• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HELICAL SYMMETRIC SOLUTION OF 3D NAVIER-STOKES EQUATIONS ARISING FROM GEOMETRIC SHAPE OF THE BOUNDARY?

    2018-07-23 08:43:38WeifengJIANG姜偉峰

    Weifeng JIANG(姜偉峰)

    School of Sciences,Department of Mathematics,Wuhan University of Technology,Wuhan 430070,China

    E-mail:weifengjiang@163.com

    Kaitai LI(李開泰)

    School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China

    E-mail:ktli@xjtu.edu.cn

    Abstract In this article,we investigate three-dimensional solution with helical symmetry in a gap between two concentric rotating cylinders,inside is a helicoidal surface(screw propeller)while outside is a cylindrical surface.Establish the partial differential equations and its variational formulation satisfied by a helical solution in a helical coordinate system using tensor analysis method,we provide a computational method for the power and propulsion of the screw.The existence and uniqueness of weak helical solutions are proved.

    Key words Navier-Stokes equations;helicoidal surface;rotating helical flow

    1 Introduction

    It is well known that there are many solutions with very simple spatial symmetries for the Navier-Stoke equations,for example,axially-symmetric flows,particular in pipes of circular cross-section,in the domain between two rotating cylinders.Frequently,axially-symmetric flows first lose stability at a point of bifurcation in which the axial symmetry is broken,with the bifurcation solution lying in what one call the a class of helical solutions to the Navier-Stokes equations.

    In cylindrical coordinates(r,θ,z),the velocity u and pressure in helical flows do not depend upon θ and z independently,but only on the linear combination nθ+ αz,where n and α take assigned integer and real value,respectively.Thus,a two-parameter(n,α)family of flows is defined.This family is in some sense the next most complex class beyond axially-symmetric motions.Nevertheless,this class remains essentially two-dimensional,but it is called“2D-3C flow”.

    It is well known that for the Navier-Stokes equations in three dimensions,it is not known whether weak solution is unique or whether a strong solution exists for an arbitrary time t.For the system of Navier-Stokes equations on the plane,on the one hand,existence and uniqueness results are available(see,for example,[2,5,7,9,12,13]and references therein).On the other hand,in[11],it proved uniqueness of weak solution and these weak solutions are,in fact,regular solutions existing for arbitrary time t;the global attractor for the in finite-dimensional dynamical system generated by the corresponding semi-group of helical flows to be compact and connected;estimate the Hausdorff and fractal dimensions of the global attractor in terms of the parameter of the problem.

    In this article,our goal is to study helical flow driven by rotating boundary with helicoidal surface in a domainbounded by an inner rotating screw propeller and an outer in finite cylindrical surface with radium r1>0.

    Describing this helical flow in view of tenor analysis methods different by using other method in[8]and references therein.We also study on the weak solution and strong solution of Navier-Stokes equations in helical coordinates.

    This article is organized as follows.Describe centric helical surface and helical coordinate system in Section 2 and Section 3.Same operations are formulated in Section 4.In Section 5,we establish the Navier-Stokes Equations in helical coordinate.In Sections 6 and 7,we provide the partial differential equation governing helical symmetric solution and its variational formulations;In Section 8,we derive for mulae of the power and propulsion of the screw;In Section 9,we consider the eigenvalue problems of helical Stokes flow.In Section 10,we prove the existence and uniqueness of helical solution and give a Fourier-Finite element approximation solution.

    Figure 2 Helicoid 2

    2 Centric Helicoidal Surface

    It is well known that a positive helicoid surface ΣHis a smooth immersion ? :R2→ R3defined by

    The metric tensor aαβof positive helicoidal surface ΣHin Gaussian coordinate(ξ1,ξ2)is given by

    The contravariant components of metric tensor are

    In addition,the covariant components bαβof curvature tensor of ΣH(that is,coefficients of second fundamental form of ΣH)are

    Mean curvature and Gaussian curvature are given by

    Let(yi,i=1,2,3)denote Cartesian coordinates and introduce a helical symmetry group

    where the transformation Sσ(S stands for“screw motion”)is defined by

    which is a superposition of a simultaneous rotation around the z axis with a translation along the z axis.The symmetry lines(orbits of Gκ)are concentric helices.Invariant curves for the action of the helical group Gσare helices having z=y3axis as axis of symmetry.In particular,action of Sσon the helicoidal surface ΣHdefined by(2.1)shows

    3 Helical Coordinates

    Let us establish “helical coordinates system” {xi′}which is defined by

    where constant σ >0 is periodic step,and{x1=r,x2= θ,x3=z}is a cylindrical coordinates system.(y1,y2,y3)denote Cartesian coordinate,which can be expressed in terms of helical coordinates

    By(2.1),the equations of positive helicoidal surface ΣHin helical coordinates are given by

    where(ρ,τ)are parameter,the Gaussian coordinates on ΣH.From(3.3),we obtain equations of ΣHin helical coordinates

    This shows that the equations of ΣHin helical coordinates are given by

    In other word,x3′=0 coordinate surface in helical coordinate system is a helicoidal surface while x1′=constant corresponds cylindrical surfaces.

    Proposition 3.1In the helical coordinate(xi′,i=1,2,3),x3′=0 corresponds with a helicoidal surfacecan be chosen as Gaussian coordinates on ΣH,corresponding equations describing ΣHare given by

    The associated metric tensor aα′β′of ΣHin Gaussian coordinate(ξα′,α′=1,2)are given by

    where ξ1= ρ, ξ2= τ are defined by(2.1).The curvature tensor bα′β′of ΣHin(ξ1′.ξ2′)are given by

    where

    ProofIt is enough to prove(3.6)and(3.7).Indeed,because transformation of Gaussian coordinatessatisfy

    together with(3.4),it yields

    Hence,

    which yield(3.6)and(3.7).On the other hand,taking(3.5)into account,we obtain the following formulae:

    Then,

    These coincide with(3.6)and(3.7).Thus,the proof is complete. ?

    Coordinate transformation between helical coordinates and cylindrical coordinates can be expressed as

    Let u denote the velocity of the fluid,the contravariant components of velocity vector in helical coordinates system and cylindrical coordinates system expresses respectively

    where ei′are base vectors of helical coordinates system

    and eiare base vectors of cylindrical coordinate system

    Therefore,bases of helical coordinate system and cylindrical coordinates system are respectively

    normalized basis

    The metric tensors of Euclidean space ?3in helical coordinate system read

    and in cylindrical coordinate system,

    where

    Because contravariant components gi′j′,gijof metric tensors satisfy

    and

    Remark 3.2It is well known that according to the regularity properties of tensor transformation as coordinate system occur transformation,we claim

    Simple calculations using(1.1)show that

    which coincides with(3.10).

    4 Covariant Derivatives of Laplace-Beltrami Operator and Trace Laplace Operator in Helical Coordinates

    In engineering,one would like to find physical components of velocity in cylindrical coordinates system

    It is well known that velocity module is given by

    According to transformation regular of 1-order tensor under coordinate transformation(see[8]),it infers the relations between contravariant components of velocity in helical coordinates and physical components in cylindrical coordinate

    It is clear that if contravarinat components ui′of velocity of the fluid in helical coordinates system are found,then corresponding physical component(ur,uθ,uz)in cylindrical coordinates can be obtained by(4.2).

    Throughout this article,Greek in dices and exponents belong to the set{1,2}while Latin in dices and exponents(expect when otherwise indicated,as when they are used to index sequences)belong to the set{1,2,3},and Einstein summation convention with respect to repeated in dices and exponents is systematically used.

    Next we consider Christoffel symbolof second type in helical coordinates.It is well known[8]that second type Christoffel symbol in cylindrical coordinates are

    where

    We claim,by simple calculation using(3.10)and(3.12),that

    4.1 Covariant derivatives of the velocity in helical coordinate system

    Proposition 4.1The covariant derivatives of contravariant components of the velocity in helical coordinate are

    The divergence of the velocity in helical coordinates is

    ProofIt is easy to derive(4.4)and(4.5)from(4.2).

    Proposition 4.2The Laplace-Beltrami Operator for the scale field and the trace-Laplace operator for the tensor of first order(vector field)are given,respectively,by

    and

    which can also be expressed in terms of physical components in cylindrical coordinate

    Remark 4.3The followings is more useful

    ProofIndeed,we have

    Owing to(3.12)and(4.2),it yields

    Combining the above formulae with(3.16)yields(4.7)

    On the other hand,trace-Laplace operator act on velocity vector

    In details,we obtain

    In a similar manner,we obtain the following formulae:

    Accoding to Riesz formula in tensor analysis([8]),we have

    To sum up,it is easy to derive(4.8).Taking into account(4.2),it yields(4.9).Moreover,letting(4.82)±(4.83),using(4.2)we obtain(4.10).Thus,the proof is complete. ?

    Proposition 4.4Relative acceleration velocity and Coriolis acceleration in Helical Coordinates are given by

    In terms of physical components,we have

    while contravariant components of Coriolis acceleration 2~ω×u in helical coordinated are

    ProofUsing(4.4)and(3.14)(3.16),simple calculations show(4.11)and(4.12).

    Next,we consider Coriolis acceleration in helical coordinates.Assume that the coordinate are rotating along z-axes with angular vector~ω.The Coriolis acceleration is 2~ω×u,reading it in helical coordinate

    by virtue of(4.15),(4.16)and(3.14),(3.16),it yields(4.13)and(4.14).Thus,the proof is complete. ?

    In addition,we give the following formulae for gradient,divergence,and vorticity operators in helical coordinates

    Vorticity in Helical Coordinate System is given by covariant form

    Using(3.10)and(4.4),simple calculation show that

    Similarly,we have

    Hence,we obtain

    Expressing it in terms of(ur,uθ,uz)and noting,we assert that

    In terms of physical components in cylindrical coordinate,rotation of the velocity shows

    For the helical velocity,that is,using stream functions

    then,we obtain

    5 NSE in Helical Coordinate Systems

    We consider the Navier-Stokes equations in a domain ? between ΣHand in finite cylindrical surface r=r1with periodic step σ >0.LetIn helical coordinate,letmap intois clear that(3.1)shows that

    Then,set 2D-3C(two-dimensional,3 components)Sobolev space as

    In what follows,Latin indices and exponents:(i,j,k·)take their values in the set{1,2,3},while Greek indices and exponents(α,β,γ,···)take their values in the set{1,2}.In addition,Einstein’s summation convention with respect to repeated indices and exponents is used.

    We can therefore state the initial boundary value problem for the rotating Navier-Stokes equations in the fundamental domain

    Proposition 5.1In helical coordinate system,Navier-Stokes Equations read

    which can be expressed in terms of physical components(ur,uθ,uz)of velocity in cylindrical coordinate

    ProofLet us write(5.1)in covariant invariant form

    Taking into account Proposition 3.1,we find

    It is obvious that(5.4)is(5.2).To prove(5.3),note

    This is(5.32).In a similar manner,making subtractleads to(5.33)directly.Thus,this ends our proof.

    6 Helical Symmetric Solution of Navier-Stokes Equations

    Helical symmetry is invariance under a one-dimensional group of rigid motions generated by a simultaneous rotation around a fixed axis and translation along the same axis.The key parameter in helical symmetry is the step or pitch σ,the magnitude of the translation after rotating one full turn around the symmetry axis.

    In Cartesian coordinates(y1,y2,y3),the action of helical group of transformation Gσon?3is defined by

    that is,a superposition of a simultaneous rotation around the y3axis with translation along the y3.Gσis uniquely determined by σ,which is called the step,or pitch.Invariant curves for the action of the helical group Gσare helices having the y3axis as axis of symmetry.The cylinderis an invariant set for the action of Gσfor all σ.A change of the sign in σ corresponds to switching the orientation of the helices preserved by the group action from right-handed to left-handed.Without loss of generality,we will restrict our attention to the case of σ>0.

    Taking(3.1)into account,in the helical coordinates(xi′,i=1,2,3),the action of helical group of transformations Gσsubstituting(3.1)into(6.1)becomes

    because of

    It is well known that after transformation of the coordinate,a velocity vector u’of the fluid areaccording to the rule of transformation of the tensor under transformation of coordinates.Hence,we concludefrom(6.2)

    Lemma 6.1A solution{u,p}of Navier-Stokes equations is a helical symmetric solution,if and only if which is independent of x3′in helical coordinate,that is,

    Proposition 6.2The helical symmetric solutions(u,p)for NSE satisfy the following formulae:

    which can be expressed in terms of physical components(ur,uθ,uz)of velocity in cylindrical coordinate

    ProofIndeed,we have

    where ξ=x2′.By

    therefore

    Hence,the above second equations becomes

    Coming back,it yields(6.4).Thus,the proof is complete.

    It is clear that(6.34)or(6.43)allow us to define stream function ψ as

    Of course,(6.34)and(6.44)are trivial,

    In order to eliminate the terms containing pressure,makingleads to

    Substituting(6.5)into(6.6),then calculations show that

    On the other hand,making d(r)× (6.42)–(6.43),we claim

    Because

    simple calculations show that

    Taking the definition of stream function into account,we claim

    or

    Finally,we conclude that the stream functions(ψ,uz)satisfy the following boundary value problem.

    Proposition 6.3The stream functions(ψ,uz)for Navier-Stokes equation in domainin helical coordinate satisfy the following boundary value problem

    It is clear that this is a 2D-3C(two dimensional problem with three components of the velocity vector field of the fluid)problem.

    Associated steady state Stokes equations are given by

    7 Variational Formulations

    It is well known that invariant formulation for rotating Navier-Stokes equation(5.1)with boundary conditions and initial condition is given by

    It is well known that the domain occupied by incompressible fluids in ?3is denoted by ?,which is a gap between helicoid ΣHdefined by(2.1)and cylindrical surface

    Let us introduce Sobolev spaces as follows:

    Also,we set

    Moreover,we set

    Note that divV is invariant form at any coordinate.We observe that

    Then,we denote the inner product in H by

    Because gi′j′is a positive definite matrix,the associated norm byis easy to show that the classical Poincare inequality also valid:the inner product inis equivalent to the inner product

    associated with the Dirichlet norm denoted by k·k.

    Proposition 7.1Variational formulation associated with(7.1)is given by

    where in helical coordinates,trilinear forms and bilinear form are given by

    Each term also can be expressed in terms of physical components(ur,uθ,uz)of cylindrical coordinates for the velocity of the fluid,

    ProofIndeed, firstly let us consider nonlinear term.By virtue of(3.14)and(4.4),in helical coordinate,we have

    Because d(r)is independent of(x2′,x3′)andwe obtain

    Hence,

    To consider Coriolis force term,note that from(3.12),

    then we assert that

    Hence,

    These are(7.7).In addition,we see that

    From this,it yields the second of(7.6).

    Next,we consider bilinear form corresponding to dissipative term

    Because

    finally,we have

    Applying(4.2),we obtain

    Using physical components of velocity in cylindrical coordinate

    and taking the following equalities into account

    we obtain

    Substituting it into(7,9)leads to

    If u is a helical symmetric solution,then

    It infers(7.8).Similarly,it is not difficult to complete our proof for the proposition.

    Variational formulation for helical symmetric solutions

    In a similar manner as in Proposition 7.1,we assert

    Proposition 7.2Variational formulation for the helical symmetric solution of NSE in helical coordinates is given by

    By(5.34),we introduce the stream function defined by(6.5)and used unknown(ψ,uz).Then,from Proposition 7.2,we immediately obtain

    Proposition 7.3The stream functions(ψ,uz),defined by(6.5)

    satisfy the following variational problem

    where

    Here,to get the expression of a((ψ,uz),(ψ?,vz)),we useand

    Remark 7.4The norms of Sobolev spaces of L2(?),H1(?)in helical coordinate system are equivalent to the following norms

    while

    8 The Power and Propulsion of the Screw

    The contravariant components and covariant components of total stress tensor acting on ΣHin helical coordinate are given by

    where covariant and contravariant components of strain tensor for the fluid velocity are given by

    The normal stress vector and tangent stress vector with unit normal vector n and unit tangent vectorto ΣHare,respectively,

    where ni′are contravariant components of n in helical coordinate

    Because our assumption is the fluid to be incompressible,hence divu=0.Propulsion force T and Power rate W are

    where er,eθ,k are base vectors of cylindrical coordinate system

    It is clear that(8.3)shows that in order to find T,W,we have to give contravariant components of vector k,eθ,n.To do that,by virtue of(3.12)and(3.13),it is easy to obtain the following formulae:

    In addition,reθ=e2= ?rsinθi+rcosθj,that is,

    Next,we find ni′in helical coordinates.At the first,let S denote two dimensional manifold generated by helical coordinate lines x1′and x2′,and let TS denote the tangent plane spanning on based vector(e1′,(e2′)of helical coordinate system.The unite normal vector n to TS at point(x1′,x2′,x3′)is determinate by

    By virtue of(3.12),

    we assert that

    Therefore,we have

    On the other hand,solving(i,j,k)in terms of(ei′,i′=1′,2′,3′)from(3.12)leads to

    Taking(8.9)and(8.10)into account,it yields by simple calculations that

    In particular,consider the normal vector at helicoid surface x3′=0.Let ξ=x2′,thenWe assert

    Let us return to(8.3).At the first,we consider incompressible flow.By virtue of(8.7)and(8.13),we have

    At the first,by computing,we have

    (3.14)shows

    It yields that

    Finally,we assert

    By virtue of(3.14)and(4.4),we have

    To sum up,we assert

    Next,taking(8.14)into account,we get

    Calculations show that

    From this,it yields

    Therefore,

    Hence,we find

    So,owing to J(u)=?J0p+μJm(u),we have

    Thus,we obtain

    Finally,we conclude

    Proposition 8.1For the helical flow,the power T and propulsion W defined by(8.3)can be computed by the following formulae

    where I(u,p)and J(u,p)are given by

    If the flows are helical,then

    which can be expressed in terms of stream functions,

    9 Stokes Operator and its Eigenvalue Problem in Helical Coordinates

    We consider the following Stokes equations with mixed boundary conditions,that is,periodic in the z-direction and homogeneous Dirichlet on the surfacesof the cylinder and the helicoid.It is well known that Stokes equations are an invariant form in any curvilinear coordinate system.For the homogeneous Dirichlet boundary conditions on whole boundary??,what follows that we set

    where(y1,y2,y3)are Cartesian coordinate.

    In[2]Constantin and Foias established existence,uniqueness and regularity results,and proved that Stokes operator is self-adjoint and positive definite and there exists a compact inverse operator of the Stokes operator.Therefore,there are complete orthogonal system of eigenfunctions for the Hilbert space H.On the other hand,there is a diffeomorphism mapping from ?σ0into a solid torus T in R3in which Stokes equations can be expressed as

    where gijare contravariant components of the metric tensor of R3in a certain coordinate,?iare covariant derivative operator.Because of positive definition of metric tensor gij,equations(9.2)are an elliptic partial equations.Therefore,there are similar results for(9.2)(see[1]and[4]).In(9.2),u is required to satisfy only the homogenous boundary conditions sine the C∞-diffeomorphism,which provides the equivalence between(9.1)and(9.2),identifies the top and the bottom of,that is,identifies the disk{gap of(with the disk{gap ofBy virtue of results in[2],we could establish existence,uniqueness,and regularity(see[11]).

    Theorem 9.1LetThen,there exists a uniqueandsatisfying Stokes system(9.1).Moreover,

    where cσis a constant which depends only on σ.

    Moreover,the abstract Stokes operator can be defined by A=?P△,which is symmetric and self-adjoint and has a compact inverse operator A?1,and there exists a sequence of positive eigenvalues 0< λ1≤ λ2···≤ λj≤ λj+1≤ ···and a sequence of corresponding eigenfunctions uk,k=1,2,···,Auk= λkuk.

    Next,let us consider eigenvalue problem of Stokes equations with mixed boundary conditions in helical coordinates.By virtue of(6.4)and(6.9),we obtain eigenvalue problem for(u,p)and stream functions

    Proposition 9.2The stream functions(ψ,uz),defined by(6.5),that is,and,satisfy the eigenvalue problem associated with(9.3),

    (9.4)can be rewritten as

    wher e

    Associated variational formulations is given by

    wher e

    There are in finite eigenvalues 0< λ1≤ λ2≤ ···of eigenvalue problem(9.3),therefore for(9.7),we have corresponding helical eigenfunctions uk∈ H and(ψ,uz)∈ V.Because vector u=(ur,uθ,uz),pressure p,and(ψ,uz)∈ V are periodic functions with periods 2σ with respect to variable ξ,we assume that

    Substituting(9.10)into(9.8),taking orthogonality of Fourier functions and noting

    we obtain

    and

    Combining(9.8),(9.11)and(9.12),we find

    Simple calculations show that

    Because Fourier functions are independent and complete in Sobolev spaces,taking(9.11)and(9.14)into account,we obtain

    Because

    from(9.16),we assert

    最近最新中文字幕大全免费视频 | 免费观看av网站的网址| 男女国产视频网站| 国产免费福利视频在线观看| 十八禁高潮呻吟视频| 亚洲欧美日韩卡通动漫| 卡戴珊不雅视频在线播放| 99热网站在线观看| 亚洲激情五月婷婷啪啪| 五月伊人婷婷丁香| 久久久久久人妻| 国产精品女同一区二区软件| 国产免费一级a男人的天堂| 午夜福利,免费看| 久久精品久久精品一区二区三区| 国产精品 国内视频| 18禁动态无遮挡网站| 亚洲色图综合在线观看| 哪个播放器可以免费观看大片| 精品国产一区二区三区四区第35| 亚洲高清免费不卡视频| 日本色播在线视频| 亚洲久久久国产精品| 免费黄色在线免费观看| 国产精品三级大全| 永久免费av网站大全| 日日啪夜夜爽| 国产1区2区3区精品| 成人黄色视频免费在线看| 国产成人一区二区在线| 下体分泌物呈黄色| xxx大片免费视频| 亚洲av日韩在线播放| 亚洲美女搞黄在线观看| 卡戴珊不雅视频在线播放| 欧美人与性动交α欧美精品济南到 | av天堂久久9| 大话2 男鬼变身卡| 欧美日韩亚洲高清精品| 18禁裸乳无遮挡动漫免费视频| 亚洲精品456在线播放app| 看非洲黑人一级黄片| 巨乳人妻的诱惑在线观看| 又大又黄又爽视频免费| 国产一区二区激情短视频 | 亚洲美女黄色视频免费看| 亚洲精品一区蜜桃| 国产精品久久久久久av不卡| 伦理电影免费视频| 免费观看无遮挡的男女| 亚洲综合色惰| 久久久久国产网址| 在线观看www视频免费| 免费久久久久久久精品成人欧美视频 | 久久影院123| 男女下面插进去视频免费观看 | 宅男免费午夜| 免费观看无遮挡的男女| av在线观看视频网站免费| 亚洲国产看品久久| 亚洲国产色片| av天堂久久9| 午夜日本视频在线| 午夜福利视频在线观看免费| 一二三四中文在线观看免费高清| a级毛片在线看网站| 久久久欧美国产精品| 日本av手机在线免费观看| 国产免费福利视频在线观看| 成年动漫av网址| 亚洲精品第二区| 精品一区二区免费观看| 国产欧美亚洲国产| 国产乱来视频区| 精品久久蜜臀av无| 国产黄色免费在线视频| 人妻 亚洲 视频| 精品卡一卡二卡四卡免费| 免费在线观看黄色视频的| 九草在线视频观看| 久久久久国产精品人妻一区二区| 日本猛色少妇xxxxx猛交久久| 成人毛片a级毛片在线播放| 成人午夜精彩视频在线观看| av在线app专区| 国产精品嫩草影院av在线观看| 一边亲一边摸免费视频| 国产精品成人在线| 伦精品一区二区三区| 最近手机中文字幕大全| 亚洲国产av影院在线观看| 精品少妇黑人巨大在线播放| 久热久热在线精品观看| 制服人妻中文乱码| 男女边摸边吃奶| 亚洲精品一二三| 丝袜脚勾引网站| 久久久久久伊人网av| 九草在线视频观看| 好男人视频免费观看在线| 国产精品偷伦视频观看了| 色5月婷婷丁香| 美女国产高潮福利片在线看| 国产亚洲欧美精品永久| 婷婷色麻豆天堂久久| 久久精品熟女亚洲av麻豆精品| 一区二区三区乱码不卡18| 最新的欧美精品一区二区| 宅男免费午夜| 一本久久精品| 亚洲国产欧美在线一区| 日韩av不卡免费在线播放| 人妻 亚洲 视频| 激情视频va一区二区三区| 一二三四中文在线观看免费高清| 色吧在线观看| 免费女性裸体啪啪无遮挡网站| 日本欧美视频一区| 九色亚洲精品在线播放| 高清不卡的av网站| 久久这里只有精品19| 精品少妇黑人巨大在线播放| av女优亚洲男人天堂| 综合色丁香网| 免费观看a级毛片全部| 97在线视频观看| 1024视频免费在线观看| 99re6热这里在线精品视频| 99热全是精品| 国精品久久久久久国模美| 亚洲综合色惰| 九九在线视频观看精品| 考比视频在线观看| 久久久精品区二区三区| 国产免费一区二区三区四区乱码| 草草在线视频免费看| 丝袜人妻中文字幕| 成年人免费黄色播放视频| 涩涩av久久男人的天堂| 国产黄色视频一区二区在线观看| 嫩草影院入口| 亚洲精品乱久久久久久| 国产精品成人在线| 九草在线视频观看| 热99久久久久精品小说推荐| 九九爱精品视频在线观看| 卡戴珊不雅视频在线播放| 欧美国产精品一级二级三级| 欧美bdsm另类| 国产成人精品无人区| 国产在线免费精品| 国产色婷婷99| 一二三四在线观看免费中文在 | 99热网站在线观看| 成人毛片a级毛片在线播放| 国产精品.久久久| 成人综合一区亚洲| 飞空精品影院首页| 亚洲人与动物交配视频| 美女xxoo啪啪120秒动态图| av在线观看视频网站免费| 精品熟女少妇av免费看| 成年人免费黄色播放视频| 午夜影院在线不卡| 丁香六月天网| 亚洲国产毛片av蜜桃av| 亚洲第一av免费看| 亚洲精品第二区| 青春草亚洲视频在线观看| 两性夫妻黄色片 | 少妇人妻精品综合一区二区| 日日摸夜夜添夜夜爱| 高清av免费在线| 国产精品国产三级专区第一集| 国产一区二区三区综合在线观看 | 黑人巨大精品欧美一区二区蜜桃 | 伊人久久国产一区二区| av不卡在线播放| 久久人人爽av亚洲精品天堂| 国产男女超爽视频在线观看| 国产一区有黄有色的免费视频| 成年人午夜在线观看视频| 久久影院123| 最新中文字幕久久久久| 永久网站在线| 少妇精品久久久久久久| 亚洲四区av| 亚洲av中文av极速乱| 国产精品一区二区在线观看99| 如何舔出高潮| 亚洲综合精品二区| 9191精品国产免费久久| 久久久久人妻精品一区果冻| 美女国产视频在线观看| 国产精品一国产av| 免费观看在线日韩| 亚洲性久久影院| 韩国精品一区二区三区 | 免费黄网站久久成人精品| 曰老女人黄片| 老司机亚洲免费影院| 国精品久久久久久国模美| √禁漫天堂资源中文www| 久久鲁丝午夜福利片| 国产爽快片一区二区三区| 国产精品久久久久久精品电影小说| 国产免费一区二区三区四区乱码| 亚洲美女黄色视频免费看| 女人久久www免费人成看片| 考比视频在线观看| tube8黄色片| 日日啪夜夜爽| 少妇熟女欧美另类| 侵犯人妻中文字幕一二三四区| 色视频在线一区二区三区| 日韩大片免费观看网站| 欧美最新免费一区二区三区| 欧美日韩亚洲高清精品| 一级毛片黄色毛片免费观看视频| 亚洲精品视频女| 国产成人av激情在线播放| 色吧在线观看| 如日韩欧美国产精品一区二区三区| 精品福利永久在线观看| 少妇高潮的动态图| 午夜福利视频在线观看免费| 18禁观看日本| 久久精品久久久久久久性| 国产 精品1| 久久国产亚洲av麻豆专区| 2018国产大陆天天弄谢| 欧美日韩视频精品一区| 亚洲精品日韩在线中文字幕| 人体艺术视频欧美日本| 日韩欧美一区视频在线观看| 九九爱精品视频在线观看| 国产精品国产三级国产专区5o| 欧美xxxx性猛交bbbb| 春色校园在线视频观看| 高清不卡的av网站| 国产激情久久老熟女| 美女国产视频在线观看| 久久综合国产亚洲精品| 美女内射精品一级片tv| 免费日韩欧美在线观看| 国产精品国产三级国产专区5o| 高清在线视频一区二区三区| 蜜桃在线观看..| 免费大片黄手机在线观看| 欧美xxⅹ黑人| 男女下面插进去视频免费观看 | 亚洲综合色网址| 亚洲美女视频黄频| 最新中文字幕久久久久| av福利片在线| 日韩精品有码人妻一区| 男女啪啪激烈高潮av片| 色网站视频免费| 欧美最新免费一区二区三区| 日韩熟女老妇一区二区性免费视频| 捣出白浆h1v1| 久久狼人影院| 国产色婷婷99| 日本欧美视频一区| 国产精品国产av在线观看| 宅男免费午夜| 日韩,欧美,国产一区二区三区| 国产欧美亚洲国产| 欧美最新免费一区二区三区| 亚洲中文av在线| 五月开心婷婷网| 国产毛片在线视频| 色5月婷婷丁香| 香蕉精品网在线| 18禁观看日本| 午夜精品国产一区二区电影| 五月天丁香电影| 国产精品久久久久久精品电影小说| 99久久精品国产国产毛片| 免费日韩欧美在线观看| 成人无遮挡网站| 久久午夜福利片| 国产精品99久久99久久久不卡 | 久久 成人 亚洲| 亚洲成人手机| 一区二区三区乱码不卡18| 丝袜美足系列| 高清不卡的av网站| 91精品伊人久久大香线蕉| 高清不卡的av网站| 啦啦啦中文免费视频观看日本| 日韩精品有码人妻一区| 日韩伦理黄色片| 99热国产这里只有精品6| 综合色丁香网| 一边亲一边摸免费视频| 国产极品粉嫩免费观看在线| 极品人妻少妇av视频| 国产成人精品婷婷| 久久影院123| 国产精品久久久久久av不卡| 国产精品久久久久久av不卡| 国产成人免费无遮挡视频| 久久韩国三级中文字幕| 毛片一级片免费看久久久久| 亚洲成人手机| 日韩免费高清中文字幕av| 卡戴珊不雅视频在线播放| 精品久久久精品久久久| 欧美xxxx性猛交bbbb| 日韩一区二区三区影片| 久久精品aⅴ一区二区三区四区 | 性色avwww在线观看| 久久久久久久大尺度免费视频| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 91国产中文字幕| 十分钟在线观看高清视频www| 亚洲色图综合在线观看| 国产无遮挡羞羞视频在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品.久久久| 街头女战士在线观看网站| 成人18禁高潮啪啪吃奶动态图| 亚洲五月色婷婷综合| 精品视频人人做人人爽| 久久精品人人爽人人爽视色| 亚洲色图 男人天堂 中文字幕 | 成人无遮挡网站| 男女午夜视频在线观看 | 国产精品免费大片| 亚洲欧美中文字幕日韩二区| 精品亚洲成国产av| 宅男免费午夜| 免费高清在线观看视频在线观看| av一本久久久久| 国产成人aa在线观看| 久久婷婷青草| 人成视频在线观看免费观看| 少妇的丰满在线观看| 又黄又粗又硬又大视频| videos熟女内射| 九九在线视频观看精品| 黑人高潮一二区| 亚洲欧美日韩另类电影网站| 乱人伦中国视频| 亚洲国产看品久久| 亚洲第一区二区三区不卡| 日韩中字成人| 精品少妇久久久久久888优播| 51国产日韩欧美| av在线老鸭窝| 免费av不卡在线播放| 亚洲激情五月婷婷啪啪| 爱豆传媒免费全集在线观看| 少妇猛男粗大的猛烈进出视频| 国产片特级美女逼逼视频| 两个人免费观看高清视频| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| 妹子高潮喷水视频| kizo精华| 18在线观看网站| 久久ye,这里只有精品| 人妻少妇偷人精品九色| 亚洲国产看品久久| 亚洲欧美精品自产自拍| 又粗又硬又长又爽又黄的视频| 曰老女人黄片| 人妻 亚洲 视频| 日韩av在线免费看完整版不卡| 国产男女内射视频| 水蜜桃什么品种好| 午夜视频国产福利| 国产成人精品久久久久久| 亚洲国产av影院在线观看| 啦啦啦视频在线资源免费观看| 妹子高潮喷水视频| 97在线人人人人妻| 色5月婷婷丁香| 中文欧美无线码| 黑人欧美特级aaaaaa片| 两个人看的免费小视频| 99热全是精品| 久久亚洲国产成人精品v| 看十八女毛片水多多多| 免费在线观看黄色视频的| 毛片一级片免费看久久久久| 男女午夜视频在线观看 | 有码 亚洲区| 三级国产精品片| 女性生殖器流出的白浆| 少妇人妻久久综合中文| 欧美人与性动交α欧美软件 | 美女国产视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说| 亚洲av中文av极速乱| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 亚洲性久久影院| 亚洲图色成人| 精品人妻一区二区三区麻豆| 成人免费观看视频高清| 国产欧美日韩综合在线一区二区| 日日爽夜夜爽网站| 日日啪夜夜爽| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频| 色94色欧美一区二区| 亚洲综合色网址| 亚洲欧美一区二区三区国产| 亚洲国产精品999| 搡女人真爽免费视频火全软件| 国产精品熟女久久久久浪| 久久这里有精品视频免费| 一级毛片黄色毛片免费观看视频| 一级a做视频免费观看| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 18禁裸乳无遮挡动漫免费视频| 欧美人与性动交α欧美软件 | 精品久久蜜臀av无| 国产成人aa在线观看| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 欧美成人午夜精品| 你懂的网址亚洲精品在线观看| 色哟哟·www| 婷婷色av中文字幕| 欧美激情国产日韩精品一区| 久久这里只有精品19| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 国产成人精品无人区| 久久久国产一区二区| 久久久久精品性色| 国产欧美亚洲国产| 777米奇影视久久| 国产69精品久久久久777片| 国产一区二区激情短视频 | 麻豆精品久久久久久蜜桃| www.av在线官网国产| 日韩大片免费观看网站| 久久国内精品自在自线图片| 尾随美女入室| 99久久中文字幕三级久久日本| 51国产日韩欧美| 免费看光身美女| 日韩三级伦理在线观看| 国产精品一区www在线观看| 亚洲人成网站在线观看播放| 久久久久精品久久久久真实原创| 亚洲欧美中文字幕日韩二区| 免费看光身美女| 一级毛片 在线播放| 最近的中文字幕免费完整| 深夜精品福利| 日日撸夜夜添| 国产精品嫩草影院av在线观看| 免费看光身美女| www.色视频.com| 国产精品久久久久成人av| av在线老鸭窝| 日韩av不卡免费在线播放| 中文字幕av电影在线播放| 国产淫语在线视频| 99热网站在线观看| a级毛色黄片| 欧美精品高潮呻吟av久久| 成人毛片60女人毛片免费| 日日摸夜夜添夜夜爱| 日韩一区二区视频免费看| 女性被躁到高潮视频| 国产黄色视频一区二区在线观看| 成人午夜精彩视频在线观看| 91午夜精品亚洲一区二区三区| 男女高潮啪啪啪动态图| 亚洲美女搞黄在线观看| 午夜日本视频在线| 精品卡一卡二卡四卡免费| 午夜免费男女啪啪视频观看| 少妇人妻 视频| 韩国av在线不卡| 国产白丝娇喘喷水9色精品| 啦啦啦在线观看免费高清www| 亚洲精品456在线播放app| 亚洲第一区二区三区不卡| 视频中文字幕在线观看| 成人综合一区亚洲| 人人妻人人澡人人看| 亚洲五月色婷婷综合| 国产熟女欧美一区二区| 久久影院123| 一级爰片在线观看| 国产一区二区在线观看日韩| av不卡在线播放| 国产一区二区激情短视频 | 在线观看免费视频网站a站| 少妇被粗大猛烈的视频| 欧美人与性动交α欧美软件 | 国产视频首页在线观看| 亚洲精品一区蜜桃| 国产精品偷伦视频观看了| 日本欧美国产在线视频| 国产欧美亚洲国产| 中文字幕最新亚洲高清| 国产亚洲av片在线观看秒播厂| 日本午夜av视频| 最近的中文字幕免费完整| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久 | 国产淫语在线视频| 香蕉丝袜av| 一区二区av电影网| 欧美日韩视频高清一区二区三区二| 国产爽快片一区二区三区| 国产成人精品久久久久久| 777米奇影视久久| 天堂中文最新版在线下载| 最近中文字幕高清免费大全6| 日韩精品免费视频一区二区三区 | 一区二区三区四区激情视频| 久久毛片免费看一区二区三区| 黑人高潮一二区| 久热久热在线精品观看| 只有这里有精品99| 热re99久久国产66热| 日韩,欧美,国产一区二区三区| 亚洲国产精品一区三区| 日韩一区二区视频免费看| 日韩中文字幕视频在线看片| av黄色大香蕉| 久久精品国产自在天天线| 亚洲成人一二三区av| 亚洲精品日韩在线中文字幕| 99久国产av精品国产电影| 国产有黄有色有爽视频| 日本av手机在线免费观看| 亚洲精品一二三| 伦理电影免费视频| 午夜免费观看性视频| 在线观看三级黄色| 在线观看一区二区三区激情| 99热网站在线观看| 香蕉精品网在线| 国产黄频视频在线观看| 午夜福利影视在线免费观看| 宅男免费午夜| 欧美bdsm另类| 男人爽女人下面视频在线观看| 亚洲,欧美,日韩| 亚洲一级一片aⅴ在线观看| 51国产日韩欧美| 人人妻人人澡人人爽人人夜夜| 精品久久国产蜜桃| 久久久久久人人人人人| 香蕉丝袜av| 黑人欧美特级aaaaaa片| 乱码一卡2卡4卡精品| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 赤兔流量卡办理| 日韩伦理黄色片| 日本欧美国产在线视频| 国产在线视频一区二区| 久久久久视频综合| 超碰97精品在线观看| av.在线天堂| 最近中文字幕高清免费大全6| 国产高清三级在线| 制服诱惑二区| 亚洲国产色片| 国产伦理片在线播放av一区| 成人国语在线视频| 亚洲av综合色区一区| 男的添女的下面高潮视频| 九色亚洲精品在线播放| 婷婷色麻豆天堂久久| 韩国av在线不卡| 亚洲精品久久久久久婷婷小说| 精品一区二区三区视频在线| 久久99一区二区三区| 免费日韩欧美在线观看| 男女免费视频国产| 成年人午夜在线观看视频| 在线看a的网站| 国产精品久久久久久精品电影小说| 母亲3免费完整高清在线观看 | 我的女老师完整版在线观看| 熟妇人妻不卡中文字幕| 亚洲欧洲国产日韩| 97在线人人人人妻| 色婷婷av一区二区三区视频| 新久久久久国产一级毛片| 亚洲国产av影院在线观看| 国产高清三级在线| 色哟哟·www| 国产成人午夜福利电影在线观看| 久久久国产一区二区| 国产一区有黄有色的免费视频| 日韩大片免费观看网站| 国产精品麻豆人妻色哟哟久久| 五月伊人婷婷丁香| 天天躁夜夜躁狠狠躁躁| 少妇人妻 视频| 99久久人妻综合| 99热网站在线观看| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频| 成人综合一区亚洲| 丰满乱子伦码专区| 欧美+日韩+精品| 美女内射精品一级片tv|