• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE EVENTUALLY DISTANCE MINIMIZING RAYS IN MODULI SPACES?

    2018-07-23 08:42:42FeiSONG宋飛YiQI漆毅GuangmingHU胡光明
    關鍵詞:光明

    Fei SONG(宋飛)Yi QI(漆毅)Guangming HU(胡光明)

    LMIB,School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

    E-mail:songfei19860810@163.com;yiqi@buaa.edu.cn;18810692738@163.com

    Abstract The eventually distance minimizing ray(EDM ray)in moduli spaces of the Riemann surfaces of analytic finite type with 3g+n?3>0 is studied,which was introduced by Farb and Masur[5].The asymptotic distance of EDM rays in a moduli space and the distance of end points of EDM rays in the boundary of the moduli space in the augmented moduli space are discussed in this article.A relation between the asymptotic distance of EDM rays and the distance of their end points is established.It is proved also that the distance of end points of two EDM rays is equal to that of end points of two Strebel rays in the Teichmüller space of a covering Riemann surface which are leftings of some representatives of the EDM rays.Meanwhile,simpler proofs for some known results are given.

    Key wordsAugmented Teichmüller space;augmented moduli space;Strebel differential;EDM ray

    1 Introduction

    Let Xg,pbe a Riemann surface of genus g with p punctures(3g?3+p>0).Denote by Teich(Xg,p)and M(Xg,p)Teichmüller space and moduli space of Xg,p,respectively.

    Two holomorphic quadratic differentials q and q′on[Y,f]∈ Teich(Xg,p),or two measured foliations F(q)and F(q′)are called topologically equivalent,if there is a continuous self-mapping ? of Y homotopic to the identity mapping,which maps leaves of F(q)to leaves of F(q′)and its restriction to Y ? Γqis a homeomorphism of Y ? Γqonto Y ? Γq′,where Γqand Γq′are the sets of all critical points and critical trajectories of q and q′,respectively.Two holomorphic quadratic differentials q and q′are called similarly equivalent if they are topologically equivalent and the sets of subscripts of non-zero coefficients in the representation of measured foliations

    are coincide.Furthermore,if there exists λ>0 such that

    where

    the quadratic differential q and q′are called modularly equivalent.Here,i(f?(Gj),V(q))andare intersection numbers ofandwith the measured foliation V(q):=F(?q)and V(q′):=F(?q′),respectively.

    It is known that every Teichmüller geodesic ray r starting at some point[Y,f]∈Teich(Xg,p)is induced by some holomorphic quadratic differential q on[Y,f].A ray r is called Strebel if q is a Strebel differential[2].It is proved in[7]that every Strebel ray r has a limit r(∞)on the boundary of Teich(Xg,p)in the augmented Teichmüller spaceDenote bythe Teichmüller distance between the end points r(∞)and r′(∞)of r and r′.

    Given two Teichmüller geodesic rays r and r′in Teich(Xg,p),there are three possible situations as follows:They are called bounded if there is M>0 such thatM for any t≥ 0;they are called divergent if the conditionas t→ ∞;and they are called asymptotic if there is a choice of initial points of r and r′such that

    or equivalently,there is a∈R such that

    The following theorem is an important result for any two given Strebel rays.

    Theorem A([2]) Suppose that r and r′are Strebel rays in Teich(Xg,p)starting at r(0)=[Y,f]and r′(0)=[Y′,f′]with the initial unit norm holomorphic quadratic differentials q and q′on Y and Y′,respectively.Let F(q) ∈ MF(Y)and F(q′)∈ MF(Y′)be the corresponding measured foliations of q and q′,respectively.Ifare similarly equivalent,then

    Otherwise,

    Motivated by Theorem A,we introduce a notion of weakly similar equivalence of measured foliations and obtain the following result about moduli spaces.

    Theorem 1.1Suppose that[r]and[r′]are EDM rays in M(Xg,p)starting at[r](0)={Y,f}and[r′](0)={Y′,f′}with the Strebel differentials q and q′on Y and Y′,respectively.Let F(q)∈ MF(Y)and F(q′)∈ MF(Y′)be the corresponding measured foliations of q and q′,respectively.Ifandare weakly similarly equivalent,then

    Otherwise,

    Let Xg=Xg,0.It is known that every holomorphic finitely unramified coveringof a compact Riemann surfaceonto a compact Riemann surface Xgwith genus g≥2 induces an isometric embeddingBecause of Theorem 4.1,we can compare the distance of the end points of two EDM rays in M(Xg)and the end points of two Strebel rays inwhich are the images of representatives of the EDM rays by Φπ.

    Theorem 1.2Suppose that[r]and[r′]are EDM rays in M(Xg)starting at[r](0)={R,f}and[r′](0)={R′,f′}with the Strebel differentials q and q′on R and R′,respectively.Let F(q) ∈ MF(R)andbe the corresponding foliations q and q′,respectively.Ifandare weekly modularly equivalent,then there exist two representatives r ∈ [r]and r′∈ [r′]such that

    2 Preliminaries

    Let Xg,pbe a connected and finite analytic type Riemann surface of genus g with p punctures(3g?3+p>0).A marked Riemann surface modeled on Xg,pis a tuple(Y,f),where Y is a Riemann surface andis a quasiconformal mapping.Two marked Riemann surfaces(Y1,f1)and(Y2,f2)are Teichmüller equivalent if there exists a conformal mapping h:Y1→Y2such that h is homotopic toThe Teichmüller space Teich(Xg,p)can be defined as

    Teich(Xg,p)={[Y,f]:(Y,f)is a marked Riemann surface modeled on Xg,p},

    where[Y,f]is the Teichmüller equivalence class containing(Y,f).There is a natural complete metricon Teich(Xg,p)called Teichmüller metric,which is defined as

    where the in fimum takes over all quasiconformal mappings h:Y1→ Y2homotopic toand K(h)is the maximal dilatation of h(for the details,see[6,12,16]).

    The mapping class group Mod(Xg,p)is defined as the group of homotopic equivalent classes of orientation-preserving homeomorphism of Xg,p.Two orientation preserving homeomorphisms φ,? :Xg,p→ Xg,pare equivalent if φ ? ??1is isotopic to the identity map on Xg,p.As Mod(Xg,p)acts ondiscontinuously and isometrically,we naturally obtain the quotient space M(Xg,p)as the equivalence classes of Teich(Xg,p)by the action of Mod(Xg,p).Here,denote{Y,f}by a element of M(Xg,p).We call M(Xg,p)the moduli space of Xg,p.And it has the induced metric

    The augmented Teichmüller spaceis composed by all equivalence classes[Y,f]of marked Riemann surfaces and marked noded Riemann surfacesA marked noded Riemann surfacemodeled on Xg,pconsists of a noded Riemann surface[7]and a deformationHere,a deformation is a mapping which contracts some disjoint loops on Xg,pto points(the nodes of)and which is a homeomorphism except these loops.Two marked noded Riemann surfacesandare equivalent if there exists a biholomorphic mappingsuch that h is homotopic toA homeomorphismis called bi-holomorphic if its restriction to every component ofis bi-holomorphic onto a component of

    There is a naturally general metricon augmented Teichüller spaceThe distance of two points inmay be∞.It is well-known thatis the partial compactification of the Teichmüller space Teich(Xg,p).The subset ofconsisting of all equivalence classes containing marked noded Riemann surfaces is called the boundary of the augmented Teichmüller spaceWe refer[1,2]for more details on the augmented Teichmüller space.

    The orbit space

    is called the augmented moduli space of Xg,p.It is proved in[1]that the moduli spacewith the quotient topology is compact.

    It is well-known that for two points[Y1,f1]and[Y2,f2]in Teich(Xg,p),there exists an unique geodesic segment which connects[Y1,f1]and[Y2,f2].There is an equivalent description that for a quasiconformal map f:Y1→Y2,there exists an unique Teichmüller mapwhich is homotopic toThe Beltrami differentialμf0can be represented bywhere q is some integrable holomorphic quadratic differential on Y1and 0≤k<1[16].

    A holomorphic quadratic differential q[15]on a Riemann surface Xg,pis the form gdz2in every coordinate neighborhood(U,z),where g is a holomorphic function on U.It is called integrable if the normRRis finite.In this article,the quadratic differential is represented as the integrable holomorphic quadratic differential.A smooth path z=γ(t)on Xg,pis a horizontal trajectory of q ifAll horizontal trajectories of q are sorted into three types:critical trajectories,which are horizontal trajectories joining critical points of q;closed trajectories;recurrent trajectories,which are horizontal trajectories dense on the subsurface of Xg,psurrounded by critical trajectories.Here,critical points of a holomorphic quadratic differential q are zeros or first order poles at a puncture of q.A holomorphic quadratic differentialon the surface Xg,pis called Strebel differential,if its non-closed trajectories cover a set of measure zero[13].There exist the special Strebel differentials with only onecylinder[14].

    Let(F,μ)be the measured foliation on a compact Riemann surface Xg,p.Here,F is represented as the foliation andμis transverse measure.Denote by S the set of all homotopy classes of non-trivial and non-peripheral simple closed curves on Xg,p.The intersection number of any measured foliation(F,μ)and any α ∈ S is defined as follows:

    where the in finimum is taken over all simple closed curves α′homotopic to α.Two measured foliations(F1,μ1)and(F2,μ2)are called equivalent if

    holds for all α ∈ S.Let[F,μ]be the equivalent class of(F,μ)and let MF(Xg,p)be the set of all equivalent classes of measured foliations on Xg,p(for detail,see[6]).

    Every quadratic differential q on Xg,phas a natural parameter z=x+iy except finite number of zeros and one order poles.The measured foliation F(q)=(F,μ)of q is the horizontal foliation of q with transverse measureμ=|dx|,where the leaves of F(q)are locally defined by y=constant.It is proved by Hubbard and Masur[8]that every element[F,μ]incontains a measured foliations on Xg,pinduced by an unique quadratic differential q on Xg,p.

    For a given holomorphic quadratic differential q on a Riemann surface Xg,p,let Γqbe the set of all critical points and critical trajectories of q.Then,the set Xg,p?Γqare composed by two kinds of domains:annuli which are swept out by closed homotopic trajectories of q,or minimal domains which are made up of ergodic recurrent trajectories of q(for details,see[9]).If q has an annulus A in Xg,p?Γq,the restriction to A of the measured foliation F(q)of q can be represented as F(q)|A=bγ,where γ ∈ S is a simple closed curve,and b>0 is the vertical length of A.If there is a minimal domain M in Xg,p?Γq,the restriction to M of F(q)can be written as F(q)=bβ,where β is an ergodic curve.Therefore,the measured foliation F(q)of q can be written as

    where Gjare simple closed curves or ergodic curves which are not homotopic to each other and the intersection number of any two curves is 0,and bi>0 when Giis simple,bi≥0 when Giis ergodic.If a quadratic differential is Strebel if the measured foliation F(q)of q can be written as

    where Gjare simple closed curves[13].In[17],the generalised modulus of Gjis given as follows:

    where i(Gj,V(q))is the intersection number of Gjwith the measured foliation V(q):=F(?q).

    The measured foliations F(q)and F(q′)of quadratic differentials q and q′are called topologically equivalent,if there is a continuous mapping of Xg,ponto Xg,phomotopic to the identity mapping of Xg,psuch that the restriction of ? to Xg,p?Γqis a homeomorphism of Xg,p?Γqonto Xg,p?Γq′and maps leaves of F(q)to leaves of F(q′).They are called similarly equivalent if q and q′are topologically equivalent and the sets of subscripts of non-zero coefficients in the representation of measured foliations

    are coincide.

    It is clear that every homeomorphism f:Xg,p→Y induces a homeomorphism

    which preserves transverse measures and i(f?(μ),f?(ν))=i(μ,ν)for any

    Let F(q)and F(q′)be the measured foliations of quadratic differentials q and q′on[Y,f]andrespectively.Ifandare similarly equivalent,then the measured foliations can be represented as

    Consequently,

    Two quadratic differential q and q′are called modularly equivalent if there exists λ >0 such that

    where

    3 Asymptotic Relationship Between Strebel Rays in Teich(X)

    The relationships between Strebel rays are important in the study of Teichmüller space.Some notions and known results on the relationships between Strebel rays are recalled,and simple proofs of some known results are also given in this section.

    It is clear that a geodesic ray r starting at[Y(t),f(t)]is deduced by the mapping

    where the Beltrami differentialA ray r is called Strebel if q is a Strebel[3].Two Teichmüller geodesic rays r,r′on Teich(Xg,p)are called bounded if there is M>0 such thatfor any t≥ 0.They are called divergent if the conditionasholds.They are asymptotic[10]in Teich(Xg,p)if there is a choice of basepoints r(0),r′(0)so that

    in other words,for the given rays r(t),r′(t),there is a ∈ R such that

    The boundary behavior of Strebel rays on Teichmüller space is also known.Let any Strebel rayin Teich(Xg,p)start at r(0)=[Y,f]with the initial Strebel differential q on Y.It converges to a pointinas t→ ∞ [7].

    Let ri(i=1,2)be the Strebel ray in Teich(Xg,p),which starts atwith the initial Strebel differentials qion Yi.If the pull-back measured foliationsandare similarly equivalent,then the measured foliations are written aswhere γjare simple closed curves.There exists a homeomorphismhomotopic to identity.The mappingmaps the core curves f1(γj)to the core curves f2(γj).Set r1(∞)=andLetbe the components ofandsuch thatfor λ=1,···,Λ.The Teichmüller distance between r1(∞)and r2(∞)is defined by

    where the in fimum ranges over all quasiconformal mappingssuch that hλis homotopic to.Otherwise,

    Now,we give some corollaries of Theorem A below,which are of independent meanings.One of them is already known but the proof here is new and the others are new.

    Corollary 3.1Let r,r′be the Strebel rays on Teich(Xg,p)starting at r(0)=[Y,f],r′(0)=[Y′,f′]with the initial unit norm holomorphic quadratic differentials q,q′on Y,Y′,respectively.The measured foliationsandare corresponding to q,q′,respectively.Suppose thatare modularly equivalent.Then,there exists b∈R such that the equation

    ProofAs the measured foliationsare modularly equivalent,by Theorem A,we obtain the following equation

    The module of every cylinder of Strebel differential stretches δ times or shrinks δ times,when the Strebel differential occurs deformation by Teichmüller deformation.Therefore,there exists the quadratic differentials q′(b)at the point r′(b)(b ∈ R)such that λ is equal to 1.Therefore,

    Corollary 3.2([3]) For any two Strebel rays r and r′,they are asymptotic if and only if r,r′are modularly equivalent and r(∞)=r′(∞).

    ProofBy definition,it is obvious that r and r′are modularly equivalent and r(∞)=r′(∞)if they are asymptotic.On the other hand,by Corollary 3.1,if r and r′are modularly equivalent,then

    Thus,r(∞)=r′(∞)tells us that r and r′are asymptotic. ?

    Corollary 3.3For any two one-cylinder Strebel rays r and r′,if they are asymptotic,then r(∞)=r′(∞).Conversely,for a Riemann surfacewith 1 node P,if there exist two one-cylinder Strebel rays r,r′which converge tothey are asymptotic.

    ProofIf two one-cylinder Strebel rays r,r′are asymptotic,by Corollary 3.2,then r(∞)=r′(∞).Conversely,for a Riemann surfacewith 1 node P,there exists the one-cylinder Strebel ray r starting at r(0)=[Y,f]which has the initial unit norm Jenkins-Strebel differential q with the same core curve γ homotopic to the puncture P on Y by[5].So,we getwith.If there exists the equation r(∞)=r′(∞),then γ is homotopic to γ′.Because the rays r,r′are modularly equivalent,they are asymptotic. ?

    4 Asymptotic Relationship Between EDM Rays in M(Xg,p)

    In this section,we discuss the asymptotic relationship between EDM rays in the moduli space M(Xg,p).First,we recall the notion of eventually distance minimizing ray and introduce the definitions of weakly similar equivalence and weakly modular equivalence for quadratic differentials.

    Two quadratic differentials q and q′on Y ∈ M(Xg,p)are called weakly similarly equivalent if there is a continuous self mapping ?:Y →Y of Y onto itself,which maps leaves of F(q)to leaves of F(q′)and its restriction to Y ? Γqis a homeomorphism of Y ? Γqonto Y ? Γq′,and the measured foliations F(q)and F(q′)of q and q′can be represented as

    respectively,where ?(Gj)is homotopic tofor j=1,···,k.

    Two quadratic differential q and q′on Y ∈ M(Xg,p)are called weakly modularly equivalent if they are weakly similarly equivalent and there exists λ>0 such that

    where

    Two EDM rays[r]and[r′]in M(Xg,p)are called bounded if there is M>0 such that

    They are called divergent if

    They are called asymptotic if there is a choice of basepoints[r](0)and[r′](0)so that

    equivalently,there is a∈R such that

    Now,we can state one of our main results.

    Theorem 4.1Suppose that[r]and[r′]are EDM rays in M(Xg,p)starting at[r](0)={Y,f}and[r′](0)={Y′,f′}with the Strebel differentials q and q′on Y and Y′,respectively.Letandbe the corresponding measured foliations of q and q′,respectively.Ifandare weakly similarly equivalent,then

    Otherwise,

    ProofIfandare weakly similarly equivalent,then there is a continuous mapping ? of Xg,ponto itself,which maps leaves ofto leaves ofand its restrictionis a homeomorphism,such thatandcan be represented as

    where ?(Gj)is homotopic to,for j=1,···,k.

    The mapping ? can be decomposed by a representational element ψ ∈ Mod(Xg,p)and a continuous mapping φ of Xg,ponto Xg,psatisfied with ? = φ ? ψ,where ψ(Gj)is homotopic tofor j=1,···,k and φ is homotopic to the identity mapping.As the modular group is discrete,there is a uniform bound of the order of any group stabilizing any point of Teich(Xg,p).Therefore,there are finite Strebel rays r in the equivalent class of[r].

    Let r1be a representative element of a EDM ray[r]in M(Xg,p).For any representative r2of the EDM ray[r],there exists a element[η]∈ Mod(Xg,p)such that a representative element η of[η]makes η??r1(t)=r2(t)for all t≥ t1,where t1is sufficient lager positive number.If[r]and[r′]are weakly similarly equivalent,we can choose two representative elements r1andof[r]and[r′],respectively.There are two conditions when we choose the representative elements r1andIn the first case,r1andare not similarly equivalent,then

    In the second case,r1andare similarly equivalent,andis finite.It is easy to be obtained that the limit metric of the second case is the minimal,therefore,

    As

    On the other hand,for any two representations r1andof[r]and[r′]are not similarly equivalent in Teich(Xg,p),the equation

    holds.By the definition of the metric of M(Xg,p),we obtain

    By Theorem 4.1,we deduce the following corollary 4.2,which can derive a result of Farb and Masur[5]easily.

    Corollary 4.2Suppose that[r]and[r′]are EDM rays in M(Xg,p)starting at[r](0)={Y,f}and[r′](0)={Y′,f′}with the Strebel differentials q and q′on Y and Y′,respectively.Letandbe the corresponding measured foliations of q and q′.Ifandare weakly modularly equivalent,then there exists b∈R such that

    ProofIfare modularly equivalent in M(Xg,p),then by Theorem 4.1,we have

    By the definition of modular equivalence,we haveAs t varies continuously when the rays go closer to the boundary of moduli space M(Xg,p).We can choose b∈R such that the EDM ray r′in bλ =1 holds for each cylinder.Therefore,we obtain

    Corollary 4.3([5]) For any two EDM rays[r],[r′],they are asymptotic if and only if[r],[r′]are weakly modularly equivalent and[r](∞)=[r′](∞).

    ProofIf they are asymptotic,by the definition,it is obvious that r and r′are modularly equivalent and r(∞)=r′(∞).On the other hand,by Corollary 4.2,if r and r′are modularly equivalent,there exists b∈R such that

    And it is easy to be get that r and r′are asymptotic by r(∞)=r′(∞).

    5 The Relation of the Distance Between End Points of EDM Rays in M(Xg,0)and End Points of Strebel Rays in

    Suppose that Xg=X(g,0)is a compact Riemann surface with genus g>2.Letbe a compact Riemann surface which is the finitely unramified covering surface of X(g,0)with holomorphic covering mappingFor every marked Riemann surface(Y,f)of Xg,there is marked Riemann surfacesuch that the following diagram

    are commutative.So,we can define a mappingof the space of marked Riemann surfaces of Xginto that ofby sending(Y,f)to,which induces a mapping

    naturally.

    By the lifting theorem of maps,we have the following Lemma 5.1,which is parallel to that by Kra in terms of fundamental groups of Riemann surfaces.

    Lemma 5.1([11]) If the mappingis the finitely unramified holomorphic covering mapping as above,then π can induce a naturally isometric embedding Φπ:Teich(Xg) →

    ProofAs Xgis a compact Riemann surface,the covering transformation group G of the upper half-plane H over Xgis finitely generated Fuchsian group and is of the first kind.The mappingis the finitely unramified covering,therefore the covering transformation groupof the upper half-plane H overis a finite index subgroup of G.From[11],we know there exists a naturally isometric embedding?

    Now,we prove that the images of Strebel rays in Teichmüller space Teich(Xg)under isometric embedding Φπare Strebel rays inPrecisely,we prove that the lifts of Strebel differentials in Teich(Xg)are still Strebel differentials in.This is the following Lemma 5.2.

    Lemma 5.2A holomorphic quadratic differentialon the surface Y is Strebel differential if and only if the lifting differentialof q on the surfaceis Strebel differential.

    ProofIt is well known that the trajectory of holomorphic quadratic differential is closed or dense. Suppose that q is a strebel differential on the compact Riemann surface Y ∈Teich(Xg).We consider the case that α :[0,1] → Y satisfied with α(0)= α(1)=p0is a closed trajectory of q.For an arbitrary lifting pointofis the lifting curve of α with the initial pointandis another lifting point of p0.The curveis a lift of α with the initial point.As the covering degree is finite,the curve must go back toafter finite times and is the simple closed curve.We can see that the pre-image set of α are the combination of disjoint and closed curves.So,the pre-image set of the closed trajectories of holomorphic quadratic differential q are closed trajectories onFrom the definition of Strebel differential,we know its non-closed trajectories cover a set of measure zero.The pre-image set of the set of non-closed trajectories of q are finite superposition of the set of non-closed trajectories of q.So,the measure of the set of non-closed trajectories ofis zero.We prove that the lift of the Strebel differential q is Strebel differential.

    Then,we obtain the connection of the similar equivalence between the quadratic differentials on the bottom surface and the quadratic differentials on the lifting surface as follows:

    Lemma 5.3Let q and q′be two holomorphic quadratic differentials on Y and Y′,respectively.If the pull-back measured foliationsandare similar equivalence and they are represented asthen for the holomorphic mappingthe measure foliations of the lifting quadratic differentialsandandare similar equivalence and their pull-back measured foliations can be written asAnd we setandfor j=1,···,k and i=1,···,nj.Then,it follows thatandi=1,···,nj.

    The following result tells that the quality of modular equivalence remains unchanged with the process of lifting:

    Corollary 5.4The measured foliations of two holomorphic quadratic differentials q on Y and q′on Y′are modularly equivalent.Then,the lifting quadratic differentialsonandonare modularly equivalent.

    ProofIf the measured foliations of q,q′are modularly equivalent,so there exists λ >0 such thatfor any j=1,···,k by the proof of Lemma 5.3.It is also easy to knowfor any i=1,···,nj,j=1,···,k.So,the quadratic differentialsare modularly equivalent by the proof of Lemma 5.3. ?

    Here,denote by Mπ(Xg)the quotient spaceBy Lemma 5.1,the spaces Teich(Xg)and Φπ(Teich(Xg))are isometric isomorphism.And the following lemma gives the relationship betweenand Mod(Xg).Denote by πg(Xg,x0)andthe fundamental groups of Xgandfixed the initial points.As there exist some elements in the modular group Mod(Xg)which can not be lifted ontobe the elements in the subgroup of[4],the EDM rays in M(Xg)may not be embedded in Mπ(Xg).However,we have the following lemma.

    Lemma 5.5([4]) If the mappingis a finite-sheeted,un-branched covering.For any homeomorphism f:Xg→Xg,there exists k≥1 such that fkhas a lift on

    Thanks to Lemma 5.5,we obtain the following result.

    Lemma 5.6For any element[f]∈Mod(Xg),there exists k≥1 such thatis an elementwhereis a lift of fk.

    ProofIt is easy to get the result by Lemma 5.5.The detail of the proof is omitted. ?

    Corollary 5.7For any two representational Strebel rays r1,r2of[r]∈M(Xg)(We say two Strebel rays are equivalent if there is a element[η] ∈ Mod(Xg)and t1>0 such that[η]?? r1(t)=r2(t)holds for all t ≥ t1),there exists k ≥ 1 such that the raysand Φπ(r2)are equivalent,that is,they are two representational Strebel rays of an element in Mπ(Xg).

    ProofFor any two representational Strebel raysthere is a element[η]∈ Mod(Xg)and t1>0 such thatholds for all t ≥ t1.As there exists k≥1 such thatis an elementLemma 5.6,using the commutative diagram as follows:

    we get

    Next,we can compare the distance between the end points of of two EDM rays in M(Xg)and the end points of two Strebel rays in Teich(eX)as follows.

    Theorem 5.8Let[r],[r′]be EDM rays in M(Xg)starting at[r](0)={R,f},[r′](0)={R′,f′}with the Strebel differentials q and q′on R and R′,respectively.The measured foliationsare corresponding to q,q′,respectively.Ifare weakly modularly equivalent in M(Xg,0),there exist two representational elements r and r′such that the rays Φπ(r)and Φπ(r′)satisfy with the equation

    ProofThe measured foliationsare weakly modularly equivalent in M(Xg),therefore,according to Corollary 4.2,there exists b∈R such that the equation

    From the proof of Theorem 4.1,there exist two representational elements r and r′of[r]and[r′]such that

    Therefore,the equation

    holds.According to Lemma 5.1,we get the equation

    As the measured foliations of r and r′are modularly equivalent in Teich(Xg),according to Corollary 5.4,the measured foliations ofandinducing the raysandare modularly equivalent in.From Corollary 3.1,it holds that

    Therefore,

    Corollary 5.9For a representational elementwith one node,suppose that there exist two one-cylinder Strebel EDM rays[r],[r′]converging toThen,there exist two representational elements r and r′such that the Strebel rays Φπ(r)and Φπ(r′)satisfy with

    ProofAs[r],[r′]converge tothe EDM rays[r](∞)=[r′](∞).As two one-cylinder Strebel EDM rays[r],[r′]converge to˙Y,they are weakly modularly equivalent in M(Xg,0).Therefore,they are asymptotic.According to Theorem 5.8,there exist two representational elements r and r′such that the Strebel rays Φπ(r)and Φπ(r′)satisfy with the equation

    猜你喜歡
    光明
    遇見光明
    姚玉峰:給3萬人帶來光明
    杭州(2022年7期)2022-05-07 23:57:05
    砥礪前行光明路 人民軍隊忠于黨
    政工學刊(2021年7期)2021-07-10 07:51:30
    黑暗中的光明
    黑暗中的光明
    中英雙語閱讀 假如給我三天光明
    學生天地(2020年25期)2020-06-01 02:16:30
    秋天 一個絢麗、光明的季節(jié)
    文苑(2019年22期)2019-12-07 05:28:58
    僑愛執(zhí)燈 復刻光明
    華人時刊(2019年23期)2019-05-21 03:31:32
    用心呵護光明
    海峽姐妹(2018年11期)2018-12-19 05:18:12
    走向光明
    劍南文學(2016年11期)2016-08-22 03:33:42
    国产欧美亚洲国产| 久久这里只有精品19| 国产激情久久老熟女| 日韩免费高清中文字幕av| 激情视频va一区二区三区| 日本91视频免费播放| 视频区欧美日本亚洲| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 亚洲自偷自拍图片 自拍| 婷婷色av中文字幕| 九草在线视频观看| 亚洲国产av新网站| 好男人视频免费观看在线| 免费在线观看影片大全网站 | 久久中文字幕一级| 国产欧美日韩综合在线一区二区| 91老司机精品| 狠狠精品人妻久久久久久综合| 欧美黑人欧美精品刺激| 国产熟女午夜一区二区三区| 国产免费视频播放在线视频| av线在线观看网站| 黄色一级大片看看| 观看av在线不卡| 天堂8中文在线网| 国产精品国产三级国产专区5o| av欧美777| 国产免费福利视频在线观看| 最新在线观看一区二区三区 | 亚洲精品美女久久久久99蜜臀 | 亚洲av成人不卡在线观看播放网 | 国产成人av教育| 久久99热这里只频精品6学生| 久久精品久久久久久久性| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| 日韩av免费高清视频| 欧美性长视频在线观看| 一区福利在线观看| 日韩大码丰满熟妇| 黄色a级毛片大全视频| 一区二区三区激情视频| 日韩,欧美,国产一区二区三区| 久久九九热精品免费| 搡老乐熟女国产| 狂野欧美激情性bbbbbb| 亚洲视频免费观看视频| 亚洲天堂av无毛| 亚洲精品久久午夜乱码| 欧美亚洲日本最大视频资源| 五月开心婷婷网| 精品国产乱码久久久久久小说| 脱女人内裤的视频| 新久久久久国产一级毛片| 午夜福利在线免费观看网站| 日韩制服骚丝袜av| 亚洲国产日韩一区二区| 丝袜人妻中文字幕| 日日爽夜夜爽网站| 飞空精品影院首页| 亚洲精品美女久久久久99蜜臀 | 丝袜喷水一区| 精品国产乱码久久久久久男人| 久久久久久亚洲精品国产蜜桃av| 夜夜骑夜夜射夜夜干| 午夜精品国产一区二区电影| 成在线人永久免费视频| 大片电影免费在线观看免费| www日本在线高清视频| 日韩制服丝袜自拍偷拍| 日本五十路高清| 天天躁狠狠躁夜夜躁狠狠躁| avwww免费| h视频一区二区三区| 男女无遮挡免费网站观看| 18禁国产床啪视频网站| 精品国产一区二区三区久久久樱花| 欧美成狂野欧美在线观看| 婷婷色综合大香蕉| 99热网站在线观看| 国产精品欧美亚洲77777| 亚洲欧美日韩高清在线视频 | 亚洲五月婷婷丁香| 日本午夜av视频| 精品一区二区三区av网在线观看 | 高清不卡的av网站| 国产野战对白在线观看| cao死你这个sao货| 国产一区二区 视频在线| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜一区二区| 亚洲国产av新网站| 老司机在亚洲福利影院| 宅男免费午夜| 国产精品秋霞免费鲁丝片| 亚洲av片天天在线观看| 午夜福利视频在线观看免费| 成年美女黄网站色视频大全免费| 夫妻午夜视频| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 777米奇影视久久| 亚洲欧美一区二区三区国产| 国产91精品成人一区二区三区 | 一级,二级,三级黄色视频| 成人影院久久| 天天躁夜夜躁狠狠躁躁| 男女免费视频国产| 国产片内射在线| 久久久精品区二区三区| 美女高潮到喷水免费观看| 极品人妻少妇av视频| 日韩免费高清中文字幕av| 欧美97在线视频| 天天躁夜夜躁狠狠久久av| 国产日韩一区二区三区精品不卡| 自线自在国产av| 欧美日韩亚洲综合一区二区三区_| 亚洲精品乱久久久久久| 建设人人有责人人尽责人人享有的| 91精品三级在线观看| bbb黄色大片| 午夜91福利影院| 在线观看一区二区三区激情| 十八禁人妻一区二区| 久久99热这里只频精品6学生| 韩国精品一区二区三区| 日韩一本色道免费dvd| 两个人看的免费小视频| 十八禁高潮呻吟视频| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 男人舔女人的私密视频| av网站免费在线观看视频| 成人影院久久| 国产日韩欧美亚洲二区| 视频在线观看一区二区三区| 大片免费播放器 马上看| 欧美av亚洲av综合av国产av| 日韩大码丰满熟妇| 一级毛片我不卡| 国产淫语在线视频| 免费人妻精品一区二区三区视频| netflix在线观看网站| 国产免费又黄又爽又色| 亚洲色图 男人天堂 中文字幕| 少妇猛男粗大的猛烈进出视频| videos熟女内射| 亚洲一码二码三码区别大吗| 久久综合国产亚洲精品| 久久久国产欧美日韩av| 91国产中文字幕| 国产成人精品久久二区二区免费| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 啦啦啦在线免费观看视频4| av在线app专区| 久久久亚洲精品成人影院| xxxhd国产人妻xxx| 国产免费又黄又爽又色| 精品熟女少妇八av免费久了| 无限看片的www在线观看| 日韩欧美一区视频在线观看| 日本av免费视频播放| 丝袜美足系列| 国产91精品成人一区二区三区 | 观看av在线不卡| 最近手机中文字幕大全| 亚洲第一青青草原| 亚洲精品乱久久久久久| 飞空精品影院首页| 亚洲国产欧美一区二区综合| 精品少妇内射三级| 1024香蕉在线观看| 国产成人91sexporn| a 毛片基地| www.999成人在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 久久av网站| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 99re6热这里在线精品视频| 操美女的视频在线观看| 超碰97精品在线观看| 最近中文字幕2019免费版| √禁漫天堂资源中文www| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 丁香六月天网| 精品视频人人做人人爽| 国产精品久久久久久人妻精品电影 | 美女午夜性视频免费| 只有这里有精品99| a级毛片黄视频| 亚洲成av片中文字幕在线观看| 欧美黄色淫秽网站| 又紧又爽又黄一区二区| 你懂的网址亚洲精品在线观看| 国产日韩一区二区三区精品不卡| 国产一区有黄有色的免费视频| 老鸭窝网址在线观看| www.精华液| 国产在视频线精品| 亚洲av成人不卡在线观看播放网 | 在线观看免费视频网站a站| 欧美日韩亚洲综合一区二区三区_| 亚洲人成电影免费在线| 国产1区2区3区精品| 午夜激情av网站| 国产成人系列免费观看| 国产男女超爽视频在线观看| 只有这里有精品99| av天堂久久9| 狂野欧美激情性bbbbbb| 亚洲专区中文字幕在线| 岛国毛片在线播放| 亚洲美女黄色视频免费看| www.精华液| 老司机影院成人| tube8黄色片| 欧美日韩综合久久久久久| 精品久久久久久电影网| 精品少妇久久久久久888优播| 啦啦啦啦在线视频资源| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| av又黄又爽大尺度在线免费看| 老司机深夜福利视频在线观看 | 一区二区三区精品91| 高清欧美精品videossex| 久久av网站| xxx大片免费视频| 老司机靠b影院| 亚洲av日韩在线播放| 中文字幕av电影在线播放| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 国产黄色视频一区二区在线观看| 精品久久久久久久毛片微露脸 | 亚洲欧美一区二区三区久久| 国产精品九九99| 一级毛片电影观看| 国产免费又黄又爽又色| 成人国产av品久久久| 亚洲,一卡二卡三卡| 亚洲国产看品久久| 亚洲免费av在线视频| 蜜桃国产av成人99| 这个男人来自地球电影免费观看| 欧美精品啪啪一区二区三区 | 国产精品 国内视频| 99九九在线精品视频| 国产成人一区二区在线| 久久ye,这里只有精品| 少妇精品久久久久久久| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 亚洲精品日韩在线中文字幕| 精品福利观看| 久久精品国产亚洲av高清一级| 丁香六月欧美| 久久毛片免费看一区二区三区| 最新在线观看一区二区三区 | 嫁个100分男人电影在线观看 | 在线观看免费日韩欧美大片| 黄色视频在线播放观看不卡| 日本a在线网址| 91精品伊人久久大香线蕉| 黄片小视频在线播放| 日韩中文字幕视频在线看片| 精品人妻1区二区| 欧美日韩视频精品一区| 亚洲午夜精品一区,二区,三区| 亚洲av日韩精品久久久久久密 | 日韩电影二区| 亚洲美女黄色视频免费看| 美女福利国产在线| 捣出白浆h1v1| 欧美黄色淫秽网站| 国产精品一二三区在线看| 在线看a的网站| 亚洲国产欧美网| 男女床上黄色一级片免费看| 欧美大码av| 国产又爽黄色视频| 国产成人欧美在线观看 | www.精华液| av在线老鸭窝| 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩福利视频一区二区| 晚上一个人看的免费电影| 国产成人影院久久av| 欧美 亚洲 国产 日韩一| 久久精品人人爽人人爽视色| 91精品国产国语对白视频| 熟女av电影| 男女边吃奶边做爰视频| 午夜免费观看性视频| 十分钟在线观看高清视频www| 晚上一个人看的免费电影| 十八禁人妻一区二区| a 毛片基地| 久久国产精品大桥未久av| 国产精品 欧美亚洲| 色视频在线一区二区三区| 免费在线观看日本一区| 国产黄色视频一区二区在线观看| 黑人巨大精品欧美一区二区蜜桃| 色94色欧美一区二区| 少妇人妻久久综合中文| 婷婷色综合www| 欧美黑人精品巨大| 亚洲av国产av综合av卡| 美女扒开内裤让男人捅视频| 亚洲五月色婷婷综合| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄| 一级毛片女人18水好多 | 欧美精品人与动牲交sv欧美| 久久国产精品人妻蜜桃| 中文字幕亚洲精品专区| 国产成人精品在线电影| 91麻豆av在线| 亚洲欧美日韩另类电影网站| 国产三级黄色录像| 高潮久久久久久久久久久不卡| 午夜免费男女啪啪视频观看| 精品久久蜜臀av无| 精品一区二区三卡| 中文精品一卡2卡3卡4更新| 亚洲少妇的诱惑av| 欧美黄色淫秽网站| 国产在线观看jvid| 亚洲综合色网址| 午夜精品国产一区二区电影| 中文欧美无线码| av电影中文网址| 91麻豆精品激情在线观看国产 | 午夜福利免费观看在线| av一本久久久久| 免费日韩欧美在线观看| 一边摸一边抽搐一进一出视频| 精品国产一区二区久久| 色综合欧美亚洲国产小说| 欧美久久黑人一区二区| 夜夜骑夜夜射夜夜干| 欧美亚洲日本最大视频资源| 久久国产精品男人的天堂亚洲| 久久精品人人爽人人爽视色| 在线观看免费日韩欧美大片| 91麻豆av在线| 久久人人爽av亚洲精品天堂| 欧美日韩av久久| 国产日韩欧美亚洲二区| 精品人妻熟女毛片av久久网站| 精品国产乱码久久久久久男人| 欧美日韩一级在线毛片| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| videos熟女内射| 大陆偷拍与自拍| 人人妻人人澡人人看| 国产97色在线日韩免费| 久久免费观看电影| 一区二区三区四区激情视频| 国产av一区二区精品久久| 国产精品秋霞免费鲁丝片| 水蜜桃什么品种好| 国产一区二区激情短视频 | 国产成人一区二区三区免费视频网站 | 中文字幕最新亚洲高清| 黄色 视频免费看| 欧美激情极品国产一区二区三区| 国产成人91sexporn| 亚洲熟女毛片儿| 国产精品.久久久| 最新在线观看一区二区三区 | 亚洲精品一二三| 99久久精品国产亚洲精品| 久久国产精品影院| 久久鲁丝午夜福利片| 日韩伦理黄色片| 日韩 亚洲 欧美在线| 国产在线免费精品| 欧美黄色淫秽网站| 丰满饥渴人妻一区二区三| 色94色欧美一区二区| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 免费女性裸体啪啪无遮挡网站| 婷婷色综合www| 天堂中文最新版在线下载| www日本在线高清视频| cao死你这个sao货| 一边摸一边做爽爽视频免费| 成人手机av| 亚洲av综合色区一区| 日本色播在线视频| 乱人伦中国视频| 国产成人91sexporn| 日本91视频免费播放| 可以免费在线观看a视频的电影网站| 亚洲国产毛片av蜜桃av| 多毛熟女@视频| kizo精华| 脱女人内裤的视频| 久久国产精品大桥未久av| av电影中文网址| 国产免费福利视频在线观看| 久久国产精品影院| 麻豆国产av国片精品| 天天躁夜夜躁狠狠躁躁| 在线av久久热| 男人添女人高潮全过程视频| 欧美大码av| 91精品三级在线观看| 免费一级毛片在线播放高清视频 | 中文字幕人妻丝袜一区二区| 91精品国产国语对白视频| 欧美日韩综合久久久久久| 免费在线观看视频国产中文字幕亚洲 | 男女边摸边吃奶| 国产精品国产三级国产专区5o| 亚洲色图 男人天堂 中文字幕| 三上悠亚av全集在线观看| 亚洲欧美成人综合另类久久久| 女人高潮潮喷娇喘18禁视频| xxx大片免费视频| 日韩欧美一区视频在线观看| 天堂8中文在线网| 国产精品九九99| 久久精品国产综合久久久| 天堂中文最新版在线下载| 97人妻天天添夜夜摸| 欧美日韩成人在线一区二区| 天天躁夜夜躁狠狠躁躁| 少妇的丰满在线观看| 成年动漫av网址| 搡老乐熟女国产| 日本黄色日本黄色录像| av国产久精品久网站免费入址| 亚洲欧美一区二区三区黑人| 亚洲五月色婷婷综合| 亚洲天堂av无毛| 亚洲精品一区蜜桃| 2018国产大陆天天弄谢| 亚洲第一青青草原| 亚洲中文日韩欧美视频| 欧美xxⅹ黑人| 亚洲熟女毛片儿| 精品熟女少妇八av免费久了| 亚洲国产毛片av蜜桃av| 成人影院久久| 性高湖久久久久久久久免费观看| 亚洲欧美清纯卡通| 久久精品成人免费网站| 纯流量卡能插随身wifi吗| 极品人妻少妇av视频| 美女午夜性视频免费| 国产精品一区二区在线不卡| av欧美777| 老鸭窝网址在线观看| 国产欧美日韩综合在线一区二区| 精品高清国产在线一区| 亚洲,欧美,日韩| 久久ye,这里只有精品| 捣出白浆h1v1| 欧美大码av| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 丁香六月天网| 日韩制服骚丝袜av| 亚洲av成人不卡在线观看播放网 | 最新的欧美精品一区二区| 亚洲欧美中文字幕日韩二区| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 久久精品人人爽人人爽视色| 久久青草综合色| 免费看不卡的av| 国产亚洲午夜精品一区二区久久| av在线老鸭窝| 欧美黄色淫秽网站| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 亚洲精品日本国产第一区| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 捣出白浆h1v1| 国产成人av激情在线播放| 午夜福利,免费看| 搡老乐熟女国产| 久久久欧美国产精品| 欧美国产精品一级二级三级| 男人添女人高潮全过程视频| 一级片'在线观看视频| 无遮挡黄片免费观看| 一本色道久久久久久精品综合| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 午夜免费成人在线视频| 99久久精品国产亚洲精品| 97在线人人人人妻| 两人在一起打扑克的视频| 亚洲精品一区蜜桃| 国产一区二区在线观看av| 国产爽快片一区二区三区| 中文字幕人妻熟女乱码| 中文字幕制服av| 婷婷色综合大香蕉| 在线亚洲精品国产二区图片欧美| 别揉我奶头~嗯~啊~动态视频 | 久热爱精品视频在线9| 久久免费观看电影| 王馨瑶露胸无遮挡在线观看| 亚洲精品在线美女| 中文欧美无线码| 亚洲欧美激情在线| 欧美日韩成人在线一区二区| 免费日韩欧美在线观看| 国产成人精品久久久久久| 国产精品免费大片| 下体分泌物呈黄色| 亚洲欧美精品自产自拍| 亚洲精品日本国产第一区| 亚洲av欧美aⅴ国产| 中文字幕av电影在线播放| 人妻 亚洲 视频| 国产男女超爽视频在线观看| 丰满少妇做爰视频| 交换朋友夫妻互换小说| 亚洲精品第二区| 如日韩欧美国产精品一区二区三区| 亚洲熟女毛片儿| 99香蕉大伊视频| 日韩制服丝袜自拍偷拍| 各种免费的搞黄视频| 国产午夜精品一二区理论片| 青青草视频在线视频观看| 亚洲成色77777| 免费日韩欧美在线观看| 一级片免费观看大全| 亚洲精品成人av观看孕妇| 99精品久久久久人妻精品| 亚洲国产精品国产精品| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区精品视频观看| 超色免费av| 伊人久久大香线蕉亚洲五| 一本色道久久久久久精品综合| 日韩欧美一区视频在线观看| 久久综合国产亚洲精品| 久久女婷五月综合色啪小说| 在线 av 中文字幕| 91国产中文字幕| 午夜免费成人在线视频| av网站在线播放免费| 美女中出高潮动态图| 两个人看的免费小视频| 久久女婷五月综合色啪小说| 夜夜骑夜夜射夜夜干| 亚洲国产精品一区二区三区在线| 侵犯人妻中文字幕一二三四区| 丝袜人妻中文字幕| 悠悠久久av| 日韩制服骚丝袜av| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 亚洲成av片中文字幕在线观看| 午夜福利视频精品| 大陆偷拍与自拍| 一级a爱视频在线免费观看| 只有这里有精品99| 欧美成人午夜精品| 亚洲精品自拍成人| 欧美日韩精品网址| 交换朋友夫妻互换小说| 国产精品熟女久久久久浪| 亚洲人成77777在线视频| 美女福利国产在线| 大香蕉久久网| 国精品久久久久久国模美| 亚洲成av片中文字幕在线观看| 国产高清国产精品国产三级| 精品人妻在线不人妻| 国产精品 欧美亚洲| 欧美黑人精品巨大| 久久久久国产一级毛片高清牌| 丝瓜视频免费看黄片| 波多野结衣一区麻豆| 在线观看www视频免费| 亚洲av国产av综合av卡| 亚洲精品一卡2卡三卡4卡5卡 | 日韩一区二区三区影片| 国产成人精品无人区| 一区二区三区乱码不卡18| 天天添夜夜摸| netflix在线观看网站| 成在线人永久免费视频| 我的亚洲天堂| 国产精品国产av在线观看| 七月丁香在线播放| 亚洲欧美日韩另类电影网站| 欧美xxⅹ黑人| 免费在线观看视频国产中文字幕亚洲 | 欧美亚洲日本最大视频资源| 一级毛片 在线播放| a级片在线免费高清观看视频| 真人做人爱边吃奶动态| 最近最新中文字幕大全免费视频 |