• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION?

    2018-07-23 08:42:58ShaojunTANG唐少君LanZHANG張瀾
    關(guān)鍵詞:張瀾

    Shaojun TANG(唐少君)Lan ZHANG(張瀾)

    School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

    E-mail:shaojun.Tang@whu.edu.cn;zhanglan@whu.edu.cn

    Abstract We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas.The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.

    Key words One-dimensional nonisentropic compressible Navier–Stokes equations;viscous shock waves;nonlinear stability;large initial perturbation

    1 Introduction

    The compressible Navier–Stokes system describing the one-dimensional motion of a viscous heat-conducting perfect polytropic gas in the Lagrange variables can be written in the following form

    where t>0 is the time variable,x∈R is the spatial variable,and the primary dependent variables are the specific volume v, fluid velocity u,and absolute temperature θ.e is the specific internal energy.The viscosity coefficientμ and the heat conductivity coefficient κ are assumed to be positive constants.Here,we focus on the ideal polytropic gas,that is,the pressure p and the specific internal energy e are given by the constitutive relations

    where s is the entropy,A is a positive constant,R>0 is the gas constant,and the specific heat cv=R/(γ?1)with 1<γ≤2 being the adiabatic exponent.

    The system(1.1)is supplemented with the initial data

    which are assumed to satisfy

    where v±>0,u±and θ±>0 are given constants,and we assume infRv0>0,infRθ0>0,andas compatibility conditions.To describe the strengths of the shock waves for later use,we set

    where δ∈ (0,1)is a constant.When the far field states are the same,that is,v+=v?,u+=u?,θ+= θ?,there has been considerable progress on the global existence of the solutions to system(1.1)since 1977;see[19,20,25–27]and the reference therein.In particular,Jiang[19,20] first obtained some interesting results on the large-time behavior of solutions,however the temperature is only shown to be locally bounded in space.More recently,Li and Liang[27]improved Jiang’s results by proving that the temperature is uniformly bounded.

    The existence and large time behavior of solutions to system(1.1)with different end states become much more complicated.It is noted that,if the dissipation effects are neglected,that is,μ=k=0,system(1.1)is reduced to the compressible Euler equations as follows:

    which is the most important hyperbolic system of conservation laws.It is well known that system(1.5)has rich wave phenomena.Indeed,it contains three basic wave patterns(see[38]),two nonlinear waves:shock and rarefaction wave,and a linearly degenerate wave:contact discontinuity.When we consider the Riemann initial data

    the solutions consist of the above three wave patterns and their superpositions,called by Riemann solutions,and govern both the local and large time asymptotic behavior of general solutions of system(1.5).It is of great importance and interest to study the large-time behavior of the viscous version of these basic wave patterns and their superpositions to the nonisentropic compressible Navier-Stokes system(1.1).

    For the nonlinear stability of some elementary wave patterns to the one-dimensional nonisentropic compressible Navier-Stokes systems,for the case with small initial perturbation,the results available up to now is quite complete except the cases when the elementary wave patterns are a linear superposition of one viscous shock pro file and one rarefaction wave or viscous contact discontinuity(for the nonlinear stability of viscous shock waves,see[23,33]for results with zero mass assumption and[28]for the case with general initial perturbation;for nonlinear stability of viscous contact discontinuities,see[14,30]with zero mass assumption and[17]for general initial perturbation;for the nonlinear stability of rarefaction waves,see[24,29];while for the nonlinear stability of composite wave patterns consisting of either rarefaction waves and viscous contact discontinuities or viscous shock waves from different families,see[11,13]).While for the corresponding results with large initial perturbation,some results are obtained for rarefaction waves(cf.[1,35–37]),viscous contact discontinuities(cf.[5,8,18]),and their superpositions(cf.[9,16]).But for viscous shock pro files,just Wang et al[41]used the argument developed by Kanel’in[22]to get the nonlinear stability of viscous shock pro files for the one-dimensional isentropic compressible Navier-Stokes equations.For the nonisentropic case,to the best of our knowledge,no results are available up to now.

    To deduce the desired nonlinear stability result by the elementary anergy method as in[13,23],it is sufficient to deduce certain uniform energy type estimates on the solutions and the main difficulty to do so lies in how to control the possible growth caused by the nonlinear terms.For general γ>1,the arguments employed in[13,23]used the smallness of the initial perturbation and the strengths of viscous shock waves to overcome such a difficulty.One of the key points in such an argument is that,on the basis of the a priori assumption that the initial perturbation is sufficiently small,one can deduce a uniform lower and upper bounds on the specific volume v(t,x)and temperature θ(t,x).With such bounds in hand,one can thus deduce certain a priori H2(R)energy type estimates on solutions in terms of the initial perturbation provided that the strengths of the viscous shock waves are suitably small.The combination of the above analysis with the standard continuation argument yields the local stability of weak viscous shock waves for one-dimensional compressible Navier-Stokes equations.It is easy to see that in such a result,for all t∈R,Oscthe oscillation of specific volume v(t,x)and temperature θ(t,x),should be sufficiently small.For the global stability of viscous shock waves,the story is quite different.The main difficulty lies in how to deduce the uniform lower and upper bounds on the specific volume v and temperature θ under large initial perturbation.

    In this article,we establish the large-time behavior of solutions toward traveling wave solutions to(1.1)–(1.4)under large initial perturbation without any restriction on the adiabatic exponent γ.We expect that the solution converges to smooth traveling wave solutions with shock pro file

    and the Lax’s shock condition that

    To describe the strength of the shock wave for later use,we set

    The functions(V,U,Θ)are determined by

    In order to use the compressibility of the viscous shock pro files,we need to use the antiderivative technique.We reformulate the Cauchy problem to one for an integrated system in terms of the perturbation form(V,U,Θ)and put the perturbationby

    and we can assume that the initial data further satisfyFrom(1.15),we naturally look for the solution of(1.1)in the form

    We have the following integrated system for

    which replaces(1.16)by

    so we transfer system(1.17)into

    and we can rewrite(1.19)3as

    Now,we turn to state our main result.First,we list some assumptions on the initial data(v0(x),u0(x),θ0(x)),the strength of the viscous shock δ:(H0)there exist δ-independent constants l1≥ 0,l2≥ 0,and C>0 such that

    For simplicity,we assume that l1=l2=l in the following.(H1)v?,v+,θ?,and θ+are positive constants independent of δ.(H2)the initial data(v0,u0,θ0)are assumed to satisfy

    Under the above assumptions,we have

    Theorem 1.1Let v±,u±,θ±,and s be the given constants satisfying(1.9)and(1.10),let(V,U,Θ)(ξ)be a traveling wave solution which smoothly interpolates the asymptotic values(v±,u±,θ±)with speed s.Assume further that

    If the δ-independent positive constants C0,α,and β are assumed to satisfy

    then,there exist positive constants δ and ?,which are independent ofsuch that ifthen the initial value problem(1.1)and(1.3)has a unique global solution(v,u,θ)(t,x)with

    Moreover,the solution tends to the traveling wave solution in the maximum norm

    Remark 1.2Some remarks concerning Theorem 1.1 are listed below:

    ? It is easy to see that the set of the parameters α >0,β >0,l≥ 0 which satisfy the assumption(1.25)is not empty.In fact,let l=0 andone can deduce that(1.25)is equivalent to,and the existence of such α and β is easy to verify.

    ? If the parameter α,β,l satisfy 3α ? 3β ? 6C0l<0,then for δ>0 sufficiently small,we can deduce from(2.110)that for each fixed t≥ 0,the oscillation of θ(t,x),can be large.

    ? For the simplicity of presentation,we assume that v?,v+,θ?,and θ+,the far fields of v0(x)and θ0(x),are independent of δ.For the case when the large time behavior of the global solution(1.1)is described by the superposition of viscous shock pro files of different families,similar result can also be obtained even when the far fields of v0(x)and θ0(x)depend on δ.

    For the proof,we need some properties of traveling wave solutions.We first note that Rankine-Hugoniot condition(1.9)gives

    for v+?V?>0,and

    for v+?V?<0,wherewith

    Lemma 1.3The traveling wave solution(V,U,Θ)(ξ)satisfies sand sΘξ<0 for any ξ∈ R.Moreover,there is a constant C independent of γ andsuch that for ξ∈ R,

    The estimate in(1.30)can be shown by direct calculations.We omit the proof.

    2 A Priori Estimates

    2.1 Reformation of the problem

    This section is devoted to deriving a priori estimates on the solution(v,u,θ)to the Cauchy problem(1.1)–(1.3).We rewrite system(1.19)in form of(Φ,Ψ,W)as in the form

    where(v,u,θ)is given by(1.18)and

    and the initial condition(Φ0,Ψ0,W0)satisfies

    The solution space X(0,T;m2,M2;m3,M3)is defined by

    We denote here

    For notational simplicity,we introduceif A≤CB holds uniformly for some positive constant C.All the positive constants c and C are independent of the strength of viscous shock waves δ.Besides,we will use the notation(v,θ)=(Φx+V,? + Θ)so that

    Without loss of generality,we may assume that mi≤1≤Mifor i=2,3.

    2.2 Basic energy estimate

    Our first result is concerned with the basic energy estimate,which is stated in the following lemma.

    Lemma 2.1There exists a sufficiently small positive constant ? independent of δ such that if 0< δ≤ ?,then it holds that

    with

    here and in the sequel,the notion(···)xrepresents the term in the conservative form so that it vanishes after integration.Because it has no effect on the energy estimates,we do not write them out in the details for simplicity.We estimate Ei,i=2,3,4,term by term.

    We first note that

    We further obtain

    therefore,we get the following inequality for E2with the help of the Cauchy inequality,

    For E3,because

    then using the Cauchy inequality again,we have

    and we get

    Next,for small δ,the Cauchy inequality gives

    We now estimate the terms J1Ψ and J2W.From(2.2),we have the integrals of these terms on(0,t)×R as follows

    and

    Integrating(2.8)on(0,t)×R,using(2.10),(2.12),and(2.13)–(2.16),we complete the proof of Lemma 2.1. ?

    Lemma 2.2There exists a sufficiently small positive constant ? independent of δ such that if 0< δ≤ ?,then it holds that

    where

    ProofBy a straightforward calculation,we find

    where

    Integrate(2.19)over[0,T]×R to drive

    From the Cauchy inequality,and the a priori assumption,we obtain the followings:

    With above,we finish the proof of Lemma 2.2.

    Notice that

    A suitably linear combination of(2.6),(2.17),and(2.21)yields

    Lemma 2.3There exists a sufficiently small positive constant ? independent of δ such that if 0< δ≤ ?,then it holds that

    and by Cauchy’s inequality,we have

    From(1.17),we have

    where we have used the fact that Ux<0.

    Integrating the above inequality with respect to t and x over[0,t]× R,and from Cauchy’s and H?lder’s inequality,we have

    With(2.22)–(2.25),we have the following result.

    Lemma 2.4There exists a δ-independent positive constant ? such that if

    holds true,then we have,for each 0≤t≤T,

    2.3 Pointwise estimates of specific volume

    Notice the fact,for 0

    then we first deduce from(1.21)that

    Hence,if(1.24)holds,then for 0<δ<1,α>l,we have

    Then with Lemma 2.4,we have the following corollary.

    Corollary 2.5For each time t∈[0,T],the following estimate holds:

    By Corollary 2.5,we see that

    where i=0,±1,±2,···for the Cauchy problem.Moreover,if we utilize(2.31)and apply Jensen’s inequality to the convex function φ,we obtain

    From above,we thus have proved

    Lemma 2.6Let α1,α2be two positive roots of the equation φ(x)=1.Then,

    and there are points ai(t),bi(t)∈[i,i+1]such that

    We deduce a local representation of v in the next lemma by modifying Jiang’s argument in[19,20]for fixed domains.To this end,we introduce the cutoff function ?x∈ W1,∞(R)with parameter x∈R by

    For simplicity,we denote ?[x]:=([x]? 1,[x]+1),then we have the following lemma.

    Lemma 2.7We have

    ProofWe multiply(1.1)2by ?xto get

    In view of the identity ?x(y)=1 and(1.1)1,integrating(2.36)over[0,t]× [y,∞),we obtain

    This implies that for each t∈[0,T],

    Multiplying(2.37)by Rθ(t,y)/μ and integrating the resulting identity over[0,t],we have

    We then plug this identity into(2.37)to obtain(2.34)and complete the proof of Lemma 2.7.?

    Now,to bound v(t,x)pointwise,we first show the exponential decay of Ax(t),then we use representation(2.34)to obtain the following local uniform bounds on v.

    Lemma 2.8If(2.26)holds for a sufficiently small ?0>0,then

    ProofThe proof is divided into three steps.

    Step 1In view of Cauchy’s inequality and(2.30),we have

    Let 0 ≤ s ≤ t≤ T.Apply Cauchy’s inequality and Jensen’s inequality for the convex function 1/x(x>0)and use(2.30)and(2.31)to deduce

    By H?lder’s and Cauchy’s inequalities,Lemma 2.6,and(2.30),we see that for x ∈ [[x]+1,[x]+2],

    Applying Jensen’s inequality to the convex function ex,we have,from(2.33)and(2.41),

    This implies

    Plugging(2.42)into(2.40)and taking ?0>0 small enough,we have,for each s ∈ [0,t],

    According to definition(2.35),we then obtain

    Step 2Plugging(2.39)and(2.43)into(2.34),we infer

    and

    We plug(2.46)into(2.44)to obtain

    Applying Gronwall’s inequality to(2.48),we can deduce from(2.30)that

    where C>0 is some constant independent of t,T,and y.Noting thatwe deduce from(2.49)thatis arbitrary,we conclude

    Step 3On the other hand,in view of(2.32),(2.39),and(2.43),we integrate(2.34)onwith respect to y to find

    Consequently,we have

    Inserting(2.47),(2.50),and(2.51)into(2.44),we have

    where we can choose T0=C lnδ?land C is independent of t.In particular,estimate(2.52)implies

    As in[26],we can derive a positive lower bound for v,that is,

    When t=T0=lnδ?l,we have

    Thus,this completes the proof.

    2.4 Pointwise estimates of temperature

    In the following lemma,we employ the maximum principle to get the lower bound for the temperature,which does depend on the time t.

    Lemma 2.9Assume that condition(2.26)holds.Then,there exist positive constant B0depending only onand k(Φx,Ψx,?)k1such that it holds for all 0 ≤ s ≤ t≤ T that

    ProofIt follows from(1.1)3that θ satisfies

    Hence,we deduce from(2.38)that

    and

    Applying the weak maximum principle for the parabolic equation,we havefor 0≤s≤t≤T and x∈R.This completes the proof of Lemma 2.9.Here,?

    Next,we have the L2-norm in both time and space of ?x.

    Lemma 2.10If(2.26)holds for a sufficiently small positive constant ?0,then

    ProofWe divide the proof into five steps.

    Step 1First,for each t≥0 and a>0,we denote

    Then,it follows from(2.30)and(2.38)that

    To estimate the last term of(2.59),we multiply(1.17)2by 2Ψx(? ? 2)+and integrate the resulting identity over(0,t)×R to find

    Combining(2.60)and(2.59),we have

    where each term Jpin the decomposition will be defined below.We now define and estimate all the terms in the decomposition.We first consider

    In light of(2.27),we have

    From Cauchy’s inequality and(2.38),we obtain

    and

    and

    Let us define

    Because

    we have

    Because J5,J6,and J7are easy to estimate,we write them together

    Let us now consider the term

    then we deduce from(2.65)that

    With the help of(2.65)and(2.69),the terms

    are estimated by

    and

    For the term

    we apply Cauchy’s inequality and(2.65)to deduce

    We finally consider

    then to estimate J12,we apply Lebesgue’s dominated convergence theorem to find

    where the approximate scheme φη(?)is defined by

    And we have

    With the above inequalities,we get,from(2.38),

    Step 3It is obtained from(2.30)that

    Combining(2.82)and(2.83),and choosing ? sufficiently small,we have

    Step 4To estimate the last term of(2.84),we multiply(1.17)2byand then integrate the resulting identity over(0,t)×R to have

    From(2.58)and(2.65),we have

    We then apply Cauchy’s inequality to derive

    Plugging(2.86)–(2.88)into(2.85),and taking ? sufficiently small,we derive from(2.26)that

    We note from(2.30)that

    Combination of(2.90)and(2.89)yields

    We plug(2.91)into(2.84)and choose ? suitable small to find

    Step 5It remains to estimate the last term of(2.92).According to the fundamental theorem of calculus,we have,from(2.65),

    Plug(2.93)into(2.92)and choose ?>0 suitable small to obtain(2.57).This completes the proof of the lemma. ?

    We obtain the upper bound for the temperature uniformly in both time and space in the next lemma,by combining Lemma 2.10 and some desired uniform estimates on the spatial derivatives of(Φ,Ψ,?).

    Lemma 2.11If(2.26)holds for a sufficiently small ?>0,then we have

    ProofFirst,we set.Then,we can rewrite(1.17)2as

    Integrating(2.97)with respect to t and x over[0,t]× R and employing Cauchy’s inequality,Gronwall’s inequality,and Lemma 2.4,we obtain

    Because we have

    and

    from(2.98),we deduce

    Next,multiply(1.17)2by?Ψxxxto derive

    Integrating this last identity over(0,T)× R,from(2.38)and Cauchy’s inequality,we obtain

    We only show how to estimate the first term and the last term in the following,as the rest is easier.To do so,by Cauchy’s inequality,we have

    and by Sobolev’s inequality and Young’s inequality,it holds that

    Finally,we get the estimate

    Next,multiplying(1.20)by??xxand integrating the resulting identity over(0,T)×R,we have

    By a straightforward calculation,which combined with(2.38)implies

    as we have

    and

    we then obtain

    Finally,it follows from(2.57)and(2.108)that

    This implies(2.94)by virtue of Cauchy’s inequality;that is

    Combine(2.101),(2.106)and(2.108)to give

    which together with(2.57)yields(2.95).This completes the proof of Lemma 2.11.

    3 Proof of Theorem 1.1

    In this section,we will prove Theorem 1.1,which concerns the stability of the traveling wave solution.For this purpose,we first summarize the local existence of solutions to the problem(1.17)in the following proposition,which can be proved by the standard iteration method.

    Proposition 3.1(Local existence) Suppose that the conditions in Theorem 1.1 hold.If there exist positive constants M1,λiand Λi(i=1,2)such that,andhold for all x∈R,then(1.17)admits a unique solutionfor some constant T0=T0(λ1,λ2,M1)>0 depending only on λ1,λ2,and M1.

    Next,we will give the proof of Theorem 1.1 in six steps by employing the continuation argument.

    Step 1We choose positive constants Π,λi,and Λi(i=1,2,3)such that k(Φ0,Ψ0,W0)k2≤ Π and

    where λ1= λ2=Cδland Λ1= Λ2=C(1+ δ?l).Setwhere B1is exactly the same constant as in(2.95).Applying Proposition 3.1,we see that there exists a constant

    such that problem(1.17)has a unique solution

    Letting 0< δ≤ δ1,from Sobolev’s inequality,we have

    Consequently,

    Then,we can apply Lemmas 2.8,2.9,and 2.11 with T=t1to obtain the result that the local solution(Φ,Ψ,W)constructed above satisfies that for each t∈ [0,t1],

    and

    Step 2If we take(Φ,Ψ,W)(t1,·)as the initial data,we can apply Proposition 3.1 and extend the local solution(Φ,Ψ,W)to the time interval[0,t1+t2]with

    Moreover,we have

    for all(t,x)∈ [t1,t1+t2]×R,where

    From(2.27)and(2.57),we have

    Take 0< δ≤ min{δ1,δ2}with

    By employing Lemmas 2.8,2.9,and 2.11 with T=t1+t2,then the local solution(Φ,Ψ,W)satisfies(3.1)and(3.2)for each t∈[0,t1+t2].

    Step 3We repeat the argument in Step 2,to extend our solution(Φ,Ψ,W)to the time intervalAssume that 0< δ≤min{δ1,δ2}.Continuing,after finitely many steps we construct the unique solution(Φ,Ψ,W)existing on[0,T1]and satisfying(3.1)and(3.2)for each t∈[0,T1].

    Step 4Becauseand

    Sobolev’s inequality yields

    and so

    We note here that

    Now,we apply Proposition 3.1 again by takingas the initial data.Then,we see that the solution(Φ,Ψ,W)exists onwithand satisfies

    then we can deduce from Lemmas 2.8,2.9,and 2.11 withthat for each timethe local solution(Φ,Ψ,W)satisfies(3.2)and

    Step 5Next,if we takeas the initial data,we apply Proposition 3.1 and construct the solution(Φ,Ψ,W)existing on the time intervalwithand satisfying

    Then,we infer from Lemmas 2.8,2.9,and 2.11 withthat the local solution(Φ,Ψ,W)satisfies(3.3)and(3.2)for eachBy assuming 0< δ≤min{δ1,δ2,δ3,δ4},we can repeatedly apply the argument above to extend the local solution to the time intervalFurthermore,we deduce that(3.3)and(3.2)hold for eachIn view of,we have shown that problem(1.17)admits a unique solution(Φ,Ψ,W)on

    Step 6We take 0<δ≤min{δ1,δ2,δ3,δ4}.As in Steps 4 and 5,we can findsuch that problem(1.17)admits a unique solution(Φ,Ψ,W)onwhich satisfies(3.3)and(3.2)for each,we have extended the local solution(Φ,Ψ,W)to[0,2T1].Repeating the above procedure,we can then extend the solution(Φ,Ψ,W)step by step to a global one provided that δ≤ min{δ1,δ2,δ3,δ4}.Choosing ?1=min{δ1,δ2,δ3,δ4},we then derive that problem(1.17)has a unique solution(Φ,Ψ,W)satisfying(3.2)and

    for each t∈ [0,∞).

    Therefore,we can find constant B2depends only onand k(Φx0,Ψx0,?0)k1such that

    from which the large-time behavior(1.27)follows in a standard argument.This completes the proof of Theorem 1.1.

    AcknowledgementsThe authors express much gratitude to Professor Huijiang Zhao for his support and advice.

    猜你喜歡
    張瀾
    清晨的太陽
    毛澤東與張瀾:肝膽相照共為國
    黨史縱覽(2022年3期)2022-03-22 03:01:20
    禮敬民盟“教育世家”奠基人——張瀾——紀念張瀾誕辰150周年
    華人時刊(2022年19期)2022-02-15 03:28:02
    張瀾:在開國大典上與毛澤東并肩而立
    周恩來與張瀾的忘年之交
    張瀾:拒用公款做長袍
    中外文摘(2020年8期)2020-04-30 05:31:38
    圖志
    紅巖春秋(2019年1期)2019-02-15 08:51:38
    張瀾:我怎能用公家的錢做長袍穿在自己身上
    文史博覽(2018年9期)2018-11-07 06:42:36
    張瀾:我怎能用公家的錢做長袍穿在自己身上
    張瀾與朱德的師生情
    百姓生活(2018年9期)2018-09-25 10:28:14
    国产探花在线观看一区二区| 69人妻影院| 悠悠久久av| 熟女少妇亚洲综合色aaa.| 国产亚洲欧美在线一区二区| 国产高潮美女av| 国产精品1区2区在线观看.| 两个人看的免费小视频| 精品久久久久久久久久久久久| 黄色片一级片一级黄色片| 欧美乱妇无乱码| 国产欧美日韩一区二区精品| 久久久久九九精品影院| 日本一二三区视频观看| 禁无遮挡网站| 嫩草影院入口| 啪啪无遮挡十八禁网站| 亚洲精品影视一区二区三区av| 一个人观看的视频www高清免费观看| 亚洲精华国产精华精| 日本a在线网址| 中国美女看黄片| 久9热在线精品视频| 午夜精品久久久久久毛片777| 女警被强在线播放| 97超级碰碰碰精品色视频在线观看| 操出白浆在线播放| 少妇人妻精品综合一区二区 | 午夜精品久久久久久毛片777| 国产精品美女特级片免费视频播放器| 成年人黄色毛片网站| 久久天躁狠狠躁夜夜2o2o| 午夜老司机福利剧场| 欧美成人a在线观看| 亚洲精品久久国产高清桃花| 毛片女人毛片| 给我免费播放毛片高清在线观看| 一进一出抽搐动态| 国产97色在线日韩免费| 熟女少妇亚洲综合色aaa.| 国产单亲对白刺激| 美女高潮的动态| 亚洲国产中文字幕在线视频| 法律面前人人平等表现在哪些方面| 亚洲男人的天堂狠狠| 制服人妻中文乱码| 可以在线观看毛片的网站| 欧美乱码精品一区二区三区| 国产精品亚洲美女久久久| 久久精品国产综合久久久| 又黄又粗又硬又大视频| 婷婷精品国产亚洲av| 日韩精品中文字幕看吧| 日韩中文字幕欧美一区二区| 国内精品美女久久久久久| 亚洲成人精品中文字幕电影| 亚洲激情在线av| 99在线人妻在线中文字幕| 免费高清视频大片| 狠狠狠狠99中文字幕| 精品一区二区三区视频在线 | 男人舔奶头视频| 久久精品国产自在天天线| 亚洲18禁久久av| 国产精品三级大全| 男女之事视频高清在线观看| 嫁个100分男人电影在线观看| 99热6这里只有精品| 欧美色欧美亚洲另类二区| 久久久国产成人精品二区| 精品99又大又爽又粗少妇毛片 | 欧美一区二区亚洲| 久久精品91无色码中文字幕| 欧美乱妇无乱码| 美女高潮的动态| 久久草成人影院| 天堂网av新在线| 亚洲成av人片在线播放无| 欧美不卡视频在线免费观看| 变态另类成人亚洲欧美熟女| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av香蕉五月| 日韩欧美三级三区| 国产精品爽爽va在线观看网站| 两个人视频免费观看高清| 亚洲精品影视一区二区三区av| 精品欧美国产一区二区三| 欧美丝袜亚洲另类 | 国产91精品成人一区二区三区| 精品久久久久久久毛片微露脸| 久久久久久久午夜电影| or卡值多少钱| 69人妻影院| 亚洲av免费高清在线观看| 亚洲欧美激情综合另类| 女人被狂操c到高潮| 中文在线观看免费www的网站| 床上黄色一级片| 亚洲精品国产精品久久久不卡| 观看美女的网站| 国产精品久久久久久人妻精品电影| 久久久国产成人免费| av片东京热男人的天堂| 亚洲不卡免费看| 国产激情欧美一区二区| 窝窝影院91人妻| 757午夜福利合集在线观看| 国产精品久久久久久久电影 | 国产欧美日韩一区二区精品| 麻豆国产av国片精品| 日本撒尿小便嘘嘘汇集6| 亚洲国产中文字幕在线视频| 九色国产91popny在线| 真人做人爱边吃奶动态| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人免费电影在线观看| 神马国产精品三级电影在线观看| 男人舔女人下体高潮全视频| 长腿黑丝高跟| 欧美成人性av电影在线观看| 18禁裸乳无遮挡免费网站照片| 在线免费观看不下载黄p国产 | 精品国产美女av久久久久小说| 哪里可以看免费的av片| 日本a在线网址| 午夜免费激情av| 亚洲男人的天堂狠狠| 国产精品99久久久久久久久| 精品一区二区三区视频在线观看免费| 最好的美女福利视频网| 18禁国产床啪视频网站| 欧美性感艳星| 亚洲黑人精品在线| 黄色片一级片一级黄色片| 久久伊人香网站| 国产激情偷乱视频一区二区| 91九色精品人成在线观看| 婷婷亚洲欧美| 日本免费一区二区三区高清不卡| 一a级毛片在线观看| 18禁国产床啪视频网站| 午夜亚洲福利在线播放| 国产精品嫩草影院av在线观看 | 婷婷精品国产亚洲av| 欧美一区二区精品小视频在线| 一a级毛片在线观看| 最近视频中文字幕2019在线8| 中亚洲国语对白在线视频| 老司机午夜十八禁免费视频| 国产高清三级在线| 一区二区三区国产精品乱码| 欧美不卡视频在线免费观看| 午夜福利在线在线| 亚洲成人中文字幕在线播放| 亚洲18禁久久av| 母亲3免费完整高清在线观看| 麻豆国产av国片精品| 老司机午夜十八禁免费视频| 精品一区二区三区av网在线观看| 久久精品国产亚洲av涩爱 | 久久久精品大字幕| 欧美日韩精品网址| 日本免费一区二区三区高清不卡| 亚洲18禁久久av| 一个人免费在线观看电影| 久久久久性生活片| 久久久精品大字幕| 免费av不卡在线播放| 亚洲国产精品sss在线观看| 久久九九热精品免费| 国产亚洲精品久久久com| 99久久综合精品五月天人人| 久久久久久久亚洲中文字幕 | 女同久久另类99精品国产91| 在线观看一区二区三区| 少妇的逼好多水| 亚洲成av人片免费观看| 亚洲精品乱码久久久v下载方式 | 亚洲精品国产精品久久久不卡| tocl精华| www.熟女人妻精品国产| 免费在线观看日本一区| 欧美日韩精品网址| 久久国产乱子伦精品免费另类| 亚洲av美国av| 男人的好看免费观看在线视频| 成年女人毛片免费观看观看9| 亚洲国产欧美网| 麻豆久久精品国产亚洲av| 精华霜和精华液先用哪个| 极品教师在线免费播放| 日日干狠狠操夜夜爽| 男人和女人高潮做爰伦理| 国产综合懂色| ponron亚洲| 欧美黑人欧美精品刺激| 老鸭窝网址在线观看| 最新在线观看一区二区三区| 中文字幕高清在线视频| 亚洲中文字幕一区二区三区有码在线看| 日韩大尺度精品在线看网址| 国产黄片美女视频| 亚洲国产精品sss在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清专用| 精品久久久久久成人av| 欧美日本视频| 日韩免费av在线播放| 亚洲精品美女久久久久99蜜臀| 免费人成视频x8x8入口观看| 好男人在线观看高清免费视频| 99久久成人亚洲精品观看| 亚洲国产精品合色在线| 日本与韩国留学比较| 99在线人妻在线中文字幕| 国产亚洲精品久久久com| 高清在线国产一区| 757午夜福利合集在线观看| 成人国产一区最新在线观看| 在线免费观看不下载黄p国产 | 国产精品三级大全| 一区二区三区免费毛片| 少妇的丰满在线观看| 久久精品国产综合久久久| 久久久久久九九精品二区国产| 亚洲国产欧洲综合997久久,| 两个人视频免费观看高清| 国产单亲对白刺激| 国产午夜精品论理片| 神马国产精品三级电影在线观看| 嫩草影院精品99| 亚洲最大成人手机在线| 欧美丝袜亚洲另类 | 久久精品91无色码中文字幕| 国产精品久久电影中文字幕| 亚洲一区二区三区不卡视频| 又粗又爽又猛毛片免费看| 国产精品日韩av在线免费观看| 国产精品美女特级片免费视频播放器| 99热精品在线国产| 午夜福利在线观看免费完整高清在 | 久久婷婷人人爽人人干人人爱| 欧美日韩乱码在线| 又爽又黄无遮挡网站| 韩国av一区二区三区四区| 无遮挡黄片免费观看| 丰满乱子伦码专区| tocl精华| 婷婷丁香在线五月| 欧美乱码精品一区二区三区| 日本与韩国留学比较| 最近最新中文字幕大全免费视频| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 久久欧美精品欧美久久欧美| 十八禁网站免费在线| 精品一区二区三区视频在线 | 亚洲18禁久久av| 日韩亚洲欧美综合| 99精品在免费线老司机午夜| 国产精品久久久久久久电影 | 中文字幕人妻熟人妻熟丝袜美 | 在线观看午夜福利视频| 精品日产1卡2卡| 色老头精品视频在线观看| 啦啦啦免费观看视频1| 母亲3免费完整高清在线观看| 精品人妻一区二区三区麻豆 | 中文资源天堂在线| 成人三级黄色视频| 中文字幕高清在线视频| av福利片在线观看| 九九久久精品国产亚洲av麻豆| 超碰av人人做人人爽久久 | 熟妇人妻久久中文字幕3abv| 日本与韩国留学比较| 麻豆国产97在线/欧美| 成人av在线播放网站| 啦啦啦韩国在线观看视频| 一进一出抽搐gif免费好疼| 女生性感内裤真人,穿戴方法视频| 午夜老司机福利剧场| 亚洲欧美日韩高清在线视频| 久久精品91蜜桃| 亚洲国产欧洲综合997久久,| 国产真实乱freesex| 一级毛片高清免费大全| 午夜福利在线在线| 国产一区二区亚洲精品在线观看| 黄色片一级片一级黄色片| 中文资源天堂在线| 国产乱人视频| 极品教师在线免费播放| 欧美黄色淫秽网站| 欧美激情久久久久久爽电影| 亚洲激情在线av| 高清毛片免费观看视频网站| 制服人妻中文乱码| 成年女人看的毛片在线观看| 老汉色av国产亚洲站长工具| bbb黄色大片| 国产精品99久久久久久久久| 欧美av亚洲av综合av国产av| 18禁美女被吸乳视频| 亚洲人成网站在线播| 久久国产精品影院| 亚洲熟妇熟女久久| 亚洲人成伊人成综合网2020| 国产精品乱码一区二三区的特点| 亚洲欧美日韩无卡精品| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 日本与韩国留学比较| 亚洲最大成人手机在线| www.熟女人妻精品国产| 国产乱人伦免费视频| 精品一区二区三区人妻视频| 亚洲熟妇熟女久久| a级毛片a级免费在线| 成年免费大片在线观看| 岛国在线观看网站| 丰满的人妻完整版| tocl精华| 小蜜桃在线观看免费完整版高清| 国产精品影院久久| 日韩av在线大香蕉| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 三级毛片av免费| 欧美+日韩+精品| 精品国产三级普通话版| 美女cb高潮喷水在线观看| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看| 观看美女的网站| svipshipincom国产片| 国内精品美女久久久久久| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 麻豆成人av在线观看| 国产精品日韩av在线免费观看| 国产97色在线日韩免费| 国产精品99久久99久久久不卡| 国产免费av片在线观看野外av| 欧美成狂野欧美在线观看| 亚洲成av人片在线播放无| 午夜a级毛片| 亚洲欧美日韩高清专用| 欧美精品啪啪一区二区三区| 精品乱码久久久久久99久播| 亚洲五月婷婷丁香| 可以在线观看毛片的网站| 亚洲国产精品999在线| 午夜福利在线观看吧| 级片在线观看| 熟女电影av网| 日韩欧美免费精品| 午夜精品一区二区三区免费看| 日韩欧美精品v在线| 日本一二三区视频观看| 搞女人的毛片| 久久99热这里只有精品18| 最后的刺客免费高清国语| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| 麻豆国产av国片精品| 特级一级黄色大片| 久久这里只有精品中国| 一级作爱视频免费观看| 少妇熟女aⅴ在线视频| 亚洲av美国av| 首页视频小说图片口味搜索| 欧美日韩综合久久久久久 | 99久国产av精品| 色哟哟哟哟哟哟| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 精品国产美女av久久久久小说| 国产精品美女特级片免费视频播放器| 91九色精品人成在线观看| 午夜免费观看网址| 国产69精品久久久久777片| 九九在线视频观看精品| 欧美一区二区亚洲| 观看免费一级毛片| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| 免费人成在线观看视频色| 最好的美女福利视频网| 免费看十八禁软件| 成人精品一区二区免费| 国产真人三级小视频在线观看| tocl精华| 国产成+人综合+亚洲专区| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 国语自产精品视频在线第100页| 国产黄a三级三级三级人| 蜜桃亚洲精品一区二区三区| 欧美区成人在线视频| 国产一区二区在线av高清观看| 精品日产1卡2卡| 久久精品人妻少妇| 久久天躁狠狠躁夜夜2o2o| 啦啦啦观看免费观看视频高清| 久久国产乱子伦精品免费另类| 青草久久国产| 特级一级黄色大片| 在线免费观看的www视频| 国产97色在线日韩免费| 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 看片在线看免费视频| 欧美bdsm另类| 三级毛片av免费| 欧美区成人在线视频| 国产精品精品国产色婷婷| 99精品在免费线老司机午夜| 国产伦精品一区二区三区视频9 | 中文字幕高清在线视频| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 香蕉丝袜av| 亚洲在线观看片| www日本黄色视频网| 国产精华一区二区三区| 欧美乱色亚洲激情| av中文乱码字幕在线| 精品免费久久久久久久清纯| 啦啦啦韩国在线观看视频| 国产精品av视频在线免费观看| 热99re8久久精品国产| 免费av不卡在线播放| 欧美日韩中文字幕国产精品一区二区三区| 欧美国产日韩亚洲一区| 国产三级在线视频| 男人的好看免费观看在线视频| 亚洲无线观看免费| 色吧在线观看| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| 男人和女人高潮做爰伦理| 又黄又粗又硬又大视频| 日本精品一区二区三区蜜桃| 国产97色在线日韩免费| 日本免费一区二区三区高清不卡| 嫁个100分男人电影在线观看| 亚洲欧美日韩高清在线视频| 精品人妻偷拍中文字幕| 日本 欧美在线| 九色国产91popny在线| 中文字幕av成人在线电影| 国产精华一区二区三区| 国产精品国产高清国产av| 噜噜噜噜噜久久久久久91| 怎么达到女性高潮| 国产精品av视频在线免费观看| 日本黄色片子视频| 又粗又爽又猛毛片免费看| 在线观看日韩欧美| 精品国产亚洲在线| 精品久久久久久久末码| 亚洲最大成人中文| 深爱激情五月婷婷| 九色国产91popny在线| 美女免费视频网站| 在线免费观看不下载黄p国产 | 老司机午夜十八禁免费视频| 黄色日韩在线| 欧美成人性av电影在线观看| 欧美绝顶高潮抽搐喷水| 亚洲无线在线观看| 99热这里只有是精品50| 日韩欧美一区二区三区在线观看| 性欧美人与动物交配| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 国产午夜福利久久久久久| 久久精品91无色码中文字幕| 国内精品一区二区在线观看| 国内毛片毛片毛片毛片毛片| 人妻丰满熟妇av一区二区三区| 精品国产美女av久久久久小说| 欧美另类亚洲清纯唯美| 日韩欧美精品v在线| 国产日本99.免费观看| 99久久久亚洲精品蜜臀av| 久久性视频一级片| 又黄又爽又免费观看的视频| 天美传媒精品一区二区| 国产熟女xx| 久久久国产精品麻豆| 精品久久久久久久人妻蜜臀av| 99在线人妻在线中文字幕| 亚洲在线观看片| 久久中文看片网| 久久久久精品国产欧美久久久| 此物有八面人人有两片| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 久久久色成人| 麻豆久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 日本黄色视频三级网站网址| 日韩高清综合在线| h日本视频在线播放| 久久6这里有精品| 国产探花极品一区二区| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 亚洲精品国产精品久久久不卡| 亚洲在线自拍视频| 日本精品一区二区三区蜜桃| xxx96com| 色综合亚洲欧美另类图片| 国产精品永久免费网站| 国产精品av视频在线免费观看| 久久久国产成人精品二区| 国产真实伦视频高清在线观看 | 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 人人妻人人澡欧美一区二区| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 国产精品一区二区三区四区免费观看 | 国产精品av视频在线免费观看| 亚洲男人的天堂狠狠| av欧美777| svipshipincom国产片| 搡女人真爽免费视频火全软件 | 三级毛片av免费| 两个人的视频大全免费| 国产亚洲av嫩草精品影院| 亚洲专区国产一区二区| 日韩av在线大香蕉| h日本视频在线播放| 精品久久久久久久末码| 欧美日韩综合久久久久久 | 亚洲人成网站高清观看| 亚洲国产欧洲综合997久久,| 最近最新中文字幕大全电影3| 97超视频在线观看视频| 国产在线精品亚洲第一网站| 99精品欧美一区二区三区四区| 级片在线观看| 中文字幕人妻丝袜一区二区| 可以在线观看毛片的网站| 国产精品爽爽va在线观看网站| 欧美日本视频| 天美传媒精品一区二区| 色老头精品视频在线观看| 天天躁日日操中文字幕| 国产老妇女一区| 亚洲五月婷婷丁香| 精品国产亚洲在线| 午夜精品在线福利| 国产爱豆传媒在线观看| 亚洲人成电影免费在线| 精品人妻偷拍中文字幕| 久久久久性生活片| 无遮挡黄片免费观看| 亚洲av电影不卡..在线观看| 国内揄拍国产精品人妻在线| 天堂影院成人在线观看| 色吧在线观看| 国内精品久久久久精免费| 麻豆国产97在线/欧美| 在线国产一区二区在线| 欧美日韩乱码在线| 757午夜福利合集在线观看| 成人午夜高清在线视频| 天天一区二区日本电影三级| 狠狠狠狠99中文字幕| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 91久久精品电影网| 在线免费观看不下载黄p国产 | 色综合欧美亚洲国产小说| 色综合亚洲欧美另类图片| 99热这里只有是精品50| 19禁男女啪啪无遮挡网站| 色综合婷婷激情| 免费大片18禁| 少妇高潮的动态图| 高清毛片免费观看视频网站| 成人av一区二区三区在线看| 亚洲人成伊人成综合网2020| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 久久中文看片网| 啦啦啦韩国在线观看视频| 乱人视频在线观看| 少妇熟女aⅴ在线视频| 国模一区二区三区四区视频| 麻豆久久精品国产亚洲av| 99热6这里只有精品| 91av网一区二区| 国产av一区在线观看免费| 波多野结衣高清作品| 免费一级毛片在线播放高清视频| 少妇裸体淫交视频免费看高清| 婷婷精品国产亚洲av| 日韩亚洲欧美综合| 亚洲精品一区av在线观看| 亚洲久久久久久中文字幕| 日本精品一区二区三区蜜桃| 国产激情偷乱视频一区二区| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 桃红色精品国产亚洲av| 91字幕亚洲|