• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Purification of Sulfuric and Hydriodic Acids Phases in the Iodine-sulfur Process*

    2009-05-14 08:25:02BAIYing白瑩ZHANGPing張平GUOHanfei郭翰飛CHENSongzhe陳崧哲WANGLaijun王來軍andXUJingming徐景明
    關(guān)鍵詞:張平

    BAI Ying (白瑩), ZHANG Ping (張平)**, GUO Hanfei (郭翰飛), CHEN Songzhe (陳崧哲), WANG Laijun (王來軍) and XU Jingming (徐景明)

    ?

    Purification of Sulfuric and Hydriodic Acids Phases in the Iodine-sulfur Process*

    BAI Ying (白瑩), ZHANG Ping (張平)**, GUO Hanfei (郭翰飛), CHEN Songzhe (陳崧哲), WANG Laijun (王來軍) and XU Jingming (徐景明)

    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

    Iodine-sulfur (IS) thermochemical water-splitting cycle is the most promising massive hydrogen production process. To avoid the undesirable side reactions between hydriodic acid(HI) and sulfuric acid (H2SO4), it is necessary to purify the two phases formed by the Bunsen reaction. The purification process could be achieved by reverse reaction of the Bunsen reaction. In this study, the purification of the H2SO4and HI Phases was studied. The purification proceeded in both batches and the continuous mode, the influences of operational parameters, including the reaction temperature, the flow rate of nitrogen gas, and the composition of the raw material solutions, on the purification effect, were investigated. Results showed that the purification of the H2SO4phase was dominantly affected by the reaction temperature,and iodine ion in the sulfuric acid phase could be removed completely when the temperature was above 130°C; although, the purification effect of the HI phase improved with increasing of both the flow rate of nitrogen gas and temperature.

    iodine-sulfur process, H2SO4phase, hydriodic acid phase, purification, reverse Bunsen reaction

    1 INTRODUCTION

    Hydrogen will become an attractive energy carrier in the future with its storable and transportable characteristics. To achieve a carbon-free energy system, many hydrogen production methods have been studied that manage to produce hydrogen from water. Among these methods, thermochemical water-splitting is a promising one, as both the materials used and the hydrogen production process would be clean when nuclear or solar energy was employed as the heat source [1-4]. Among the many thermo-chemical processes proposed, iodine-sulfur (IS) cycle, which was initially proposed by General Atomics [5], with its apparent advantages, was considered as the best one. It was studied world widely during the past two decades [6-15].

    The concept of the IS process is shown in Fig. 1 [16].

    Iodine-sulfur cycle is composed of the following three chemical reactions:

    Bunsen reaction:

    HI decomposition reaction:

    H2SO4decomposition reaction:

    In the Bunsen reaction, sulfuric acid and hydriodic acid are produced with sulfur dioxide, iodine, and water as reactants. In the following decomposition reactions, H2SO4and hydriodic acid (HI) are decomposed, respectively. Except for hydrogen and oxygen, the other decomposition products are returned to the Bunsen reaction. Therefore, the total result of these reactions is that water is decomposed to hydrogen and oxygen.

    Figure 1 Concept of the IS process

    At high iodine concentration, the H2SO4and HI phases formed can separate spontaneously. However, the two phases contaminate each other, which means that a small amount of HI and H2SO4are contained in the H2SO4phase and the HIphase, respectively. In certain conditions, the operation of the Bunsen reactionand the separation step of the two liquid phases at high temperature are supposed to cause a side reaction that occurs in the mixture of both H2SO4and HI solutions.

    The possible side reactions that occur between H2SO4and HI are as follows [17]

    According to Ref. [18], the side reactions easily occur with the increase of reaction temperature and acid concentration, whereas, high iodine concentration impedes the side reactions. Sakurai reported that the predominant side reaction was the sulfur formation reaction. These side reactions may unbalance the cycling material, or clog pipes. To avoid these undesired side reactions, any sulfuric acid should be removed from the HI phase solution before its distillation and recycled in the IS process. For the same reason, hydriodic acid should also be removed from the H2SO4solution.

    At high temperature, the reverse reaction of the Bunsen reaction also proceeds [7]. Since both sulfur dioxide and iodine produced by the reverse Bunsen reaction can be utilized in the closed-cycle again, this reaction theoretically can be used to purify the two phases without introducing any other materials or impurities. However, little study on the application of the reverse Bunsen reaction in the purification of the two liquid phases has been reported [19-21].

    In this article, an experimental study on the purification of both H2SO4and HI phases was carried out in both batches and continuous modes, based on the reverse reaction of the Bunsen reaction. The influences of operational parameters, such as, operation temperatures, flow rates of nitrogen gas, and solution compositions on the purification effect, were studied.

    2 EXPERIMENTAL

    2.1 Batch mode operation

    Figure 2 shows the simplified scheme of an experimental setup of the batch mode operation. A mixed solution of H2SO4and HI was heated in the reactor by a temperature controlled heater, nitrogen gas was bubbling in the reactor. Vapor and iodine gas was cooled down by a condenser, and sulfur dioxide was absorbed by NaOH solution.

    2.2 Continuous mode operation

    Figure 3 is the simplified scheme of the experiment setup of continuous mode operation. The experiment in continuous mode was carried out in a packed column, which was 34 cm in length and 4 cm in diameter. The column was packed with small glass-ring fillings; the packed length was 26 cm. The mixed solution of H2SO4and HI was pumped into the top and nitrogen gas was flowing from the bottom of the column, the countercurrent of both liquid and gas was heated by the heating belt wound on the wall of the column. Vapor was cooled down by a condenser, and sulfur dioxide produced was absorbed by NaOH solution. The effluent was collected from the production exit.

    2.3 Analytical method

    Figure 2 Simplified scheme of the batch reactor

    Figure 3 Simplified scheme of the continuous reactor

    3 RESULTS AND DISCUSSION

    The reverse reaction of the Bunsen reaction is expressed in the following formula:

    To improve the purification efficiency, the reaction should be facilitating forward. Some effects may affect the equilibrium. First, as the Bunsen reaction is exothermic, an increase in reaction temperature will naturally promote reverse reaction, therefore, purification should be carried out at a higher temperature. Second, as a gaseous product (SO2) forms in the reverse reaction, to remove SO2will be beneficial, hence, nitrogen was used for carrying the produced SO2, and the suitable gas flow rate was chosen. Third, the feed rate in the continuous mode not only influences the removal efficiency but also the operational stability; therefore, the best feed rate should be ascertained. In addition, the composition of raw material may vary in closed cycle operation. With these considerations, the purification process was studied.

    3.1 Purification of sulfuric acid phase

    3.1.1

    Figure 4 Effects ofiwith different flow rates of nitrogen gas

    N2flow rate/ml·min-1:○?50;■?100;△?150;▼?200;◆?0

    The trend of the purification effects with different feeding materials [Fig.4 (b)] was similar to those with prior composition. Although the gap was not that long between the utilization of nitrogen, the results were similar, by using different flow rates.iremained constant when the operation temperature was stable. It could also be observed that the finalireached a higher level when the amount of HI was smaller in the mixed solution. After one and a half hours, it could reach almost 100%, denoting that the HI impurity could be totally removed.

    3.1.2

    With the results obtained from the batch mode, the reaction order and reaction rate constant of the reverse Bunsen reaction could be acquired by an integral (concentration to time curve), that is, the concentration of one or more products is measured at different times by substituting the data into the integral formula of a rate equation and solving it by linear fitting, following which a suitable equation would be obtained.

    Generally, a rate equation would be expressed as follows:

    Integrating the equation, at= 0,=0:

    Suppose that the rate equation of the reverse Bunsen reaction is as follows:

    3.1.3

    To make the IS process become a closed cycle, each unit operation, including the purification of the two liquid phases, should be able to operate continuously. In the continuous operating mode, the operation temperature was considered as the most important parameter affecting the purification effect.

    The continuous purification process was carried out in a packed column. The composition of the feeding material was H2SO4︰HI︰H2O (molar ratio) = 10︰1︰50, the flow rate of the carrier gas was 50 ml·min-1, and the feed rate was 1.6 ml·min-1. The operation temperatures were controlled stably at various temperatures. Preliminary experiment results showed that the removal efficiency of I-was kept stable within the experiment period (about 40 min). The results are shown in Fig. 6, it shows thatiincreased with increasing temperatures, and HI was totally removed when temperature was above 130°C.

    3.2 Purification of hydriodic acid phase

    In the batch mode experiment, the influence of operational parameters, including composition of feeding material and flow rate of nitrogen, on the HI phase purification was studied. In the continuous mode, besides temperature and flow rates of nitrogen, the effect of the feed rate was studied.

    Figure 6 Effects ofiwith various temperatures

    3.2.1

    The compositions of feeding materials are H2SO4︰HI =1︰20 and H2SO4︰HI =1︰10 (molar ratio). The reactor was heated and the temperature remained at a stable value of about 108°C. Fig. 7 shows the dependency ofsaon the flow rate of nitrogen.

    Figure 7 Effects of flow rates of nitrogen gas onsa

    N2flow rate/ml·min-1:○?50;■?100;△?150;▼?200

    Figure 7 shows thatsaincreases with an increase in the flow rate of nitrogen gas, because SO2produced from the reverse Bunsen reaction is carried away by the bubbling nitrogen. The reverse Bunsen reaction is greatly promoted and purification will be more effective with a higher flow rate of nitrogen.

    Similar to the purification of the sulfuric acid phase, by the comparison of (a) and (b) in Fig. 7, it can be seen that the finalsaincreases when the content of the H2SO4impurity is smaller in the feed.

    3.2.2

    Similar to the analysis of sulfuric acid purification, the reaction order and rate constant for reverse Bunsen reaction for excessive HI can also be calculated.

    Therefore, the overall reverse Bunsen reaction can be considered as a fourth order one, the reaction rate equation may be expressed as follows:

    3.2.3

    Due to the complexity of influences of the operation conditions (including the temperature, flow rate of nitrogen gas, and the feed rate of raw material) on the purification effects, the average and maximumsaof the HI phase purification experiments were presented in the continuous operation mode experiments.

    (1) Effect of operation temperature onsa

    In this experiment, the composition of the feeding material was of H2SO4︰HI = 1︰20 (molar ratio), flow rate of N2was 200 ml·min-1, and the feed rate was 0.48 ml·min-1. The results are shown in Table 1.

    Table 1 Average and maximum Qsa with different temperature ranges

    (2) Effect of flow rate of nitrogen gas onsa

    The composition of the feeding material was H2SO4︰HI = 1︰20 (molar ratio), operation temperature was between 100 and 120°C, the feed rate was 0.48 ml·min-1, the results are shown in Table 2.

    Table 2 Average and maximum Qsa with different flow rates of nitrogen gas

    (3) Effect of the liquid flow rate of the mixed solution onsa

    The composition of the feeding material was H2SO4︰HI =1︰20 (molar ratio). The operation temperature was between 100 and 120°C, the flow rate of N2was 150 ml·min-1, and the results are shown in Table 3.

    Table 3 Average and maximum Qsa with different flow rates of the mixed solution

    4 CONCLUSIONS

    Regarding the condition of purification of H2SO4and HI phases in the IS process, experimental study was conducted and the concluding remarks are as follows.

    (3) Based on the experiment results, the operation conditions of the efficient purification of both H2SO4and HI phases in a closed-cycle IS process was proposed as follows: the purification process should be carried out in a continuous operation mode; lower nitrogen flow rate (such as 50 ml·min-1) and higher temperature (above 130°C) should be adopted for the sulfuric acid phase purification process; and higher temperature and flow rate of nitrogen gas would be beneficial for the hydriodic acid phase purification process.

    1 International Atomic Energy Agency, “Hydrogen as an energy carrier and its production by nuclear power”, IAEA TECDOC 1085, Vienna, Austria (1999).

    2 Roger, H.H., Scott, D.S., “Building sustainable energy system: the role of nuclear-derived hydrogen”, In: Proceedings of 1st Information Exchange Meeting, Paris, France (2000).

    3 Funk, J.E., “Thermochemical hydrogen production: Past and present”,.., 26, 185-190 (2001).

    4 Terada, A., Kubo, S., “Development of hydrogen production technology by thermo-chemical water splitting IS process”, In: Proceeding of Global 2005, Tsukuba, Japan (2005).

    5 Norman, J.H., Besenbruch, L.C., Brown, L.C., “Thermo-chemical water-splitting cycle, bench-scale investigations and process engineering”, General Atomics Report, GA-A16713 (1982).

    6 Nakajima, H., Ikenoya, K., Onuki, K., Shimizu, S., “Closed-cycle continuous hydrogen production test by thermochemical IS process”,...., 24, 352-355 (1998).

    7 Nomura, M., Kasahara, S., Okuda, H., Nakao, S., “Evaluation of the IS process featuring membrane techniques by total thermal efficiency”,..y, 30, 1465-1473 (2005).

    8 Vitart, X., Duigou, A.L., Carles, P., “Hydrogen production using the sulfur-iodine cycle coupled to VHTR: An overview”,.., 47, 2740-2747 (2006).

    9 Sakaba, N., Kasahara, S., Onuki, K., Kunitomi, K., “Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high temperature gas-cooled reactor HTTR”,.., 32, 4160-4169 (2007).

    10 Vitart, X., Carles, P., Anzieu, P.A., “General survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat”,..y, 50, 402-410 (2008).

    11 Goldstein, S., Borgard, J.M., Vitart, X., “Upper bound and best estimate of the efficiency of the iodine sulphur cycle”,..y, 30, 619-626 (2005).

    12 Kasahara, S., Kubo, S., Hino, R., Onuki, K., “Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production”,.., 32, 489-496 (2007).

    13 Roth, M., Knoche, K.F., “Thermochemical water splitting through direct HI-decomposition from H2O /HI/I2solutions”,..y, 14 (8), 545-549 (1989).

    14 Kubo, S., Nakajima, H., Kasahara, S., Higashi, S., “A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process”,..., 233, 347-354 (2004).

    15 Kasahara, S., Hwang, G.J., Nakajima, H., Choi, H.S., “Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water”,...., 36, 887-899 (2003).

    16 Zhang, P., Yu, B., Chen, J., Xu, J.M., “Study on the hydrogen production by thermochemical water splitting”,.., 17 (4), 643-650 (2005). (in Chinese)

    17 Sakurai, M., Nakajima, H., Amir, R., Onuki, K., Shimuzu, S., “Experimental study on side reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process”,..y, 25, 613-619 (2000).

    18 Sakurai, M., Nakajima, H., Onuki, K., Ikenoya, K., Shimizu, S., “Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process”,..y, 24, 603-612 (1999).

    19 Kasahara, S., Kubo, S., Onuki, K., Nomura, M., “Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process”,.., 29 (6), 579-587 (2004).

    20 Bae, K.K., Park, C.S., Kim, C.H., Kang, K.S., Lee S.H., “Hydrogen production by thermochemical water-splitting IS process”, In: Proceedings of WHEC 16, Lyon, France (2006).

    21 Kubo, S., Kasahara, S., Okuda, H., Terada, A., “A pilot test plan of the thermochemical water-splitting iodine-sulfur process”,..., 233, 355-362 (2004).

    22 Wei, Y.J., Liu, C.G., Mo, L.P., “Ultraviolet absorption spectra of iodine, iodine ion and triiodide ion”,..., 25 (1), 86-88 (2005). (in Chinese)

    2008-02-25,

    2008-10-09.

    the National Defense Fundamental Research Fund (A1420080145).

    ** To whom correspondence should be addressed. E-mail: zhangping77@tsinghua.edu.cn

    猜你喜歡
    張平
    Magnetic ground state of plutonium dioxide: DFT+U calculations
    Topological properties of Sb(111)surface: A first-principles study
    嘰嘰喳喳的小喜鵲
    Magnetic phase diagram of single-layer CrBr3?
    High-pressure elastic anisotropy and superconductivity of hafnium:A first-principles calculation*
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    高中生英語學(xué)習(xí)焦慮現(xiàn)狀研究
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    千年煙云大西安
    金秋(2019年2期)2019-04-16 09:14:42
    張平書法作品選
    国产黄色视频一区二区在线观看 | 国产高清视频在线观看网站| 欧美一区二区精品小视频在线| 久久鲁丝午夜福利片| 99在线视频只有这里精品首页| 少妇猛男粗大的猛烈进出视频 | 国产精品野战在线观看| 国产 一区 欧美 日韩| 国产欧美日韩一区二区精品| 综合色丁香网| 精品久久国产蜜桃| 日韩欧美三级三区| 村上凉子中文字幕在线| 精品无人区乱码1区二区| 99在线人妻在线中文字幕| 亚洲av二区三区四区| 欧美丝袜亚洲另类| 色噜噜av男人的天堂激情| 97超碰精品成人国产| 18禁裸乳无遮挡免费网站照片| 91午夜精品亚洲一区二区三区| 国产色爽女视频免费观看| 免费人成视频x8x8入口观看| 亚洲精品亚洲一区二区| 亚洲无线观看免费| 国产精品不卡视频一区二区| 日韩大尺度精品在线看网址| 亚洲第一电影网av| 99热这里只有精品一区| 午夜福利成人在线免费观看| 色视频www国产| 简卡轻食公司| 2021天堂中文幕一二区在线观| 久久久久久久亚洲中文字幕| 给我免费播放毛片高清在线观看| 91久久精品国产一区二区成人| 欧美日韩在线观看h| 日韩欧美 国产精品| 亚洲电影在线观看av| 三级男女做爰猛烈吃奶摸视频| 亚洲成av人片在线播放无| 日韩国内少妇激情av| 欧美高清成人免费视频www| 国产av麻豆久久久久久久| 国产 一区 欧美 日韩| 亚洲欧美精品综合久久99| 亚洲成人精品中文字幕电影| 国产高清三级在线| 级片在线观看| 91精品国产九色| 女的被弄到高潮叫床怎么办| 午夜激情欧美在线| 国产亚洲av嫩草精品影院| 搡老妇女老女人老熟妇| 综合色丁香网| 欧美性猛交黑人性爽| 国产欧美日韩精品亚洲av| 九色成人免费人妻av| 亚洲综合色惰| 国产三级中文精品| 在线观看av片永久免费下载| 国产精品亚洲一级av第二区| 色5月婷婷丁香| 午夜免费男女啪啪视频观看 | 国产av在哪里看| 我的老师免费观看完整版| 国产极品精品免费视频能看的| 国产视频一区二区在线看| 亚洲精品亚洲一区二区| 国产一区二区三区av在线 | 女同久久另类99精品国产91| 精品少妇黑人巨大在线播放 | 久久久成人免费电影| 成人三级黄色视频| 久久人人精品亚洲av| 久久人人精品亚洲av| 精品久久久久久久久亚洲| 婷婷精品国产亚洲av在线| 一区二区三区高清视频在线| 日本黄大片高清| 99久久久亚洲精品蜜臀av| 国产高清不卡午夜福利| 不卡视频在线观看欧美| 搞女人的毛片| 久久久久久久久久成人| 联通29元200g的流量卡| 国产色婷婷99| 亚洲天堂国产精品一区在线| 国产精品一区二区免费欧美| 国产乱人偷精品视频| 国产成人freesex在线 | 午夜a级毛片| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久久久毛片| 免费观看精品视频网站| 欧美中文日本在线观看视频| 可以在线观看的亚洲视频| 欧美色视频一区免费| 99riav亚洲国产免费| 人妻少妇偷人精品九色| 成人性生交大片免费视频hd| 一区二区三区免费毛片| 色播亚洲综合网| 久久午夜福利片| 亚洲五月天丁香| 成人午夜高清在线视频| 我要搜黄色片| 俄罗斯特黄特色一大片| 嫩草影院入口| 亚洲欧美日韩高清专用| 亚洲成人久久爱视频| 一级黄片播放器| 51国产日韩欧美| 又爽又黄无遮挡网站| 99久国产av精品| 久久精品国产亚洲av天美| 干丝袜人妻中文字幕| 亚洲人成网站在线播| 精品久久久久久久久久久久久| 亚洲av成人精品一区久久| 成人美女网站在线观看视频| 日韩一区二区视频免费看| 亚洲中文日韩欧美视频| 人妻制服诱惑在线中文字幕| 小说图片视频综合网站| 国产三级中文精品| 91av网一区二区| 一进一出好大好爽视频| 国产精品国产三级国产av玫瑰| 哪里可以看免费的av片| 俄罗斯特黄特色一大片| 一个人免费在线观看电影| 久久午夜福利片| 简卡轻食公司| 亚洲美女搞黄在线观看 | 99视频精品全部免费 在线| 三级国产精品欧美在线观看| 国产男靠女视频免费网站| 3wmmmm亚洲av在线观看| 97超视频在线观看视频| 日本精品一区二区三区蜜桃| 丰满乱子伦码专区| 一个人免费在线观看电影| 亚洲婷婷狠狠爱综合网| 亚洲四区av| 成人鲁丝片一二三区免费| 亚洲第一电影网av| 可以在线观看毛片的网站| 91狼人影院| 免费无遮挡裸体视频| 国产极品精品免费视频能看的| 日韩av不卡免费在线播放| 久久国产乱子免费精品| 丰满的人妻完整版| 欧美精品国产亚洲| 国产黄a三级三级三级人| 亚洲av一区综合| 欧美xxxx黑人xx丫x性爽| 91精品国产九色| 波多野结衣巨乳人妻| 欧美不卡视频在线免费观看| 两个人的视频大全免费| 美女免费视频网站| 国产精品,欧美在线| 成年女人永久免费观看视频| 嫩草影院新地址| 欧美在线一区亚洲| 久久6这里有精品| 久久久色成人| 成年女人毛片免费观看观看9| 在线播放国产精品三级| a级一级毛片免费在线观看| 中国美白少妇内射xxxbb| av福利片在线观看| 99久久久亚洲精品蜜臀av| 亚洲成人精品中文字幕电影| 一进一出好大好爽视频| 色综合站精品国产| 综合色丁香网| 免费搜索国产男女视频| 99久久精品国产国产毛片| 免费在线观看成人毛片| 最新在线观看一区二区三区| 一级黄片播放器| 欧美成人免费av一区二区三区| 国产精品永久免费网站| 亚洲三级黄色毛片| 尾随美女入室| 在线观看免费视频日本深夜| 又黄又爽又免费观看的视频| 中文字幕av成人在线电影| 最新中文字幕久久久久| 精品福利观看| 中文字幕久久专区| 国产亚洲精品av在线| 在线天堂最新版资源| 少妇人妻一区二区三区视频| 日日撸夜夜添| 欧美性猛交黑人性爽| 免费人成视频x8x8入口观看| 最近2019中文字幕mv第一页| 欧美中文日本在线观看视频| 午夜精品一区二区三区免费看| 少妇熟女aⅴ在线视频| 国内少妇人妻偷人精品xxx网站| 一a级毛片在线观看| 日韩强制内射视频| av卡一久久| 亚洲欧美中文字幕日韩二区| 欧美高清性xxxxhd video| a级一级毛片免费在线观看| 色综合色国产| 波多野结衣高清无吗| 国产精品,欧美在线| 91在线精品国自产拍蜜月| 少妇人妻精品综合一区二区 | 亚洲精品在线观看二区| 一进一出好大好爽视频| 狠狠狠狠99中文字幕| 久久久国产成人免费| 久久精品国产亚洲av天美| 亚洲国产日韩欧美精品在线观看| 日本-黄色视频高清免费观看| 少妇人妻一区二区三区视频| 日韩强制内射视频| 最近手机中文字幕大全| 又爽又黄无遮挡网站| 免费一级毛片在线播放高清视频| 人妻制服诱惑在线中文字幕| 日本黄大片高清| 最新中文字幕久久久久| 偷拍熟女少妇极品色| 亚洲国产精品成人久久小说 | 欧美高清性xxxxhd video| av专区在线播放| 欧美最新免费一区二区三区| 亚洲av中文av极速乱| 十八禁网站免费在线| 99riav亚洲国产免费| 国产v大片淫在线免费观看| 赤兔流量卡办理| 午夜福利高清视频| 免费av毛片视频| 欧美zozozo另类| 精品无人区乱码1区二区| 国内精品久久久久精免费| 一级黄色大片毛片| 欧美日韩精品成人综合77777| 亚洲熟妇熟女久久| 亚洲av第一区精品v没综合| 麻豆av噜噜一区二区三区| 精品久久久噜噜| 插逼视频在线观看| 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 麻豆国产av国片精品| 精品久久久久久成人av| 在线播放国产精品三级| 亚洲精华国产精华液的使用体验 | 99热这里只有是精品50| 成年版毛片免费区| 欧美bdsm另类| 综合色丁香网| 特大巨黑吊av在线直播| 伦精品一区二区三区| 99国产极品粉嫩在线观看| 久久久久久久午夜电影| 国产成人影院久久av| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 午夜福利在线在线| 亚洲精品色激情综合| 热99re8久久精品国产| 中文字幕久久专区| 高清午夜精品一区二区三区 | 精品一区二区免费观看| 亚洲精品国产av成人精品 | 午夜福利18| 国产精品日韩av在线免费观看| 亚洲欧美日韩卡通动漫| 蜜桃久久精品国产亚洲av| 黄色一级大片看看| 一a级毛片在线观看| 日日干狠狠操夜夜爽| 蜜桃亚洲精品一区二区三区| 91狼人影院| 18禁黄网站禁片免费观看直播| 成人特级av手机在线观看| 最近的中文字幕免费完整| 国内精品久久久久精免费| av.在线天堂| 国产男人的电影天堂91| 一级毛片我不卡| 成人鲁丝片一二三区免费| 91狼人影院| 成人三级黄色视频| 一个人免费在线观看电影| 亚洲av电影不卡..在线观看| 亚洲性久久影院| 精华霜和精华液先用哪个| 免费人成视频x8x8入口观看| 成年av动漫网址| 3wmmmm亚洲av在线观看| 大香蕉久久网| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| 人妻久久中文字幕网| 国产白丝娇喘喷水9色精品| 99热网站在线观看| 嫩草影院精品99| 中国美女看黄片| 欧美国产日韩亚洲一区| 免费无遮挡裸体视频| 午夜影院日韩av| 国产精品国产三级国产av玫瑰| 乱人视频在线观看| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 少妇高潮的动态图| 精品久久久久久久久亚洲| 丰满乱子伦码专区| 亚洲一区高清亚洲精品| 久久鲁丝午夜福利片| 深夜a级毛片| 亚洲七黄色美女视频| 如何舔出高潮| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 久久6这里有精品| 直男gayav资源| 久久精品91蜜桃| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频| 亚洲不卡免费看| av福利片在线观看| 亚洲自偷自拍三级| 久久久国产成人免费| 免费av观看视频| 婷婷色综合大香蕉| 美女内射精品一级片tv| 中文在线观看免费www的网站| 久久精品91蜜桃| 国产成人福利小说| 久久99热6这里只有精品| 少妇熟女aⅴ在线视频| 热99在线观看视频| 亚洲最大成人手机在线| 成人美女网站在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 久久久国产成人免费| 亚洲三级黄色毛片| 久久热精品热| 中文字幕熟女人妻在线| 免费看av在线观看网站| 不卡视频在线观看欧美| 国产精品av视频在线免费观看| 国产精华一区二区三区| 国产欧美日韩精品一区二区| 中文字幕av成人在线电影| 最近视频中文字幕2019在线8| 亚洲成a人片在线一区二区| 一个人看视频在线观看www免费| 久久99热这里只有精品18| 给我免费播放毛片高清在线观看| 亚洲丝袜综合中文字幕| 精品人妻视频免费看| 少妇猛男粗大的猛烈进出视频 | 亚洲精品国产成人久久av| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 99久久中文字幕三级久久日本| 精品人妻熟女av久视频| 91在线观看av| 久久这里只有精品中国| 国产成人aa在线观看| 国产精品亚洲美女久久久| 日韩中字成人| 午夜福利在线观看吧| 日韩一区二区视频免费看| 久久精品夜夜夜夜夜久久蜜豆| 91在线精品国自产拍蜜月| 色av中文字幕| 国产成人精品久久久久久| 色哟哟·www| 美女高潮的动态| 精品福利观看| 有码 亚洲区| 亚洲欧美中文字幕日韩二区| 亚洲国产精品国产精品| 亚洲人成网站高清观看| 老司机福利观看| 性插视频无遮挡在线免费观看| 亚洲一级一片aⅴ在线观看| 精品福利观看| 亚洲av五月六月丁香网| 中文字幕av成人在线电影| 噜噜噜噜噜久久久久久91| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线观看免费完整高清在 | 国产极品精品免费视频能看的| 亚洲性夜色夜夜综合| 色av中文字幕| 12—13女人毛片做爰片一| 91久久精品国产一区二区三区| 国产精品一区www在线观看| 国产成人一区二区在线| 男人舔女人下体高潮全视频| 国产亚洲精品久久久com| 啦啦啦观看免费观看视频高清| 国内精品宾馆在线| 国产在线男女| 91麻豆精品激情在线观看国产| 少妇人妻精品综合一区二区 | 国产片特级美女逼逼视频| av在线亚洲专区| 精品乱码久久久久久99久播| 午夜激情欧美在线| 国产精品乱码一区二三区的特点| 精品一区二区免费观看| 能在线免费观看的黄片| 精品少妇黑人巨大在线播放 | 久久久a久久爽久久v久久| 嫩草影视91久久| 69av精品久久久久久| 亚洲av中文字字幕乱码综合| 久久精品国产自在天天线| 亚洲国产色片| 日本熟妇午夜| 床上黄色一级片| 九九爱精品视频在线观看| 我的老师免费观看完整版| 激情 狠狠 欧美| 天堂影院成人在线观看| 国产精品久久久久久亚洲av鲁大| 成人无遮挡网站| 搡老熟女国产l中国老女人| 高清日韩中文字幕在线| 最新在线观看一区二区三区| 色综合色国产| 久久久精品94久久精品| 亚洲图色成人| 1000部很黄的大片| 成人午夜高清在线视频| 国产av麻豆久久久久久久| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| 国产精品1区2区在线观看.| or卡值多少钱| 国产色爽女视频免费观看| 国产三级在线视频| 国产欧美日韩一区二区精品| 看免费成人av毛片| 国产一区二区在线av高清观看| 亚洲久久久久久中文字幕| 国产高清视频在线播放一区| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 国产蜜桃级精品一区二区三区| 国产中年淑女户外野战色| 精品不卡国产一区二区三区| 深爱激情五月婷婷| 男女那种视频在线观看| 久久久午夜欧美精品| 99riav亚洲国产免费| 欧美日韩国产亚洲二区| 97超视频在线观看视频| 一级av片app| 不卡一级毛片| 少妇猛男粗大的猛烈进出视频 | 日韩强制内射视频| 男女那种视频在线观看| 神马国产精品三级电影在线观看| 婷婷色综合大香蕉| 看非洲黑人一级黄片| 国模一区二区三区四区视频| 日本熟妇午夜| 国产成人福利小说| 成年av动漫网址| 日韩精品青青久久久久久| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 免费高清视频大片| 中文字幕精品亚洲无线码一区| 国产视频一区二区在线看| 日本爱情动作片www.在线观看 | 亚洲一级一片aⅴ在线观看| 国产中年淑女户外野战色| 在线观看免费视频日本深夜| 狠狠狠狠99中文字幕| 少妇的逼水好多| 色综合亚洲欧美另类图片| 亚洲欧美精品综合久久99| 天天躁夜夜躁狠狠久久av| 一本久久中文字幕| 欧美激情国产日韩精品一区| 一级a爱片免费观看的视频| 亚洲av免费高清在线观看| h日本视频在线播放| 18禁在线播放成人免费| 麻豆一二三区av精品| 我的女老师完整版在线观看| 精品日产1卡2卡| 久久欧美精品欧美久久欧美| 在线观看午夜福利视频| 免费看光身美女| 国产精品爽爽va在线观看网站| 久久人妻av系列| 一a级毛片在线观看| 亚洲国产精品成人久久小说 | 日韩,欧美,国产一区二区三区 | 成人精品一区二区免费| 男女做爰动态图高潮gif福利片| 日本撒尿小便嘘嘘汇集6| 日本黄大片高清| 给我免费播放毛片高清在线观看| 国产精品国产高清国产av| 久久综合国产亚洲精品| 18+在线观看网站| 国产精品国产三级国产av玫瑰| 亚洲欧美精品综合久久99| 亚洲欧美日韩东京热| 亚洲无线在线观看| 99久久精品一区二区三区| 久久中文看片网| 在线播放国产精品三级| 男人舔女人下体高潮全视频| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站 | 欧美bdsm另类| 女人被狂操c到高潮| av在线观看视频网站免费| 麻豆乱淫一区二区| 国产成人精品久久久久久| 春色校园在线视频观看| 亚洲经典国产精华液单| 性插视频无遮挡在线免费观看| 日韩精品中文字幕看吧| 亚洲av第一区精品v没综合| 中国美白少妇内射xxxbb| 床上黄色一级片| 免费人成在线观看视频色| 国产高潮美女av| 午夜福利视频1000在线观看| 全区人妻精品视频| 99久久无色码亚洲精品果冻| 亚洲,欧美,日韩| 国产精品女同一区二区软件| 亚洲,欧美,日韩| 中国国产av一级| 精品久久久久久久人妻蜜臀av| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频| 国产精品久久久久久精品电影| 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 免费看日本二区| av中文乱码字幕在线| 最新在线观看一区二区三区| 蜜臀久久99精品久久宅男| 99热全是精品| 午夜福利在线在线| 欧美3d第一页| 午夜影院日韩av| 美女高潮的动态| 精品人妻视频免费看| 性欧美人与动物交配| 五月伊人婷婷丁香| 欧美成人免费av一区二区三区| 婷婷色综合大香蕉| 晚上一个人看的免费电影| 午夜a级毛片| 午夜福利成人在线免费观看| 少妇丰满av| 亚洲精品乱码久久久v下载方式| 久久精品国产自在天天线| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 中文字幕免费在线视频6| 一区福利在线观看| 久久久久精品国产欧美久久久| www.色视频.com| 男女那种视频在线观看| 波多野结衣高清作品| 成人欧美大片| 亚洲无线在线观看| 97超碰精品成人国产| 亚洲国产欧美人成| 国产在线男女| 亚洲最大成人av| 亚洲,欧美,日韩| 丝袜美腿在线中文| 婷婷亚洲欧美| 成人无遮挡网站| 成年女人看的毛片在线观看| 在线免费十八禁| 国产精品综合久久久久久久免费| 亚洲欧美中文字幕日韩二区| 97碰自拍视频| 中文字幕精品亚洲无线码一区| 亚洲乱码一区二区免费版| 麻豆乱淫一区二区| 自拍偷自拍亚洲精品老妇| 久久久久性生活片| 99国产极品粉嫩在线观看| 久久草成人影院| 亚洲精品成人久久久久久| 国产精品久久电影中文字幕| 国内揄拍国产精品人妻在线| 最近最新中文字幕大全电影3| 国产精品一区二区三区四区久久| 青春草视频在线免费观看| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添av毛片| 黄色视频,在线免费观看| 午夜免费男女啪啪视频观看 |