the α-carbon,more easily happen bend vibration of the C—C—C chains for the n-C3H7I and i-C3H7I.

    As described above,the anisotropydistribution parameters β(I*) of the I*products from these two isomers directly reflect the alignment of the transition dipole of the3Q0state along the C—I bond axis.However,the I product originates from two channels: direct excitation of the3Q1state and the1Q1←3Q0nonadiabatic transition.The direct contribution in the I channel is considered to be the reflection of the alignment of the transition dipole of the3Q1state to the C—I bond axis,while the nonadiabatic contribution remains the same anisotropy as the fragments that appear in the I*channel.Therefore,the β(I)value may be resolved to the relative contributions of the3Q1and3Q0states by Eq.(6)[23]:

    where P3Q0or P3Q1represents a relative oscillator strength for the transition to the3Q0and3Q1states,respectively,andf(3Q0,I)and f(3Q0,I*)(in Eq.(7))are the fractions ofthe wavepackets going into the I and I*channels after pumped to the3Q0state, respectively,and f(3Q0,I)+f(3Q0,I*)=1.β3Q0and β3Q1represent the effective anisotropy parameter limit for the alignment of3Q0and3Q1transitions,respectively.and-0.90 for n-C3H7I and β3Q0=β(I*)=1.71 andfor i-C3H7I.In addition,the P and f are connected by Eq.(7)[23]:

    where Φ(I*)/Φ(I)is the ratio of relative quantum yields of the I*and I from the dissociation of a molecule,and have been exactly determined to be 0.7/0.3 and 0.44/0.56 for n-C3H7I and i-C3H7I[24],respectively.All the values calculated here are listed in Table 2.Obviously,the relative oscillator strengths of the transition to3Q0states are absolutely dominated,0.97 for n-C3H7I and 0.95 for i-C3H7I.Using magnetic circular dichroism technology, Gedanken et al.[25-26]also revealed that the3Q0←X transition carries over 80%oscillator strengths in the A-band spectra of these alkyl iodides[25-26].The difference of these two molecules is small in oscillator strengths of the transition from the ground state to3Q0state.However,the wavepackets on the3Q0state prepared by a 266 nm photon proceed nonadiabatically to give the I*fragment with a probability f(3Q0,I*)of 0.72 for n-C3H7I and 0.46 for i-C3H7I,the remaining wavepackets product the I fragment with the probability of 0.28 for n-C3H7I and 0.54 for i-C3H7I,respectively.

    The effects of radical size and branching on upper state symmetry and curve crossing probabilities are obvious by comparing our data with those for CH3I[9]and C2H5I[24]as listed in Table 2. Though the relative oscillatorstrengthsofthese moleculespumped by 266 nm photon display a small difference for the3Q0←X transition,the probability to yield I fragment via curve crossing between the3Q0and1Q1state shows a large difference as the radicals being more branched:0.54 for i-C3H7I and 0.26-0.29 for other n-alkyl iodides.This fact reflects that the introduction of the methyl to α-carbon atom enhances the coupling strengths between3Q0and1Q1states,which makes the probability of yielding I fragments increase after a wavepacket is pumped to3Q0state by 266 nm photon.Photodissociation of these alkyl iodides at 248 nm have been investigated using translational photofragment spectroscopy by Godwin and his co-workers[1-2].The fraction of the I quantum yield from i-C3H7I is obviously larger than that from other n-alkyl iodides.The results reported by Phillips et al.[16-17]have shown that the unique structure of the radical from i-C3H7I exhibits the stronger bend-stretch combination band relative to n-C3H7I.Moreover,as the alkyl radical becomes heavier and more branched the bend-stretch combination band progres-sion of the molecules becomes more obvious relative to the C—I stretch overtone progression.The formation of this enhanced bend-stretch combination band can cause the increase of the coupling strength between3Q0and1Q1states and should be responsible for the enhancement in the crossing probability that a wavepacket from3Q0goes into the I channel.

    4 Conclusions

    The photodissociation dynamics of n-C3H7I and i-C3H7I at 266 nm was investigated using ion imaging detection.For both molecules,the dissociation products are iodide atom(I or I*) and the responding alkyl radical with a single energy distribution.The energy disposed into internal motions of the molecules for I channel is greater than that for I*channel because of the greater available energy,with which complex vibration and rotation modes can be excited more easily.As the alkyl group becomes more branched,the mixing of the rovibrational motions about the α-carbon atom with the C—I stretching in the photodissociation of alkyl iodides becomes more significant.Though the relative oscillator strengths of these molecules pumped by 266 nm photon display a small difference for the3Q0←X transition,the probability to yield I fragment via curve crossing between the3Q0and1Q1shows a large difference:0.54 for i-C3H7I and 0.26-0.29 for other n-alkyl iodides.It is proposed that the contribution of bending motion of the molecule becomes more significant and the coupling strength between3Q0and1Q1states gets stronger greatly during the C—I dissociation.In addition, the3Q0←X transition is not completely parallel transition for both molecules and the angle between the transition dipole moment and bond axis is estimated to be about 15°for n-C3H7I and 18°for i-C3H7I,respectively.

    1 Paterson,C.;Godwin,F.G.;Gorry,P.A.Mol.Phys.,1987,60: 729

    2 Godwin,F.G.;Paterson,C.;Gorry,P.A.Mol.Phys.,1987,61: 827

    3 Zhu,Q.H.;Cao,J.R.;Wen,Y.;Zhang,J.M.;Zhong,X.;Huang, Y.H.;Fang,W.Q.;Wu,X.J.Chem.Phys.Lett.,1988,144:486

    4 Matsumi,Y.;Tonokura,K.;Kawasaki,M.J.Chem.Phys.,1991, 94:2669

    5 Uma,S.;Das,P.K.J.Chem.Phys.,1996,104:4470

    6 Underwood,J.G.;Powis,I.Phys.Chem.Chem.Phys.,2000,2: 747

    7 Zhou,J.G.;Lau,K.C.;Hassanein,E.;Xu,H.F.;Tian,S.X.; Jones,B.;Ng,C.Y.J.Chem.Phys.,2006,124:034309

    8 Hertz,R.A.;Syage,J.A.J.Chem.Phys.,1994,100:9265

    9 Eppink,A.T.J.B.;Parker,D.H.J.Chem.Phys.,1998,109:4758

    10 Samartzis,P.C.;Bakker,B.L.G.;Parker,D.H.;Kitsopoulos,T. N.J.Phys.Chem.A,1999,103:6106

    11 Rist,C.;Alexander,M.H.J.Chem.Phys.,1993,98:6196

    12 Thanopulos,I.;Shapiro,M.J.Chem.Phys.,2006,125:133314

    13 Alekseyev,A.B.;Liebermann,H.P.;Buenker,R.J.;Yurchenko,S. N.J.Chem.Phys.,2007,126:234102

    14 Xie,D.Q.;Guo,H.;Amatatsu,Y.;Kosloff,R.J.Phys.Chem.A, 2000,104:1009

    15 Alekseyev,A.B.;Liebermann,H.P.;Buenker,R.J.J.Chem. Phys.,2007,126:234103

    16 Phillips,D.L.;Lawrence,B.A.;Valentini,J.J.J.Phys.Chem., 1991,95:7570

    17 Phillips,D.L.;Lawrence,B.A.;Valentini,J.J.J.Phys.Chem., 1991,95:9085

    18 Tang,Y.;Ji,L.;Tang,B.F.;Zhu,R.S.;Zhang,S.;Zhang,B.Acta Phys.-Chim.Sin.,2004,20(4):344 [唐 穎,姬 磊,唐碧峰,朱榮淑,張 嵩,張 冰.物理化學(xué)學(xué)報,2004,20(4):344]

    19 Donovan,R.J.;Flood,R.V.;Lawley,K.P.;Yencha,A.J.;Ridley, T.Chem.Phys.,1992,164:439

    20 Dribinski,V.;Ossadtchi,A.;Mandelshtam,V.A.;Reisler,H.Rev. Sci.Instrum.,2002,73:2634

    21 Roehl,C.M.;Burkholder,J.B.;Moortgat,G.K.;Ravishankara,A. R.;Grutzen,P.J.J.Geophys.Res.,1997,102:12819

    22 Wang,Y.;Zhang,S.;Wei,Z.;Zheng,Q.;Zhang,B.J.Chem. Phys.,2006,125:184307

    23 Lee,K.S.;Lim,J.S.;Ahn,D.S.;Choi,K.W.;Kima,S.K. J.Chem.Phys.,2006,124:124307

    24 Fan,H.Y.;Pratt,S.T.J.Chem.Phys.,2005,123:204301

    25 Gedanken,A.;Rowe,M.D.Chem.Phys.Lett.,1975,34:39

    26 Gedanken,A.Chem.Phys.Lett.,1987,137:462

    猜你喜歡
    文林波譜理工大學(xué)
    昆明理工大學(xué)
    你的三觀,我很喜歡
    話雖不多,句句砸鍋
    話雖不多,句句砸鍋
    初中生世界(2021年9期)2021-03-15 08:25:46
    有用的人,都在讀無用的書
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    琥珀酸美托洛爾的核磁共振波譜研究
    美國波譜通訊系統(tǒng)公司
    成人鲁丝片一二三区免费| 内射极品少妇av片p| 日本熟妇午夜| 亚洲av二区三区四区| av.在线天堂| 国内少妇人妻偷人精品xxx网站| 亚洲精品,欧美精品| 99久久精品热视频| 高清av免费在线| 久久综合国产亚洲精品| 欧美xxxx黑人xx丫x性爽| 亚洲av免费高清在线观看| 嘟嘟电影网在线观看| 免费黄频网站在线观看国产| 国产在线男女| 秋霞伦理黄片| 国产高清三级在线| 亚洲美女搞黄在线观看| 亚洲精品国产av蜜桃| 99热这里只有是精品50| 欧美高清成人免费视频www| 久久久久久久久久久免费av| 一级毛片黄色毛片免费观看视频| 精品人妻偷拍中文字幕| 亚洲精品日韩av片在线观看| 国产精品一及| 国产高清国产精品国产三级 | 久久久久久久午夜电影| av国产精品久久久久影院| 国产精品熟女久久久久浪| 性色av一级| 观看免费一级毛片| 欧美老熟妇乱子伦牲交| 色网站视频免费| 午夜福利网站1000一区二区三区| 亚洲欧美精品专区久久| 亚洲av.av天堂| av一本久久久久| 六月丁香七月| 黄色视频在线播放观看不卡| 亚洲国产成人一精品久久久| 在线观看一区二区三区激情| 久久久久久久久久成人| 国产午夜福利久久久久久| 少妇人妻一区二区三区视频| 日韩大片免费观看网站| 久久久久久久精品精品| 日本欧美国产在线视频| 日本黄色片子视频| av在线app专区| 97超碰精品成人国产| 人体艺术视频欧美日本| 亚洲一区二区三区欧美精品 | 国产日韩欧美亚洲二区| 亚洲精华国产精华液的使用体验| 免费av不卡在线播放| 国产黄色免费在线视频| 一区二区av电影网| 一级毛片电影观看| 18禁在线无遮挡免费观看视频| 少妇人妻精品综合一区二区| 又爽又黄a免费视频| 国产又色又爽无遮挡免| 全区人妻精品视频| 深夜a级毛片| 国产精品人妻久久久影院| 免费黄网站久久成人精品| 成人午夜精彩视频在线观看| 成年版毛片免费区| 亚洲真实伦在线观看| 七月丁香在线播放| 午夜亚洲福利在线播放| 亚洲国产色片| 中文字幕制服av| 80岁老熟妇乱子伦牲交| 成人免费观看视频高清| 久久久午夜欧美精品| 我的女老师完整版在线观看| 国产精品女同一区二区软件| 毛片女人毛片| 国产v大片淫在线免费观看| 国产淫语在线视频| 亚洲av二区三区四区| av在线观看视频网站免费| 亚洲国产欧美在线一区| 久久97久久精品| 久久精品夜色国产| 久久久a久久爽久久v久久| 亚洲最大成人中文| 精品人妻偷拍中文字幕| 高清日韩中文字幕在线| 视频中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 精品亚洲乱码少妇综合久久| 一个人看视频在线观看www免费| 亚洲精品自拍成人| 97超视频在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 国产一区二区三区综合在线观看 | 免费大片黄手机在线观看| 日韩欧美 国产精品| 国产精品久久久久久精品电影| 亚洲av电影在线观看一区二区三区 | 一级av片app| 99久久精品一区二区三区| 全区人妻精品视频| av免费观看日本| 97在线视频观看| 大香蕉97超碰在线| 国产爽快片一区二区三区| 中国美白少妇内射xxxbb| 两个人的视频大全免费| 一区二区av电影网| 超碰av人人做人人爽久久| 麻豆成人午夜福利视频| 久久精品国产a三级三级三级| 亚洲精品一二三| 边亲边吃奶的免费视频| 少妇人妻久久综合中文| 久久综合国产亚洲精品| 午夜爱爱视频在线播放| 老女人水多毛片| 大香蕉久久网| 国产精品成人在线| 国国产精品蜜臀av免费| 日韩成人av中文字幕在线观看| 亚洲色图综合在线观看| 一级毛片我不卡| 婷婷色综合www| 一级黄片播放器| 在线亚洲精品国产二区图片欧美 | 成人高潮视频无遮挡免费网站| 国产av码专区亚洲av| 久久精品国产自在天天线| 国产精品女同一区二区软件| 亚洲精品成人av观看孕妇| 丝瓜视频免费看黄片| 看黄色毛片网站| 在线观看av片永久免费下载| 一级片'在线观看视频| 国产淫片久久久久久久久| 观看免费一级毛片| 五月开心婷婷网| 日韩欧美 国产精品| 在线观看三级黄色| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 亚洲国产最新在线播放| 日本黄色片子视频| 小蜜桃在线观看免费完整版高清| 久久热精品热| 国产成人精品婷婷| 热99国产精品久久久久久7| 国产淫语在线视频| 亚洲国产高清在线一区二区三| 久久精品久久久久久噜噜老黄| av卡一久久| 新久久久久国产一级毛片| 久久女婷五月综合色啪小说 | av卡一久久| 国产色爽女视频免费观看| 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| 亚洲精品成人av观看孕妇| 国产精品不卡视频一区二区| 欧美三级亚洲精品| 久久精品综合一区二区三区| 久久国内精品自在自线图片| tube8黄色片| 在线看a的网站| 欧美少妇被猛烈插入视频| 卡戴珊不雅视频在线播放| 免费黄色在线免费观看| 看黄色毛片网站| 亚洲成人精品中文字幕电影| 美女xxoo啪啪120秒动态图| 久久久久国产精品人妻一区二区| 熟女av电影| 日韩av在线免费看完整版不卡| 久久人人爽人人爽人人片va| 久久国内精品自在自线图片| 在线观看人妻少妇| 国产熟女欧美一区二区| 国产精品秋霞免费鲁丝片| 久久97久久精品| 久热久热在线精品观看| 国产伦理片在线播放av一区| av在线观看视频网站免费| 亚洲精品国产成人久久av| 黄色视频在线播放观看不卡| 国产欧美日韩精品一区二区| 男的添女的下面高潮视频| 一本色道久久久久久精品综合| 国产精品久久久久久av不卡| 久久久久久久大尺度免费视频| 亚洲,欧美,日韩| 黄片无遮挡物在线观看| 嫩草影院精品99| 日本三级黄在线观看| 91久久精品电影网| 美女内射精品一级片tv| 久久久欧美国产精品| 日本wwww免费看| 亚洲欧美中文字幕日韩二区| 国产老妇女一区| 舔av片在线| 高清在线视频一区二区三区| 日韩欧美精品v在线| 久久久久九九精品影院| 高清视频免费观看一区二区| 亚洲av免费在线观看| 啦啦啦啦在线视频资源| 亚洲电影在线观看av| 国产高清国产精品国产三级 | 波野结衣二区三区在线| 久久人人爽av亚洲精品天堂 | av.在线天堂| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av天美| 亚洲激情五月婷婷啪啪| 国内精品宾馆在线| 亚洲av二区三区四区| 综合色av麻豆| av在线app专区| av在线观看视频网站免费| 性色avwww在线观看| 91狼人影院| 各种免费的搞黄视频| 免费看av在线观看网站| 精品人妻偷拍中文字幕| 禁无遮挡网站| .国产精品久久| 中国国产av一级| av在线老鸭窝| 免费播放大片免费观看视频在线观看| 久久99热6这里只有精品| 你懂的网址亚洲精品在线观看| 超碰av人人做人人爽久久| 国产日韩欧美在线精品| 99久久精品热视频| 欧美日韩亚洲高清精品| 国产精品国产三级专区第一集| 午夜老司机福利剧场| 中国美白少妇内射xxxbb| 亚洲av免费在线观看| 国产精品蜜桃在线观看| 2022亚洲国产成人精品| 黄色视频在线播放观看不卡| 成年女人看的毛片在线观看| 久久午夜福利片| 尾随美女入室| 丰满乱子伦码专区| 国产淫语在线视频| 亚洲精品色激情综合| 亚洲av不卡在线观看| 中文字幕av成人在线电影| 亚洲国产最新在线播放| 三级经典国产精品| 久久人人爽av亚洲精品天堂 | 午夜福利高清视频| 欧美日韩国产mv在线观看视频 | 亚洲精品日韩av片在线观看| 免费黄色在线免费观看| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| 日韩国内少妇激情av| 夫妻午夜视频| 国产日韩欧美在线精品| 日韩大片免费观看网站| 99久久人妻综合| 日产精品乱码卡一卡2卡三| 99久久精品国产国产毛片| 黄色配什么色好看| 久久影院123| 成人美女网站在线观看视频| 日日撸夜夜添| 国产在线一区二区三区精| 91aial.com中文字幕在线观看| 一本一本综合久久| 熟女电影av网| 欧美成人一区二区免费高清观看| 成人高潮视频无遮挡免费网站| 男女国产视频网站| 男女无遮挡免费网站观看| 九九久久精品国产亚洲av麻豆| 国产精品一二三区在线看| 1000部很黄的大片| 禁无遮挡网站| 国产老妇女一区| 久久6这里有精品| 91精品一卡2卡3卡4卡| 亚洲国产欧美在线一区| 国产 一区 欧美 日韩| 最新中文字幕久久久久| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 精品人妻熟女av久视频| 成人毛片60女人毛片免费| av国产久精品久网站免费入址| 特级一级黄色大片| av在线天堂中文字幕| 精品一区二区三卡| av又黄又爽大尺度在线免费看| 99久久人妻综合| 美女主播在线视频| 欧美3d第一页| 免费高清在线观看视频在线观看| 少妇 在线观看| 纵有疾风起免费观看全集完整版| 亚洲最大成人手机在线| 国产有黄有色有爽视频| 欧美成人一区二区免费高清观看| 99久久九九国产精品国产免费| 成人漫画全彩无遮挡| a级一级毛片免费在线观看| 99久久中文字幕三级久久日本| 成年av动漫网址| 一区二区三区免费毛片| 在线a可以看的网站| 一二三四中文在线观看免费高清| 大香蕉久久网| 色播亚洲综合网| 亚洲精品一二三| 夫妻午夜视频| 看黄色毛片网站| 国产男女内射视频| 午夜免费观看性视频| 亚洲国产欧美在线一区| 日韩视频在线欧美| 少妇的逼好多水| 成人美女网站在线观看视频| 中文精品一卡2卡3卡4更新| 乱码一卡2卡4卡精品| 亚洲怡红院男人天堂| 成人亚洲精品av一区二区| 国产精品福利在线免费观看| 热re99久久精品国产66热6| freevideosex欧美| a级毛色黄片| 午夜日本视频在线| 99热全是精品| 亚洲精品,欧美精品| 午夜激情福利司机影院| 亚洲精品久久久久久婷婷小说| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 欧美激情久久久久久爽电影| 一二三四中文在线观看免费高清| 国产精品.久久久| 国产高清有码在线观看视频| 国产欧美亚洲国产| 卡戴珊不雅视频在线播放| 免费看光身美女| 一级二级三级毛片免费看| 97超碰精品成人国产| 一级毛片电影观看| 小蜜桃在线观看免费完整版高清| 国产亚洲最大av| 午夜免费观看性视频| 一边亲一边摸免费视频| 成人一区二区视频在线观看| 欧美国产精品一级二级三级 | 乱码一卡2卡4卡精品| 99久久精品热视频| 国产大屁股一区二区在线视频| 草草在线视频免费看| 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| a级毛色黄片| 在线看a的网站| 国精品久久久久久国模美| 丝袜喷水一区| 亚洲av国产av综合av卡| 一区二区三区免费毛片| 高清视频免费观看一区二区| 777米奇影视久久| 亚洲成人一二三区av| 最近中文字幕2019免费版| 国产男女内射视频| 欧美高清性xxxxhd video| 91久久精品电影网| 美女内射精品一级片tv| 97超碰精品成人国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 97精品久久久久久久久久精品| 插逼视频在线观看| 天美传媒精品一区二区| 日韩欧美一区视频在线观看 | 国产成人午夜福利电影在线观看| 七月丁香在线播放| 久热久热在线精品观看| 国产永久视频网站| 好男人视频免费观看在线| 伦精品一区二区三区| 国产精品爽爽va在线观看网站| 人人妻人人看人人澡| av在线天堂中文字幕| 内射极品少妇av片p| 日日摸夜夜添夜夜爱| 波野结衣二区三区在线| 99久国产av精品国产电影| 永久免费av网站大全| 国产黄色视频一区二区在线观看| 亚洲精品,欧美精品| 亚洲精品456在线播放app| 少妇丰满av| 日本三级黄在线观看| 一级毛片 在线播放| 一级爰片在线观看| 亚洲欧洲日产国产| 久久久久久久久久成人| 嫩草影院入口| 免费观看在线日韩| 最近的中文字幕免费完整| 亚洲真实伦在线观看| 免费看日本二区| 在线观看一区二区三区| 国产 一区 欧美 日韩| 高清av免费在线| 午夜免费男女啪啪视频观看| 久久精品久久精品一区二区三区| 夫妻性生交免费视频一级片| 好男人在线观看高清免费视频| 日韩人妻高清精品专区| 日本黄色片子视频| 亚洲美女视频黄频| 精品久久久噜噜| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添av毛片| 卡戴珊不雅视频在线播放| 欧美区成人在线视频| 99久久精品国产国产毛片| av网站免费在线观看视频| a级毛色黄片| 黄片wwwwww| 亚洲精品一区蜜桃| 九色成人免费人妻av| 国产午夜精品一二区理论片| 日韩成人av中文字幕在线观看| 网址你懂的国产日韩在线| 亚洲综合精品二区| 国产永久视频网站| 蜜桃亚洲精品一区二区三区| 久久久久久伊人网av| 国产日韩欧美在线精品| 在线观看国产h片| 免费大片黄手机在线观看| 午夜老司机福利剧场| 午夜福利网站1000一区二区三区| 久久99热6这里只有精品| 在线观看一区二区三区| 在线观看一区二区三区激情| 我要看日韩黄色一级片| 三级经典国产精品| 麻豆成人午夜福利视频| 国产真实伦视频高清在线观看| 九九爱精品视频在线观看| 日韩三级伦理在线观看| 日韩在线高清观看一区二区三区| 色播亚洲综合网| 免费观看在线日韩| 国产精品国产三级国产专区5o| 国产成人91sexporn| 亚洲久久久久久中文字幕| 亚洲精品色激情综合| 国产午夜精品一二区理论片| 一区二区三区四区激情视频| 你懂的网址亚洲精品在线观看| 国产精品99久久99久久久不卡 | 午夜精品国产一区二区电影 | 亚洲国产成人一精品久久久| 日韩三级伦理在线观看| 中国美白少妇内射xxxbb| 91精品伊人久久大香线蕉| 寂寞人妻少妇视频99o| 免费在线观看成人毛片| 26uuu在线亚洲综合色| 亚洲人成网站高清观看| 欧美另类一区| 成年版毛片免费区| av女优亚洲男人天堂| 亚洲精品,欧美精品| 丝瓜视频免费看黄片| 国产av不卡久久| 欧美激情国产日韩精品一区| 一区二区三区乱码不卡18| 久久精品人妻少妇| 熟妇人妻不卡中文字幕| 日韩av免费高清视频| 精品少妇黑人巨大在线播放| 男插女下体视频免费在线播放| 日韩av不卡免费在线播放| 国产精品蜜桃在线观看| 国产男人的电影天堂91| 国产探花极品一区二区| 大香蕉97超碰在线| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久久丰满| 男女边吃奶边做爰视频| 国产精品.久久久| 中文乱码字字幕精品一区二区三区| 国产精品成人在线| 丝袜喷水一区| 久久综合国产亚洲精品| 夜夜看夜夜爽夜夜摸| 国产乱来视频区| 久久久成人免费电影| a级一级毛片免费在线观看| 亚洲,一卡二卡三卡| 日本-黄色视频高清免费观看| 久久久久性生活片| 高清日韩中文字幕在线| 久久亚洲国产成人精品v| av国产久精品久网站免费入址| 日韩一本色道免费dvd| 熟妇人妻不卡中文字幕| 国产一区二区亚洲精品在线观看| 五月开心婷婷网| 午夜爱爱视频在线播放| 免费播放大片免费观看视频在线观看| 美女被艹到高潮喷水动态| 欧美激情在线99| 国产免费一级a男人的天堂| 一级av片app| 777米奇影视久久| 国产探花极品一区二区| 在线 av 中文字幕| 久久精品国产自在天天线| 日韩电影二区| 卡戴珊不雅视频在线播放| 国产爱豆传媒在线观看| 亚洲美女搞黄在线观看| 精品一区在线观看国产| av天堂中文字幕网| 麻豆精品久久久久久蜜桃| 国产美女午夜福利| 99热国产这里只有精品6| 秋霞伦理黄片| 天天躁日日操中文字幕| 午夜福利网站1000一区二区三区| 国产欧美日韩一区二区三区在线 | 91狼人影院| 禁无遮挡网站| 哪个播放器可以免费观看大片| 日韩视频在线欧美| 免费观看无遮挡的男女| 在线观看av片永久免费下载| 别揉我奶头 嗯啊视频| 国产视频首页在线观看| 国产熟女欧美一区二区| 成人二区视频| 国产亚洲91精品色在线| 黄色一级大片看看| 日韩 亚洲 欧美在线| 国产精品秋霞免费鲁丝片| 国产精品人妻久久久久久| 性色avwww在线观看| 黄片无遮挡物在线观看| 夜夜爽夜夜爽视频| 少妇猛男粗大的猛烈进出视频 | 精品99又大又爽又粗少妇毛片| 久久久久久国产a免费观看| .国产精品久久| 青春草国产在线视频| 99久久中文字幕三级久久日本| 久久久久久久久久成人| 亚洲国产色片| 99久久精品热视频| 人妻一区二区av| 毛片女人毛片| 国产一区二区在线观看日韩| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡免费网站照片| 街头女战士在线观看网站| 中文字幕久久专区| 六月丁香七月| 亚洲欧美精品专区久久| 日韩电影二区| 一区二区三区免费毛片| 国产精品无大码| 成年女人在线观看亚洲视频 | 国产乱人视频| 中文在线观看免费www的网站| 黄色怎么调成土黄色| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品国产精品| 一级毛片久久久久久久久女| 麻豆久久精品国产亚洲av| 99热这里只有精品一区| 听说在线观看完整版免费高清| 国产免费福利视频在线观看| 欧美极品一区二区三区四区| 久久ye,这里只有精品| 国产午夜福利久久久久久| 成年av动漫网址| 国产精品精品国产色婷婷| av在线蜜桃| 亚洲图色成人| 在线观看美女被高潮喷水网站| 交换朋友夫妻互换小说| av在线app专区| 91在线精品国自产拍蜜月| 亚洲精品自拍成人| 99热这里只有是精品50| 91精品伊人久久大香线蕉| 国产精品成人在线| 国产欧美日韩精品一区二区| 午夜老司机福利剧场| eeuss影院久久|