摘要:單跨靜定梁的內(nèi)力圖是彎曲桿件強(qiáng)度、剛度計(jì)算及做超靜定結(jié)構(gòu)內(nèi)力圖的基礎(chǔ)。本文作者從四方面闡述,提出快速準(zhǔn)確繪制單跨靜定梁內(nèi)力圖的方法。
關(guān)鍵詞:內(nèi)力圖;校核;截面內(nèi)力;圖線類型;疊加法
中圖分類號(hào):TU318+5文獻(xiàn)標(biāo)識(shí)碼:B文章編號(hào):1009-8631(2009)12-0074-02
一、引言
彎曲變形是工程中常見的一種基本變形,以彎曲變形為主要變形的桿件稱為梁。例如房屋建筑中,梁受到樓面荷載和梁自重的作用,將發(fā)生彎曲變形;其它如陽(yáng)臺(tái)挑梁、梁式橋的主梁等,都是以彎曲變形為主的構(gòu)件。在對(duì)梁進(jìn)行強(qiáng)度和剛度計(jì)算時(shí),通常要先畫出剪力圖和彎矩圖,以便清楚地看出梁的各個(gè)截面上剪力和彎矩的大小、正負(fù)以及最值所在截面的位置。而單跨靜定梁的內(nèi)力圖是彎曲桿件強(qiáng)度、剛度計(jì)算及做超靜定結(jié)構(gòu)內(nèi)力圖的基礎(chǔ),如果這一部分沒(méi)有學(xué)好,彎曲桿件的強(qiáng)度、剛度就無(wú)從計(jì)算,超靜定結(jié)構(gòu)的內(nèi)力圖也就很難做出。在多年的教學(xué)實(shí)踐中,根據(jù)學(xué)生信息反饋,本人探索、研究、試行,提出快速準(zhǔn)確繪制單跨靜定梁內(nèi)力圖的方法以供學(xué)生和同行商榷。
二、支座反力計(jì)算一定要校核
能否正確畫出單跨靜定梁的內(nèi)力圖,支座反力的對(duì)錯(cuò)是關(guān)鍵。怎樣求支座反力是靜力學(xué)的主要內(nèi)容,這里不再贅述??偟膩?lái)說(shuō),支座反力由靜力平衡方程解出,求解過(guò)程中,在正確的受力圖上,列出獨(dú)立并包含最少未知量的方程,盡量避免解方程組,求出支座反力后一定要用同解方程校核。
例如圖1所示簡(jiǎn)支梁:
反力計(jì)算正確。
在這個(gè)例子中,大多數(shù)學(xué)生在第二步計(jì)算 RB 時(shí)就用方程,即 RB=10+10×2-RA,如果 RA 算錯(cuò)了,則 RB 肯定也會(huì)跟著出錯(cuò),所以在教學(xué)中建議學(xué)生盡量用力矩方程求支座反力,用投影方程校核,保證計(jì)算正確。
三、熟練掌握截面法求指定截面內(nèi)力
要做出結(jié)構(gòu)的內(nèi)力圖,還必須能正確計(jì)算出控制截面的內(nèi)力。所謂控制截面指的是:桿端截面、集中力、集中力偶作用面、分布荷載集度變化處。用截面法求這些截面的內(nèi)力是做內(nèi)力圖的基礎(chǔ)。這一部分比較容易掌握,許多教材介紹的也比較少,但大部分學(xué)生在做內(nèi)力圖時(shí)又算不出特定截面的內(nèi)力,因此,這一部分應(yīng)投入比較多的精力。傳統(tǒng)截面法為:“截”——假設(shè)一截面在控制界面處把桿件一分為二;“取”——取其中受力簡(jiǎn)單的一部分為研究對(duì)象;“畫”——正確畫出研究對(duì)象的受力圖(內(nèi)力一定畫成假定的正方向);“平”——根據(jù)受力圖列平衡方程,求解所需內(nèi)力。這種方法雖然比較實(shí)用,但是很繁瑣,反復(fù)取分離體畫受力圖,工作量太大。
本人在教學(xué)過(guò)程中總結(jié)出一套簡(jiǎn)便方法,就是省略畫受力圖,依靠自制工具直接寫出指定截面內(nèi)力。具體做法為:自制工具如圖2所示,用它由原圖取計(jì)算需要的分離體,得到近似受力圖,然后由平衡方程得出直接寫內(nèi)力值的簡(jiǎn)便算式:式中與內(nèi)力方向相同的外力在算式中為負(fù)號(hào),與內(nèi)力方向相反的外力在算式中為正號(hào)。操作如下:
如要求A右截面內(nèi)力,就取圖3,由圖3得QA右=10kN,MA右=0。同理得D左截面內(nèi)力,由圖4得QD左=10×2-20=0,MD左=-10×2×1+20×2=20kN?m.
其它截面依此類推就可以很快寫出來(lái):QC左=10kN,MC左=20kN?m,QC右=0,MC右=20kN?m,QR左=-20kN,MB左=0。
四、利用M(x),Q(x),q(x)微分關(guān)系判斷圖線類型
如果說(shuō)孰能生巧,那么在熟練掌握截面法求指定截面內(nèi)力的基礎(chǔ)上,給學(xué)生介紹判斷內(nèi)力圖線型的方法,掌握起來(lái)就相對(duì)主動(dòng)和容易些。由M(x) 、Q(x)及q(x)之間的微分關(guān)系得到:
1. 無(wú)荷載段,Q圖為與基線平行的直線,只需要算一個(gè)截面的剪力就可以確定一條平行線;M圖為斜直線,兩點(diǎn)(兩截面彎矩)確定一條斜直線。
2. 均布荷載作用段,Q圖為斜直線;M圖為二次拋物線,無(wú)極值用兩點(diǎn)確定,有極值用三點(diǎn)確定。
3. 集中力作用處,Q圖要突變,突變值等于此集中力值;M圖要轉(zhuǎn)折。集中力偶作用處,M圖要突變,突變值為該集中力偶的力偶矩;Q圖無(wú)變化。
4. 剪力為零處,彎矩有極值。
例如上題的內(nèi)力圖為:
五、巧妙運(yùn)用疊加法
疊加法是指單一荷載作用下的內(nèi)力圖在各截面上縱標(biāo)代數(shù)相加,得到幾個(gè)荷載同時(shí)作用下結(jié)構(gòu)內(nèi)力圖的過(guò)程。在常見荷載作用下,梁的剪力圖比較簡(jiǎn)單,一般不用疊加法繪制。下面來(lái)分析用疊加法迅速做出彎矩圖,并能給出一些規(guī)則圖形的組合關(guān)系。具體步驟為:首先分解荷載,其次做各單一荷載下的彎矩圖,最后將各圖疊加在一起。舉例如下:
六、結(jié) 論
1.學(xué)生通過(guò)一、二步的計(jì)算訓(xùn)練,已有扎實(shí)的計(jì)算基礎(chǔ)。不管題目如何變化,荷載如何增減,他們都能很快寫出需要的縱標(biāo)值。并為解超靜定結(jié)構(gòu)打下堅(jiān)實(shí)的基礎(chǔ)。
2.M(x) 、Q(x) 及 q(x) 三者之間的微分關(guān)系有助于內(nèi)力圖的校核。例如,則M圖為常數(shù);下指,M圖下凸,上指,M圖上凸。
3.熟能生巧,符合青年學(xué)生腦子靈活、記憶力好的特點(diǎn)。此方法簡(jiǎn)單易學(xué),計(jì)算內(nèi)容少,對(duì)數(shù)學(xué)功底比較差的高職學(xué)生來(lái)說(shuō),尤其容易掌握,筆者在多屆學(xué)生中運(yùn)用以上方法教學(xué),取得了非常良好的教學(xué)效果。
參考文獻(xiàn):
[1] 陳永龍.《建筑力學(xué)》 北京 :高等教育出版社,2002.
[2] 駱?biāo)嘏? 工程力學(xué)教學(xué)改革與體會(huì). 中國(guó)高等教育研究雜志2004年8月第10卷刊號(hào)為:ISSN1729─5726CN13—9232/G4.
[3] 張彩鳳.《建筑力學(xué)》課程教學(xué)改革探討 安徽水利水電職業(yè)技術(shù)學(xué)院學(xué)報(bào) , 2007, (01).
作者簡(jiǎn)介:胡拔香(1970- ),女,甘肅靜寧人,陜西鐵路工程職業(yè)技術(shù)學(xué)院鐵道工程系力學(xué)教學(xué)兼教研室主任,講師,工學(xué)學(xué)士。