• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic Properties for Polybrominated Dibenzothiophenes by Density Functional Theory*

    2009-05-15 01:39:54LIJiayou李加友LIUHongxia柳紅霞YUHongxia于紅霞WANGZunyao王遵堯andWANGLiansheng王連生
    關(guān)鍵詞:紅霞

    LI Jiayou (李加友), LIU Hongxia (柳紅霞), YU Hongxia (于紅霞), WANG Zunyao (王遵堯),** and WANG Liansheng (王連生)

    ?

    Thermodynamic Properties for Polybrominated Dibenzothiophenes by Density Functional Theory*

    LI Jiayou (李加友)1, LIU Hongxia (柳紅霞)1, YU Hongxia (于紅霞)2, WANG Zunyao (王遵堯)1,**and WANG Liansheng (王連生)2

    1School of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China2Department of Environment, Nanjing University, Nanjing 214007, China

    The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) inthe gaseous state at 298.15 K and 1.013×105Pa, are calculated using the density functional theory (the B3LYP/6-311G**) with Gaussian 03. Based on these data, the isodesmic reactions are designed to calculate the standard enthalpy of formation (Δf?) and the standard Gibbs energy of formation (Δf?) of PBDTs. The relations of these thermodynamic parameters with the number and position of bromine substituents (PBS) are discussed, and it is found that there exist good correlations between thermodynamic parameters (including heat capacity at constant volume, entropy, enthalpy, free energy, Δf?, Δf?) andPBS. The relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their Δf?. In addition, the values of molar heat capacities at constant pressure (C,m) for PBDT congeners are calculated.

    polybrominated dibenzothiophenes, density functional theory, method of position of substituted Br atom, thermodynamic parameters, relative stability

    1 Introduction

    Dibenzothiophene (DBT) (the structure and atomic numbering of DBT are illustrated in Fig. 1) and its derivatives are a group of important organic synthetic intermediates and are widely used in the synthesis of pesticide, medicine, biology and dyestuff [1]. Polybrominated dibenzothiophenes (PBDTs) are significant derivatives of DBT. In terms of the numbers and different positions of constituted bromine atoms, there are 135 possible PBDT compounds. It is important to know the structural and thermodynamic properties of PBDTs for studying their generation, degradation and potential environmental risk. Generally, thermodynamic parameters are obtained by precise experimental measurements. But for the difficulty of experimental measurements, many theory methods have been developed to predict these parameters. For example, Reed. [2] used three procedures for estimating thermodynamic stability and charge distribution for unknown molecules such as nitro derivatives of cubane, and the results suggest that hexa- and octa-nitrocubane are thermodynamically stable species. Taskinen. [3] measured theandforms of 1-propenylbenzene over the temperature range of 50-170°C by chemical equilibration in dimethyl sulfoxide (DMSO) solution with-BuOK as catalyst. The values of the thermodynamic parameters Δ?, Δ?and Δ?at 298.15 K for each isomerization reaction between the title compounds were evaluated and the relative thermodynamic stabilities of the isomeric propenylbenzenes were studied. Xiao. [4] calculated the enthalpy of formation for 21 polynitrocubane compounds using semiempirical molecule orbit (MO) methods (MINDO/3, MNDO, AM1 and PM3) and for eight of 21 polynitrocubanes containing one to four nitro groups using the density functional theory at the B3LYP/6-31G* level by means of designed isodesmic reactions, and the results showed that the isodesmic reactions are more accurate and reliable. Furthermore, they also studied the thermodynamic functions for phenanthrene and anthracene using density functional theory (DFT) and ab initio methods, of which the thermodynamic functions calculated were in good agreement with the experimental results [5]. Yu. [6] and Feng. [7] researched the standard enthalpies of formation of alkyl derivatives with a novel topological indexxand molecular connectivity index of atomic ordinal number, respectively, and the results are satisfactory. Cao. [8] estimated the enthalpies of formation for mono-substituted alkanes in the liquid- phase based on the electrostatic effects of the alkyl R and the substituent, of which each of the items in the equation has its explicit physical meaning and the obtained equation can be favorable of further understanding of the correlation between molecular structures and their properties. Qiu. [9] studied quantitative- structure property relationship between intrinsic vibrational frequencies and thermodynamic properties of alkanes, and the predicted values were in good agreement with the experimental results. The results from referrences indicated that theoretical calculation is an important means for predicting thermodynamic functions, especially for the toxicit compounds and those obtained difficultly. Molecular simulations is broad applied in chemical engineering. In particular, when the parameters cannot be determined by experiment, they can be obtained by molecular simulation [10,11]. In our previous reports, the thermodynamic data of polychlorinated dibenzo--dioxins (PCDDs), polychlorodibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) have been calculated by DFT [12-15]. It was found that the isomers with low Gibbs energy have high formation ratio,.., the formation ratio of isomers are consistent with their relative stabilities. Moreover, Li. [16] calculated heat capacities, standard enthalpies of formation and entropies for 339 polybrominated/chlorinated dibenzo--dioxins (PXDDs) in the gaseous state using DFT and analysed the relationship between thermodynamic properties and the substitute number of bromine and chlorine. In addition, B3LYP density functional theory calculations have been carriedout on a number of PCDFs using 6-31G* and 6-311G**basis sets to estimate their enthalpies of formation based on the known experimental values of dibenzofuran, benzene and chlorobenzene [17]. Zeng. [18] calculated the thermodynamic properties of 39 polybrominated diphenyl ethers (PBDEs) in the ideal gas phase at the B3LYP/6-31G* level in Gaussian 03 program. Also, thermodynamic data of polybrominated dibenzo-furans (PBDFs) and polybrominated naphthalenes (PBNs) were calculated by the same method [19, 20], and the relative stabilities of their isomers were theoretically proposed. As is known, however, the thermodynamic data of PBDTs have not been reported.

    Figure 1 Numbering of carbon atoms in DBT

    In the present study, DBT and 135 PBDTs are fully optimized at the B3LYP/6-311G** level. The correlations of thermodynamic properties with the number and position of Br substitution (PBS) are discussed. Finally, by designing isodesmic reactions, the standard enthalpies of formation (Δf?) and the standard Gibbs energies of formation (Δf?) of 135 PBDTs are obtained. The stability order of the isomers are discussed based on the magnitude of the relative standard Gibbs energy of formation.

    2 Computational method

    All calculations are carried out with Gaussian 03 program [21]. The geometries of all PBDTs are optimized at the B3LYP/6-311G** level and frequency calculations are performed to ensure they are minimal at potential energy surface.

    Thermodynamic parameters, such as standard enthalpies (?), standard Gibbs energies (?), standard entropy (?), standard heat capacities at constant volume (?), are obtained from computation.

    In this work, PBDT isomers with one to eight bromine atoms are represented by the notation MBDT, DBDT, tri-DBT, TBDT, penta-BDT, hexa-BDT, hepta-BDT and OBDT, respectively. In addition, the positions of Br substitution (PBS) are consisted of the number of substituting Br atoms on the different positions of the parent compound and the number of relative positions of these Br atoms. The numbers of bromine atoms at position 1 or 9 are defined as1, at position 2 or 8 as2, at position 3 or 7 as3, at position 4 or 6 as4. The pair numbers of ortho, meta and para positions of bromine atoms on one benzene ring are symbolized aso,mandp. The numbers of bromine atom at positions 1 and 9 synchronously are1,9. Moreover, the parameters mentioned above are defined as a general designationPBS.

    2.1 Comparison of different calculation methods

    Generally, the computational precision increases as the basis set size increases, but in view of the calculation power of computers, four MBDTs with three levels (B3LYP/6-311G**, B3LYP/6-311++G**, MP2/6-31G*) are calculated. Based on computation results of the present study, the values of thermodynamic parameters with B3LYP/6-311++G** and MP2/6-31G* methods are similar to those from B3LYP/6-311G** for MBDTs, and the differences between them are less than 3% (the values are listed in Table 1). Among these parameters, the values of?,?and total energy (TE) with B3LYP/6-311G** method are close to those with B3LYP/6-311++G** method. As for MP2/6-31G* method, because the basis set is too large, the frequency does not calculated. Thus, only total energy values at MP2/6-31G* level are obtained. Furthermore, the total energy values and their orders from three methods are consistent. Based on comparative analysis, the B3LYP/6-311G** level is acceptable. In addition, calculation at B3LYP/6-311++G** and MP2/6-31G* levels would spend more computer time, thus, B3LYP/6-311G** calculation for all 135 PBDTs is chosen in the present study.

    Furthermore, some of PBDT congeners are calculated using diffuse functions (B3LYP/6-311++G**) and obtained their Δf?and Δf?. Then the results are compared with those from B3LYP/6-311G**, and all values are listed in Table 2. Table 2 shows that the differences are no more than 38.0 kJ·mol-1. These differences are not dramatic compared to an average absolute deviation of 44.35 kJ·mol-1for Rabuck’s test set [22]. The diffuse basis sets allow orbitals to occupy a larger region of space. They usually make an improvement in accuracy of energies. Absence of diffuse basis sets increases the mean absolute deviations of energies by 16.74 kJ·mol-1over the G2 test set [23]. However, computations of all data with diffuse functions for the title compounds will be too expensive in computing source. Thus, all PBDT congeners using diffuse functions are not calculated.

    Table 1 The total energy values from different levels

    2.2 Isodesmic reactions

    By designing isodesmic reactions, as reaction 1, Δf?and Δf?of PBDTs are obtained.

    The standard enthalpy change of the reaction (Δr?) is equal to the sum of the standard enthalpies of the products obtained from DFT calculations minus the sum of the standard enthalpies of reactants:

    where PhH and BB represent benzene and bromobenzene, respectively.

    The sum of the standard enthalpies of formation of the products minus those of the reactants yields Δr?:

    By substituting Eq. (3) into Eq. (2), Δf?PBDTcan be obtained by Eq. (4):

    ?f?PBDTs?PBDTs?PhH?BB?DBT

    ?f?PhH?f?BB?f?DBT(4)

    Similarly, Δf?PBDTis obtained by Eq. (5):

    ?f?PBDTs?PBDTs?PhH?BB?DBT

    ?f?PhH?f?BB?f?DBT(5)

    The experimental values of Δf?and Δf?for dibenzothiophene, bromobenzene and benzene are taken from references [24, 25] and the values of?and?for these compounds are calculated at the B3LYP/6-311G** level. Since all the values of the thermodynamic parameters mentioned above are from theoretical calculations, variables can be exactly repeatable.

    3 Results and discussion

    All the thermodynamic properties withPBSof PBDTs, calculated at the B3LYP/6-311G** level, are listed in Table 4.

    3.1 Relations of thermodynamic properties and NPBS

    The multiple linear regression method of the SPSS 12.0 for Windows is used to obtain the correlations of?,?,?and?withPBSfor PBDTs, and the results are as following Eqs. (6) and (7):

    4.24(±0.03)4(6)

    Table 2 The values of ΔfH? and ΔfG? from diffuse functions and the differences for some PBDTs

    Table 3 The difference between the calculated thermodynamic parameters by B3LYP/6-311G** and experimental ones

    ① Taken from Ref. [27].

    Table 4 The thermodynamic data of PBDTs from DFT calculations at B3LYP/6-311G** level

    MoleculeC?v /J·mol-1·K-1S?/J·mol-1·K-1ΔfH?/kJ·mol-1ΔfG?/kJ·mol-1ΔfG?R/kJ·mol-1Cp,mA+B×10-3T+C×103T-1+D×107T-2N1N2N3N4NoNmNpN1,9 A/J·mol-1·K-1B/J·mol-1·K-2C/J·mol-1D/J·mol-1·K tri-BDT 1,2,9214.6512.5275.5332.586.4555.3191.22021001001 1,3,4214.6517.1218.0273.727.5554.4181.23010111110 1,3,6215.1518.8202.9258.112.0553.9171.22310110100 1,3,7215.1520.1200.4255.19.0553.6341.21810200100 1,3,8215.1520.1201.6256.410.3553.7541.21811100100 1,3,9215.1515.1258.8315.068.9554.9101.21820100101 1,4,6214.6517.6205.2260.714.6554.1061.22610020010 1,4,7215.1518.8202.2257.411.2553.8391.22110110010 1,4,8214.6518.8203.5258.812.6553.9441.22211010010 1,4,9214.6514.2261.2317.871.7555.1221.22320010011 1,6,7214.6516.7213.4269.123.0554.1791.22510111000 1,6,8214.6518.4203.4258.612.5554.0581.22411010100 1,7,8215.1518.4213.3268.622.5553.9551.22011101000 2,3,4214.6516.3220.6276.630.5554.3971.23001112100 2,3,6214.6518.0203.8259.213.1553.7941.22301111000 2,3,7215.1519.2202.0257.010.9553.4581.21701201000 2,3,8215.5519.7202.5257.511.4553.4861.21702101000 2,4,6215.1518.8193.3248.42.3553.8361.22601020100 2,4,7215.1520.1191.3246.10.0553.5841.22001110100 2,4,8215.1520.1192.1246.90.8553.6201.22202010100 2,6,7214.6518.0202.4257.911.8553.7921.22301111000 3,4,6214.6517.1204.2259.913.8554.0141.22700121000 3,4,7215.1518.0202.2257.611.4553.7431.22200211000 TBDT 1,2,3,4232.6556.1284.3327.662.5561.8781.15411113210 1,2,3,6232.6558.6264.7307.342.3561.1291.14611112100 1,2,3,7233.0559.4261.9304.239.1560.8371.14211202100 1,2,3,8233.0559.4263.2305.640.5560.9351.14212102100 1,2,3,9232.6552.7320.1364.599.4562.1161.14421102101 1,2,4,6232.6559.0251.6294.129.0560.9791.14911021110 1,2,4,7233.0559.8248.9291.226.1560.7421.14511111110 1,2,4,8233.0559.8250.1292.327.2560.7711.14512011110 1,2,4,9232.6553.1307.5351.886.7562.0511.14821011111 1,2,6,7232.6558.1258.0300.835.7560.8821.14511112000 1,2,6,8232.6559.4248.3290.725.6560.7981.14412011100 1,2,6,9232.6553.1305.8350.185.1561.8671.14421011011 1,2,7,8233.0559.4257.9300.335.2560.6411.14012102000 1,2,7,9233.0554.8303.5347.382.2561.6491.14021101101 1,2,8,9232.6551.9320.0364.699.5562.0301.14222002001 1,3,4,6232.6558.1246.5289.324.2560.7671.15010121110 1,3,4,7232.6559.0243.7286.121.1560.5351.14510211110 1,3,4,8233.0559.4244.9287.322.2560.6061.14611111110

    MoleculeC?v /J·mol-1·K-1S?/J·mol-1·K-1ΔfH?/kJ·mol-1ΔfG?/kJ·mol-1ΔfG?R/kJ·mol-1Cp,mA+B×10-3T+C×103T-1+D×107T-2N1N2N3N4NoNmNpN1,9 A/J·mol-1·K-1B/J·mol-1·K-2C/J·mol-1D/J·mol-1·K TBDT 1,3,4,9232.6554.0301.8345.980.8561.8311.14820111111 1,3,6,7232.6559.4242.1284.519.4560.4881.14410211100 1,3,6,8233.0561.5232.4274.29.1560.3421.14311110200 1,3,6,9233.0556.1289.2332.667.5561.4611.14220110111 1,3,7,8233.0560.7242.2284.219.1560.2721.13911201100 1,3,7,9233.0557.3287.0330.064.9561.1791.13820200201 1,4,6,7232.6558.1244.0286.821.7560.6371.14710121010 1,4,6,8232.6559.8234.4276.711.6560.5351.14711020110 1,4,6,9232.6555.6292.1335.770.6561.6061.14620020021 1,4,7,8232.6559.4243.9286.221.2560.4551.14311111010 2,3,4,9232.6557.3258.4301.536.4561.0181.14911112100 2,3,4,6232.6557.3249.2292.327.2560.8551.15101122100 2,3,4,7233.0559.0247.1289.724.6560.5151.14501212100 2,3,4,8233.0558.6247.8290.425.4560.5611.14602112100 2,3,6,7232.6559.0243.8286.321.2560.3251.14401212000 2,3,6,8233.0560.7233.4275.410.4560.1671.14302111100 2,3,7,8233.0559.4243.7286.121.0560.1121.14002202000 2,4,6,7233.0559.8233.3275.510.5560.3421.14601121100 2,4,6,8233.0561.1223.2265.10.0560.2481.14602020200 3,4,6,7233.0559.8233.3275.510.5560.3421.14600222000 penta-BDT 1,2,3,4,6250.2597.5313.0343.337.5568.3421.07511123210 1,2,3,4,7250.6598.3310.0340.034.2568.0521.07011213210 1,2,3,4,8250.6598.3311.4341.535.7568.1651.07112113210 1,2,3,4,9250.6591.2367.4399.693.8569.3481.07421113211 1,2,3,6,7250.6598.3304.0334.128.3567.7061.06811213100 1,2,3,6,8250.6600.0294.4323.918.1567.6131.06712112200 1,2,3,6,9250.6593.7350.9382.476.6568.6711.06721112111 1,2,3,7,8250.6599.1303.8333.627.8567.5421.06412203100 1,2,3,7,9251.0594.5348.6379.874.0568.4821.06321202201 1,2,3,8,9250.6592.5365.0396.991.1568.8641.06522103101 1,2,4,6,7250.2598.7290.9321.015.1567.5361.07111122110 1,2,4,6,8250.6600.8281.6310.95.0567.4751.07012021210 1,2,4,6,9250.6595.0338.7369.864.0568.5551.07121021121 1,2,4,7,8250.6600.4290.7320.214.4567.3491.06712112110 1,2,4,7,9250.6595.4336.1367.161.3568.4271.06821111211 1,2,4,8,9250.6592.9352.5384.278.4568.7951.06922012111 1,2,6,7,8250.6597.9303.4333.527.7567.7581.06912113100 1,2,6,7,9250.6593.7346.7378.272.4568.5841.06921112111 1,3,4,6,7250.2598.3285.7315.810.0567.3471.07210222110 1,3,4,6,8250.6600.0276.3305.80.0567.3471.07211121210 1,3,4,6,9250.6595.0332.9364.058.1568.3601.07120121121

    MoleculeC?v /J·mol-1·K-1S?/J·mol-1·K-1ΔfH?/kJ·mol-1ΔfG?/kJ·mol-1ΔfG?R/kJ·mol-1Cp,mA+B×10-3T+C×103T-1+D×107T-2N1N2N3N4NoNmNpN1,9 A/J·mol-1·K-1B/J·mol-1·K-2C/J·mol-1D/J·mol-1·K penta-BDT 1,3,4,7,8250.6600.0285.7315.49.5567.1771.06711212110 1,3,4,7,9250.6595.8330.4361.255.3568.2041.06720211211 1,3,6,7,8250.6599.1287.7317.511.7567.3631.06811212200 1,4,6,7,8250.6598.3289.6319.613.8567.4951.07111122110 2,3,4,6,7250.6597.5289.0319.313.5567.3181.07101223100 2,3,4,6,8250.6599.6279.1308.83.0567.2361.07102122200 2,3,4,7,8250.6598.7289.1319.113.3567.0971.06702213100 hexa-BDT 1,2,3,4,6,7268.2637.6352.3369.921.1574.9120.99611224210 1,2,3,4,6,8268.6639.3343.2360.311.5574.8350.99512123310 1,2,3,4,6,9268.2631.8398.6418.069.2575.9230.99821123221 1,2,3,4,7,8268.6638.9352.2369.520.6574.7400.99212214210 1,2,3,4,7,9268.6633.5396.2415.166.3575.7140.99421213311 1,2,3,4,8,9268.2630.5412.4432.283.4576.1370.99622114211 1,2,3,6,7,8268.6638.5349.6367.018.2574.5660.99112214200 1,2,3,6,7,9260.7615.0420.3444.795.8575.4170.99221213211 1,2,3,6,8,9261.1617.6451.8475.5126.6576.2790.97822113211 1,2,3,7,8,9268.6639.3336.9354.15.3574.4440.99522204201 1,2,4,6,7,8268.2634.3379.9398.549.7575.3390.99612123210 1,2,4,6,7,9268.2633.9385.8404.555.7575.5680.99721122221 1,2,4,6,8,9268.6632.6397.8417.068.1575.6330.99322022221 1,3,4,6,7,8268.6638.5331.4348.80.0574.2560.99511223210 1,3,4,6,7,9268.2634.3379.9398.549.7575.3310.99620222221 2,3,4,6,7,8268.2637.6335.1352.73.9574.2040.99602224200 hepta-BDT 1,2,3,4,6,7,8286.2677.4398.2403.30.0581.8340.92112225310 1,2,3,4,6,7,9286.2672.0439.8446.543.2582.6550.92221224321 1,2,3,4,6,8,9286.2672.0445.6452.449.1582.8510.92322124321 1,2,3,4,7,8,9286.2670.7457.8464.961.6582.9500.91922215311 OBDT 1,2,3,4,6,7,8,9303.8709.6505.8500.6590.1690.84922226421

    Note:?is standard entropy,?is standard heat capacity at constant volume, Δf?is the standard enthalpy of formation of the compound, Δf?is the standard Gibbs energy of formation of the compound and Δf?Ris the relative magnitude of the standard Gibbs energy of formation.is the number of Br atom substitutions and that subscript PBS indicates the positions.

    Equations (6) and (7) show that there exist good correlations between the values obtained from Gaussian 03 program andPBS, and these parameters can be predicted with reasonable accuracy from thePBSof PBDTs,.., the?and?values of PBDTs obviously vary with the substitute number and position of bromine atoms. This is consistent with that of the study on substituted chlorine of PCDFs, PCNs and PCDDs [12, 14, 26].

    3.2 Calculated results of ΔfH? and ΔfG? and relative stability of isomer groups

    With the design of isodesmic reactions, Δf?and Δf?of PBDTs are obtained. On the basis of the lowest Δf?of isomers with the same substitute numbers of bromine atoms, the obtained relative standard Gibbs energies of formation are listed in Table 4. It can be found that the values of Δf?and Δf?increase with increasing number of bromine atoms (except monosubstituted),.. stability decreases with increasing bromination. For example, among 28 isomers of penta-BDTs, 1,3,4,6,8-penta-BDT possesses the lowest value of Δf?, and 1,2,3,4,9-penta-BDT possesses the highest corresponding value, where the discrepancy of them is 94 kJ·mol-1. In the same way, the Δf?of 1,3,4,6,7,8-hexa-BDT is lower than those of the other 15 isomers, and 1,2,3,6,8,9-hexa-BDT is higher than those of the other 15 isomers, where the discrepancy of them is 127 kJ·mol-1.

    The most stable and unstable isomers as indicated by the Gibbs energy of formation are listed in Table 5. These results can be used to examine whether the most stable isomers are the most abundant in the environment. It can be seen from Table 5, the most unstable isomers in MBDTs, DBDTs, tri-BDTs, TBDTs, penta-BDTs, hexa-BDTs and hepta-BDTs are all those with bromine being attached to 1, 9 positions simultaneously. On the contrary, the most stable isomers are all those with bromine being attached to 4, 6 positions simultaneously. The reason is that the bromine substituent at positions 1 and 9 synchronously seems to destabilize the isomers, and the resulting steric effect may be one of the important sources of the relative instabilities of the PBDTs apart from the associated electrostatic effects. For instance, the distances between bromines atoms substituent at positions 1 and 9 is 0.3304 nm, which is smaller than that of bromines atoms substituent at positions 4 and 6 (0.6356 nm), where the steric effect of the former is obviously larger than that of the latter.

    Using SPSS 12.0 for Windows, the correlation expressions of Δf?and Δf?toPBSfor PBDTs are summarized and presented in Eqs. (8) and (9).

    (46.6±3.4)1,9(8)

    (48.4±3.5)1,9(9)

    Equations (8) and (9) clearly demonstrate that the substitute number and positions of bromine atoms influence the values of Δf?and Δf?. The values of Δf?increase with increasing substitute number of bromine atoms, and the effect of1,9is important. When1,9is changed from 0 to 1, the value of Δf?increases 46.6 kJ·mol-1. But the effect ofo,mandpon Δf?is relatively small. Thus,1,2,3,4and1,9are the primary factors influencing the values of Δf?. The values of Δf?also increase with the number of bromine atoms, and1,9is the primary influence on the values of Δf?. When1,9is changed from 0 to 1, the value of Δf?increases 48.4 kJ·mol-1.o,mandphave a great effect on the values of Δf?, and the order iso>p>m.

    3.3 The temperature dependence of molar heat capacity at constant pressure for PBDTs

    Table 5 The most stable and the most unstable isomers indifferent isomer groups for PBDTs

    Table 6 The difference between calculated and experimental value of Cp,m

    ① Taken from Ref. [24];②Calculated using statistical thermodynamics calculation program.

    Using the calculated values ofC,mof PBDTs at different temperature (), the relations betweenC,mand temperature are obtained by the least square method and are listed in Table 4.is a constant,,andare regression coefficients. Table 4 shows that almost all PBDT congeners have very good relationships betweenC,mand temperature (,-1and-2), and the correlation coefficients (2) are all equal to 1.0 and all the standard deviations (SD) are low. These indicate that the correlation betweenC,mvalues andis good.

    4 ConclusionS

    Fully optimized calculation of 135 PBDTs are carried out at the B3LYP/6-311G** level with Gaussian 03 program, and their thermodynamic parameters are obtained. By designing isodesmic reactions, the standard enthalpies of formation (Δf?) and the standard Gibbs energies of formation (Δf?) are also calculated. The correlations between thermodynamic parameters andPBSare discussed. It is found that there exist good correlations between thermodynamic parameters andPBS. These parameters include heat capacity at constant volume (?), entropy (?), standard enthalpy of formation (Δf?) and standard free energy of formation (Δf?). The stability order of the isomers is discussed based on the magnitude of the relative standard Gibbs energy of formation. The correlations have some significances for synthesizing these isomers. Furthermore, on the basis of the relative stability, the reaction activities of these isomers are known. Thus, this work is significant because the relative stability of isomers and their toxicities are synchronously considered in circumstance toxicological research.

    NOMENCLATURE

    C,mmolar heat capacity at constant pressure , J·mol-1·K-1

    ?heat capacity at constant volume, J·mol-1·K-1

    Δf?standard free energy of formation, kJ·mol-1

    Δf?Rrelative magnitude of the standard Gibbs energy of formation, kJ·mol-1

    Δf?standard enthalpy of formation, kJ·mol-1

    number of substituting Br atoms on the different positions of parent compound and the number of relative positions for these Br atoms

    1numbers of bromine atoms at positions 1 or 9

    1,9numbers of bromine atom at positions 1 and 9 synchronously

    2numbers of bromine atoms at positions 2 or 8

    3numbers of bromine atoms at positions 3 or 7

    4numbers of bromine atoms at positions 4 or 6

    mpair numbers of meta positions of bromine atoms on one benzene ring

    opair numbers of ortho positions of bromine atoms on one benzene ring

    ppair numbers of para positions of bromine atoms on one benzene ring

    2correlation coefficients

    ?entropy, J·mol-1·K-1

    SD standard deviations

    temperature, K

    Superscript

    ? standard state

    Subscripts

    f formation

    m molar

    PBS positions of Br substitution

    R reaction

    1 Li, J.Y., Zhou, X.R., Zhao, D.F., “Dibenzothiophene and derivatives”,, 68, 1-7 (2005).

    2 Reed, L.H., Jayasuria, K., Koovakkat, S.K., Allen, L.C., “Estimation of thermodynamic stability and charge distribution for unknown molecules: Nitro derivatives of cubane”,...., 4, 714-720 (1991).

    3 Taskinen, E., Lindholm, N., “Relative thermodynamic stabilities of the isomeric propenylbenzenes”,...., 7, 256-258 (1994).

    4 Xiao, H.M., Gong, X.D., “Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP method and semiempirical MO methods”,...., 14, 583-588 (2001).

    5 Xiao, H.M., Gong, X.D., “Ab initio studies on the structures and thermodynamic functions of phenanthrene and anthracene”,...., 12, 441-446 (1999).

    6 Yu, X.M., “A QSPR study on the standard enthalpy of formation of alkyl derivatives”,...., 20, 915-920 (2000).

    7 Feng, C.J., Chen, Y., Li, M.J., “Research on the standard enthalpies of formation of alkyl derivatives based on molecular connectivity index of atomic ordinal number”,...., 22, 206-211 (2002).

    8 Cao, C.Z., Gao, S., “A novel approach for estimating the enthalpies of formation of monosubstituted alkanes RX in liquid-phase”,..., 21, 1028-1035 (2005).

    9 Qiu, M.H., Peng, B., Deng, L.Y., Gao, Y.Y., “Quantitative-structure property relationship between intrinsic frequencies with molecular structure vibrating and thermodynamic properties for alkannes”,...., 23, 127-131 (2006).

    10 Fu, Y.F, Su, H.Y., Zhang, Y., Chu, J., “Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process”,...., 16 (5), 746-751 (2008).

    11 Zhang, M.G., Zhang, L.H., Jiang, B., Yin, Y.G., Li, X.G., “Calculation of metzner constant for double helical ribbon impeller by computational fluid dynamic method”,...., 16 (5), 686-692 (2008).

    12 Wang, Z.Y., Zhai, Z.C., Wang, L.S., “Prediction of gas phase thermodynamic properties of polychlorinated dibenzo-furans by DFT”,... (), 725, 55-62 (2005).

    13 Wang, Z.Y., Wu, Y.C., Kikuchi, O., Watanabe, T., “DFT study of tetrachlorinated dibenzo--dioxins”,., 61, 840-845 (2003).

    14 Wang, Z.Y., Han, X.Y., Zhai, Z.C., Wang, L.S., “Study on the thermodynamic property and relative stability of a series of polychlorinated biphenyls by density functional theory”,, 63, 964-972 (2005).

    15 Zhai, Z.C., Wang, Z.Y., “Computational study on the relative stability and formation distribution of 76 polychlorinated naphthalene by density functional theory”,... (), 724 (1-3), 221-227 (2005).

    16 Li, X.W., Shibata, E., Nakamura, T., “Thermodynamic properties of polybrominated/chlorinated dibenzo--dioxins calculated by density functional theory”,.., 44, 2441-2451 (2003).

    17 Thompson, D., Ewan, B.C.R., “A group additivity algorithm for polychlorinated dibenzofurans derived from selected DFT analyses”,...., 111, 5043-5047 (2007).

    18 Zeng, X., Freeman, P.K., Vasil’ev, Y.V., Voinov, V.G., Simonich, S.L., Barofsky, D.F., “Theoretical calculation of thermodynamic properties of polybrominated diphenyl ethers”,..., 50, 1548-1556 (2005).

    19 Yu, J., Zhang, X.C., Wang, Z.Y., Zeng, X.L., “Study on the thermodynamic properties and stability of a series of polybrominated dibenzo-furans by density functional theory”,., 64, 1961-1968 (2006).

    20 Yuan, L.X., Yu, J., Wang, Z.Y., Liu, H.X., Ju, X.H., “Thermodynamic property and relative stability of 76 polybrominated naphthalene by density functional theory”,..., 51, 2032-2037 (2006).

    21 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A., Gaussian 03 (Revision A.1), Gaussian, Inc., Pittsburgh, PA (2003).

    22 Rabuck, A.D., Scuseria, G.E., “Assessment of recently developed density functionals for the calculation of enthalpies of formation in challenging cases”,..., 309, 450-456 (1999).

    23 Foresman, J.B., Frisch, A.E., Exploring Chemistry with Electroinc Structure Methods, Gaussian, Inc., Pittsburgh, PA (1996).

    24 Yao, Y.B., Xie, T., Gao, Y.M., Handbook of Physics and Chemistry, 1st edition, Shanghai Science and Technology Press, Shanghai (1985).(in Chinese)

    25 Chirico, R.D., Knipmeyer, S.E., Nguyen, A., “The thermodynamic properties of dibenzothiophene”,.., 23, 431-450 (1991).

    26 Wang, Z.Y., Zhai, Z.C., Wang, L.S., Chen, J.L., Kikuchi, O., Watanabe, T., “Prediction of gas phase thermodynamic function of polychlorinated dibenzo--dioxins using DFT”,... (), 672 (1-3), 97-104 (2004).

    27 Dean, J.A., Lange’s Handbook of Chemistry, 13th edition, McGraw-Hill Book Company, New York (1985).

    28 Raff, L.M., Principles of Physical Chemistry, Prentice Hall, New Jersey (2001).

    2008-12-22,

    2009-04-28.

    the National Natural Science Foundation of China (20737001).

    ** To whom correspondence should be addressed. E-mail: wangzun315cn@163.com

    猜你喜歡
    紅霞
    如何推薦一部動畫片
    點詞成金
    請你幫個忙
    《烏鴉喝水》中的“想”
    Therapeutic efficacy of moxibustion plus medicine in the treatment of infertility due to polycystic ovary syndrome and its effect on serum immune inflammatory factors
    STABILITY OF RAREFACTION WAVE FOR A MACROSCOPIC MODEL DERIVED FROM THE VLASOV-MAXWELL-BOLTZMANN SYSTEM?
    A Study of Combination of English Language Teaching and Context
    大東方(2018年1期)2018-05-30 01:27:23
    高紅霞教授
    讓動作“活”起來
    “光的直線傳播”“光的反射”練習(xí)
    精品国产三级普通话版| 美女xxoo啪啪120秒动态图| 女同久久另类99精品国产91| 又黄又爽又免费观看的视频| 色在线成人网| 99久久中文字幕三级久久日本| 九九久久精品国产亚洲av麻豆| 国产精品,欧美在线| 色哟哟·www| 欧美zozozo另类| 亚洲无线在线观看| 亚洲av免费在线观看| 99久久精品热视频| 一个人免费在线观看电影| videossex国产| 美女 人体艺术 gogo| 亚洲人成网站在线播| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区 | 可以在线观看毛片的网站| av在线亚洲专区| 亚洲av二区三区四区| 99久久久亚洲精品蜜臀av| 精品人妻视频免费看| 草草在线视频免费看| 床上黄色一级片| 观看美女的网站| 深夜精品福利| 久久精品综合一区二区三区| 欧美一区二区国产精品久久精品| www.www免费av| 非洲黑人性xxxx精品又粗又长| 99热这里只有精品一区| 亚洲av成人精品一区久久| 亚洲最大成人中文| 欧美日韩黄片免| 黄片wwwwww| 国产av不卡久久| 男女之事视频高清在线观看| 99久久无色码亚洲精品果冻| 男人狂女人下面高潮的视频| 精品午夜福利视频在线观看一区| 赤兔流量卡办理| 波野结衣二区三区在线| 在线观看av片永久免费下载| 给我免费播放毛片高清在线观看| 亚洲图色成人| 亚洲成人免费电影在线观看| 久久久成人免费电影| 成人特级av手机在线观看| 夜夜爽天天搞| 男人狂女人下面高潮的视频| 午夜久久久久精精品| 国产大屁股一区二区在线视频| 亚洲久久久久久中文字幕| 中文字幕高清在线视频| 免费av不卡在线播放| 此物有八面人人有两片| 亚洲精品在线观看二区| 十八禁网站免费在线| 校园人妻丝袜中文字幕| 丝袜美腿在线中文| 美女 人体艺术 gogo| 精品日产1卡2卡| 亚洲av不卡在线观看| 成人一区二区视频在线观看| 欧美三级亚洲精品| 久久99热这里只有精品18| 精品午夜福利在线看| 欧美一区二区亚洲| 欧美日韩乱码在线| 夜夜夜夜夜久久久久| 淫妇啪啪啪对白视频| 免费观看精品视频网站| 国产白丝娇喘喷水9色精品| 日韩精品青青久久久久久| 久久精品国产清高在天天线| 啪啪无遮挡十八禁网站| 桃色一区二区三区在线观看| 国产欧美日韩精品一区二区| 亚洲第一区二区三区不卡| 色在线成人网| 18禁在线播放成人免费| 51国产日韩欧美| 很黄的视频免费| 淫妇啪啪啪对白视频| 免费无遮挡裸体视频| 在线观看av片永久免费下载| 老熟妇仑乱视频hdxx| 久久人人精品亚洲av| 国产视频内射| 中出人妻视频一区二区| 日本一本二区三区精品| 亚洲人成网站在线播放欧美日韩| 男女下面进入的视频免费午夜| 色哟哟·www| 桃红色精品国产亚洲av| 黄色丝袜av网址大全| 中文字幕久久专区| 欧美日韩国产亚洲二区| 欧美日韩综合久久久久久 | 91在线观看av| 亚洲专区中文字幕在线| 国产成年人精品一区二区| 我要搜黄色片| 性欧美人与动物交配| a级一级毛片免费在线观看| 亚洲专区国产一区二区| 草草在线视频免费看| 99热只有精品国产| 乱系列少妇在线播放| 中文在线观看免费www的网站| 久久人妻av系列| 色5月婷婷丁香| 老熟妇乱子伦视频在线观看| 黄片wwwwww| 九九久久精品国产亚洲av麻豆| 在线观看美女被高潮喷水网站| 简卡轻食公司| 国产在视频线在精品| 国产精品乱码一区二三区的特点| 91av网一区二区| 听说在线观看完整版免费高清| 春色校园在线视频观看| 亚洲精品456在线播放app | 国产91精品成人一区二区三区| 免费看美女性在线毛片视频| 亚洲欧美激情综合另类| 韩国av一区二区三区四区| 黄色配什么色好看| 日日啪夜夜撸| 久久久久久国产a免费观看| 嫁个100分男人电影在线观看| 热99re8久久精品国产| 精品久久久久久成人av| 搡老熟女国产l中国老女人| 999久久久精品免费观看国产| 一区福利在线观看| 欧美zozozo另类| 亚洲精品456在线播放app | 国产精品女同一区二区软件 | 少妇熟女aⅴ在线视频| 女同久久另类99精品国产91| 99久久中文字幕三级久久日本| 久久久久久久精品吃奶| 女人被狂操c到高潮| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 国产亚洲91精品色在线| 毛片女人毛片| 亚洲在线自拍视频| 亚洲成人免费电影在线观看| 久久精品国产自在天天线| 天堂√8在线中文| 免费观看人在逋| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有是精品50| 色哟哟哟哟哟哟| 亚洲精品影视一区二区三区av| 男人舔奶头视频| 日韩欧美三级三区| 亚洲欧美日韩卡通动漫| 成人亚洲精品av一区二区| 国产色婷婷99| 悠悠久久av| 日本精品一区二区三区蜜桃| 99在线视频只有这里精品首页| 91在线精品国自产拍蜜月| 麻豆国产97在线/欧美| 久久久国产成人免费| 十八禁国产超污无遮挡网站| 天天一区二区日本电影三级| 色噜噜av男人的天堂激情| 国产亚洲91精品色在线| 欧美zozozo另类| 男人狂女人下面高潮的视频| 国产探花极品一区二区| 国产高清视频在线播放一区| 国内揄拍国产精品人妻在线| 两个人视频免费观看高清| 精品日产1卡2卡| 欧美精品啪啪一区二区三区| 黄色一级大片看看| 久久亚洲精品不卡| 99久久精品国产国产毛片| 老师上课跳d突然被开到最大视频| 国产白丝娇喘喷水9色精品| 亚洲乱码一区二区免费版| 国产精品自产拍在线观看55亚洲| 欧美色欧美亚洲另类二区| 国产激情偷乱视频一区二区| 国产视频一区二区在线看| 日韩中字成人| 99riav亚洲国产免费| 可以在线观看的亚洲视频| 1024手机看黄色片| 赤兔流量卡办理| 日韩精品青青久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 白带黄色成豆腐渣| 永久网站在线| 我的女老师完整版在线观看| 日本欧美国产在线视频| av在线老鸭窝| 免费在线观看影片大全网站| 色哟哟·www| 国产成人av教育| 窝窝影院91人妻| 嫩草影视91久久| 亚洲精品国产成人久久av| 色视频www国产| 淫妇啪啪啪对白视频| 麻豆久久精品国产亚洲av| 亚洲av成人av| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 欧美一区二区亚洲| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久久人妻蜜臀av| 搞女人的毛片| 日韩中字成人| 中国美女看黄片| 欧美一级a爱片免费观看看| 身体一侧抽搐| 亚洲av一区综合| 亚洲av不卡在线观看| 欧美潮喷喷水| 中文字幕av成人在线电影| 毛片一级片免费看久久久久 | 日韩大尺度精品在线看网址| 国产高潮美女av| 九九热线精品视视频播放| 中文字幕精品亚洲无线码一区| 尾随美女入室| 国内少妇人妻偷人精品xxx网站| 国产欧美日韩精品亚洲av| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| 亚洲精品日韩av片在线观看| 国产精品爽爽va在线观看网站| 成年人黄色毛片网站| 亚洲在线自拍视频| 日韩精品青青久久久久久| 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类 | 免费av观看视频| 国产一区二区三区av在线 | 精品无人区乱码1区二区| 成人一区二区视频在线观看| 91久久精品电影网| 舔av片在线| 99久国产av精品| 一级黄色大片毛片| 国产黄a三级三级三级人| 久久久久性生活片| 尾随美女入室| 久久久久久大精品| 如何舔出高潮| 亚洲一区二区三区色噜噜| 久久久精品欧美日韩精品| 亚洲精品久久国产高清桃花| 99久久精品一区二区三区| 久久欧美精品欧美久久欧美| 18禁在线播放成人免费| 日本在线视频免费播放| 国内精品美女久久久久久| 国产一区二区在线av高清观看| 99热这里只有是精品在线观看| 国产伦精品一区二区三区四那| 精品人妻1区二区| 岛国在线免费视频观看| 极品教师在线视频| 国产老妇女一区| 天堂√8在线中文| 桃色一区二区三区在线观看| 欧美激情国产日韩精品一区| 一区福利在线观看| 中国美女看黄片| 天堂网av新在线| 亚洲专区中文字幕在线| 亚洲欧美日韩卡通动漫| 成人综合一区亚洲| 久久人人精品亚洲av| 国产精品久久久久久av不卡| 在线看三级毛片| av在线亚洲专区| 少妇丰满av| 男人的好看免费观看在线视频| 联通29元200g的流量卡| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| 欧美日韩国产亚洲二区| 男人舔女人下体高潮全视频| 在线观看午夜福利视频| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 久久午夜福利片| 日韩大尺度精品在线看网址| 免费在线观看影片大全网站| АⅤ资源中文在线天堂| 性欧美人与动物交配| 亚洲av五月六月丁香网| 亚洲美女视频黄频| 99久久精品国产国产毛片| 中出人妻视频一区二区| 亚洲成人久久性| 欧美性感艳星| 淫妇啪啪啪对白视频| 国产男靠女视频免费网站| 成人午夜高清在线视频| 大又大粗又爽又黄少妇毛片口| 亚洲 国产 在线| 九九热线精品视视频播放| 男人狂女人下面高潮的视频| 日韩中文字幕欧美一区二区| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久| 午夜日韩欧美国产| 在线观看一区二区三区| 国产真实乱freesex| 成人精品一区二区免费| 神马国产精品三级电影在线观看| 国产黄色小视频在线观看| 国内久久婷婷六月综合欲色啪| 国产精品不卡视频一区二区| 国产91精品成人一区二区三区| 一夜夜www| 久久人妻av系列| av中文乱码字幕在线| 中亚洲国语对白在线视频| 啦啦啦韩国在线观看视频| 国产一区二区三区av在线 | 欧美区成人在线视频| 色播亚洲综合网| 成人综合一区亚洲| 国产真实伦视频高清在线观看 | 国产伦一二天堂av在线观看| 久久婷婷人人爽人人干人人爱| 一级黄片播放器| 国语自产精品视频在线第100页| 床上黄色一级片| 女的被弄到高潮叫床怎么办 | 免费大片18禁| 小蜜桃在线观看免费完整版高清| 热99在线观看视频| 一级黄片播放器| 免费av不卡在线播放| 香蕉av资源在线| 国产精品一区www在线观看 | 悠悠久久av| 成人午夜高清在线视频| 久久久精品大字幕| av天堂在线播放| 国产精品精品国产色婷婷| 亚洲天堂国产精品一区在线| 免费看a级黄色片| 性插视频无遮挡在线免费观看| 国产色爽女视频免费观看| 人人妻人人澡欧美一区二区| 91在线精品国自产拍蜜月| 国内精品久久久久精免费| 亚洲真实伦在线观看| 男女视频在线观看网站免费| 中文在线观看免费www的网站| 日韩精品青青久久久久久| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 亚州av有码| 国产美女午夜福利| 欧美+日韩+精品| 色吧在线观看| 99热6这里只有精品| 国产精品国产高清国产av| 国产主播在线观看一区二区| 日韩高清综合在线| 国产免费男女视频| 免费高清视频大片| 成年女人毛片免费观看观看9| 动漫黄色视频在线观看| 91在线精品国自产拍蜜月| 日本一本二区三区精品| 最好的美女福利视频网| 禁无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 最新中文字幕久久久久| 非洲黑人性xxxx精品又粗又长| 国产精品1区2区在线观看.| 黄色视频,在线免费观看| 久久久久久久亚洲中文字幕| 日韩人妻高清精品专区| 午夜老司机福利剧场| 中文资源天堂在线| 亚洲一级一片aⅴ在线观看| 无人区码免费观看不卡| 成人特级黄色片久久久久久久| 嫩草影院精品99| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 俄罗斯特黄特色一大片| 成人综合一区亚洲| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 黄色一级大片看看| www.色视频.com| 韩国av在线不卡| 精品不卡国产一区二区三区| 99九九线精品视频在线观看视频| 国产av麻豆久久久久久久| av国产免费在线观看| 99久久精品国产国产毛片| 欧美日韩瑟瑟在线播放| 国产成年人精品一区二区| 校园春色视频在线观看| 我的老师免费观看完整版| 嫩草影院入口| 亚洲,欧美,日韩| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 国产成人aa在线观看| 夜夜看夜夜爽夜夜摸| 最近中文字幕高清免费大全6 | 色尼玛亚洲综合影院| 少妇人妻一区二区三区视频| 99热6这里只有精品| 国产视频一区二区在线看| 久久6这里有精品| 中文字幕高清在线视频| 天堂√8在线中文| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 国模一区二区三区四区视频| 亚洲人成网站在线播| 亚洲专区中文字幕在线| 女生性感内裤真人,穿戴方法视频| 老司机午夜福利在线观看视频| 神马国产精品三级电影在线观看| 国产精品久久久久久久久免| 国产精品av视频在线免费观看| 午夜久久久久精精品| 自拍偷自拍亚洲精品老妇| 久久午夜亚洲精品久久| 欧美一区二区精品小视频在线| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片 | 久久6这里有精品| a级一级毛片免费在线观看| 亚洲熟妇中文字幕五十中出| 日本三级黄在线观看| 中文字幕av成人在线电影| 天天躁日日操中文字幕| 亚洲,欧美,日韩| 欧美日韩中文字幕国产精品一区二区三区| 成人亚洲精品av一区二区| 在线观看av片永久免费下载| 精品久久国产蜜桃| 亚洲av不卡在线观看| 村上凉子中文字幕在线| 国产精品美女特级片免费视频播放器| 日韩在线高清观看一区二区三区 | 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 日本精品一区二区三区蜜桃| 亚洲精品乱码久久久v下载方式| 日本与韩国留学比较| 天天躁日日操中文字幕| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕| 无遮挡黄片免费观看| 国产真实乱freesex| 伊人久久精品亚洲午夜| 亚洲av一区综合| 99久国产av精品| 国产三级在线视频| 99久久精品国产国产毛片| 九九在线视频观看精品| 中亚洲国语对白在线视频| 欧美精品啪啪一区二区三区| 免费看美女性在线毛片视频| 国产精品伦人一区二区| 午夜福利高清视频| 国产精品嫩草影院av在线观看 | 欧美性猛交╳xxx乱大交人| 久久久精品大字幕| 草草在线视频免费看| 人妻少妇偷人精品九色| 三级男女做爰猛烈吃奶摸视频| 色综合站精品国产| 老师上课跳d突然被开到最大视频| 一区福利在线观看| 亚洲av不卡在线观看| 国产女主播在线喷水免费视频网站 | 日本与韩国留学比较| 男插女下体视频免费在线播放| 一个人看的www免费观看视频| 床上黄色一级片| 女人被狂操c到高潮| 国产午夜福利久久久久久| 美女cb高潮喷水在线观看| 国产白丝娇喘喷水9色精品| 最近最新免费中文字幕在线| 小说图片视频综合网站| 日本爱情动作片www.在线观看 | 天天一区二区日本电影三级| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 最近中文字幕高清免费大全6 | 成年女人永久免费观看视频| 国产成人a区在线观看| 91麻豆精品激情在线观看国产| 国产色爽女视频免费观看| 欧美黑人欧美精品刺激| 中文在线观看免费www的网站| 色哟哟·www| 国产激情偷乱视频一区二区| 国产精品日韩av在线免费观看| 国产伦精品一区二区三区四那| 亚洲熟妇熟女久久| 波多野结衣巨乳人妻| 亚洲成人精品中文字幕电影| 日本一本二区三区精品| 免费高清视频大片| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕精品亚洲无线码一区| 男女啪啪激烈高潮av片| 精品99又大又爽又粗少妇毛片 | 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 十八禁国产超污无遮挡网站| 免费高清视频大片| 天堂网av新在线| 精品免费久久久久久久清纯| 全区人妻精品视频| 久久午夜亚洲精品久久| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲网站| 国产一区二区三区av在线 | 在线观看一区二区三区| 日韩欧美在线二视频| 我的女老师完整版在线观看| 老师上课跳d突然被开到最大视频| 99热只有精品国产| 日韩欧美国产在线观看| av在线天堂中文字幕| 色综合婷婷激情| 最近视频中文字幕2019在线8| 国产一区二区三区在线臀色熟女| 久久久久免费精品人妻一区二区| 最后的刺客免费高清国语| 亚洲精品一卡2卡三卡4卡5卡| 九九热线精品视视频播放| 少妇高潮的动态图| 可以在线观看的亚洲视频| 日本五十路高清| 中文字幕精品亚洲无线码一区| 日本-黄色视频高清免费观看| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 午夜福利在线观看吧| 伦精品一区二区三区| 久久久成人免费电影| 国产麻豆成人av免费视频| 久久久久久九九精品二区国产| 男女之事视频高清在线观看| 搞女人的毛片| 露出奶头的视频| 联通29元200g的流量卡| 搡女人真爽免费视频火全软件 | 波多野结衣高清作品| 亚洲男人的天堂狠狠| 亚洲美女黄片视频| 国产精品嫩草影院av在线观看 | 悠悠久久av| 美女大奶头视频| 性色avwww在线观看| .国产精品久久| 夜夜爽天天搞| 99热这里只有精品一区| 婷婷亚洲欧美| 我要搜黄色片| 99热这里只有是精品50| 亚洲美女视频黄频| 禁无遮挡网站| 欧美不卡视频在线免费观看| 久久久久久久午夜电影| 亚洲久久久久久中文字幕| av福利片在线观看| 日韩欧美免费精品| 国产色爽女视频免费观看| 一卡2卡三卡四卡精品乱码亚洲| 男人舔奶头视频| 在线观看午夜福利视频| 欧美+日韩+精品| 五月玫瑰六月丁香| 成人性生交大片免费视频hd| 内射极品少妇av片p| av国产免费在线观看| 久久精品影院6| 在线免费十八禁| 啦啦啦观看免费观看视频高清| 日韩中字成人| 国产真实乱freesex| 亚洲精华国产精华液的使用体验 | 日韩国内少妇激情av| 国产高清视频在线播放一区| 91久久精品国产一区二区成人| 99热这里只有是精品50| 日韩人妻高清精品专区| 欧美成人a在线观看|