• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY OF RAREFACTION WAVE FOR A MACROSCOPIC MODEL DERIVED FROM THE VLASOV-MAXWELL-BOLTZMANN SYSTEM?

    2018-07-23 08:42:00YongtingHUANG黃詠婷
    關(guān)鍵詞:紅霞

    Yongting HUANG(黃詠婷)

    Department of Mathematics,City University of Hong Kong,Hong Kong,China

    E-mail:ythuang7-c@my.cityu.edu.hk

    Hongxia LIU(劉紅霞)

    Department of Mathematics,Jinan University,Guangzhou 510632,China

    E-mail:hongxia-liu@163.net

    Abstract In this article,we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system.The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system.Both the timedecay property of the rarefaction wave pro file and the influence of the electromagnetic field play a key role in the analysis.

    Key words Vlasov-Maxwell-Boltzmann system;rarefaction wave;energy method

    1 Introduction

    As a fundamental model in plasma physics,the Vlasov-Maxwell-Boltzmann(VMB)system describes the time evolution of dilute charged particles(for example,electrons and ions)under the influence of binary collisions and their self-induced Lorentz forces governed by Maxwell equations,cf.[4],taking the form of

    where S2is the unit sphere of R3.The velocity pairs(v,v?)before collisions andafter collisions are defined by

    in terms of the conservation of momentum and kinetic energy

    The collision kernel q(v ? v?,ω) ≥ 0 depends only on the relative velocity|v ? v?|and the deviation angle ? given byThroughout this article,we assume that q(v ?v?,ω)is determined by the collision between particles with hard-sphere interaction in the form of

    For more physical situations,for instance,we expect that the techniques developed in this article together with the ones in[36]can be applied to the soft potential case.

    The VMB system was intensively studied and many important progress were made.On the perturbation theory,Guo[17] first established the global-in-time existence of classical solutions around the global Maxwellian equilibrium state in three-dimension torus and the corresponding existence result in the whole space was proved by Strain[35].The diffusive limits of the VMB system in a periodic box was constructed by Jang[22].The local stability and large-time behavior of solutions to the Cauchy problem in R3are studied by Duan-Strain[14],Duan-Liu-Yang-Zhao[7]and many references therein.Recently,Li-Yang-Zhong[26]and Huang[21]studied the spectrum structures of the VMB system with and without angular cutoff assumption respectively while the optimal convergence rates of the solutions are obtained as the application.We would point out that the self-consistent electromagnetic field makes the dissipative structure of the VMB system(1.1)more complicated than both the classical Boltzmann equation and the closely related Vlaso-Poisson-Boltzmann(VPB)system.

    To the best of our knowledge,so far there have been few mathematical results clarifying the asymptotic behavior of solutions of the VMB system tending to a rarefaction wave.In the content of Boltzmann equation without any force,whenever the initial data tend to distinct global Maxwellians at far fields,instead of converging to a constant equilibrium,the solution to the Cauchy problem usually approaches time-asymptotically towards the wave patterns of the Boltzmann equation.The studies on stability of basic wave patterns for Boltzmann equation are rather satisfactory.Ca filisch-Nicolaenko[1]proved the existence of the Boltzmann shock pro files.The stability and optimal convergence rate of the shock pro file are studied by Liu-Yu[31]and Yu[39].Liu-Yang-Yu-Zhao[30]and Xin-Yang-Yu[36]proved the nonlinear stability of rarefaction waves for the Bolzmann equation.Huang-Yang[20]and Huang-Xin-Yang[19]showed the stability of contact discontinuities both with and without zero mass condition.As far as the rarefaction wave of the Boltzmann equation is concerned,the pro file is in the form of a local Maxwellian associated with the macriscopic quantities formally determined by the conservation laws,where initial data are given by far- field global Maxwellians.The approach to study the local stability of such local Maxwellian is mainly based on the energy method proposed by Liu-Yu[31],developed by Liu-Yang-Yu[29],with further improvement in Yang-Zhao[37].When the electric field is included,as it has already been studied in Duan-Liu[10,12],Li-Wang-Yang-Zhong[25]and so on about the rarefaction waves of the VPB system,the dissipative property of the Poisson equation contributes a lot to the analysis.Back to the fluid level,Duan-Yang[8],Duan-Liu[11],and Duan-Liu-Yin-Zhu[13]proved the stability of the rarefaction wave of the Navier-Stokes-Poisson(NSP)system.Motivated by[11,12,23,25,27,28,33,38],we consider the stability of the rarefaction wave for a one-dimensional macroscopic model derived from the VMB system(1.1)in this article.The current analysis could provide a clue to hopefully derive the time-asymptotic behavior of the rarefaction wave of the Navier-Stokes-Maxwell system and the VMB system.

    In one-dimensional space,without any ambiguity we use x to denote x1∈R and the macroscopic model derived from the VMB system(1.1)takes the form of

    where the fluid quantity n=n(t,x)such that n=?xE1satisfies

    The details of the derivation of equations(1.2)will be given in the Appendix.The macroscopic model(1.2)forms a closed system of conservation equations containing eight unknowns:the density ρ = ρ(t,x)>0,the velocity u=(u1,u2,u3)=(u1,u2,u3)(t,x),the temperature θ= θ(t,x)>0,the electric field E=(E1,E2,0)=(E1,E2,0)(t,x),and the magnetic field B=(0,0,B3)=(0,0,B3)(t,x)for t≥0,x∈R.P denotes the pressure function satisfyingThe coefficients μ(θ),κ(θ),κ(θ)are all positive smooth functions depending only on θ.Here and in the sequel,for simplicity,we denote E+u×B=(E1+u2B3,E2?u1B3,0).

    Initial data of system(1.2)are given by

    with far- field states

    where ρ±,θ±>0,and u±=(u1,±,0,0)are assumed to be constant states.The boundary values of the electromagnetic field at infinity are set by

    We are interested in studying the large-time behavior of solutions to the Cauchy problem(1.2)under the conditions(1.4)–(1.6)in the case

    Recall that the one-dimensional NSP system takes the form,cf.[6,13],

    where for ν =i,e,qi=1 and qe= ?1 are the charges of ions and electrons.ρν= ρν(t,x)>0,,and θν= θν(t,x)>0 are the density,velocity,and temperature of ν- fluid.The pressure Pν=Rρνθνwith R>0 being the gas constant.E1=E1(t,x)∈ R is the electric field.The constantsμν,κν>0 denote the viscosity and heat conduction coefficients.Consider the conservation equation for ρi? ρeof system(1.7)for a special case:=ui=ue,

    We would like to mention that equation(1.3)is derived from taking the difference between the two governing equations(1.1)1and(1.1)2.Without the influence of the magnetic field,that is,E2=B3=0,equation(1.3)is reduced to

    It holds true that some techniques for the NSP system(1.7)can be applied to the reduced system for(1.2).

    We establish the global-in-time asymptotic stability of the rarefaction wave for the system(1.2)under the smallness assumption on the perturbation while additional smallness assumption on the initial boundary data and the wave strength is imposed because of the influence of the magnetic field.The main result in Theorem 2.1 shows that the large-time behavior of solutions coincides with the one for both the NSP system and the Navier-Stokes system because the asymptotic pro file of the electromagnetic field is assumed to be trivial.The proof is based on the classical energy method.Compared to the analysis for NSP system,additional difficulties occur because of the appearance of the magnetic field,which can be overcome by the combination of the techniques employed in[11]with delicate dissipative properties of system(1.2).

    The rest of this article is arranged as follows.In Section 2,we construct a smooth approximation of the rarefaction wave and the nonlinear stability of the rarefaction wave is given.The proof of the a priori estimates is sketched in Section 3 and the proof of the main result Theorem 2.1 is concluded in Section 4.In the Appendix,we provide a derivation of our macroscopic model(1.2)from the VMB system(1.1).

    NotationsThroughout this article,? denotes some generic small positive constant,which may take different values in different places.means that there is a generic constant C>0 such thatstands for the Lp(Rx)-norm.For convenience,we use k·k to denote the L2(Rx)-norm and Hk(Rx),k≥0,to denote the usual Sobolev space with respect to x variable.

    2 Asymptotics Toward the Rarefaction Wave

    In this section,we study the asymptotic stability of the rarefaction wave for the Cauchy problem(1.2)and(1.4)–(1.6)of the one-dimensional macroscopic model derived from the VMB system(1.1).We expect that(ρ,u1,θ)(t,x)tends time-asymptotically towhich is defined to be the centered rarefaction wave solution to the the Riemann problem on the compressible Euler system

    with Riemann initial data given by

    2.1 Approximate rarefaction wave

    The thermodynamic law

    where S denotes the entropy,v is the specific volume,that is,v=1/ρ,implies

    for some constant k>0.So the pressure can be rewritten as

    It is equivalent to consider the Euler system(2.1)in terms of(ρ,u1,S),cf.[34],

    with corresponding right eigenvectors ri=ri(ρ,u1,S),i=1,2,3,

    The three pairs of Riemann invariants associated with these eigenvectors can be taken as

    Here and in the sequel,S?is a constant such that

    In what follows,we construct a smooth approximation of the rarefaction wave corresponding to the solution to the Riemann problem(2.1)–(2.2).Consider the Riemann problem on the Burgers’equation

    for w?

    The solution to the Burgers’equation becomes smooth when the initial data is replaced by some smooth increasing function.That is,for given constants w?

    which holds the following basic properties.

    Lemma 2.1([32],Lemma 2.1)Suppose w+>w?and setThe Cauchy problem(2.8)admits a unique smooth global solution satisfying

    (ii)For any p∈[1,∞],there exists a constant Cpsuch that for t≥0,

    (iii)

    In fact,the i-th rarefaction wave can be constructed along the given curve Riwhenever the i-th characteristic λi= λi(ρ,u1,S)satisfies the Burgers’equation

    with increasing data,i=1,3.Without loss of generality,here we consider the 3-rarefaction wave and the 1-rarefaction wave can be treated similarly.Forthe Riemann problem(2.1)–(2.2)admits a self-similar solution,the 3-rarefaction wave(x/t),explicitly given by

    In order to justify the large-time behavior of the solution(ρ,u1,θ)(t,x)to the pro file(x/t),we usually deal with the stability analysis of its smooth approximationin the framework of small perturbation.Corresponding to(2.9),the smooth rarefaction wavecan be defined by

    Lemma 2.2Letbe the wave strength.The approximate rarefaction pro filedefined by(2.8)and(2.10)satisfies

    (ii)For any p∈[1,∞],there exists a constant Cpsuch that for t≥0,

    (iii)

    ProofRecall(2.4)and(2.10),it holds that

    which follows

    and

    2.2 Stability of the rarefaction wave

    In this subsection,we study the stability of the approximate rarefaction waveof system(2.11)for the Cauchy problem(1.2)and(1.4)–(1.6).We define the perturbation

    which satisfies the following system,

    Notice that ψ =(ψ1,u2,u3)and initial data of the above system are given by

    The main result of this article is stated as follows.

    Theorem 2.1Consider the Cauchy problem of the one-dimensional macroscopic system(1.2)derived from the VMB system(1.1)supplemented with the conditions(1.4)–(1.6).Assumewhereis given in(2.6)with ρ?,θ?>0.Let δ=|ρ+? ρ?|+|u1+? u1?|+|θ+? θ?|be the wave strength.There are small constants ε0, ε1>0 such that if

    while the far- field states and the wave strength are additional supposed to satisfy

    then the Cauchy problem(2.14)–(2.15)admits a unique global solution(φ,ψ,ζ,E1,E2,B3)(t,x)satisfying

    Moreover,the solution to the original Cauchy problem(1.2)and(1.4)–(1.6)tends time-asymptotically to the rarefaction in the sense that

    Remark 2.1The proof is based on the classical energy method.Additional smallness assumption on the initial boundary data and the wave strength(2.17)is imposed because of the appearance of the magnetic field.Precisely,the smallness of the pro fileis essential to prove the a priori estimate such that by(2.10)and(2.17),it holds that

    When investigating the stability of the rarefaction waves of the NSP system and the VPB system,the Riemann problem on the corresponding Euler system admits a rarefaction wave whose strength is not necessarily small,cf.[8,10–12].

    Remark 2.3Inspired by[10,12]and[25],we expect to study the existence and stability of nontrivial large time asymptotic pro files for the one-dimensional VMB system(5.26)with slab symmetry.The main difficulty in the analysis is the lack of estimates for highest-order spatial derivatives of the electromagnetic field,which is a typical feature of the VMB system with regularity-loss property.Precisely,trouble occurs in the highest-order weighted energy estimates onFor|α|=2,it holds that

    Here,for t>0,x1∈ R,v ∈ R3,M±are defined in(5.14)andis a global Maxwellian such that the constant states(ρ?,u?,θ?)with u?=(u1?,0,0)satisfying

    for some η0>0 suitably small,cf.[25].In one-dimensional space,the large-time behavior of F±has a slow time-decay rate and such a term

    is not time-space integrable.So far,the stability of the rarefaction wave for the one-dimensional VMB system is open.

    3 The a Priori Estimates

    To deduce the a priori energy estimates on the fluid quantities(φ,ψ,ζ,n)and the electromagnetic field(E,B),we do the following a priori assumption,

    where and in the sequel χ is a small positive constant depending on the initial data and wave strengths.Following the Sobolev’s inequality,

    we can deduce from the a priori bound(3.1)that

    The desired energy type estimates are based on the a priori assumption(3.1),the estimates onin Lemma 2.2 with the additional condition(2.17)on the initial far- field states and the wave strength.

    3.1 Lower-order energy estimate

    Step 1Zero-order energy estimate.

    Firstly,we define the following entropy functional

    where

    Notice that

    as|(φ,ζ)|can be suitably small.Hence,the functional η(t,x)is equivalent to|(φ,ψ,ζ)|2.Multiplying(1.2)1byit holds that

    By(1.2)1,(2.11)1,and(2.11)3,direct calculations yield that

    which lead to

    where

    It follows from(1.2)5that

    Multiplying(2.14)i+1by ρψi,i=1,2,3,the summation of the resulting equations yields

    The summation of(3.4)+3/2{(3.5)+(3.6)}leads to

    Then,we consider the zero-order energy estimate of the electromagnetic field.Multiplying(2.14)6by E1,and recalling n=?xE1,it holds that

    The technical part to treat equation(3.8)comes from the termon the right-hand side.As u2=ψ2,we rewrite this term as

    to make use of the dissipation of E+u×B and the positive weightMultiplying(2.14)7byand(2.14)8by B3,the summation of the two obtained equalities leads to

    As

    using(3.9),we combine(3.8)and(3.10)to obtain

    Taking the summation of(3.7)+3/2(3.11),we arrive at the following equality,

    where we used the identity

    for some positive constant c.To prove(3.13),recalling(2.13),we rewrite H5as

    the statement follows from the direct calculations under the a priori assumption(3.1).On the other hand,we use(2.21)to obtain

    Hence,the integration of(3.12)with respect to x,τ over R×[0,t]leads to

    Before further estimates on the right-hand terms of the above inequality,by Lemma 2.2,we deduce some estimates on the pro fileWe claim that for 0<δ≤1 and any α∈(0,1),especially for α≤1/4,we have

    The terms Ii,i=1,···,8,of(3.14)are estimated as follows.Firstly,we do integration by parts,using H?lder’s inequality,Sobolev’s inequality(3.2),(3.15),Lemma 2.2 and Young’s inequality,to obtain

    Similarly,we can claim that

    Recalling(2.11),it is obtained from H?lder’s inequality,(3.16),and the a priori assumption(3.1)that

    And it follows from the Cauchy-Schwarz inequality that

    where we used Lemma 2.2 and the a priori assumption(3.1)to obtain

    Under condition(2.21),we can claim

    Finally,from H?lder’s inequality,the a priori assumption(3.1),and Lemma 2.2,we obtain the followings:

    Substituting the above estimates for Ii,i=1,···,8,into(3.14),for δ,χ being suitably small,it holds that

    Step 2The dissipation of?xφ.

    Multiplying(2.14)2by ?xφ,it holds that

    where we used(2.14)1to obtain

    Differentiate(2.14)1with respect to x,we have

    where we used identity(1.2)1to obtain

    Integrating{(3.18)+(3.20)}with respect to x,τ over R×[0,t],it holds that

    Firstly,it is direct to obtain the following:

    Then,we use(3.16)to claim that

    and

    As for I17,it follows that

    where

    and we used(3.16)again to claim that

    Similarly,we can claim

    Substituting the above estimates for Ii,i=9,···,20,into(3.18),for δ,χ being suitably small,it holds that

    Step 3The dissipation of(n,?xn).

    Multiplying(1.3)by n,and recalling n= ?xE1and u2= ψ2,it yields that

    The integration of(3.23)with respect to x,t over R×[0,t]leads to

    Here,

    Similarly,we have

    Finally,

    Then,we can claim that

    The combination of{(3.17)+(3.24)+ κ1(3.22)}for κ1>0, δ,χ >0 being suitably small yields that

    Using Gronwall’s inequality,it follows from(3.25)that

    3.2 Higher-order energy estimate

    Step 1The dissipation of?xx(ψ,ζ).

    Applying?xto equation(2.14)i,i=2,3,4,5,we have

    and

    Notice that

    Integrating(3.29)with respect to x,τ over R×[0,t],it holds that

    We now turn to estimate Ji,i=1,2,···12,term by term.For the sake of brevity,we give straightforward calculations as follows:

    and

    It remains to estimate the terms coupling with the electromagnetic field.It is directly to see

    Substituting the above estimates for Ji,i=1,···,12,into(3.30),we arrive at

    Step 2The dissipation of?x(E2,B3).

    Differentiate(2.14)i,i=7,8,with respect to x and multiply the resulting identities by?xE2and ?xB3,respectively.The summation of the two equations yields that

    Integrating(3.32)with respect to x,τ over R×[0,t],it holds that

    where

    And we use(2.21)again to obtain

    Substituting the above estimates into(3.33),we can claim

    It remains to estimate ?xB3.Multiplying(2.14)7by ?xB3,and replacing ?tB3by ??xE2,we have

    The integration of the above equality with respect to x,τ over R×[0,t]yields

    Taking a combination of(3.31)+(3.34)+ κ2(3.36)for κ2>0, δ,χ >0 being sufficiently small,we can claim the higher order estimate as below,

    4 Global Existence and Large Time Behavior

    The local existence of the solution(φ,ψ,ζ,E1,E2,B3)(t,x)of the reformulated Cauchy system(2.14)–(2.15)can be obtained by the standard iteration methods,cf.[5,18].To prove Theorem 2.1,it is sufficient to show the following global-in-time a priori estimates.

    Proposition 4.1Suppose that all assumptions in Theorem 2.1 hold.If the solution

    to the Cauchy problem(2.14)–(2.15)on 0 ≤ t≤ T for T>0 satisfies

    for some constants ε0>0 being sufficiently small,and additional smallness assumption(2.17)holds,then we can claim that

    ProofTaking a suitable combination of(3.26)+κ3(3.37)for some κ3>0 suitably small,we arrive at

    As?xE1=n,(4.1)follows.?

    We end up this section with the proof of Theorem 2.1.

    Proof of Theorem 2.1The existence of the solutions follows from the standard continuity argument based on the local existence and the a priori estimate in Proposition 4.1.Therefore,it suffices to show the large time behavior of the solutions.We first claim the estimates

    and

    Indeed,by(3.20),(3.29),(2.18),and Lemma 2.2,we can show that

    Following from the above inequality and(2.18),it holds that

    which implies(4.3).Secondly,from(3.23),(3.32),(2.18),and Lemma 2.2,we obtain

    Similarly,(4.4)follows from the above inequality and(2.18).

    From(4.3),(4.4),and the Sobolev’s inequality(3.2),we consequently obtain

    and

    Furthermore,by the construction of the smooth approximation of the rarefaction wave,in terms of(iii)in Lemma 2.2,we obtain the desired asymptotic behavior of the solution

    5 Appendix:Derivation of the Model From the VMB System

    In this section,we provide a derivation of the one-dimensional macroscopic model(1.2)from the VMB system(1.1).It is mainly based on the macro-micro decompositions of the Boltzmann equation,cf.[29].With some cancellation property in the original system,set

    system(1.1)can be reformulated as

    We would point out that in absence of the electromagnetic field,(5.1)1is reduced to the Boltzmann equation.Recall that the Boltzmann collision operator Q(·,·)has five collision invariants ?j= ?j(v),j=0,···,4,

    such that for any measurable,rapidly decaying functions F=F(·,v),

    Particularly,it holds that

    As in[29],in terms of the solution F1(t,x,v)to system(5.1),we introduce the five conserved quantities,the mass density ρ = ρ(t,x),the momentum ρu=(ρu)(t,x),and energy ρ(e+|u|2/2)=(ρ(e+|u|2/2))(t,x)by

    We construct the local Maxwellianin the form of

    where θ= θ(t,x)>0 is the temperature related to the internal energy e(t,x)by e=3Rθ/2 with R being the gas constant and u=u(t,x)=(u1,u2,u2)(t,x)is the fluid velocity.With respect to M,we define an inner productin the spaceas

    for functions F(·,v),G(·,v)such that the integral is well defined.With respect to this inner product,the macroscopic subspace NMspanned by the collision invariants can be constructed by the following orthogonal basis,

    where δijis the Kronecker delta.The macroscopic projection P0and the microscopic projection P1defined as

    are orthogonal and thus self-adjoint with respect to the inner product h·,·iM,that is,

    We decompose F1=F1(t,x,v)of(5.1)into the combination of the local Maxwellian M and the microscopic component G=G(t,x,v)as

    The microscopic equation for G is obtained by applying the microscopic projection P1to(5.1)1,

    where LMis the linearized collision operator given by

    It is seen that the null space of LMis exactly NMand LMis a bounded and one-to-one operator onIt follows from(5.6)that

    where

    Recalling(5.3),for F2=F2(t,x,v)governed by(5.1)2,there is only one conserved quantity n=n(t,x)defined by

    As in[25],we introduce another macro-micro projections around the local Maxwellian M such that

    The macroscopic projection Pdand microscopic projection Pcare also self-adjoint with respect to the inner product h·,·iM.F2(t,x,v)can be decomposed into

    To obtain the microscopic equation for PcF2=PcF2(t,x,v),we use(5.9)to rewritten equation(5.1)2as

    The bounded linear operator NM,given by

    which further implies

    with

    Before further discussion,we give a remark on the macro-micro decompositions for F±(t,x,v)of the original system(1.1).

    Remark 5.1Let F±=F±(t,x,v)be functions satisfying the VMB system(1.1).We decompose F±respectively as,cf.[12],

    The local bi-Maxwellians

    involve six macroscopic quantities

    determined by

    Therefore,M±is well defined and G±(t,x,v):=F±?M±denote the microscopic parts.

    On the basis of decompositions(5.5)and(5.9),equations(5.1)1–(5.1)2lead to coupled systems containing the conservation laws for the macroscopic components(ρ,u,θ,n),taking the form

    and

    which follow from properties(5.2)–(5.3).Here,the microscopic components G,PcF2are governed by(5.7)and(5.12),respectively,and P is the pressure for the monatomic gases satisfying the state equation,

    In the sequel,we normalize the gas constant R to be 2/3 so that e= θ and P=2ρθ/3.Moreover,the governing equations of the electromagnetic field satisfy

    Recalling(5.7),the viscosity and heat conductivity terms in system(5.15),given by,cf.[4,24],

    where

    are independent of the density gradient?xρ with smooth coefficients μ(θ),κ(θ)>0.Similarly,we define some positive smooth function κ(θ),cf.[25],by

    such that

    Substituting(5.7)and(5.12)into systems(5.15),(5.16),and(5.17),and using(5.18)and(5.19),it yields the fluid-type system for(ρ,u,θ)such that

    and the fluid quantity n satisfies

    The electromagnetic field(E,B)is governed by

    If all microscopic terms Π1and Π2are set to be zero in system(5.20)–(5.22),then we have a closed viscous fluid-type system of eleven unknowns ρ,u=(u1,u2,u3),θ,E=(E1,E2,E3),B=(B1,B2,B3)as below,cf.[9,12,26],

    where n= ?x·E satisfies

    Note that(5.23)could be thought as the first-order fluid dynamic approximation of the VMB system(1.1).

    In one space dimension and only one momentum dimension case,the Maxwell equations degenerate to the Poisson equation.To retain the hyperbolic structure the VMB system,we consider the so-called one and one-half dimensional model proposed by Glassey-Schaeffer[15].It is known that from equations(1.1)5–(1.1)6,we can claim

    for some vector potential A=(A1,A2,A3)and scalar potential Φ.For the sake of simplicity,we may assume in our work that the rarefaction wave is linearly polarised in the direction x2.Imposing the Coulomb gauge?·A=0,that is,?x1A1=0,(5.25)becomes,cf.[2,16],

    Thus,in one dimensional space,the VMB system with slab symmetry takes the form of

    Here the number density distribution functions F±=F±(t,x1,v)have position x1∈ R and velocity v=(v1,v2,v3)∈R3at time t≥0;E=E(t,x1)=(E1,E2,0)(t,x1)and B=B(t,x1)=(0,0,B3)(t,x1).System(1.2)is derived from the one-dimensional VMB system(5.26)following the same procedure from(1.1)to obtain(5.23)and we omit details for simplicity.

    猜你喜歡
    紅霞
    如何推薦一部動(dòng)畫(huà)片
    點(diǎn)詞成金
    請(qǐng)你幫個(gè)忙
    《烏鴉喝水》中的“想”
    Therapeutic efficacy of moxibustion plus medicine in the treatment of infertility due to polycystic ovary syndrome and its effect on serum immune inflammatory factors
    A Study of Combination of English Language Teaching and Context
    大東方(2018年1期)2018-05-30 01:27:23
    高紅霞教授
    讓動(dòng)作“活”起來(lái)
    “光的直線傳播”“光的反射”練習(xí)
    夕陽(yáng)依舊映紅霞
    一区二区三区激情视频| 国产v大片淫在线免费观看| 动漫黄色视频在线观看| 黑人欧美特级aaaaaa片| 久99久视频精品免费| 琪琪午夜伦伦电影理论片6080| 亚洲成人精品中文字幕电影| 日本成人三级电影网站| 亚洲 欧美一区二区三区| 欧美丝袜亚洲另类 | 日本与韩国留学比较| 又黄又爽又免费观看的视频| 亚洲在线观看片| 两人在一起打扑克的视频| 亚洲五月天丁香| 亚洲精品粉嫩美女一区| 国产不卡一卡二| 又粗又爽又猛毛片免费看| 亚洲色图av天堂| 亚洲国产欧美网| 亚洲欧洲精品一区二区精品久久久| 日本 欧美在线| 一个人免费在线观看的高清视频| 亚洲激情在线av| 久久久久亚洲av毛片大全| 久久香蕉精品热| 亚洲色图av天堂| 亚洲自偷自拍图片 自拍| 国产在线精品亚洲第一网站| 国产成人aa在线观看| 男女视频在线观看网站免费| 欧美性猛交╳xxx乱大交人| 久久久久久久久久黄片| 人人妻人人澡欧美一区二区| 曰老女人黄片| 美女午夜性视频免费| 国产精品影院久久| 法律面前人人平等表现在哪些方面| 成人性生交大片免费视频hd| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 国产伦在线观看视频一区| 欧洲精品卡2卡3卡4卡5卡区| 1024手机看黄色片| 亚洲五月天丁香| 日韩成人在线观看一区二区三区| 国产亚洲精品久久久久久毛片| www日本在线高清视频| 中文字幕高清在线视频| 亚洲天堂国产精品一区在线| 午夜精品在线福利| 天天躁日日操中文字幕| 91在线精品国自产拍蜜月 | 色老头精品视频在线观看| 免费在线观看日本一区| 欧美中文综合在线视频| 国产美女午夜福利| 欧美成人一区二区免费高清观看 | 欧美另类亚洲清纯唯美| 十八禁人妻一区二区| 99re在线观看精品视频| 变态另类成人亚洲欧美熟女| 美女高潮的动态| 成人av在线播放网站| 久久性视频一级片| 久久天躁狠狠躁夜夜2o2o| 成人午夜高清在线视频| 亚洲精品粉嫩美女一区| 深夜精品福利| 啦啦啦免费观看视频1| 一级a爱片免费观看的视频| 久久人人精品亚洲av| 欧美一区二区精品小视频在线| 日韩中文字幕欧美一区二区| 中文资源天堂在线| 国产人伦9x9x在线观看| 久久久久国产一级毛片高清牌| 精品一区二区三区四区五区乱码| 国产精品久久视频播放| 嫩草影院精品99| 88av欧美| 国产精品久久久久久精品电影| 久久香蕉精品热| 久久久久久久久中文| 在线观看免费午夜福利视频| 亚洲成av人片免费观看| www.www免费av| 母亲3免费完整高清在线观看| 舔av片在线| 女生性感内裤真人,穿戴方法视频| 丰满人妻一区二区三区视频av | 夜夜夜夜夜久久久久| 成人三级黄色视频| 2021天堂中文幕一二区在线观| 亚洲乱码一区二区免费版| 草草在线视频免费看| 在线免费观看的www视频| 免费av毛片视频| 午夜免费观看网址| 国产精品日韩av在线免费观看| av视频在线观看入口| 午夜福利视频1000在线观看| 99久久精品国产亚洲精品| 国产高清videossex| 啦啦啦观看免费观看视频高清| 亚洲国产欧美网| 成人国产综合亚洲| 久久久久久人人人人人| 村上凉子中文字幕在线| 国产又色又爽无遮挡免费看| 亚洲中文av在线| 国内毛片毛片毛片毛片毛片| 观看美女的网站| 亚洲国产欧美一区二区综合| 搡老妇女老女人老熟妇| 99久久久亚洲精品蜜臀av| 一级毛片高清免费大全| 国产激情偷乱视频一区二区| 免费观看精品视频网站| 日日夜夜操网爽| 亚洲 欧美 日韩 在线 免费| 日韩免费av在线播放| 巨乳人妻的诱惑在线观看| 宅男免费午夜| 亚洲av电影在线进入| 夜夜爽天天搞| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 中文字幕高清在线视频| 国产精品国产高清国产av| 国产99白浆流出| 99国产极品粉嫩在线观看| 亚洲真实伦在线观看| 又粗又爽又猛毛片免费看| avwww免费| 一个人看的www免费观看视频| 国产精品99久久久久久久久| 亚洲午夜理论影院| 黑人操中国人逼视频| 成人一区二区视频在线观看| 精品国产乱子伦一区二区三区| 午夜日韩欧美国产| 九九在线视频观看精品| 欧美又色又爽又黄视频| 亚洲真实伦在线观看| 人人妻人人澡欧美一区二区| 色在线成人网| 午夜影院日韩av| 精华霜和精华液先用哪个| 黄色女人牲交| 国内揄拍国产精品人妻在线| 美女午夜性视频免费| 99re在线观看精品视频| 热99在线观看视频| 精品乱码久久久久久99久播| 美女黄网站色视频| 狠狠狠狠99中文字幕| 国产欧美日韩一区二区精品| 精品久久蜜臀av无| 久久久精品大字幕| 欧美日韩瑟瑟在线播放| 嫩草影视91久久| 黄色女人牲交| 免费看美女性在线毛片视频| 99精品久久久久人妻精品| svipshipincom国产片| 亚洲午夜理论影院| 1000部很黄的大片| 日本 av在线| 成在线人永久免费视频| 久久久久九九精品影院| www国产在线视频色| 怎么达到女性高潮| 网址你懂的国产日韩在线| 波多野结衣高清无吗| 亚洲,欧美精品.| 91av网站免费观看| 琪琪午夜伦伦电影理论片6080| a级毛片在线看网站| 国产精品亚洲av一区麻豆| 免费观看精品视频网站| netflix在线观看网站| 亚洲一区二区三区不卡视频| 老司机深夜福利视频在线观看| 日本熟妇午夜| 国语自产精品视频在线第100页| 日本成人三级电影网站| 中文亚洲av片在线观看爽| 不卡一级毛片| 全区人妻精品视频| 伊人久久大香线蕉亚洲五| 日韩欧美精品v在线| 99re在线观看精品视频| 国产精品av视频在线免费观看| 在线永久观看黄色视频| 十八禁网站免费在线| 叶爱在线成人免费视频播放| 嫩草影院入口| 午夜精品久久久久久毛片777| 国产日本99.免费观看| 成熟少妇高潮喷水视频| 伦理电影免费视频| 亚洲在线自拍视频| 91在线观看av| 变态另类成人亚洲欧美熟女| 国产高清视频在线播放一区| 亚洲国产精品999在线| 啦啦啦免费观看视频1| 91麻豆精品激情在线观看国产| 88av欧美| 日本a在线网址| 亚洲欧美一区二区三区黑人| 麻豆国产av国片精品| 国产精品久久电影中文字幕| 亚洲av中文字字幕乱码综合| 成人永久免费在线观看视频| 黑人操中国人逼视频| 99视频精品全部免费 在线 | 亚洲美女视频黄频| 国产男靠女视频免费网站| 18禁黄网站禁片免费观看直播| 久久天堂一区二区三区四区| 国产黄a三级三级三级人| 精品免费久久久久久久清纯| cao死你这个sao货| 一个人免费在线观看的高清视频| 狠狠狠狠99中文字幕| 午夜精品在线福利| 色老头精品视频在线观看| 日本免费一区二区三区高清不卡| 村上凉子中文字幕在线| 他把我摸到了高潮在线观看| 欧美性猛交╳xxx乱大交人| 国产精品久久视频播放| 久9热在线精品视频| 美女高潮的动态| av黄色大香蕉| 人人妻人人看人人澡| 国语自产精品视频在线第100页| 1000部很黄的大片| 91av网一区二区| 亚洲自拍偷在线| 一区福利在线观看| a级毛片a级免费在线| 天天躁日日操中文字幕| 麻豆成人午夜福利视频| 国产97色在线日韩免费| 亚洲欧洲精品一区二区精品久久久| 免费在线观看日本一区| 亚洲最大成人中文| 全区人妻精品视频| 日本与韩国留学比较| 国产精品一及| 舔av片在线| 午夜免费激情av| 亚洲第一欧美日韩一区二区三区| 九色国产91popny在线| 日日夜夜操网爽| 国产亚洲精品av在线| 国内精品久久久久精免费| 一个人看视频在线观看www免费 | 成人午夜高清在线视频| 十八禁人妻一区二区| 亚洲人成伊人成综合网2020| 国产精品 欧美亚洲| 国产激情偷乱视频一区二区| 国产精品亚洲美女久久久| 亚洲中文日韩欧美视频| 精品福利观看| 人妻夜夜爽99麻豆av| 一a级毛片在线观看| 成年女人永久免费观看视频| 男女视频在线观看网站免费| 午夜亚洲福利在线播放| 国内毛片毛片毛片毛片毛片| 最近最新免费中文字幕在线| 精品无人区乱码1区二区| 亚洲人成网站高清观看| 国产亚洲精品综合一区在线观看| 免费av毛片视频| 日本成人三级电影网站| 老司机在亚洲福利影院| 亚洲 国产 在线| 精品国产美女av久久久久小说| 舔av片在线| 欧美乱妇无乱码| 日韩欧美在线二视频| 亚洲中文日韩欧美视频| 亚洲国产高清在线一区二区三| 国产精品香港三级国产av潘金莲| 亚洲av电影在线进入| 一个人免费在线观看的高清视频| 中国美女看黄片| 女人被狂操c到高潮| 免费观看精品视频网站| 变态另类成人亚洲欧美熟女| 18禁观看日本| 国产免费av片在线观看野外av| 欧美性猛交╳xxx乱大交人| 久久久久九九精品影院| 国产视频内射| svipshipincom国产片| 99国产精品99久久久久| 亚洲人成网站在线播放欧美日韩| 国产一区在线观看成人免费| 男人舔女人下体高潮全视频| 麻豆国产97在线/欧美| 99riav亚洲国产免费| 最新在线观看一区二区三区| 啦啦啦韩国在线观看视频| 国产精品一区二区精品视频观看| 日本成人三级电影网站| 亚洲美女视频黄频| 九九热线精品视视频播放| 亚洲精华国产精华精| 热99re8久久精品国产| 日韩精品中文字幕看吧| 麻豆久久精品国产亚洲av| 亚洲片人在线观看| av在线天堂中文字幕| 欧美色视频一区免费| 人妻久久中文字幕网| 亚洲av中文字字幕乱码综合| 999久久久精品免费观看国产| 国产又色又爽无遮挡免费看| 午夜福利免费观看在线| 99riav亚洲国产免费| 精品99又大又爽又粗少妇毛片 | 中文字幕精品亚洲无线码一区| 国产av一区在线观看免费| 免费在线观看日本一区| 国产午夜福利久久久久久| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片午夜丰满| 国产精品99久久久久久久久| 久久精品国产清高在天天线| av天堂在线播放| 亚洲专区中文字幕在线| 嫩草影院精品99| 久久久久国产一级毛片高清牌| 国产精品99久久99久久久不卡| 中文字幕人妻丝袜一区二区| 在线观看免费午夜福利视频| 国产免费男女视频| 久久精品国产亚洲av香蕉五月| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久免费视频| 999久久久国产精品视频| 亚洲av第一区精品v没综合| 久久伊人香网站| 免费在线观看影片大全网站| 成在线人永久免费视频| 成人三级做爰电影| 久久香蕉精品热| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 黄色成人免费大全| 色综合站精品国产| 99久久综合精品五月天人人| 夜夜看夜夜爽夜夜摸| or卡值多少钱| 国产精品永久免费网站| 午夜视频精品福利| 亚洲精品中文字幕一二三四区| 国产又黄又爽又无遮挡在线| 国产乱人视频| 成人午夜高清在线视频| 精品久久久久久久久久免费视频| 99国产极品粉嫩在线观看| 中亚洲国语对白在线视频| 国产激情欧美一区二区| av国产免费在线观看| 久久午夜亚洲精品久久| 国产伦在线观看视频一区| 免费av毛片视频| 老司机午夜十八禁免费视频| 色老头精品视频在线观看| 国产成人福利小说| 欧美黄色淫秽网站| 国产精品亚洲一级av第二区| 淫秽高清视频在线观看| 色综合欧美亚洲国产小说| 成人特级黄色片久久久久久久| 国内毛片毛片毛片毛片毛片| 亚洲第一电影网av| 1000部很黄的大片| 免费观看人在逋| 最近最新中文字幕大全电影3| 此物有八面人人有两片| cao死你这个sao货| 免费在线观看日本一区| 一级a爱片免费观看的视频| 真人一进一出gif抽搐免费| 国产精品亚洲美女久久久| 国产欧美日韩一区二区三| 精品一区二区三区四区五区乱码| 黄色成人免费大全| 中文字幕熟女人妻在线| 日本在线视频免费播放| 又粗又爽又猛毛片免费看| 免费搜索国产男女视频| 99热精品在线国产| 国产一区在线观看成人免费| 亚洲国产色片| www日本在线高清视频| 长腿黑丝高跟| 免费看日本二区| 精品国产超薄肉色丝袜足j| 欧美日韩乱码在线| 天堂网av新在线| 美女大奶头视频| 一本一本综合久久| 国产亚洲精品一区二区www| 香蕉av资源在线| 久久这里只有精品19| 国语自产精品视频在线第100页| 久久久久久大精品| 99久久成人亚洲精品观看| 久久欧美精品欧美久久欧美| 中国美女看黄片| 熟妇人妻久久中文字幕3abv| 国产91精品成人一区二区三区| 美女高潮的动态| 亚洲中文字幕一区二区三区有码在线看 | 午夜视频精品福利| 亚洲黑人精品在线| 99国产精品99久久久久| 91麻豆精品激情在线观看国产| 最新在线观看一区二区三区| 不卡一级毛片| 欧美成人性av电影在线观看| 国产综合懂色| 午夜福利高清视频| 国产精品久久视频播放| 国产亚洲精品一区二区www| 在线免费观看的www视频| 色av中文字幕| 神马国产精品三级电影在线观看| 一个人观看的视频www高清免费观看 | 日本三级黄在线观看| 久久久久亚洲av毛片大全| 国产亚洲精品久久久com| 757午夜福利合集在线观看| 琪琪午夜伦伦电影理论片6080| 伦理电影免费视频| 在线视频色国产色| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 精品一区二区三区视频在线观看免费| 久久婷婷人人爽人人干人人爱| 两人在一起打扑克的视频| 精品福利观看| 天天添夜夜摸| 国产探花在线观看一区二区| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 男人舔女人的私密视频| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 成人特级av手机在线观看| 亚洲av成人精品一区久久| 午夜a级毛片| 美女高潮的动态| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 成人欧美大片| 精品乱码久久久久久99久播| 国产激情久久老熟女| 亚洲真实伦在线观看| 两性夫妻黄色片| 免费无遮挡裸体视频| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 精品国产美女av久久久久小说| 熟女少妇亚洲综合色aaa.| 人人妻,人人澡人人爽秒播| 久9热在线精品视频| 亚洲欧美日韩东京热| 精品久久久久久久毛片微露脸| 免费观看精品视频网站| 一进一出好大好爽视频| 色av中文字幕| 国产野战对白在线观看| 精品一区二区三区四区五区乱码| 欧美日韩黄片免| 又大又爽又粗| 婷婷精品国产亚洲av| 亚洲av熟女| 久久精品亚洲精品国产色婷小说| 午夜福利免费观看在线| 亚洲欧美日韩高清在线视频| 免费av毛片视频| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 久久久久性生活片| 日韩免费av在线播放| 久久久国产成人免费| 国产一区二区三区视频了| 最近最新免费中文字幕在线| 免费在线观看视频国产中文字幕亚洲| 国产精品爽爽va在线观看网站| 国产1区2区3区精品| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 88av欧美| 亚洲在线观看片| 国产高清视频在线观看网站| 国产又黄又爽又无遮挡在线| 99久久精品热视频| 欧美中文综合在线视频| avwww免费| 久久伊人香网站| 久久99热这里只有精品18| 成人鲁丝片一二三区免费| 日韩欧美国产一区二区入口| 可以在线观看的亚洲视频| 一区二区三区高清视频在线| 后天国语完整版免费观看| 日本黄大片高清| 亚洲色图 男人天堂 中文字幕| 日韩中文字幕欧美一区二区| 久久亚洲真实| 亚洲午夜精品一区,二区,三区| 欧美zozozo另类| 久久精品亚洲精品国产色婷小说| 国产精品爽爽va在线观看网站| 少妇的逼水好多| 色综合站精品国产| 啦啦啦韩国在线观看视频| 亚洲精品国产精品久久久不卡| 啦啦啦韩国在线观看视频| 哪里可以看免费的av片| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀| 午夜精品一区二区三区免费看| 精品国产美女av久久久久小说| 国产高清videossex| 黄片小视频在线播放| 国产综合懂色| 国产欧美日韩一区二区三| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片| 日本三级黄在线观看| 久久婷婷人人爽人人干人人爱| 国产成人啪精品午夜网站| 99久久精品热视频| 天堂影院成人在线观看| 精品国产美女av久久久久小说| 黄色丝袜av网址大全| 欧美在线黄色| 法律面前人人平等表现在哪些方面| 少妇丰满av| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜| 成人亚洲精品av一区二区| 少妇丰满av| 亚洲第一欧美日韩一区二区三区| www.自偷自拍.com| av女优亚洲男人天堂 | 国产精品av久久久久免费| 精品一区二区三区av网在线观看| 久久久水蜜桃国产精品网| 国产激情偷乱视频一区二区| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 亚洲九九香蕉| 国内精品一区二区在线观看| 一个人观看的视频www高清免费观看 | 欧美绝顶高潮抽搐喷水| av视频在线观看入口| 国产精品99久久99久久久不卡| 日韩高清综合在线| 老汉色∧v一级毛片| 热99re8久久精品国产| 男女午夜视频在线观看| 少妇的丰满在线观看| 国产高清激情床上av| 最近最新中文字幕大全电影3| www.999成人在线观看| 亚洲 欧美一区二区三区| or卡值多少钱| 特级一级黄色大片| 两个人视频免费观看高清| 欧美精品啪啪一区二区三区| 日韩av在线大香蕉| 全区人妻精品视频| 在线观看免费午夜福利视频| 午夜福利在线在线| 成熟少妇高潮喷水视频| 亚洲激情在线av| 夜夜躁狠狠躁天天躁| 久久久国产精品麻豆| 又黄又粗又硬又大视频| 夜夜爽天天搞| 身体一侧抽搐| 国产日本99.免费观看| 亚洲国产看品久久| 中文在线观看免费www的网站| 日本精品一区二区三区蜜桃| 国产激情欧美一区二区| 俄罗斯特黄特色一大片| 亚洲色图av天堂| 久久久久九九精品影院| 12—13女人毛片做爰片一| 很黄的视频免费| 亚洲国产看品久久| 国产综合懂色| 麻豆国产97在线/欧美| 好看av亚洲va欧美ⅴa在| 亚洲av熟女| 熟女电影av网| 久久久国产成人免费| 最好的美女福利视频网|