• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    臭氧與二乙胺和三乙胺氣相反應(yīng)的速率常數(shù)

    2010-03-06 04:44:48蓋艷波葛茂發(fā)王煒罡
    物理化學(xué)學(xué)報(bào) 2010年7期
    關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)

    蓋艷波 葛茂發(fā) 王煒罡

    (中國科學(xué)院化學(xué)研究所,分子動態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國家實(shí)驗(yàn)室,北京 100190)

    Low molecular weight alkylamines are emitted by a variety of widespread anthropogenic and biogenic sources,representing an important class of environmental pollutants due to their toxic and odorous properties.Animal husbandry is probably the most important anthropogenic emission source of amines into the troposphere,as several studies have reported high concentrations of gas-phaseaminesinareasofintenseanimalhusbandry[1-4].Though emission estimates vary widely,a number of short chain alkylamines have also been detected in industrial emissions and car exhaust[5-7],biomass burning[8],waste incinerators,and sewage treatment plants[9],as well as in marine,rural,and urban atmospheres.

    Like most organic compounds,when released into the atmosphere,these amines become transformed mainly through reactions with a number of reactive species such as hydroxyl radicals and ozone.Ultimately,they may significantly contribute to the formation of ozone and other secondary photooxidants in polluted areas.Besides the environmental effects,amines are also the cause of many health problems for exposed workers[10-11],such as skin and eye irritation,dermatitis,pulmonary sensitization and asthma,and even the cause of carcinogenic effect.Moreover, there are 28 amino compounds,including triethylamine and diethanolamine,in the Federal Clean Air Act Amendments List of 189 Hazardous Air Pollutants[12].These various health effects are prompting different countries to regulate the maximum concentration of amines allowed in air[13-14].Therefore,in order to assess the impact of these chemical species on air quality and human health,a detailed understanding of the kinetics and mechanisms of their atmospheric degradation is required.

    To date,rate constants for the reaction of mono-,di-,and trimethylamine(MMA,DMA and TMA)have been reported[15], which suggests that these reactions are relatively fast and give amines a lifetime on the order of hours in ambient air.Despite the relatively fast removal rate,several studies have detected amines in the particle phase[16-17]as well as within aqueous fog and rain drops[18-19].And intriguingly,most of the studies found that the concentrations of dialkylammonium were extremely higher than those of other alkylic ammonium salts in aerosol samples[20-22].In light of these findings,both homogeneous and heterogeneous reactions of amines in the atmosphere merit further investigation.

    As part of series studies of amines,in this paper,we investigated the homogeneous kinetic reactions of diethylamine(DEA) and triethylamine(TEA)with ozone.Rate constants of these reactions were reported,and the lifetimes of DEA and TEA with respect to ozone were also evaluated.From this we hope to better understand the atmospheric process of amines.

    1 Experimental

    1.1 Reagents and equipment

    Diethylamine(DEA,≥99%)and triethylamine(TEA,≥99%) were obtained from Alfa Aesar.C6H12(cyclohexane)in a purity of 99.5%was from Beijng Beihua Fine Chemical Company.N2(≥99.999%)and O2(≥99.999%)were supplied by Beijing Tailong Electronics Company.Ozone was produced from O2via electrical discharge using a commercial ozonizer(BGF-YQ,Beijing Ozone,China).

    The experimental apparatus used here is similar to that we reported in previous publications[23-25]and just a brief description is given here.All the experiments were carried out in a 100 L FEP Teflon film chamber.With a self-made temperature controller, we now can control the temperature in the chamber accurately from room temperature to 350 K.At the two ends of the reactors, an inlet and an outlet made of Teflon are used for the introduction of reactants and sampling.The reactor and the analytical instruments are linked via Teflon tubes.Ozone analyzer(Model 49C,Thermo Electron Corporation,USA)was used for analyzing the ozone concentration in the reactor.Its flow rate and precision were 0.7 L·min-1and 1×10-9,respectively.Cyclohexane was added into the reactor to eliminate the OH radicals that may be generated during the reaction.With high purity of N2as the bath gas,the concentrations of DEA,TEA,and cyclohexane in the entire chamber were calculated from the amount of organics introduced and the total volume of the reactor.

    1.2 Principle

    Absolute rate constants for these ozone reactions were determined by monitoring the O3decay rates in the presence of known concentrations of the reactant organic.The temporal profile of O3is governed by the following processes:

    With the initial organic concentration[organic]0being in large excess over the initial ozone concentration,the reactant organic concentration essentially remains a constant throughout the reaction.Similar to our previous works[25-26],the following equation could be obtained under pseudo-first-order conditions:

    where k1and k2are the rate constants of reactions(1)and(2).

    Thus,from the ozone decay rates,k,measured at various organic concentrations and with a knowledge of the background O3decay rate(k1),the rate constant(k2)can be obtained.

    1.3 Experimental method

    Thoroughly cleaning the chamber was performed for at least 24 h in presence of ozone prior to each set of experiments to remove any residue from last experiment.Attenuation experiments of the reactants(DEA,TEA,and O3)in pure N2were performed separately to study the wall effect.In all experiments,the reactant organic and cyclohexane were introduced in the chamber by injecting certain volumes of the liquid into a 3-way glass tube and by flushing the contents of the glass tube into the chamber using pure N2as the carrier gas.Sufficient time was allowed for the concentration inside the chamber to reach steady state.Then with ozone introduced,the chamber was connected to the ozone analyzer and ozone concentration measurements integrated over 10 s time intervals were collected up to about a total of 30 min. All experiments were conducted at(298±1)K and 1.01×105Pa.

    2 Results and discussion

    2.1 Wall effect

    In the attenuation experiments,stable concentrations of the investigated amines were confirmed by at least seven measurements made over the course of 3 h and giving decreases of the integrated peak areas below 3%of the initial values,which was monitored using gas chromatograph-coupled with flame-ionization detection(GC/FID,GC6820,Agilent Technologies,USA). And the loss of ozone caused by the wall was of negligible importance after continuously measured by the ozone analyzer. When measured once an hour,the ozone decay rate constant of 7.44×10-6s-1was finally obtained after 8 h.This value is consistent with our previously reported value(6.95×10-6s-1)[26],and is about 2 orders of magnitude lower than the values of the pseudofirst-order reaction rate constants listed in Table 1.Thus the background ozone decay accounts for only a small part of all the loss of ozone in the reactor in our experiments.Obviously,the loss of the reactants caused by background decay in this work is negligible.

    2.2 Effect of cyclohexane

    Previous work has shown that OH radicals are often formed from the gas-phase reactions of O3with organic compounds under atmospheric conditions[27-30].Considering that OH reacts with these compounds several orders faster than O3does,so it would result in certain error to the rate constants for the reactions of ozone.In order to avoid the impacts of OH radicals,high concentrations of cyclohexane were added into the reaction system as OH scavenger.The rate constant for the reaction of OH with cyclohexane is high enough(6.38×10-12cm3·molecule-1·s-1)to scavenge a significant fraction of the OH formed in the ozonolysis reaction[31].At the same time,the reaction of cyclohexane with ozone is negligibly slow and would not interfere with the determination of the rate constants of interest[32].

    Comparative experiments were carried out for TEA and ozone in the presence and absence of 2.51×1015molecule·m-3of cyclohexane,the results of which were listed in Table 1.With the addition of cyclohexane,the rate constants in all of the comparative experiments reduced by 3%-5%,further demonstrating that there are certain effects of OH radicals on the rate constant.

    From the results of No.6,7,16,and 17 listed in Table 1,we can see that,when cyclohexane concentration increased,the k value was almost unaltered,and the small difference can be considered as an experimental error.So the amounts of cyclohexane used in this work were enough for scavenging OH radicals generated in the present experimental system.

    2.3 Determination of rate constants

    As described above,the rate constants are determined under pseudo-first-order conditions.The initial O3concentration was in the range of 1.77×1012-8.59×1012molecule·cm-3while the initial concentrations of DEA and TEA were in the range of 5.84× 1013-17.5×1013molecule·cm-3and 2.08×1013-4.16×1013molecule· cm-3,respectively.In all experiments,decays of O3concentration were obtained as a function of time,and the logarithms of the ratios of the concentrations([O3]0/[O3])in the presence of reactants were plotted for different reaction time(Figs.1,2).As shown in Figs.1 and 2,straight lines were obtained for all these pseudo-first order plots.All the lines have excellent correlation coefficients(>0.998),which demonstrates that Eq.(I)is suitable for kinetic study in this work.The slope of such plots yields the pseudo-first order rate constant,k.The results were also listed in Table 1.Then,the values of k vs[organic]0data(Fig.3),according to Eq.(I),were also subjected to linear least-squares analysis to obtain k2.

    It can be known from Table 1 and Fig.3 that k values increase linearly with increasing the initial concentrations of DEA and TEA.The slopes of the lines in Fig.3,which are just the absolute values of the second-order rate constants for DEA and TEA,are determined to be(1.33±0.15)×10-17and(8.20±1.01)× 10-17cm3·molecule-1·s-1,respectively.The quoted errors for the determinedrateconstants include 2σ(σ:standard deviation)from the least-squares analysis and an estimated systematic error of10%.Both least-squares linear regressions yielded near-zero intercepts.

    Table 1 Results under different initial concentrations of amine,ozone,and cyclohexane

    Fig.1 Plots of ln([O3]0/[O3])versus reaction time for different initial DEA concentrations10-13[DEA]0/(molecule·cm-3):(a)5.84,(b)8.77,(c)11.7,(d)14.6,(e)17.5

    The results presented here represent the first experimental measurement of the reaction rate constants of ozone with DEA and TEA.We can compare our results with data for the reactions of analogous amines with ozone,which are summarized in Table 2.With one ethyl group replacing—H in DEA,reaction of TEA with ozone is about 6 times faster than that of DEA with ozone.And similarly,the substitution of methyl group in DMA to give TMA also increases the reactivity by a factor of 4.7. Comparing DMA with DEA,and TMA with TEA,we can find that the substitution of ethyl group has a more significant effect on the reactivity than that of methyl group.As methyl and ethyl groups are all electron-donating groups,so it is probable that the reaction of ozone with amines may involve electrophilic reaction mechanism.The introduction of methyl and ethyl groups increases the electronic density at N atom and thus the reactivity of amines.And the more substitutions of methyl or ethyl groups in amines,the faster the reactions of amines with ozone.In order to fully understand the mechanism of these reactions,further investigacions on products are required.

    Fig.2 Plots of ln([O3]0/[O3])versus reaction time for different initial TEA concentrations10-13[TEA]0/(molecule·cm-3):(a)2.08,(b)2.50,(c)2.92,(d)3.33, (e)3.75,(f)4.16

    Fig.3 Plots of k against[TEA]0and[DEA]0

    2.4 Atmospheric implications

    The atmospheric lifetimes τ of these amines with respect to removal by ozone can be estimated based on the corresponding rate constants summarized in Table 2 and the estimated ambient tropospheric concentration of ozone,according to Eq.(II):

    where[O3]is the estimated ambient tropospheric concentration of ozone.In this work,a typical ozone concentration of 7×1011molecule·cm-3was used[33].

    As illustrated in Table 2,atmospheric lifetimes against removal by ozone are 29.8 and 4.8 h for DEA and TEA,respectively.In polluted areas,where the concentration of ozone could be high up to 2.5×1012molecule·cm-3[34],the lifetimes of DEA and TEA would be even shorter,about 8.4 and 1.4 h,respectively.Under these conditions,the ozone reactions would serve as an important loss pathway for these amines.In addition,as also can be seen in Table 2,the reactions of trialkylamines with ozone are all extremely faster than those of dialkylamines with ozone.This would more or less help to explain why higher concentrations of dialkylammonium were detected in the aerosol samples[20-22].That is,the homogenous reactions of trialkylamines are relatively fast and they can be rapidly removed when released into the atmosphere;however,dialkylamines have a relatively longer lifetime and may be easily participated into particle phase through other reactions.Furthermore,in order to fully understand the atmospheric process of amines,further studies including OH reactions and heterogeneous reactions of amines are needed in the future.

    Table 2 Summary of rate constants(k2)and estimated atmospheric chemical lifetimes(τ)for the reactions of amines with ozone at room temperature

    3 Conclusions

    The kinetics of the reactions of DEA and TEA with ozone were investigated at 298 K and 1.01×105Pa in our smog chamber.With cyclohexane as the OH scavenger,the absolute rate constants we obtained were(1.33±0.15)×10-17cm3·molecule-1· s-1for DEA and(8.20±1.01)×10-17cm3·molecule-1·s-1for TEA. Comparing our results with the data for the reactions of analogous amines with ozone,we can see that the reactions of trialkylamines with ozone are all extremely faster than those of dialkylamines with ozone.That is,the introduction of methyl or ethyl group increases the reactivity of amines in the homogenous reactions.And the more substitutions of methyl or ethyl group in amines,the faster the reactions with ozone.This may help to explain the intriguing finding in field studies that higher concentrations of dialkylammonium were detected in the aerosol samples.The atmospheric lifetimes of DEA and TEA with respect to removal by ozone have also been estimated based on the measured rate constants and ambient tropospheric concentration of ozone,which indicates that reaction with ozone is an important loss pathway for these amines in the atmosphere,especially in polluted areas.

    1 Mosier,A.R.;Andre,C.E.;Viets Jr.,F.G.Environ.Sci.Technol., 1973,7:642

    2 Schade,G.W.;Crutzen,P.J.J.Atmos.Chem.,1995,22:319

    3 Rabaud,N.E.;Ebeler,S.E.;Ashbaugh,L.L.;Flocchini,R.G. Atmos.Environ.,2003,37:933

    4 Filipy,J.;Rumburg,B.;Mount,G.;Westberg,H.;Lamb,B.Atmos. Environ.,2006,40:1480

    5 Finlayson-Pitts,B.J.;Pitts Jr.,J.N.Atmospheric chemistry.New York:Wiley-Interscience,1986:1098

    6 Cadle,S.H.;Mulawa,P.A.Environ.Sci.Technol.,1980,14:718

    7 Westerholm,R.;Li,H.;Almen,J.Chemosphere,1993,27:1381

    8 Mace,K.A.;Artaxo,P.;Duce,R.A.J.Geophys.Res.,2003,108: 4512

    9 Manahan,S.E.Environmental chemistry.4th ed.Chelsea:Lewis, 1990:612

    10 Lauwerys,R.R.Toxicologie industrielle et intoxications professionnelles.4th ed.Paris:Masson,1999:961

    11 Greim,H.;Bury,D.;Klimisch,H.J.;Oeben-Negele,M.;Ziegler-Skylakakis,K.Chemosphere,1998,36:271

    12 The clean air act amendments,1990,section 112:hazardous air pollutants(b)

    13 OSHA,Occupational safety and health standards,1910.1000,Table Z-1:limits of air contaminants,www.osha.gov,2006

    14 HSE,workplace exposure limits,EH40/2005,Table 1:list of approved workplace exposure limits,www.hse.gov.uk,2006

    15 Tuazon,E.C.;Atkinson,R.;Aschmann,S.M.;Arey,J.Res.Chem. Intermed.,1994,20:303

    16 Angelino,S.;Suess,D.T.;Prather,K.A.Environ.Sci.Technol., 2001,35:3130

    17 Murphy,D.M.;Thomson,D.S.J.Geophys.Res.,1997,102:6341 18 McGregor,K.G.;Anastasio,C.Atmos.Environ.,2001,35:1091

    19 Zhang,Q.;Anastasio,C.Atmos.Environ.,2003,37:2247

    20 Makela,J.M.;Yli-Koivisto,S.;Hiltunen,V.;Seidl,W.;Swietlicki, E.;Teinila,K.;Sillanpaa,M.;Koponen,I.K.;Paatero,J.;Rosman, K.;Hameri,K.Tellus B,2001,53:380

    21 Sorooshian,A.;Murphy,S.M.;Hersey,S.;Gates,H.;Padro,L.T.; Nenes,A.;Brechtel,F.J.;Jonsson,H.;Flagan,R.C.;Seinfeld,J.H. Atmos.Chem.Phys.,2008,8:5489

    22 Facchini,M.C.;Decesari,S.;Rinaldi,M.;Carbone,C.;Finessi,E.; Mircea,M.;Fuzzi,S.;Moretti,F.;Tagliavini,E.;Ceburnis,D.; O′Dowd,C.D.Environ.Sci.Technol.,2008,42:9116

    23 Du,L.;Xu,Y.F.;Ge,M.F.;Jia,L.;Wang,G.C.;Wang,D.X. Acta Chim.Sin.,2006,64:2133 [杜 林,徐永福,葛茂發(fā),賈 龍,王庚辰,王殿勛.化學(xué)學(xué)報(bào),2006,64:2133]

    24 Gai,Y.B.;Ge,M.F.;Wang,W.G.Chem.Phys.Lett.,2009,473: 57

    25 Gai,Y.B.;Ge,M.F.;Wang,W.G.Atmos.Environ.,2009,43: 3467

    26 Du,L.;Xu,Y.F.;Ge,M.F.;Jia,L.;Yao,L.;Wang,W.G.Chem. Phys.Lett.,2007,436:36

    27 Atkinson,R.;Aschmann,S.M.;Arey,J.;Shorees,B.J.Geophys. Res.,1992,97:6065

    28 Paulson,S.E.;Orlando,J.J.Geophys.Res.Lett.,1996,23:3727

    29 Paulson,S.E.;Sen,A.D.;Liu,P.;Fenske,J.D.;Fox,M.J. Geophys.Res.Lett.,1997,24:3193

    30 Donahue,N.M.;Kroll,J.H.;Anderson,J.G.;Demerjian,K.L. Geophys.Res.Lett.,1998,25:59

    31 Wilson,E.W.;Hamilton,W.A.;Kennington,H.R.;Evans,B.; Scott,N.W.;DeMore,W.B.J.Phys.Chem.A,2006,110:3593

    32 Atkinson,R.;William,P.L.C.Chem.Rev.,1984,84:437

    33 Logan,J.A.J.Geophys.Res.,1985,90:463

    34 Wang,C.X.;Chen,Z.M.Atmos.Environ.,2008,42:6614

    猜你喜歡
    實(shí)驗(yàn)室化學(xué)
    電競實(shí)驗(yàn)室
    電子競技(2020年4期)2020-07-13 09:18:06
    電競實(shí)驗(yàn)室
    電子競技(2020年2期)2020-04-14 04:40:38
    電競實(shí)驗(yàn)室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實(shí)驗(yàn)室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實(shí)驗(yàn)室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實(shí)驗(yàn)室
    電子競技(2019年19期)2019-01-16 05:36:09
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    99久久中文字幕三级久久日本| 国产精品国产三级国产av玫瑰| 狂野欧美激情性xxxx在线观看| av国产久精品久网站免费入址| 国产69精品久久久久777片| 在线观看一区二区三区激情| 老司机影院毛片| av在线观看视频网站免费| 啦啦啦在线观看免费高清www| 啦啦啦中文免费视频观看日本| 国产老妇伦熟女老妇高清| 日日啪夜夜爽| 色94色欧美一区二区| 黄片无遮挡物在线观看| 丰满迷人的少妇在线观看| 亚洲欧美清纯卡通| 亚洲国产毛片av蜜桃av| 国产av码专区亚洲av| 最黄视频免费看| 久久久精品94久久精品| 亚洲欧美日韩另类电影网站| 久久毛片免费看一区二区三区| 欧美xxⅹ黑人| 自拍欧美九色日韩亚洲蝌蚪91| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| 18+在线观看网站| 最近最新中文字幕大全免费视频 | 欧美国产精品va在线观看不卡| 久久久久久人人人人人| 精品酒店卫生间| 91国产中文字幕| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久久电影| 精品久久蜜臀av无| 在现免费观看毛片| 亚洲国产看品久久| 久久久亚洲精品成人影院| 777米奇影视久久| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av蜜桃| 亚洲成av片中文字幕在线观看 | 中文字幕人妻熟女乱码| 日日爽夜夜爽网站| 亚洲精品一区蜜桃| av.在线天堂| 亚洲av.av天堂| 毛片一级片免费看久久久久| 97在线人人人人妻| 亚洲第一区二区三区不卡| 亚洲国产av新网站| 夜夜骑夜夜射夜夜干| 伊人久久国产一区二区| 天堂中文最新版在线下载| av片东京热男人的天堂| 久久国内精品自在自线图片| 亚洲精品久久成人aⅴ小说| 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 午夜视频国产福利| 中文欧美无线码| 国产精品一区二区在线不卡| 国产精品久久久久久精品古装| 亚洲国产精品999| 汤姆久久久久久久影院中文字幕| 在线观看美女被高潮喷水网站| 建设人人有责人人尽责人人享有的| 亚洲精华国产精华液的使用体验| 一区二区三区精品91| 亚洲情色 制服丝袜| 国内精品宾馆在线| 日韩欧美一区视频在线观看| 亚洲一区二区三区欧美精品| 亚洲情色 制服丝袜| 久久99热6这里只有精品| 97超碰精品成人国产| 18+在线观看网站| 久久久亚洲精品成人影院| 男女边吃奶边做爰视频| 在线观看www视频免费| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 激情五月婷婷亚洲| 香蕉精品网在线| 欧美日本中文国产一区发布| 国产麻豆69| 少妇猛男粗大的猛烈进出视频| 美女视频免费永久观看网站| 夫妻性生交免费视频一级片| xxx大片免费视频| 国产精品嫩草影院av在线观看| 一级爰片在线观看| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 高清在线视频一区二区三区| 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| 欧美性感艳星| 国产一级毛片在线| 亚洲成人av在线免费| 国产一区二区在线观看av| 美女内射精品一级片tv| 夜夜爽夜夜爽视频| 亚洲av国产av综合av卡| 久久99热这里只频精品6学生| 香蕉精品网在线| 岛国毛片在线播放| 亚洲精品乱久久久久久| 久久久久国产精品人妻一区二区| 捣出白浆h1v1| 日韩大片免费观看网站| 久久这里有精品视频免费| 交换朋友夫妻互换小说| 久久热在线av| 久久精品国产亚洲av天美| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 亚洲精品456在线播放app| 国产欧美亚洲国产| 女人精品久久久久毛片| 在现免费观看毛片| 久久久久久久久久成人| 99热网站在线观看| 国产精品99久久99久久久不卡 | 国产亚洲精品第一综合不卡 | 久久精品久久久久久久性| 国产探花极品一区二区| 日日撸夜夜添| 一二三四在线观看免费中文在 | 大片电影免费在线观看免费| 欧美丝袜亚洲另类| 国产男女超爽视频在线观看| 色哟哟·www| 秋霞在线观看毛片| 欧美最新免费一区二区三区| 日韩av免费高清视频| 久久精品夜色国产| 少妇高潮的动态图| 777米奇影视久久| 毛片一级片免费看久久久久| 久久人人97超碰香蕉20202| 大香蕉久久网| 制服诱惑二区| 久久午夜福利片| 巨乳人妻的诱惑在线观看| 欧美精品人与动牲交sv欧美| 国产综合精华液| 精品99又大又爽又粗少妇毛片| 国产熟女欧美一区二区| 91久久精品国产一区二区三区| 欧美亚洲日本最大视频资源| 亚洲欧美精品自产自拍| 久久99热这里只频精品6学生| 97在线人人人人妻| 日韩人妻精品一区2区三区| 天堂8中文在线网| 亚洲图色成人| 纵有疾风起免费观看全集完整版| 亚洲精品av麻豆狂野| 老女人水多毛片| 中文天堂在线官网| av国产精品久久久久影院| 国产日韩欧美亚洲二区| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 国产成人精品一,二区| 国产黄色免费在线视频| 午夜91福利影院| 在线观看免费视频网站a站| 黄片无遮挡物在线观看| 五月天丁香电影| 国产毛片在线视频| 国产精品人妻久久久影院| 99热全是精品| 日本免费在线观看一区| 午夜免费鲁丝| 久久精品熟女亚洲av麻豆精品| 久久99蜜桃精品久久| 丝袜美足系列| 精品人妻在线不人妻| 欧美日韩视频精品一区| 女性被躁到高潮视频| 熟女av电影| 日本vs欧美在线观看视频| 中文乱码字字幕精品一区二区三区| 色5月婷婷丁香| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 免费高清在线观看日韩| 激情五月婷婷亚洲| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线| 下体分泌物呈黄色| 黄色配什么色好看| 亚洲精品国产色婷婷电影| 熟妇人妻不卡中文字幕| 久久久亚洲精品成人影院| 亚洲 欧美一区二区三区| 久久久久久久亚洲中文字幕| 午夜av观看不卡| 一区二区三区乱码不卡18| 热99久久久久精品小说推荐| 精品久久久久久电影网| 99热6这里只有精品| 夫妻性生交免费视频一级片| 视频中文字幕在线观看| 久久久久久久亚洲中文字幕| 国产极品粉嫩免费观看在线| 日韩一区二区三区影片| 永久免费av网站大全| 久久99热这里只频精品6学生| 一级爰片在线观看| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看| 国产在线视频一区二区| 搡老乐熟女国产| 伊人久久国产一区二区| 免费高清在线观看视频在线观看| 女性被躁到高潮视频| 在线天堂中文资源库| 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| 精品熟女少妇av免费看| 卡戴珊不雅视频在线播放| 国产探花极品一区二区| 一边亲一边摸免费视频| 国产亚洲av片在线观看秒播厂| 精品人妻偷拍中文字幕| 国产在视频线精品| 亚洲在久久综合| 黑人高潮一二区| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 精品少妇内射三级| 亚洲国产日韩一区二区| 成人漫画全彩无遮挡| 久久久国产欧美日韩av| 91国产中文字幕| 欧美国产精品va在线观看不卡| 在线天堂中文资源库| 亚洲欧洲日产国产| 精品亚洲成国产av| 久久99蜜桃精品久久| 欧美国产精品va在线观看不卡| 在线天堂中文资源库| 色哟哟·www| 亚洲精品一区蜜桃| 精品国产乱码久久久久久小说| 熟女人妻精品中文字幕| 免费高清在线观看日韩| 久久 成人 亚洲| 久久久精品免费免费高清| 亚洲av成人精品一二三区| 亚洲精品第二区| 肉色欧美久久久久久久蜜桃| 嫩草影院入口| 国产欧美亚洲国产| 丰满迷人的少妇在线观看| 日本欧美视频一区| 七月丁香在线播放| 晚上一个人看的免费电影| 男女啪啪激烈高潮av片| 久久久久网色| 成人亚洲欧美一区二区av| 在线观看国产h片| tube8黄色片| 69精品国产乱码久久久| 日韩一区二区三区影片| 亚洲av日韩在线播放| 久久韩国三级中文字幕| 欧美日本中文国产一区发布| 国产综合精华液| 午夜免费观看性视频| 99热网站在线观看| 久久精品国产a三级三级三级| 国产精品国产三级专区第一集| 日本欧美国产在线视频| 国产精品久久久久久久电影| videossex国产| 国产成人一区二区在线| 国产精品欧美亚洲77777| 十八禁高潮呻吟视频| 午夜av观看不卡| 51国产日韩欧美| 日本免费在线观看一区| 国产免费视频播放在线视频| 久久久久国产网址| 9色porny在线观看| 日韩精品免费视频一区二区三区 | 国产一级毛片在线| 街头女战士在线观看网站| 在线 av 中文字幕| 制服丝袜香蕉在线| 国语对白做爰xxxⅹ性视频网站| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 黑人高潮一二区| 日韩制服丝袜自拍偷拍| av福利片在线| 超碰97精品在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 九九在线视频观看精品| 午夜影院在线不卡| 黄片无遮挡物在线观看| 国产国语露脸激情在线看| 国产亚洲精品久久久com| 亚洲久久久国产精品| av又黄又爽大尺度在线免费看| 亚洲国产欧美日韩在线播放| 日本-黄色视频高清免费观看| 国产成人精品婷婷| 亚洲人与动物交配视频| 亚洲成av片中文字幕在线观看 | 欧美最新免费一区二区三区| 男女国产视频网站| 欧美丝袜亚洲另类| 狠狠婷婷综合久久久久久88av| 欧美国产精品一级二级三级| 久久久久久久国产电影| 熟女电影av网| 成人影院久久| 亚洲美女搞黄在线观看| 男女下面插进去视频免费观看 | 日韩熟女老妇一区二区性免费视频| 精品一区二区三区四区五区乱码 | 青春草国产在线视频| 久久精品人人爽人人爽视色| 高清av免费在线| 久久久久久久国产电影| 美女大奶头黄色视频| 久久青草综合色| 国产xxxxx性猛交| 超色免费av| 最后的刺客免费高清国语| 考比视频在线观看| av福利片在线| 日韩免费高清中文字幕av| 亚洲精华国产精华液的使用体验| 亚洲av成人精品一二三区| 少妇人妻精品综合一区二区| 女性生殖器流出的白浆| 精品午夜福利在线看| 国产亚洲一区二区精品| 久久女婷五月综合色啪小说| 国产成人精品婷婷| 亚洲国产成人一精品久久久| 国产女主播在线喷水免费视频网站| 黄色怎么调成土黄色| 午夜福利视频在线观看免费| 蜜臀久久99精品久久宅男| 丰满少妇做爰视频| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 亚洲欧美中文字幕日韩二区| 人人妻人人爽人人添夜夜欢视频| 桃花免费在线播放| 久久久精品区二区三区| 少妇高潮的动态图| 有码 亚洲区| 在线亚洲精品国产二区图片欧美| 久久99一区二区三区| 日日爽夜夜爽网站| 日韩一区二区视频免费看| 婷婷色综合大香蕉| 又黄又粗又硬又大视频| 在线精品无人区一区二区三| 啦啦啦在线观看免费高清www| 18禁动态无遮挡网站| 天天操日日干夜夜撸| 最近中文字幕高清免费大全6| 亚洲国产毛片av蜜桃av| 欧美亚洲 丝袜 人妻 在线| 国产在视频线精品| 91精品三级在线观看| 亚洲av福利一区| 女的被弄到高潮叫床怎么办| 在线看a的网站| xxxhd国产人妻xxx| 免费少妇av软件| 日韩伦理黄色片| 丰满少妇做爰视频| 人人妻人人爽人人添夜夜欢视频| 五月玫瑰六月丁香| 天天躁夜夜躁狠狠躁躁| 伊人亚洲综合成人网| 中文字幕av电影在线播放| 久久狼人影院| 亚洲国产av影院在线观看| 少妇熟女欧美另类| 90打野战视频偷拍视频| 中国国产av一级| 丝袜喷水一区| 一区在线观看完整版| 久久久久精品性色| 国产成人精品福利久久| 日韩av免费高清视频| 九九爱精品视频在线观看| 免费人妻精品一区二区三区视频| 欧美人与性动交α欧美软件 | 精品少妇久久久久久888优播| 日本欧美视频一区| 日韩伦理黄色片| 侵犯人妻中文字幕一二三四区| 成人亚洲欧美一区二区av| 久久久久久久精品精品| 久久狼人影院| 色婷婷av一区二区三区视频| 在线观看www视频免费| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 少妇人妻久久综合中文| 欧美亚洲日本最大视频资源| 日韩人妻精品一区2区三区| 丰满少妇做爰视频| 精品人妻熟女毛片av久久网站| 国产一区亚洲一区在线观看| 成人二区视频| 交换朋友夫妻互换小说| 午夜91福利影院| 国产一区二区三区综合在线观看 | 国产精品国产av在线观看| 日本vs欧美在线观看视频| 国产乱来视频区| 永久网站在线| 啦啦啦视频在线资源免费观看| kizo精华| 在线观看三级黄色| 久久精品国产鲁丝片午夜精品| 91aial.com中文字幕在线观看| 人妻少妇偷人精品九色| 99视频精品全部免费 在线| 91精品国产国语对白视频| 欧美人与善性xxx| 久久久精品94久久精品| av在线老鸭窝| 日韩不卡一区二区三区视频在线| 黄色 视频免费看| 汤姆久久久久久久影院中文字幕| 国内精品宾馆在线| 亚洲成色77777| 高清不卡的av网站| 久久av网站| 久久ye,这里只有精品| 久久精品熟女亚洲av麻豆精品| 大码成人一级视频| 99久久精品国产国产毛片| 成人亚洲精品一区在线观看| 亚洲av电影在线观看一区二区三区| 日韩精品免费视频一区二区三区 | 国产亚洲精品久久久com| 国产免费现黄频在线看| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 中文精品一卡2卡3卡4更新| 精品亚洲乱码少妇综合久久| 中文字幕人妻熟女乱码| 国产日韩欧美视频二区| 高清黄色对白视频在线免费看| videossex国产| 国产成人精品福利久久| 黑人欧美特级aaaaaa片| 一区二区日韩欧美中文字幕 | 国产成人aa在线观看| 国产福利在线免费观看视频| 一级毛片我不卡| 亚洲人成77777在线视频| 精品少妇久久久久久888优播| kizo精华| 国国产精品蜜臀av免费| 国产色婷婷99| 久久久久久伊人网av| 欧美成人午夜免费资源| 欧美日韩精品成人综合77777| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 热re99久久国产66热| 五月开心婷婷网| 久久97久久精品| 久久久久精品人妻al黑| 黑人欧美特级aaaaaa片| 国产不卡av网站在线观看| 一级片'在线观看视频| 国产色爽女视频免费观看| 久久久久久伊人网av| 久久精品国产鲁丝片午夜精品| 最新中文字幕久久久久| 如何舔出高潮| 午夜av观看不卡| 妹子高潮喷水视频| 国产极品天堂在线| 99热全是精品| 亚洲精品视频女| 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 精品国产国语对白av| 免费高清在线观看日韩| 少妇猛男粗大的猛烈进出视频| av有码第一页| 91精品伊人久久大香线蕉| 五月开心婷婷网| av卡一久久| 免费高清在线观看日韩| 午夜91福利影院| 99国产综合亚洲精品| 精品国产国语对白av| 亚洲成色77777| 99九九在线精品视频| 肉色欧美久久久久久久蜜桃| 大香蕉97超碰在线| 亚洲欧美一区二区三区黑人 | 99热这里只有是精品在线观看| 这个男人来自地球电影免费观看 | 亚洲国产欧美在线一区| 国产又爽黄色视频| 欧美精品国产亚洲| 成年动漫av网址| 男女边吃奶边做爰视频| 日韩一区二区视频免费看| 激情五月婷婷亚洲| 国产av一区二区精品久久| 一级毛片电影观看| 精品人妻在线不人妻| 男女国产视频网站| 免费在线观看完整版高清| 美女xxoo啪啪120秒动态图| 亚洲在久久综合| 日韩电影二区| freevideosex欧美| 国产黄色视频一区二区在线观看| 一级,二级,三级黄色视频| 麻豆乱淫一区二区| 国产一区二区三区av在线| 欧美成人精品欧美一级黄| 久久精品国产自在天天线| 欧美成人午夜免费资源| 亚洲国产av影院在线观看| 亚洲少妇的诱惑av| 亚洲精品色激情综合| 美女中出高潮动态图| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| 久久影院123| 欧美日本中文国产一区发布| 国产激情久久老熟女| 91成人精品电影| 国产国拍精品亚洲av在线观看| 两个人免费观看高清视频| 亚洲国产av影院在线观看| 天天影视国产精品| 2018国产大陆天天弄谢| 亚洲精华国产精华液的使用体验| 日本爱情动作片www.在线观看| 国产白丝娇喘喷水9色精品| 春色校园在线视频观看| 精品福利永久在线观看| 韩国av在线不卡| 哪个播放器可以免费观看大片| 超碰97精品在线观看| av免费观看日本| 亚洲精品国产av蜜桃| 亚洲av.av天堂| h视频一区二区三区| 久久久精品94久久精品| 成年动漫av网址| 青春草亚洲视频在线观看| 在线精品无人区一区二区三| 中文字幕av电影在线播放| 国产av精品麻豆| 曰老女人黄片| 1024视频免费在线观看| 欧美丝袜亚洲另类| 亚洲欧洲国产日韩| 一级爰片在线观看| 丰满乱子伦码专区| 国产成人一区二区在线| 久久国产亚洲av麻豆专区| 美女脱内裤让男人舔精品视频| 老司机亚洲免费影院| 亚洲精品久久久久久婷婷小说| 香蕉精品网在线| 国产精品秋霞免费鲁丝片| 免费少妇av软件| 狂野欧美激情性xxxx在线观看| 免费看光身美女| 午夜91福利影院| 欧美精品人与动牲交sv欧美| 亚洲成人一二三区av| 色婷婷av一区二区三区视频| 男女无遮挡免费网站观看| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| 国产老妇伦熟女老妇高清| 超色免费av| 自线自在国产av| 国产成人免费观看mmmm| 夜夜爽夜夜爽视频| 中文字幕最新亚洲高清| 国产在线免费精品| 2021少妇久久久久久久久久久| 成人毛片a级毛片在线播放| 国产亚洲一区二区精品| 亚洲美女视频黄频| 精品国产一区二区三区四区第35| 丰满乱子伦码专区| 国产毛片在线视频| 精品久久久精品久久久|